[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2427284B1 - Powder-metallurgical method for producing metal foam - Google Patents

Powder-metallurgical method for producing metal foam Download PDF

Info

Publication number
EP2427284B1
EP2427284B1 EP10736959.7A EