[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP3041631B1 - Chromium metal powder - Google Patents

Chromium metal powder Download PDF

Info

Publication number
EP3041631B1
EP3041631B1 EP14789128.7A EP14789128A EP3041631B1 EP 3041631 B1 EP3041631 B1 EP 3041631B1 EP 14789128 A EP14789128 A EP 14789128A EP 3041631 B1 EP3041631 B1 EP 3041631B1
Authority
EP
European Patent Office
Prior art keywords
chromium
metal powder
powder
mpa
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14789128.7A
Other languages
German (de)
French (fr)
Other versions
EP3041631A2 (en
Inventor
Michael O'sullivan
Lorenz Sigl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Plansee SE
Original Assignee
Plansee SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Plansee SE filed Critical Plansee SE
Publication of EP3041631A2 publication Critical patent/EP3041631A2/en
Application granted granted Critical
Publication of EP3041631B1 publication Critical patent/EP3041631B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/045Alloys based on refractory metals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61HPHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
    • A61H33/00Bathing devices for special therapeutic or hygienic purposes
    • A61H33/06Artificial hot-air or cold-air baths; Steam or gas baths or douches, e.g. sauna or Finnish baths
    • A61H33/063Heaters specifically designed therefor
    • A61H33/065Heaters specifically designed therefor with steam generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/20Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds
    • B22F9/22Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from solid metal compounds using gaseous reductors
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C27/00Alloys based on rhenium or a refractory metal not mentioned in groups C22C14/00 or C22C16/00
    • C22C27/06Alloys based on chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C37/00Cast-iron alloys
    • C22C37/06Cast-iron alloys containing chromium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2201/00Treatment under specific atmosphere
    • B22F2201/01Reducing atmosphere
    • B22F2201/013Hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2202/00Treatment under specific physical conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2301/00Metallic composition of the powder or its coating
    • B22F2301/20Refractory metals

Definitions

  • the present invention relates to a metal powder having a chromium content of at least 90% by mass and a process for its production.
  • the present invention has therefore set itself the task of providing metal powder having a chromium content of at least 90% by mass, which can be processed well powder metallurgy, in particular by pressing and sintering.
  • a metal powder is to be provided with which complex-shaped and / or thin-walled components can be produced in a simple manner by powder metallurgy.
  • the metal powder should further be produced in a high metallic purity, in particular a metallic purity comparable or better than metal powder, which is obtained by electrolytic route.
  • the object is achieved by metal powder with a chromium content of at least 90% by mass, which is measured by a nanohardness of 0.005 / 5/1/5 EN ISO 14577-1 (2002 edition - Berkovich indenters and Oliver and Pharr analysis methods) of ⁇ 4 GPa.
  • the hardness value refers to a metal powder, which is preferably subjected to no further treatment, such as an annealing.
  • the nanohardness HIT is preferably 0.005 / 5/1/5 ⁇ 3.7 GPa, more preferably ⁇ 3.4 GPa. With very high requirements, for example for very thin-walled components, a nanohardness HIT 0.005 / 5/1/5 of ⁇ 3.1 GPa has proven itself.
  • a nanohardness of 0.005 / 5/1/5 of about 1.4 GPa can be realized.
  • the nanohardness is determined in the pure chromium phase. If there is no pure chromium phase, the nanohardness is determined in the chromium-rich (phase with the highest chromium content) phase.
  • the metal powder according to the invention thus has a significantly lower nanohardness compared with the nanohards of metal powder according to the prior art. Since the powder according to the invention can be produced without a downstream milling process, the specified nanohardness can be achieved even with very fine-grained powder having a BET surface area of preferably ⁇ 0.05 m 2 / g.
  • the information on the BET surface area in the context of this application relates to a BET measurement according to the standard (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, baking temperature: 130 ° C., heating time : 2 hours, adsorptive: nitrogen, volumetric evaluation by five-point determination).
  • the metal powder according to the invention is also characterized by a green strength measured according to ASTM B 312-09 at a compacting pressure of 550 MPa of at least 15 MPa, preferably of at least 20 MPa.
  • a wax was used as pressing additive, namely 0.6% by mass of an amide wax, namely LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ).
  • the green strength preferably has the following values: at least 8 MPa, preferably at least 13 MPa, at a compression pressure of 450 MPa; at least 6 MPa, preferably at least 11 MPa, at a compression pressure of 300 MPa; at least 4 MPa, preferably at least 6 MPa, at one Compressing pressure of 250 MPa and at least 2 MPa, preferably at least 2.5 MPa, at a pressure of 150 MPa.
  • Green strengths could be achieved at pressures of 450, 300 and 250 MPa of 18.5, 13.0 and 7.5 MPa and above.
  • the metal powder according to the invention can be processed in a simple manner by powder metallurgy, for example by pressing and sintering.
  • the metal powder according to the invention enables the simple and cost-effective production of powder metallurgy components with thin-walled areas, complex shape or relatively unfavorable pressing ratio.
  • the properties with regard to nanohardness and green strength can be achieved if the chromium content is at least 90% by mass and thus the content of other substances of 10% by mass is not exceeded.
  • the other substances are present in an advantageous manner separated from the chromium phase.
  • the other substance can be deposited in metallic or non-metallic form, preferably via a diffusion bond. Such powders are referred to as composite powder. Shares (advantageously ⁇ 5% by mass) of the other substance can also be dissolved in the chromium and form a chromium mixed crystal. Such powders are referred to as alloyed powders.
  • the metal powder then comprises a pure chromium phase and / or a chromium mixed crystal phase.
  • La 2 O 3 (up to a maximum of 5 mass%) or Cu (up to a maximum of 10 mass%) may be mentioned by way of example, in the case of La 2 O 3 La (OH) 3 and in the case of Cu CuO to Cr 2 O. 3 are mixed and fed to the reduction.
  • La 2 O 3 La (OH) 3 and in the case of Cu CuO to Cr 2 O. 3 are mixed and fed to the reduction.
  • other metals or non-metals are possible.
  • the metal powder preferably has both a green strength at a compacting pressure of 550 MPa of at least 7 MPa, preferably at least 10 MPa, more preferably of at least 15 MPa, particularly preferably of at least 20 MPa, and a nano-hardness HIT of 0.005 / 5/1/5 of ⁇ 4 GPa, preferably ⁇ 3.7 GPa, more preferably ⁇ 3.4 GPa, particularly particularly preferably ⁇ 3.1 GPa.
  • the metal powder according to the invention preferably has a sponge-like particle shape / morphology (division of the particle shape / morphology see Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, page 63 ). This has a favorable effect on the green strength.
  • the metal powder has a BET surface area without a surface-enlarging process of ⁇ 0.05 m 2 / g.
  • the BET surface area is 0,0 0.07 m 2 / g.
  • BET surfaces of 0.25 m 2 / g and above could be achieved.
  • it without a surface-enlarging process, it can also be called "as produced” and means for the person skilled in the art that the metal powder was obtained directly from the process and in particular is no longer subjected to a grinding process.
  • Such a grinding process can be recognized by the morphology of the metal powder, since during the grinding process smooth fracture surfaces are formed which can not be found in unmilled powder.
  • only a deagglomeration is preferably provided.
  • the metal powder according to the invention has a metallic purity, i. a content of chromium based on other metals, of ⁇ 99.0 Ma%, preferably ⁇ 99.5 Ma%, more preferably ⁇ 99.9 Ma%, particularly preferably of ⁇ 99.99 Ma%.
  • Metallic purity here means the purity of the metal powder without consideration of non-metallic constituents such as, for example, O, C, N and H.
  • the oxygen content of metal powder according to the invention is preferably not more than 1500 ⁇ g / g of chromium, more preferably not more than 1000 ⁇ g / g of chromium. In a particularly preferred embodiment, the oxygen content is not more than 500 ⁇ g / g chromium.
  • the achievable carbon content can be set very low and is preferably not more than 150 ⁇ g / g chromium, more preferably not more than 100 ⁇ g / g chromium. In a particularly preferred embodiment, the carbon content is not more than 50 ⁇ g / g chromium.
  • the metal powder is granulated.
  • the granulation can be carried out by conventional methods, preferably by spray or build-up granulation (see also Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, pages 183-184 ). Under granules is the merger of individual powder particles to understand that are connected to each other, for example by means of a binder or by Sinterhals Struktur.
  • the metal powder has a bulk density of ⁇ 2.0 g / cm 3 .
  • the bulk density is preferably 0.1 to 2 g / cm 3 , more preferably 0.5 to 1.5 g / cm 3 . Since a comparatively high bulk density is achieved for the achievable particle size or BET surface area (preferably ⁇ 0.05 m 2 / g), the powder exhibits good filling behavior during the pressing process.
  • the metal powder preferably has a compact density of ⁇ 80% of the theoretical density at 550 MPa pressing pressure. This makes it possible to produce components without high sintering shrinkage near net shape
  • the metal powder according to the invention can be prepared by reducing at least one compound of the group consisting of Cr oxide and Cr hydroxide, optionally with a mixed solid carbon source, under at least temporary exposure to hydrogen and hydrocarbon.
  • Preferred chromium oxide or chromium hydroxide are Cr (III) compounds in powder form, for example Cr 2 O 3 , CrOOH, Cr (OH) 3 or mixtures of chromium oxides and chromium hydroxides.
  • the preferred chromium source is Cr 2 O 3 .
  • the Cr 2 O 3 used has at least pigment quality.
  • the compound of the group consisting of Cr oxide and Cr-oxide, optionally with a mixed solid carbon source, is heated to a temperature T R of 1100 ° C ⁇ T R ⁇ 1550 ° C and optionally maintained at this temperature. Temperatures ⁇ 1100 ° C or> 1550 ° C lead to deteriorated powder properties, or to a more uneconomical process.
  • the reaction proceeds particularly well for industrial purposes when temperatures T R of about 1200 ° C to 1450 ° C are selected.
  • the skilled person can easily determine the optimum combination of temperature and time for his furnace (continuous furnace, batch furnace, maximum achievable furnace temperature, etc.).
  • the reaction over substantially at least 30%, more preferably at least 50% of the reaction time is maintained substantially constant (isothermal) on T R.
  • the presence of hydrocarbon ensures that powder having the properties according to the invention is formed via a chemical transport process.
  • the total pressure of the reaction is advantageously 0.95 to 2 bar. Pressures above 2 bar adversely affect the economics of the process. Pressures below 0.95 bar have an adverse effect on the resulting hydrocarbon partial pressure, which in turn has a very unfavorable effect on the transport processes via the gas phase, which are of great importance for adjusting the powder properties of the invention (for example hardness, green strength, specific surface area) are. In addition, pressures below 0.95 bar adversely affect the process costs.
  • the hydrocarbon is present as CH 4 .
  • the hydrocarbon partial pressure is 5 to 500 mbar.
  • a hydrocarbon partial pressure ⁇ 5 mbar has an unfavorable effect on the powder properties, in particular the green strength.
  • a hydrocarbon partial pressure> 500 mbar leads to a high C content in the reduced powder.
  • the residual gas atmosphere is preferably hydrogen.
  • the action of hydrogen and hydrocarbon takes place at least in the temperature range 800 ° C to 1050 ° C. In this temperature range, the hydrocarbon partial pressure is preferably from 5 to 500 mbar.
  • the reaction mixture forming from the starting materials is preferably at least 45 minutes, particularly preferably at least 60 minutes. in this temperature range.
  • This time includes both the heating process and any isothermal holding phases in this temperature range.
  • inventive process conditions it is ensured that at temperatures preferably ⁇ T R at least one compound selected from the group consisting of Cr oxide and Cr hydroxide at least partially converts to chromium carbide under the action of hydrogen and hydrocarbon.
  • Preferred chromium carbides are Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 .
  • the partial formation of chromium carbide, which occurs via the hydrocarbon partial pressure in turn has a favorable effect on the powder properties.
  • inventive process conditions it is further ensured that the chromium carbide reacts with the Cr oxide / Cr hydroxide present in the reaction mixture and / or admixed to form Cr, this process dominating at T R.
  • the hydrocarbon may be added to the reaction in gaseous form, preferably without admixing a solid carbon source.
  • the at least one compound of the group consisting of Cr oxide and Cr hydroxide is preferably reduced under at least temporary action of an H 2 -CH 4 gas mixture.
  • the action of the H 2 -CH 4 gas mixture is preferably carried out at least temporarily during the heating phase to T R , the influence on the formation of the powder form, in particular in the temperature range 850 to 1000 ° C is very low.
  • T R is below 1200 ° C, switching to the pure hydrogen atmosphere is preferred when T R is reached .
  • the isothermal phase on T R and cooling to room temperature are advantageously carried out in a Wasserstoffatmosphinre. In particular, when cooling, it is advantageous to use hydrogen with a dew point ⁇ -40 ° C to avoid reoxidation.
  • a solid carbon source is admixed with the Cr oxide and / or Cr hydroxide. Preference is given here per mole of oxygen in the chromium compound between 0.75 and 1.25 mol, preferably between 0.90 and 1.05 moles of carbon used. This refers to the amount of carbon available for reaction with the chromium compound. In a particularly preferred embodiment, the ratio of O to C is slightly substoichiometric at about 0.98. It is preferably provided that the solid carbon source is selected from the group of carbon black, activated carbon, graphite, carbon-releasing compounds or mixtures thereof. As an example of a carbon releasing compound, chromium carbides such as Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 may be mentioned.
  • the powder mixture is heated to T R in an H 2 -containing atmosphere.
  • the H 2 pressure is preferably adjusted so that at least in the temperature range 800 ° to 1050 ° C, a CH 4 partial pressure of 5 to 500 mbar results.
  • the isothermal phase on T R and cooling to room temperature are again advantageously carried out in a hydrogen atmosphere. During these process phases, the presence of hydrocarbon is not required. Hydrogen prevents reoxidation processes during this process phase and during the cooling phase.
  • a hydrogen atmosphere with a dew point ⁇ -40 ° C. is preferably used.
  • Heating from 1200 ° C to T R and holding on T R was done by adding dry hydrogen with a dew point ⁇ -40 ° C, the pressure being about 1 bar.
  • the furnace cooling was also carried out under H 2 with a dew point ⁇ -40 ° C.
  • a metallic sponge was obtained, which could easily be deagglomerated to a powder.
  • the chromium metal powder thus produced is in FIG. 4 play.
  • the degree of reduction was> 99.0%, the carbon content 80 ⁇ g / g and the oxygen content 1020 ⁇ g / g.
  • An X-ray diffraction analysis provided only peaks for cubic body-centered (BCC) chromium metal.
  • the specific surface area was determined by BET method (according to ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, annealing temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation via five-point determination) and was 0.14 m 2 / g, the bulk density 1.2 g / cm 3 .
  • the nanohardness HIT 0.005 / 5/1/5 was determined according to EN ISO 14577-1 and was 3 GPa.
  • the green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No.
  • the green strength was 23.8 MPa, at 450 MPa 18.1 MPa, at 300 MPa 8.5 MPa, at 250 MPa 7.2 MPa and at 150 MPa 3.0 MPa.
  • Pigment grade Cr 2 O 3 (Lanxess Bayoxide CGN-R) with a mean laser diffraction particle size d 50 of 0.9 ⁇ m was well blended with amorphous carbon black (Thermax ultra-pure N908 - Cancarb).
  • the carbon content of the mixture thus prepared was 0.99 mol / mol of O in Cr 2 O 3 . 12500 g of this mixture were in 80 min. to 800 ° C and then in 125 min. heated to 1050 ° C. The heating was carried out under the action of H 2 , wherein the H 2 pressure was adjusted so that in the temperature range 800 ° C to 1050 ° C, the measured mass spectrometry CH 4 partial pressure> 15 mbar scam. The total pressure was 1.1 bar.
  • the green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ) used. As pressing pressures 550 MPa, 450 MPa, 350 MPa, 250 MPa and 150 MPa were used.
  • FIG. 6 shows the measured green strength values compared to samples pressed with aluminothermically produced powder (Cr-Std).
  • the powder according to the invention (CP181) shows a green strength which is at least 5 times higher.
  • the powder formulation (with 0.6 Ma% LICOWAX® Micropowder PM Press Additive) was further pressed at various pressures into pill-shaped samples.
  • FIG. 7 For example, the relative compacting densities are shown in terms of compacting pressure as compared to standard chromium metal powder (E-Cr: electrolytically produced, A-Cr: aluminothermically produced) having different particle sizes.
  • the BET specific surface area (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, apparatus: Gemini II 2370, baking temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation over Five-point determination) and the nanohardness HIT 0.005 / 5/1/5 according to EN ISO 14577-1. Table 1 lists these characteristics and compares them with the properties of electrolytically produced chromium powders. Striking is the significantly lower nanohardness of the powder according to the invention. The particle size calculated from the BET surface area was 8.3 ⁇ m.
  • Table 1 Properties of chromium powder according to the invention in comparison with electrolytically produced chromium powder Powder type BET surface area [m 2 / g] O [ ⁇ g / g] C [ ⁇ g / g] Nanohardness [GPa] Chromium powder according to the invention (Example 2) 0.10 1064 114 2.92 Electrolytically produced chromium powder, particle size ⁇ 45 ⁇ m 0.11 736 87 5.32
  • the holding times on T R were 30 min, 60 min, 90 min, 120 min and 180 min. Heating from 1000 ° C to T R and holding on T R was done by supplying dry hydrogen with a dew point ⁇ -40 ° C, the pressure was about 1 bar. The furnace cooling was also carried out under H 2 with a dew point ⁇ -40 ° C. The degree of reduction was determined as set out in the description. How out FIG. 8 it can be seen, an advantageous reduction of> 95% at 1400 ° C, 1450 ° C and 1480 ° C already at a holding time of 30 min. clearly exceeded. At 1350 ° C it takes about 80 min., At 1300 ° C about 160 min. At 1250 ° C and 1150 ° C it takes about 260 min. or 350 min. (extrapolated values). SEM investigations showed that the powders thus produced had a sponge-like morphology combined with a very high BET surface area (see FIG. 9 ) respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Pain & Pain Management (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Rehabilitation Therapy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

Die vorliegende Erfindung betrifft ein Metallpulver mit einem Chromgehalt von zumindest 90 Ma% sowie ein Verfahren zu dessen Herstellung.The present invention relates to a metal powder having a chromium content of at least 90% by mass and a process for its production.

Die großtechnische Herstellung von Chrommetallpulver aus Chromoxiden erfolgt derzeit nur durch aluminothermische (Pulvermorphologie siehe Figur 1) und elektrolytische (Pulvermorphologie siehe Figuren 2) Verfahren. So hergestellte Pulver weisen jedoch ein schlechtes Press- und Sinterverhalten auf. Zudem sind aufgrund des Einsatzes von Cr(VI)-Verbindungen elektrolytische Verfahren umweltbedenklich. Zunehmend strengere Umweltauflagen führen dazu, dass dieser Prozess wirtschaftlich und umwelttechnisch kaum mehr vertretbar ist.The large-scale production of chromium metal powder from chromium oxides is currently only by aluminothermic (powder morphology see FIG. 1 ) and electrolytic (powder morphology see Figures 2 ) Procedure. However, powders produced in this way have a poor pressing and sintering behavior. In addition, due to the use of Cr (VI) compounds electrolytic processes are environmentally harmful. Increasingly stringent environmental regulations mean that this process is hardly acceptable economically and environmentally.

Neben den bereits genannten Verfahren ist auch die Reduktion von Chromoxiden mit Wasserstoff und / oder Kohlenstoff (siehe beispielsweise: " Metallurgy of the Rarer Metals - Chromium"; Arthur Henry Sully; Butterworths Scientific Publications (1954 ), GB 512,502 , JP 54013408 A , JP 07216474 A , JP 3934686 B2 und JP 06081052 A ) beschrieben.In addition to the processes already mentioned, the reduction of chromium oxides with hydrogen and / or carbon (see for example: Metallurgy of the Rare Metals - Chromium "; Arthur Henry Sully; Butterworths Scientific Publications (1954 ) GB 512,502 . JP 54013408 A . JP 07216474 A . JP 3934686 B2 and JP 06081052 A ).

Bis dato war es jedoch mit den bekannten Verfahren nicht möglich Chrommetallpulver herzustellen, das für anspruchsvolle, pulvermetallurgische Prozesse, zum Beispiel die Herstellung von dünnwandigen Bauteilen oder Bauteilen mit komplexer Form geeignet ist, insbesondere da die Grünfestigkeit bekannter Pulver zu niedrig und deren Härte zu hoch ist.To date, however, it has not been possible with the known processes to produce chromium metal powder which is suitable for demanding powder metallurgical processes, for example the production of thin-walled components or components of complex shape, in particular because the green strength of known powders is too low and their hardness is too high ,

Die vorliegende Erfindung hat es sich daher zur Aufgabe gestellt, Metallpulver mit einem Chromgehalt von zumindest 90 Ma% bereit zu stellen, welches sich gut pulvermetallurgisch, insbesondere durch Pressen und Sintern verarbeiten lässt. Im Besonderen soll ein Metallpulver bereitgestellt werden, mit dem komplex geformte und/oder dünnwandige Bauteile in einfacher Weise pulvermetallurgisch herstellbar sind. Das Metallpulver soll weiters in einem hohen metallischen Reinheitsgrad herstellbar sein, insbesondere einem metallischen Reinheitsgrad vergleichbar oder besser als Metallpulver, das nach elektrolytischem Weg gewonnen wird. Weiters ist es Aufgabe der Erfindung, ein Verfahren bereitzustellen, das für eine großtechnische, kostengünstige und umweltfreundliche Herstellung solcher Metallpulver geeignet ist.The present invention has therefore set itself the task of providing metal powder having a chromium content of at least 90% by mass, which can be processed well powder metallurgy, in particular by pressing and sintering. In particular, a metal powder is to be provided with which complex-shaped and / or thin-walled components can be produced in a simple manner by powder metallurgy. The metal powder should further be produced in a high metallic purity, in particular a metallic purity comparable or better than metal powder, which is obtained by electrolytic route. Furthermore, it is an object of the invention to provide a method which is suitable for large-scale, cost-effective and environmentally friendly production of such metal powder.

Die Aufgabe wird durch Metallpulver mit einem Chromgehalt von zumindest 90 Ma% gelöst, welches durch eine NanohärteHIT 0,005/5/1/5 gemessen nach EN ISO 14577-1 (Ausgabestand 2002 - Berkovich-Eindringkörper und Auswerteverfahren nach Oliver und Pharr) von ≤ 4 GPa gekennzeichnet ist. Der Härtewert bezieht sich dabei auf ein Metallpulver, das vorzugsweise keiner weiteren Nachbehandlung, wie beispielsweise einer Glühung unterzogen wird. Bevorzugt beträgt die Nanohärte HIT 0,005/5/1/5 ≤ 3,7 GPa, besonders bevorzugt ≤ 3,4 GPa. Bei sehr hohen Anforderungen, beispielsweise für sehr dünnwandige Bauteile, bewährt sich eine Nanohärte HIT 0,005/5/1/5 von ≤ 3,1 GPa. Bei sehr reinem Chrompulver lässt sich eine Nanohärte HIT 0,005/5/1/5 von in etwa 1,4 GPa realisieren. Die Nanohärte wird dabei in der reinen Chromphase bestimmt. Liegt keine reine Chromphase vor, wird die Nanohärte in der chromreichsten (Phase mit dem höchsten Chromgehalt) Phase bestimmt. Das erfindungsgemäße Metallpulver besitzt damit eine deutlich niedrigere Nanohärte verglichen mit den Nanohärten von Metallpulver gemäß dem Stand der Technik. Da das erfindungsgemäße Pulver ohne einen nachgelagerten Mahlprozess hergestellt werden kann, kann die angegebene Nanohärte auch bei sehr feinkörnigem Pulver mit einer Oberfläche nach BET von bevorzugt ≥ 0,05 m2/g erzielt werden. Die Angaben zur Oberfläche nach BET im Rahmen dieser Anmeldung beziehen sich auf eine BET-Messung gemäß Norm (ISO 9277:1995, Messbereich: 0,01 - 300 m2/g; Gerät: Gemini II 2370, Ausheiztemperatur: 130°C, Ausheizzeit: 2 Stunden; Adsorptiv: Stickstoff, volumetrische Auswertung über Fünfpunktbestimmung).The object is achieved by metal powder with a chromium content of at least 90% by mass, which is measured by a nanohardness of 0.005 / 5/1/5 EN ISO 14577-1 (2002 edition - Berkovich indenters and Oliver and Pharr analysis methods) of ≤ 4 GPa. The hardness value refers to a metal powder, which is preferably subjected to no further treatment, such as an annealing. The nanohardness HIT is preferably 0.005 / 5/1/5 ≦ 3.7 GPa, more preferably ≦ 3.4 GPa. With very high requirements, for example for very thin-walled components, a nanohardness HIT 0.005 / 5/1/5 of ≤ 3.1 GPa has proven itself. With very pure chromium powder, a nanohardness of 0.005 / 5/1/5 of about 1.4 GPa can be realized. The nanohardness is determined in the pure chromium phase. If there is no pure chromium phase, the nanohardness is determined in the chromium-rich (phase with the highest chromium content) phase. The metal powder according to the invention thus has a significantly lower nanohardness compared with the nanohards of metal powder according to the prior art. Since the powder according to the invention can be produced without a downstream milling process, the specified nanohardness can be achieved even with very fine-grained powder having a BET surface area of preferably ≥ 0.05 m 2 / g. The information on the BET surface area in the context of this application relates to a BET measurement according to the standard (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, baking temperature: 130 ° C., heating time : 2 hours, adsorptive: nitrogen, volumetric evaluation by five-point determination).

Das Erfindungsgemäße Metallpulver wird auch durch eine Grünfestigkeit gemessen nach ASTM B 312-09 bei einem Pressdruck von 550 MPa von zumindest 15 MPa, bevorzugt von zumindest 20 MPa gekennzeichnet.The metal powder according to the invention is also characterized by a green strength measured according to ASTM B 312-09 at a compacting pressure of 550 MPa of at least 15 MPa, preferably of at least 20 MPa.

Bei sehr reinem, grobkörnigen Chrompulver mit vergleichsweise hoher BET Oberfläche lassen sich bei einem Pressdruck von 550 MPa Metallpulver mit einer Grünfestigkeit von bis zu ca. 50 MPa realisieren. Die ASTM B 312-09 lässt dabei frei, ob ein Wachs als Presszusatz verwendet wird. Erfindungsgemäß wurde ein Wachs als Presszusatz verwendet und zwar 0,6 Ma% eines Amidwachses, nämlich LICOWAX® Micropowder PM (Lieferant Clariant, Produktnummer 107075, CAS- Nr. 00110-30-5 ).In the case of very pure, coarse-grained chromium powder with a comparatively high BET surface area, metal powders having a green strength of up to about 50 MPa can be produced at a pressure of 550 MPa. The ASTM B 312-09 leaves open whether a wax is used as pressing additive. According to the invention, a wax was used as pressing additive, namely 0.6% by mass of an amide wax, namely LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ).

Des Weiteren weist die Grünfestigkeit bevorzugt folgende Werte auf: Zumindest 8 MPa, vorzugsweise zumindest 13 MPa, bei einem Pressdruck von 450 MPa; zumindest 6 MPa, vorzugsweise zumindest 11 MPa, bei einem Pressdruck von 300 MPa; zumindest 4 MPa, vorzugsweise zumindest 6 MPa, bei einem Pressdruck von 250 MPa und zumindest 2 MPa, vorzugsweise zumindest 2,5 MPa, bei einem Pressdruck von 150 MPa. Es konnten Grünfestigkeiten bei Pressdrücken von 450, 300 und 250 MPa von 18,5 13,0 und 7,5 MPa und darüber erzielt werden.Furthermore, the green strength preferably has the following values: at least 8 MPa, preferably at least 13 MPa, at a compression pressure of 450 MPa; at least 6 MPa, preferably at least 11 MPa, at a compression pressure of 300 MPa; at least 4 MPa, preferably at least 6 MPa, at one Compressing pressure of 250 MPa and at least 2 MPa, preferably at least 2.5 MPa, at a pressure of 150 MPa. Green strengths could be achieved at pressures of 450, 300 and 250 MPa of 18.5, 13.0 and 7.5 MPa and above.

Das erfindungsgemäße Metallpulver lässt sich in einfacher Weise pulvermetallurgisch, beispielsweise durch Pressen und Sintern verarbeiten. Insbesondere ermöglicht das erfindungsgemäße Metallpulver die einfache und kostengünstige pulvermetallurgische Herstellung von Bauteilen mit dünnwandigen Bereichen, komplexer Form oder vergleichsweise ungünstigem Pressverhältnis.The metal powder according to the invention can be processed in a simple manner by powder metallurgy, for example by pressing and sintering. In particular, the metal powder according to the invention enables the simple and cost-effective production of powder metallurgy components with thin-walled areas, complex shape or relatively unfavorable pressing ratio.

Die Eigenschaften hinsichtlich Nanohärte und Grünfestigkeit können erzielt werden, wenn der Chromgehalt zumindest 90 Ma% beträgt und damit der Gehalt an sonstigen Stoffen von 10 Ma% nicht überschritten wird. Die sonstigen Stoffe liegen dabei in vorteilhafter Weise separiert von der Chromphase vor. Weiters kann der sonstige Stoff in metallischer oder nichtmetallischer Form, bevorzugt über eine Diffusionsbindung, angelagert sein. Derartige Pulver werden als Composite-Pulver bezeichnet. Anteile (in vorteilhafter Weise < 5 Ma%) des sonstigen Stoffs können auch im Chrom gelöst sein und einen Chrommischkristall bilden. Derartige Pulver werden als legierte Pulver bezeichnet. Das Metallpulver umfasst dann eine reine Chromphase und/oder eine Chrommischkristallphase.The properties with regard to nanohardness and green strength can be achieved if the chromium content is at least 90% by mass and thus the content of other substances of 10% by mass is not exceeded. The other substances are present in an advantageous manner separated from the chromium phase. Furthermore, the other substance can be deposited in metallic or non-metallic form, preferably via a diffusion bond. Such powders are referred to as composite powder. Shares (advantageously <5% by mass) of the other substance can also be dissolved in the chromium and form a chromium mixed crystal. Such powders are referred to as alloyed powders. The metal powder then comprises a pure chromium phase and / or a chromium mixed crystal phase.

Als Legierungsbestandteile können beispielhaft La2O3 (bis maximal 5 Ma%) oder Cu (bis maximal 10 Ma%) genannt werden, wobei im Falle von La2O3 La(OH)3 und im Falle von Cu CuO zu Cr2O3 gemischt und der Reduktion zugeführt werden. Selbstverständlich sind aber auch andere Metalle oder Nichtmetalle möglich.La 2 O 3 (up to a maximum of 5 mass%) or Cu (up to a maximum of 10 mass%) may be mentioned by way of example, in the case of La 2 O 3 La (OH) 3 and in the case of Cu CuO to Cr 2 O. 3 are mixed and fed to the reduction. Of course, other metals or non-metals are possible.

Bevorzugt weist das Metallpulver sowohl eine Grünfestigkeit bei einem Pressdruck von 550 MPa von zumindest 7 MPa, vorzugsweise zumindest 10 MPa, besonders bevorzugt von zumindest 15 MPa, insbesondere besonders bevorzugt von zumindest 20 MPa, als auch eine Nanohärte HIT 0,005/5/1/5 von ≤ 4 GPa, bevorzugt ≤ 3,7 GPa, besonders bevorzugt ≤ 3,4 GPa, insbesondere besonders bevorzugt ≤ 3,1 GPa auf.The metal powder preferably has both a green strength at a compacting pressure of 550 MPa of at least 7 MPa, preferably at least 10 MPa, more preferably of at least 15 MPa, particularly preferably of at least 20 MPa, and a nano-hardness HIT of 0.005 / 5/1/5 of ≦ 4 GPa, preferably ≦ 3.7 GPa, more preferably ≦ 3.4 GPa, particularly particularly preferably ≦ 3.1 GPa.

Weiters weist das erfindungsgemäße Metallpulver bevorzugt eine schwammartige Teilchenform/-morphologie auf (Einteilung der Teilchenform / -morphologie siehe Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, Seite 63 ). Dies wirkt sich günstig auf die Grünfestigkeit aus.Furthermore, the metal powder according to the invention preferably has a sponge-like particle shape / morphology (division of the particle shape / morphology see Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, page 63 ). This has a favorable effect on the green strength.

Die Kombination aus schwammartiger Teilchenform/-morphologie und niedriger Härte erlaubt vergleichsweise hohe Pressdichten, aber vor allem eine sehr hohe Grünfestigkeit bei gegebener Dichte.The combination of sponge-like particle shape / morphology and low hardness allows comparatively high densities, but above all a very high green strength at a given density.

Erfindungsgemäß ist vorgesehen, dass das Metallpulver eine Oberfläche nach BET ohne oberflächenvergrößernden Vorgang von ≥ 0,05 m2/g aufweist. Vorzugsweise ist die Oberfläche nach BET ≥ 0,07 m2/g. Es konnten Oberflächen nach BET von 0,25 m2/g und darüber erreicht werden. Ohne oberflächenvergrößernden Vorgang kann in diesem Zusammenhang auch heißen "wie hergestellt" und bedeutet für den Fachmann, dass das Metallpulver direkt aus dem Verfahren gewonnen wurde und insbesondere keinem Mahlvorgang mehr unterzogen wird. Ein solcher Mahlvorgang ist an der Morphologie des Metallpulvers erkennbar, da sich beim Mahlvorgang glatte Bruchoberflächen bilden, die bei ungemahlenem Pulver nicht vorzufinden sind. Erfindungsgemäß ist bevorzugt lediglich eine Deagglomeration vorgesehen.According to the invention, it is provided that the metal powder has a BET surface area without a surface-enlarging process of ≥ 0.05 m 2 / g. Preferably, the BET surface area is 0,0 0.07 m 2 / g. BET surfaces of 0.25 m 2 / g and above could be achieved. In this context, without a surface-enlarging process, it can also be called "as produced" and means for the person skilled in the art that the metal powder was obtained directly from the process and in particular is no longer subjected to a grinding process. Such a grinding process can be recognized by the morphology of the metal powder, since during the grinding process smooth fracture surfaces are formed which can not be found in unmilled powder. According to the invention, only a deagglomeration is preferably provided.

In einer Ausführungsvariante ist vorgesehen, dass das erfindungsgemäße Metallpulver eine metallische Reinheit, d.h. einen Gehalt an Chrom bezogen auf andere Metalle, von ≥ 99,0 Ma%, vorzugsweise ≥ 99,5 Ma%, besonders bevorzugt ≥ 99,9 Ma%, insbesondere bevorzugt von ≥ 99,99 Ma% aufweist. Unter metallischer Reinheit ist dabei die Reinheit des Metallpulvers ohne Berücksichtigung nichtmetallischer Bestandteile wie beispielsweise O, C, N und H zu verstehen.In one embodiment, it is provided that the metal powder according to the invention has a metallic purity, i. a content of chromium based on other metals, of ≥ 99.0 Ma%, preferably ≥ 99.5 Ma%, more preferably ≥ 99.9 Ma%, particularly preferably of ≥ 99.99 Ma%. Metallic purity here means the purity of the metal powder without consideration of non-metallic constituents such as, for example, O, C, N and H.

Der Sauerstoffgehalt von erfindungsgemäßem Metallpulver beträgt bevorzugt nicht mehr als 1500 µg/g Chrom, besonders bevorzugt nicht mehr als 1000 µg/g Chrom. In einer besonders bevorzugten Ausführungsvariante beträgt der Sauerstoffgehalt nicht mehr als 500 µg/g Chrom. Der erzielbare Kohlenstoffgehalt kann sehr niedrig eingestellt werden und beträgt bevorzugt nicht mehr als 150 µg/g Chrom, besonders bevorzugt nicht mehr als 100 µg/g Chrom. In einer besonders bevorzugten Ausführungsvariante beträgt der Kohlenstoffgehalt nicht mehr als 50 µg/g Chrom.The oxygen content of metal powder according to the invention is preferably not more than 1500 μg / g of chromium, more preferably not more than 1000 μg / g of chromium. In a particularly preferred embodiment, the oxygen content is not more than 500 μg / g chromium. The achievable carbon content can be set very low and is preferably not more than 150 μg / g chromium, more preferably not more than 100 μg / g chromium. In a particularly preferred embodiment, the carbon content is not more than 50 μg / g chromium.

In einer Ausführungsvariante kann vorgesehen sein, dass das Metallpulver granuliert ist. Die Granulation kann durch übliche Methoden, vorzugsweise durch Sprüh- oder Aufbaugranulation erfolgen (siehe dazu auch Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, Seiten 183 bis 184 ). Unter Granulat ist dabei der Zusammenschluss einzelner Pulverteilchen zu verstehen, die beispielsweise mittels eines Binders oder durch Sinterhalsbildung miteinander verbunden sind.In one embodiment, it can be provided that the metal powder is granulated. The granulation can be carried out by conventional methods, preferably by spray or build-up granulation (see also Powder Metallurgy Science; Randall M. German; MPIF; Princeton, 1994, second edition, pages 183-184 ). Under granules is the merger of individual powder particles to understand that are connected to each other, for example by means of a binder or by Sinterhalsbildung.

In einer Ausführungsvariante weist das Metallpulver eine Schüttdichte von ≤ 2,0 g/cm3 auf. Bevorzugt beträgt die Schüttdichte 0,1 bis 2 g/cm3, besonders bevorzugt 0,5 bis 1,5 g/cm3. Da eine für die erzielbare Partikelgröße bzw. BET Oberfläche (bevorzugt von ≥ 0,05 m2/g) vergleichsweise hohe Schüttdichte erreicht wird, weist das Pulver beim Pressvorgang ein gutes Füllverhalten auf.In one embodiment variant, the metal powder has a bulk density of ≦ 2.0 g / cm 3 . The bulk density is preferably 0.1 to 2 g / cm 3 , more preferably 0.5 to 1.5 g / cm 3 . Since a comparatively high bulk density is achieved for the achievable particle size or BET surface area (preferably ≥ 0.05 m 2 / g), the powder exhibits good filling behavior during the pressing process.

Des Weiteren weist das Metallpulver bevorzugt eine Pressdichte von ≥ 80 % der theoretischen Dichte bei 550 MPa Pressdruck auf. Damit ist es möglich, Bauteile ohne hohen Sinterschwund endkonturnah zu fertigenFurthermore, the metal powder preferably has a compact density of ≥ 80% of the theoretical density at 550 MPa pressing pressure. This makes it possible to produce components without high sintering shrinkage near net shape

Das erfindungsgemäße Metallpulver lässt sich durch Reduktion zumindest einer Verbindung der Gruppe bestehend aus Cr-Oxid und Cr-Hydroxid, optional mit einer beigemischten festen Kohlenstoffquelle, unter zumindest zeitweiser Einwirkung von Wasserstoff und Kohlenwasserstoff herstellen. Als Chromoxid oder Chromhydroxid kommen bevorzugt Cr(III)-Verbindungen in Pulverform in Frage, beispielsweise Cr2O3, CrOOH, Cr(OH)3 oder Mischungen aus Chromoxiden und Chromhydroxiden. Die bevorzugte Chromquelle ist Cr2O3. Für einen hohen Reinheitsgrad im Endprodukt ist bevorzugt vorgesehen, dass das verwendete Cr2O3 zumindest Pigmentqualität besitzt.The metal powder according to the invention can be prepared by reducing at least one compound of the group consisting of Cr oxide and Cr hydroxide, optionally with a mixed solid carbon source, under at least temporary exposure to hydrogen and hydrocarbon. Preferred chromium oxide or chromium hydroxide are Cr (III) compounds in powder form, for example Cr 2 O 3 , CrOOH, Cr (OH) 3 or mixtures of chromium oxides and chromium hydroxides. The preferred chromium source is Cr 2 O 3 . For a high degree of purity in the end product, it is preferably provided that the Cr 2 O 3 used has at least pigment quality.

Die Verbindung der Gruppe bestehend aus Cr-Oxid und Cr-Hydoxid wird, optional mit einer beigemischten festen Kohlenstoffquelle, auf eine Temperatur TR mit 1100°C ≤ TR ≤ 1550°C erhitzt und optional auf dieser Temperatur gehalten. Temperaturen < 1100°C bzw. > 1550°C führen zu verschlechterten Pulvereigenschaften, bzw. zu einem unwirtschaftlicheren Verfahren. Die Reaktion verläuft für industrielle Zwecke dann besonders gut ab, wenn Temperaturen TR von etwa 1200 °C bis 1450°C gewählt werden.The compound of the group consisting of Cr oxide and Cr-oxide, optionally with a mixed solid carbon source, is heated to a temperature T R of 1100 ° C ≤ T R ≤ 1550 ° C and optionally maintained at this temperature. Temperatures <1100 ° C or> 1550 ° C lead to deteriorated powder properties, or to a more uneconomical process. The reaction proceeds particularly well for industrial purposes when temperatures T R of about 1200 ° C to 1450 ° C are selected.

Während im unteren erfinderischen Temperaturbereich sehr lange Haltezeiten auf TR erforderlich sind, um einen vorteilhaften Reduktionsgrad von 90% einzustellen, kann im oberen erfinderischen Temperaturbereich die Haltezeit sehr kurz gewählt werden oder überhaupt entfallen. Der Reduktionsgrad R ist definiert als das Verhältnis der bis zum Zeitpunkt t im Chromoxid bzw. Chromhydroxid abgebauten Stoffmenge an Sauerstoff, bezogen auf die insgesamt vorhandene Sauerstoffmenge in der unreduzierten Chromverbindung: % red = Mred , O Ma , O x 100

Figure imgb0001

%red
Reduktionsgrad in %
Mred,O
Masse [g] O im reduzierten Pulver
Ma,O
Masse [g] O im Pulveransatz (vor der Reduktion)
While in the lower inventive temperature range very long holding times to T R are required to set an advantageous degree of reduction of 90%, in the upper inventive temperature range, the holding time be chosen very short or omitted altogether. The degree of reduction R is defined as the ratio of the amount of oxygen in the chromium oxide or chromium hydroxide removed up to the time t, based on the total amount of oxygen present in the unreduced chromium compound: % red = mred . O Ma . O x 100
Figure imgb0001
% red
Reduction rate in%
MRED, O
Mass [g] O in the reduced powder
Ma, O
Mass [g] O in the powder batch (before reduction)

Basierend auf den Beispielen kann der Fachmann in einfacher Weise die für seinen Ofen (Durchlaufofen, Batchofen, maximal erreichbare Ofentemperatur,...) optimale Kombination aus Temperatur und Zeit bestimmen. Bevorzugt wird die Reaktion über zumindest 30%, insbesondere bevorzugt zumindest 50% der Reaktionszeit im Wesentlichen konstant (isotherm) auf TR gehalten.Based on the examples, the skilled person can easily determine the optimum combination of temperature and time for his furnace (continuous furnace, batch furnace, maximum achievable furnace temperature, etc.). Preferably, the reaction over substantially at least 30%, more preferably at least 50% of the reaction time is maintained substantially constant (isothermal) on T R.

Die Anwesenheit von Kohlenwasserstoff gewährleistet, dass über einen chemischen Transportprozess Pulver mit den erfindungsgemäßen Eigenschaften gebildet wird. Der Gesamtdruck der Reaktion beträgt in vorteilhafter Weise 0,95 bis 2 bar. Drücke über 2 bar wirken sich nachteilig auf die Wirtschaftlichkeit des Verfahrens aus. Drücke unter 0,95 bar wirken sich nachteilig auf den sich einstellenden Kohlenwasserstoff-Partialdruck aus, was sich wiederum sehr ungünstig auf die Transportprozesse über die Gasphase auswirkt, die zur Einstellung der erfindungsgemäßen Pulvereigenschaften (zum Beispiel Härte, Grünfestigkeit, spezifische Oberfläche) von großer Bedeutung sind. Zudem wirken sich Drücke unter 0,95 bar nachteilig auf die Prozesskosten aus.The presence of hydrocarbon ensures that powder having the properties according to the invention is formed via a chemical transport process. The total pressure of the reaction is advantageously 0.95 to 2 bar. Pressures above 2 bar adversely affect the economics of the process. Pressures below 0.95 bar have an adverse effect on the resulting hydrocarbon partial pressure, which in turn has a very unfavorable effect on the transport processes via the gas phase, which are of great importance for adjusting the powder properties of the invention (for example hardness, green strength, specific surface area) are. In addition, pressures below 0.95 bar adversely affect the process costs.

Wie der Kohlenwasserstoff-Partialdruck in einfacher Weise eingestellt werden kann, geht aus den Beispielen hervor. In vorteilhafter Weise liegt der Kohlenwasserstoff als CH4 vor. Zumindest
während des Aufheizvorgangs zumindest zeitweise beträgt der Kohlenwasserstoff-Partialdruck 5 bis 500 mbar. Ein Kohlenwasserstoff-Partialdruck < 5 mbar wirkt sich ungünstig auf die Pulvereigenschaften, insbesondere die Grünfestigkeit aus. Ein Kohlenwasserstoff-Partialdruck > 500 mbar führt zu einem hohen C-Gehalt im reduzierten Pulver. Die Restgasatmosphäre ist dabei bevorzugt Wasserstoff. Die Einwirkung von Wasserstoff und Kohlenwasserstoff erfolgt zumindest im Temperaturbereich 800°C bis 1050°C. Bevorzugt beträgt in diesem Temperaturbereich der Kohlenwasserstoff-Partialdruck 5 bis 500 mbar. Die sich aus den Ausgangsstoffen bildende Reaktionsmischung befindet dabei bevorzugt zumindest 45 min., insbesondere bevorzugt zumindest 60 min. in diesem Temperaturbereich. Diese Zeit schließt sowohl den Aufheizvorgang als auch etwaige isotherme Haltephasen in diesem Temperaturbereich ein. Mit den erfinderischen Verfahrensbedingungen ist gewährleistet, dass sich bei Temperaturen bevorzugt < TR zumindest eine Verbindung ausgewählt aus der Gruppe bestehend aus Cr-Oxid und Cr-Hydroxid unter Einwirkung von Wasserstoff und Kohlenwasserstoff zumindest teilweise zu Chromkarbid umsetzt. Bevorzugte Chromkarbide sind Cr3C2, Cr7C3 und Cr23C6. Die sich über den Kohlenwasserstoff-Partialdruck einstellende teilweise Bildung von Chromkarbid wirkt sich wiederum günstig auf die Pulvereigenschaften aus. Mit den erfinderischen Verfahrensbedingungen ist weiters gewährleistet, dass sich das Chromkarbid mit dem in der Reaktionsmischung vorhandenen und/oder zugemischten Cr-Oxid / Cr-Hydroxid zu Cr umsetzt, wobei dieser Prozess bei TR dominiert.
How the hydrocarbon partial pressure can be adjusted easily can be seen from the examples. Advantageously, the hydrocarbon is present as CH 4 . At least
during the heating process, at least temporarily, the hydrocarbon partial pressure is 5 to 500 mbar. A hydrocarbon partial pressure <5 mbar has an unfavorable effect on the powder properties, in particular the green strength. A hydrocarbon partial pressure> 500 mbar leads to a high C content in the reduced powder. The residual gas atmosphere is preferably hydrogen. The action of hydrogen and hydrocarbon takes place at least in the temperature range 800 ° C to 1050 ° C. In this temperature range, the hydrocarbon partial pressure is preferably from 5 to 500 mbar. The reaction mixture forming from the starting materials is preferably at least 45 minutes, particularly preferably at least 60 minutes. in this temperature range. This time includes both the heating process and any isothermal holding phases in this temperature range. With the inventive process conditions it is ensured that at temperatures preferably <T R at least one compound selected from the group consisting of Cr oxide and Cr hydroxide at least partially converts to chromium carbide under the action of hydrogen and hydrocarbon. Preferred chromium carbides are Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 . The partial formation of chromium carbide, which occurs via the hydrocarbon partial pressure, in turn has a favorable effect on the powder properties. With the inventive process conditions it is further ensured that the chromium carbide reacts with the Cr oxide / Cr hydroxide present in the reaction mixture and / or admixed to form Cr, this process dominating at T R.

Der Kohlenwasserstoff kann der Reaktion gasförmig, bevorzugt ohne Zumischen einer festen Kohlenstoffquelle zugegeben werden. Bevorzugt wird dabei die zumindest eine Verbindung der Gruppe bestehend aus Cr-Oxid und Cr-Hydroxid unter zumindest zeitweiser Einwirkung eines H2-CH4 Gasgemisches reduziert. Vorteilhaft wird ein H2/CH4 Volumenverhältnis im Bereich 1 bis 200, besonders vorteilhaft von 1,5 bis 20 gewählt. Die Einwirkung des H2-CH4 Gasgemisches erfolgt dabei bevorzugt zumindest zeitweise während der Aufheizphase auf TR, wobei der Einfluss auf die Ausbildung der Pulverform insbesondere im Temperaturbereich 850 bis 1000°C sehr günstig ist. Wird eine Temperatur von ca. 1200°C erreicht, wird bevorzugt auf eine Rein-Wasserstoffatmosphäre, bevorzugt mit einem Taupunkt von < -40°C (gemessen im Bereich der Gaszufuhr) umgeschaltet. Liegt TR unter 1200°C erfolgt das Umschalten auf die Rein-Wasserstoffatmosphäre bevorzugt bei Erreichen von TR. Die isotherme Phase auf TR und Abkühlen auf Raumtemperatur erfolgen vorteilhaft in einer Wasserstoffatmoshäre. Insbesondere beim Abkühlen ist es vorteilhaft, Wasserstoff mit einem Taupunkt < -40°C zu verwenden, um Rückoxidation zu vermeiden.The hydrocarbon may be added to the reaction in gaseous form, preferably without admixing a solid carbon source. The at least one compound of the group consisting of Cr oxide and Cr hydroxide is preferably reduced under at least temporary action of an H 2 -CH 4 gas mixture. Advantageously, a H 2 / CH 4 volume ratio in the range 1 to 200, particularly advantageously selected from 1.5 to 20. The action of the H 2 -CH 4 gas mixture is preferably carried out at least temporarily during the heating phase to T R , the influence on the formation of the powder form, in particular in the temperature range 850 to 1000 ° C is very low. If a temperature of about 1200 ° C is reached, is preferably switched to a pure hydrogen atmosphere, preferably with a dew point of <-40 ° C (measured in the gas supply). If T R is below 1200 ° C, switching to the pure hydrogen atmosphere is preferred when T R is reached . The isothermal phase on T R and cooling to room temperature are advantageously carried out in a Wasserstoffatmoshäre. In particular, when cooling, it is advantageous to use hydrogen with a dew point <-40 ° C to avoid reoxidation.

In einer Ausführungsvariante wird dem Cr-Oxid und/oder Cr-Hydroxid eine feste Kohlenstoffquelle zugemischt. Bevorzugt wird dabei pro Mol Sauerstoff in der Chromverbindung zwischen 0,75 und 1,25 Mol, vorzugsweise zwischen 0,90 und 1,05 Mol an Kohlenstoff eingesetzt. Dabei ist die Menge an für die Reaktion mit der Chromverbindung verfügbaren Kohlenstoff gemeint. In einer besonders bevorzugten Ausführungsvariante ist das Verhältnis O zu C mit etwa 0,98 leicht unterstöchiometrisch. Bevorzugt ist vorgesehen, dass die feste Kohlenstoffquelle ausgewählt ist aus der Gruppe Ruß, Aktivkohle, Graphit, kohlenstofffreisetzende Verbindungen oder Mischungen daraus. Als Beispiel für eine kohlenstofffreisetzende Verbindung können Chromkarbide, wie zum Beispiel Cr3C2, Cr7C3 und Cr23C6 genannt werden. Die Pulvermischung wird in einer H2-haltigen Atmosphäre auf TR erhitzt. Der H2-Druck wird dabei bevorzugt so eingestellt, dass sich zumindest im Temperaturbereich 800° bis 1050°C ein CH4-Partialdruck von 5 bis 500 mbar ergibt. Die isotherme Phase auf TR und Abkühlen auf Raumtemperatur erfolgen wiederum vorteilhaft in einer Wasserstoffatmoshäre. Während dieser Prozessphasen ist die Anwesenheit von Kohlenwasserstoff nicht erforderlich. Wasserstoff verhindert während dieser Prozessphase und während der Abkühlphase Rückoxidationsprozesse. Während der Abkühlphase wird bevorzugt eine Wasserstoffatmosphäre mit einem Taupunkt < -40°C eingesetzt.In one embodiment variant, a solid carbon source is admixed with the Cr oxide and / or Cr hydroxide. Preference is given here per mole of oxygen in the chromium compound between 0.75 and 1.25 mol, preferably between 0.90 and 1.05 moles of carbon used. This refers to the amount of carbon available for reaction with the chromium compound. In a particularly preferred embodiment, the ratio of O to C is slightly substoichiometric at about 0.98. It is preferably provided that the solid carbon source is selected from the group of carbon black, activated carbon, graphite, carbon-releasing compounds or mixtures thereof. As an example of a carbon releasing compound, chromium carbides such as Cr 3 C 2 , Cr 7 C 3 and Cr 23 C 6 may be mentioned. The powder mixture is heated to T R in an H 2 -containing atmosphere. The H 2 pressure is preferably adjusted so that at least in the temperature range 800 ° to 1050 ° C, a CH 4 partial pressure of 5 to 500 mbar results. The isothermal phase on T R and cooling to room temperature are again advantageously carried out in a hydrogen atmosphere. During these process phases, the presence of hydrocarbon is not required. Hydrogen prevents reoxidation processes during this process phase and during the cooling phase. During the cooling phase, a hydrogen atmosphere with a dew point <-40 ° C. is preferably used.

Weitere Vorteile und Details der Erfindung werden nachfolgend anhand von Beispielen und von Figuren erläutert.

Figur 3
zeigt eine REM Aufnahme von Cr2O3 (Pigmentqualität).
Figur 4;5a,b
zeigen REM Aufnahmen von nach dem erfindungsgemäßen Verfahren erhältlichen Metallpulvern.
Figur 6
zeigt die Grünfestigkeit von erfindungsgemäßem Pulver (CP-181) im Vergleich zu aluminothermisch hergestelltem Chrompulver (Cr-Std).
Figur 7
zeigt die relative Pressdichte von Pulver gemäß Erfindung im Vergleich zu aluminothermisch (A-Cr) und elektrolytisch (E-Cr) hergestelltem Cr unterschiedlicher Reinheit (Angabe in Gew.%) und Pulverpartikelgröße.
Figur 8
zeigt den zeitlichen Verlauf der Reduktion von Cr2O3 zu Cr bei unterschiedlichen Temperaturen gemäß Erfindung.
Figur 9
zeigt die spezifische Oberfläche von verschiedenen Chrompulvern gemäß Erfindung.
Further advantages and details of the invention are explained below with reference to examples and figures.
FIG. 3
shows an SEM image of Cr 2 O 3 (pigment grade).
4, 5a, b
show SEM images of obtainable by the process according to the invention metal powders.
FIG. 6
shows the green strength of powder according to the invention (CP-181) in comparison with aluminothermically produced chromium powder (Cr-Std).
FIG. 7
shows the relative compacted density of powder according to the invention compared to aluminothermic (A-Cr) and electrolytic (E-Cr) produced Cr of different purity (in wt.%) and powder particle size.
FIG. 8
shows the time course of the reduction of Cr 2 O 3 to Cr at different temperatures according to the invention.
FIG. 9
shows the specific surface area of different chromium powders according to the invention.

Beispiel 1:Example 1:

500 g Cr2O3 in Pigmentqualität (Lanxess Bayoxide CGN-R) mit einer mittleren, mittels Laserbeugung gemessenen Teilchengröße d50 von 0,9 µm (Pulvermorphologie siehe Figur 3) wurde in H2(75vol.%)-CH4(25vol.%) (Durchflussrate 150 l/h, Druck ca. 1bar) in 80 min. auf 800°C erhitzt. In weiterer Folge wurde die Reaktionsmischung langsam auf 1200°C erhitzt, wobei sich die Reaktionsmischung 325 min. im Temperaturbereich 800 bis 1200°C befand. Danach wurde die Reaktionsmischung in 20 min. auf TR erhitzt mit TR= 1400°C. Die Haltezeit auf 1400°C betrug 180 min. Aufheizen von 1200°C auf TR und Halten auf TR erfolgten unter Zufuhr von trockenem Wasserstoff mit einem Taupunkt < -40°C, wobei der Druck ca. 1 bar betrug. Die Ofenabkühlung erfolgte ebenfalls unter H2 mit einem Taupunkt < -40°C. Es wurde ein metallischer Schwamm erhalten, der sehr leicht zu einem Pulver deagglomeriert werden konnte. Das so hergestellte Chrommetall-Pulver ist in Figur 4 wiedergeben. Der Reduktionsgrad betrug > 99,0 %, der Kohlenstoffgehalt 80 µg/g und der Sauerstoffgehalt 1020 µg/g. Eine Röntgenbeugungsanalyse lieferte nur Peaks für kubisch raumzentriertes (BCC) Chrommetall. Die spezifische Oberfläche wurde mittels BET-Verfahren (gemäß ISO 9277:1995, Messbereich: 0,01 - 300 m2/g; Gerät: Gemini II 2370, Ausheiztemperatur: 130°C, Ausheizzeit: 2 Stunden; Adsorptiv: Stickstoff, volumetrische Auswertung über Fünfpunktbestimmung) bestimmt und betrug 0,14 m2/g, die Schüttdichte 1,2 g/cm3. Die Nanohärte HIT 0,005/5/1/5 wurde nach EN ISO 14577-1 bestimmt und betrug 3 GPa. Die Grünfestigkeit wurde nach ASTM B 312-09 bestimmt. Als Presszusatz wurde 0,6 Ma% LICOWAX® Micropowder PM (Lieferant Clariant, Produktnummer 107075, CAS- Nr. 00110-30-5 ) verwendet. Bei einem Pressdruck von 550 MPa betrug die Grünfestigkeit 23,8 MPa, bei 450 MPa 18,1 MPa, bei 300 MPa 8,5 MPa, bei 250 MPa 7,2 MPa und bei 150 MPa 3,0 MPa.500 g of Cr 2 O 3 in pigment grade (Lanxess Bayoxide CGN-R) with a mean, measured by laser diffraction particle size d 50 of 0.9 microns (powder morphology see FIG. 3 ) was in H 2 (75vol.%) - CH 4 (25vol.%) (flow rate 150 l / h, pressure about 1 bar) in 80 min. heated to 800 ° C. Subsequently, the reaction mixture was slowly heated to 1200 ° C, the reaction mixture 325 min. in the temperature range 800 to 1200 ° C was. Thereafter, the reaction mixture was in 20 min. T R heated with T R = 1400 ° C. The holding time to 1400 ° C was 180 min. Heating from 1200 ° C to T R and holding on T R was done by adding dry hydrogen with a dew point <-40 ° C, the pressure being about 1 bar. The furnace cooling was also carried out under H 2 with a dew point <-40 ° C. A metallic sponge was obtained, which could easily be deagglomerated to a powder. The chromium metal powder thus produced is in FIG. 4 play. The degree of reduction was> 99.0%, the carbon content 80 μg / g and the oxygen content 1020 μg / g. An X-ray diffraction analysis provided only peaks for cubic body-centered (BCC) chromium metal. The specific surface area was determined by BET method (according to ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, device: Gemini II 2370, annealing temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation via five-point determination) and was 0.14 m 2 / g, the bulk density 1.2 g / cm 3 . The nanohardness HIT 0.005 / 5/1/5 was determined according to EN ISO 14577-1 and was 3 GPa. The green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ) used. At a compacting pressure of 550 MPa, the green strength was 23.8 MPa, at 450 MPa 18.1 MPa, at 300 MPa 8.5 MPa, at 250 MPa 7.2 MPa and at 150 MPa 3.0 MPa.

Beispiel 2:Example 2:

Cr2O3 in Pigmentqualität (Lanxess Bayoxide CGN-R) mit einer mittleren, mittels Laserbeugung gemessenen Teilchengröße d50 von 0,9 µm wurde mit amorphem Ruß (Thermax ultra-pure N908 - Cancarb) gut vermengt. Der Kohlenstoffgehalt der so hergestellten Mischung betrug 0,99 Mol / Mol O in Cr2O3. 12500 g dieser Mischung wurden in 80 min. auf 800°C und danach in 125 min. auf 1050°C erhitzt. Das Aufheizen erfolgte unter Einwirkung von H2, wobei der H2-Druck so eingestellt wurde, dass im Temperaturbereich 800°C bis 1050°C der massenspektrometrisch gemessene CH4-Partialdruck > 15 mbar betrug. Der Gesamtdruck betrug dabei 1,1 bar. Danach wurde die Reaktionsmischung in 20 min. auf TR erhitzt mit TR= 1200°C. Die Haltezeit auf 1200°C betrug 540 min. Aufheizen von 1000°C auf TR und Halten auf TR erfolgten unter Zufuhr von trockenem Wasserstoff mit einem Taupunkt < -40°C, wobei der Druck ca. 1 bar betrug. Die Ofenabkühlung erfolgte ebenfalls unter H2 mit einem Taupunkt < -40°C. Es wurde ein metallischer Schwamm erhalten, der sehr leicht zu einem Pulver deagglomeriert werden konnte. Das so hergestellte Chrommetall-Pulver ist in den Figuren 5 a,b wiedergeben. Der Kohlenstoff- und Sauerstoffgehalt sind in Tabelle 1 wiedergegeben. Die Röntgenbeugungsanalyse lieferte nur Peaks für kubisch raumzentriertes (BCC) Chrommetall. Die Grünfestigkeit wurde nach ASTM B 312-09 bestimmt. Als Presszusatz wurde 0,6 Ma% LICOWAX® Micropowder PM (Lieferant Clariant, Produktnummer 107075, CAS- Nr. 00110-30-5 ) verwendet. Als Pressdrücke kamen dabei 550 MPa, 450 MPa, 350 MPa, 250 MPa und 150 MPa zur Anwendung. Figur 6 zeigt die gemessenen Grünfestigkeitswerte im Vergleich zu Proben, die mit aluminothermisch hergestelltem Pulver (Cr-Std) gepresst wurden. Das erfindungsgemäße Pulver (CP181) zeigt dabei eine um das zumindest 5-fache höhere Grünfestigkeit.Pigment grade Cr 2 O 3 (Lanxess Bayoxide CGN-R) with a mean laser diffraction particle size d 50 of 0.9 μm was well blended with amorphous carbon black (Thermax ultra-pure N908 - Cancarb). The carbon content of the mixture thus prepared was 0.99 mol / mol of O in Cr 2 O 3 . 12500 g of this mixture were in 80 min. to 800 ° C and then in 125 min. heated to 1050 ° C. The heating was carried out under the action of H 2 , wherein the H 2 pressure was adjusted so that in the temperature range 800 ° C to 1050 ° C, the measured mass spectrometry CH 4 partial pressure> 15 mbar scam. The total pressure was 1.1 bar. Thereafter, the reaction mixture was in 20 min. T R heated with T R = 1200 ° C. The holding time at 1200 ° C was 540 min. Heating from 1000 ° C to T R and holding on T R was done by supplying dry hydrogen with a dew point <-40 ° C, the pressure was about 1 bar. The furnace cooling was also carried out under H 2 with a dew point <-40 ° C. A metallic sponge was obtained, which could easily be deagglomerated to a powder. The thus produced chromium metal powder is in the Figures 5 a, b play. The carbon and oxygen contents are given in Table 1. X-ray diffraction analysis only yielded peaks for cubic body-centered (BCC) chromium metal. The green strength was determined according to ASTM B 312-09. As a compression additive, 0.6% by mass of LICOWAX® Micropowder PM (supplier Clariant, product number 107075, CAS No. 00110-30-5 ) used. As pressing pressures 550 MPa, 450 MPa, 350 MPa, 250 MPa and 150 MPa were used. FIG. 6 shows the measured green strength values compared to samples pressed with aluminothermically produced powder (Cr-Std). The powder according to the invention (CP181) shows a green strength which is at least 5 times higher.

Der Pulveransatz (mit 0,6 Ma% LICOWAX® Micropowder PM Presszusatz) wurde weiters bei verschiedenen Drücken zu pillenförmigen Proben gepresst. In Figur 7 sind die relativen Pressdichten in Abhängigkeit vom Pressdruck im Vergleich zu Standard-Chrom-Metallpulver (E-Cr: elektrolytisch hergestellt; A-Cr: aluminothermisch hergestellt) mit unterschiedlichen Partikelgrößen dargestellt.The powder formulation (with 0.6 Ma% LICOWAX® Micropowder PM Press Additive) was further pressed at various pressures into pill-shaped samples. In FIG. 7 For example, the relative compacting densities are shown in terms of compacting pressure as compared to standard chromium metal powder (E-Cr: electrolytically produced, A-Cr: aluminothermically produced) having different particle sizes.

Des Weiteren wurden die spezifische Oberfläche nach BET (ISO 9277:1995, Messbereich: 0,01 - 300 m2/g; Gerät: Gemini II 2370, Ausheiztemperatur: 130°C, Ausheizzeit: 2 Stunden; Adsorptiv: Stickstoff, volumetrische Auswertung über Fünfpunktbestimmung) und die Nanohärte HIT 0,005/5/1/5 nach EN ISO 14577-1 bestimmt. In Tabelle 1 sind diese Merkmale aufgelistet und den Eigenschaften von auf elektrolytischem Weg hergestellten Chrompulver gegenübergestellt. Auffallend ist die deutlich niedrigere Nanohärte des erfindungsgemäßen Pulvers. Die aus der BET-Oberfläche berechnete Partikelgröße betrug 8,3 µm. Tabelle 1: Eigenschaften von erfindungsgemäßem Chrompulver im Vergleich zu elektrolytisch hergestelltem Chrompulver Pulver Typ BET-Oberfläche [m2/g] O [µg/g] C [µg/g] Nanohärte [GPa] Erfindungsgemäßes Chrom-Pulver (Beispiel 2) 0,10 1064 114 2,92 Elektrolytisch hergestelltes Chrompulver, Partikelgröße < 45 µm 0,11 736 87 5,32 Furthermore, the BET specific surface area (ISO 9277: 1995, measuring range: 0.01-300 m 2 / g, apparatus: Gemini II 2370, baking temperature: 130 ° C., heating time: 2 hours, adsorptive: nitrogen, volumetric evaluation over Five-point determination) and the nanohardness HIT 0.005 / 5/1/5 according to EN ISO 14577-1. Table 1 lists these characteristics and compares them with the properties of electrolytically produced chromium powders. Striking is the significantly lower nanohardness of the powder according to the invention. The particle size calculated from the BET surface area was 8.3 μm. Table 1: Properties of chromium powder according to the invention in comparison with electrolytically produced chromium powder Powder type BET surface area [m 2 / g] O [μg / g] C [μg / g] Nanohardness [GPa] Chromium powder according to the invention (Example 2) 0.10 1064 114 2.92 Electrolytically produced chromium powder, particle size <45 μm 0.11 736 87 5.32

Beispiel 3:Example 3:

Jeweils 20 g einer Mischung gemäß Beispiel 2 wurden in einem Molybdän-Tiegel in 80 min. auf 800°C und danach in 125 min. auf 1050°C erhitzt. Das Aufheizen erfolgte unter Einwirkung von H2, wobei der H2-Druck so eingestellt wurde, dass im Temperaturbereich 800°C bis 1050°C der massenspektrometrisch gemessene CH4-Partialdruck > 15 mbar betrug. Der Gesamtdruck betrug dabei 1,1 bar. Danach wurde die Reaktionsmischung mit einer Aufheizgeschwindigkeit von 10 K/min auf TR erhitzt. Als TR kamen dabei 1150°C, 1250°C, 1300°C, 1350°C, 1400°C, 1450°C und 1480°C zur Anwendung. Die Haltezeiten auf TR betrugen 30 min, 60 min, 90 min, 120 min und 180 min. Aufheizen von 1000°C auf TR und Halten auf TR erfolgten unter Zufuhr von trockenem Wasserstoff mit einem Taupunkt < -40°C, wobei der Druck ca. 1 bar betrug. Die Ofenabkühlung erfolgte ebenfalls unter H2 mit einem Taupunkt < -40°C. Der Reduktionsgrad wurde wie in der Beschreibung dargelegt bestimmt. Wie aus Figur 8 ersichtlich ist, wird ein vorteilhafter Reduktionsgrad von > 95% bei 1400°C, 1450°C und 1480°C bereits bei einer Haltezeit von 30 min. deutlich überschritten. Bei 1350°C bedarf es dazu ca. 80 min., bei 1300°C ca. 160 min. Bei 1250°C und 1150°C bedarf es dazu in etwa 260 min. bzw. 350 min. (extrapolierte Werte). REM-Untersuchungen zeigten, dass die so hergestellten Pulver eine schwammartige Morphologie verbunden mit einer sehr hohen BET Oberfläche (siehe Figur 9) aufweisen.In each case 20 g of a mixture according to Example 2 were in a molybdenum crucible in 80 min. to 800 ° C and then in 125 min. heated to 1050 ° C. The heating was carried out under the action of H 2 , wherein the H 2 pressure was adjusted so that in the temperature range 800 ° C to 1050 ° C, the measured by mass spectrometry CH 4 partial pressure> 15 mbar. The total pressure was 1.1 bar. Thereafter, the reaction mixture was heated to T R at a heating rate of 10 K / min. As T R 1150 ° C, 1250 ° C, 1300 ° C, 1350 ° C, 1400 ° C, 1450 ° C and 1480 ° C were used. The holding times on T R were 30 min, 60 min, 90 min, 120 min and 180 min. Heating from 1000 ° C to T R and holding on T R was done by supplying dry hydrogen with a dew point <-40 ° C, the pressure was about 1 bar. The furnace cooling was also carried out under H 2 with a dew point <-40 ° C. The degree of reduction was determined as set out in the description. How out FIG. 8 it can be seen, an advantageous reduction of> 95% at 1400 ° C, 1450 ° C and 1480 ° C already at a holding time of 30 min. clearly exceeded. At 1350 ° C it takes about 80 min., At 1300 ° C about 160 min. At 1250 ° C and 1150 ° C it takes about 260 min. or 350 min. (extrapolated values). SEM investigations showed that the powders thus produced had a sponge-like morphology combined with a very high BET surface area (see FIG. 9 ) respectively.

Claims (16)

  1. Metal powder having a chromium content of at least 90 Ma%, characterized by a nanohardness HIT 0.005/5/1/5 according to
    EN ISO 14577-1 of ≤ 4 GPa, a green strength measured according to ASTM B312-09 of at least 15 MPa at a compression pressure of 550 MPa and a surface area according to BET, measured according to ISO 9277:1995, preferably without surface-enlarging operation, of ≥ 0.05 m2/g.
  2. Metal powder according to Claims 1, characterized in that the metal powder is chromium powder having a metallic purity ≥ 99.0 Ma%.
  3. Metal powder according to any one of Claims 1 to 2, characterized in that the metal powder is provided as an alloyed powder or composite powder.
  4. Metal powder according to any one of Claims 1 to 3, characterized in that the metal powder is granulated.
  5. Metal powder according to any one of Claims 1 to 4, characterized in that the compression density at a compression pressure of 550 MPa is ≥ 80 % of the theoretical density.
  6. Method for producing a metal powder according to any one of Claims 1 to 5 by reduction of at least one compound of the group consisting of chromium oxide and chromium hydroxide, optionally with an admixed solid carbon source, under at least temporary action of hydrogen and hydrocarbon, wherein the compound of the group consisting of chromium oxide and chromium hydroxide, optionally with an admixed solid carbon source is heated to a temperature TR with 1100°C ≤ TR ≤ 1550°C and optionally held at this temperature, wherein at least during the heating operation, the hydrocarbon partial pressure is at least temporarily 5 to 500 mbar and the action of hydrogen and hydrocarbon occurs at least in the temperature range of 800 to 1050°C.
  7. Method according to Claim 6, characterized in that, at least in the temperature range of 800 to 1050°C, the hydrocarbon partial pressure is 5 to 500 mbar.
  8. Method according to any one of Claims 6 to 7, characterized in that the sum of heating time and holding time in the temperature range of 800°C to 1050°C is at least 45 minutes.
  9. Method according to any one of Claims 6 to 8, characterized in that the total pressure is 0.95 to 2 bar.
  10. Method according to any one of Claims 6 to 9, characterized in that the compound of the group consisting of chromium oxide and chromium hydroxide is reduced under at least temporary action of a H2-CH4 gas mixture.
  11. Method according to Claim 10, characterized in that the H2/CH4 volume ratio is 1 to 200, in particular 1.5 to 20.
  12. Method according to any one of Claims 6 to 11, characterized in that a solid carbon source is admixed, which is at least one component selected from the group consisting of carbon black, activated carbon, graphite, carbon-releasing compound, and mixtures thereof.
  13. Method according to Claim 12, characterized in that between 0.75 and 1.25 mol, preferably between 0.90 and 1.05 mol of carbon is used per mol of oxygen in the chromium oxide or chromium hydroxide.
  14. Method according to any one of Claims 6 to 13, characterized in that at least one compound selected from the group consisting of chromium oxide and chromium hydroxide is at least partially reacted under the action of hydrogen and hydrocarbon to form a chromium carbide selected from the group consisting of Cr3C2, Cr7C3, and Cr23C6.
  15. Method according to Claim 14, characterized in that the chromium carbide is at least partially reacted with at least one compound selected from the group consisting of chromium oxide and chromium hydroxide to form chromium.
  16. Method according to any one of Claims 6 to 15, characterized in that the hydrocarbon is CH4.
EP14789128.7A 2013-09-02 2014-08-19 Chromium metal powder Active EP3041631B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ATGM283/2013U AT13691U1 (en) 2013-09-02 2013-09-02 Chromium metal powder
PCT/AT2014/000160 WO2015027256A2 (en) 2013-09-02 2014-08-19 Chromium metal powder

Publications (2)

Publication Number Publication Date
EP3041631A2 EP3041631A2 (en) 2016-07-13
EP3041631B1 true EP3041631B1 (en) 2019-02-27

Family

ID=50885104

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14789128.7A Active EP3041631B1 (en) 2013-09-02 2014-08-19 Chromium metal powder

Country Status (10)

Country Link
US (1) US11117188B2 (en)
EP (1) EP3041631B1 (en)
JP (1) JP6559134B2 (en)
KR (1) KR102259464B1 (en)
CN (1) CN105517736B (en)
AT (1) AT13691U1 (en)
CA (1) CA2921068C (en)
RU (1) RU2662911C2 (en)
TW (1) TWI636961B (en)
WO (1) WO2015027256A2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2674050C1 (en) 2013-12-20 2018-12-04 Планзее ЗЕ Coating material
JP6981536B2 (en) * 2018-03-23 2021-12-15 株式会社村田製作所 Iron alloy particles and method for manufacturing iron alloy particles
CN111922350B (en) * 2020-09-22 2021-01-01 西安斯瑞先进铜合金科技有限公司 Preparation method of low-hydrochloric-acid-insoluble metal chromium powder
CN111922351B (en) * 2020-09-23 2021-01-01 西安斯瑞先进铜合金科技有限公司 Preparation method of high-purity low-oxygen metal chromium powder

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB512502A (en) 1938-03-18 1939-09-18 George William Johnson Improvements in the manufacture and production of chromium or chromium alloys
SU142431A1 (en) * 1961-04-03 1961-11-30 Т.Я. Косолапова The method of obtaining technical chromium powder
JPS53102813A (en) * 1977-02-21 1978-09-07 Toyo Soda Mfg Co Ltd Preparation of metallic chromium of high purity
US4148628A (en) * 1977-02-18 1979-04-10 Toyo Soda Manufacturing Co., Ltd. Process of producing metallic chromium
JPS5413408A (en) 1977-07-01 1979-01-31 Toyo Soda Mfg Co Ltd Manufacture of high purity metallic chromium
SU1061938A1 (en) * 1982-04-15 1983-12-23 Институт Металлургии Им.50-Летия Ссср Charge for preparing chromium powder
JPS63199832A (en) * 1987-02-13 1988-08-18 Tosoh Corp Manufacture of high-purity metallic chromium
CN1004637B (en) * 1987-08-05 1989-06-28 北京有色金属研究总院 Method for producing low-oxygen chromium powder
EP0452079A1 (en) * 1990-04-12 1991-10-16 Tosoh Corporation High chromium-nickel material and process for producing the same
JPH0681052A (en) 1992-01-30 1994-03-22 Tosoh Corp Production of metal chromium
JP3227715B2 (en) * 1991-04-15 2001-11-12 東ソー株式会社 Production method of chromium metal
GB2255349A (en) 1991-04-15 1992-11-04 Tosoh Corp Process for producing chromium metal
JP2908073B2 (en) * 1991-07-05 1999-06-21 株式会社東芝 Manufacturing method of contact alloy for vacuum valve
JP3934686B2 (en) * 1994-01-31 2007-06-20 東ソー株式会社 Method for producing high purity metallic chromium
DE69920925T2 (en) * 1998-08-06 2006-03-02 Eramet Marietta Inc., Marietta PROCESS FOR GENERATING PURE CHROMIUM
DE10002738A1 (en) 2000-01-22 2001-07-26 Vulkan Strahltechnik Gmbh Production of abrasive grains made of non-rusting cast stainless steel involves producing granules from a hardenable iron-chromium-carbon alloy melt, heat treating and cooling
AT505699B1 (en) 2007-09-03 2010-10-15 Miba Sinter Austria Gmbh METHOD FOR PRODUCING A SINTERED CERTAIN COMPONENT
US20090068055A1 (en) * 2007-09-07 2009-03-12 Bloom Energy Corporation Processing of powders of a refractory metal based alloy for high densification
DE102008064648A1 (en) 2008-01-23 2010-05-20 Tradium Gmbh Reaction vessel for the production of metal powders

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
RU2016105215A3 (en) 2018-04-27
AT13691U1 (en) 2014-06-15
US11117188B2 (en) 2021-09-14
JP6559134B2 (en) 2019-08-14
EP3041631A2 (en) 2016-07-13
WO2015027256A2 (en) 2015-03-05
WO2015027256A3 (en) 2015-05-21
JP2016532010A (en) 2016-10-13
CA2921068A1 (en) 2015-03-05
CA2921068C (en) 2021-03-09
CN105517736B (en) 2019-08-06
RU2662911C2 (en) 2018-07-31
RU2016105215A (en) 2017-10-09
KR102259464B1 (en) 2021-06-02
TWI636961B (en) 2018-10-01
CN105517736A (en) 2016-04-20
TW201512099A (en) 2015-04-01
US20160199910A1 (en) 2016-07-14
KR20160051760A (en) 2016-05-11

Similar Documents

Publication Publication Date Title
DE60121242T2 (en) Molybdenum-copper composite powder and its production and processing into a pseudo alloy
EP1079950B1 (en) Sinter-active metal and alloy powders for powder metallurgy applications and methods for their production and their use
EP2066821B9 (en) Metal powder
DE2625214A1 (en) Process for the production of sintered molded bodies
AT6955U1 (en) ODS MOLYBDENUM-SILICON ALLOY BOR
DE102006013746A1 (en) Sintered wear-resistant material used in the production of wear components comprises finely ground transition metal diboride or mixed crystal, oxygen-containing grain boundary phase and particulate boron and/or silicon carbide
EP1718777B1 (en) Method for the production of a molybdenum alloy
EP3041631B1 (en) Chromium metal powder
DE19950595C1 (en) Production of sintered parts made of aluminum sintered mixture comprises mixing pure aluminum powder and aluminum alloy powder to form a sintered mixture, mixing with a pressing auxiliary agent, pressing, and sintering
DE69318682T2 (en) Magnetic powder of type SE-Fe-B, sintered magnets made of it and manufacturing process
DE102014204277B4 (en) WEAR-RESISTANT TUNGSTEN CARBIDE CERAMICS AND PROCESSES FOR THEIR MANUFACTURE
EP0232772B1 (en) Process for preparing a pulverulent amorphous material by way of a milling process
DE2200670B2 (en)
EP2427284B1 (en) Powder-metallurgical method for producing metal foam
DE19711642A1 (en) Wear resistant steel matrix composite material production
WO2021094560A1 (en) Spherical powder for making 3d objects
DE102006005225B3 (en) Hard, strong, biocompatible titanium-based material, useful for producing medical implants, contains titanium carbide, boride and/or silicide in dispersoid form
DE3873724T2 (en) ADDITIONAL TUNGSTEN HEAVY METAL ALLOYS WITH FINE TEXTURE.
DE69218109T2 (en) Compacted and solidified active ingredients made of aluminum alloy
DE3308409C2 (en)
DE69225469T2 (en) METHOD FOR DEGASSING AND FIXING ALUMINUM ALLOY POWDER
DE3043321A1 (en) SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF
DE10117657A1 (en) Complex boride cermet body, process for its manufacture and use
EP1047649A1 (en) Method for producing composite materials and examples of such composite materials
EP1409407A2 (en) Production of mg2 si and ternary compounds mg2 (si,e); (e=ge, sn, pb and transition metals; smaller than 10 wt.%) made of mgh2 and silicon and the production of magnesium silicide moulded bodies by pulse-plasma-synthesis

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160308

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
RIC1 Information provided on ipc code assigned before grant

Ipc: B22F 9/22 20060101AFI20180724BHEP

Ipc: A61H 33/06 20060101ALI20180724BHEP

Ipc: C22C 27/06 20060101ALI20180724BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20180914

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1100601

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190315

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014010970

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190227

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190527

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190627

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190528

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014010970

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20191128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190227

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240826

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20240822

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20240821

Year of fee payment: 11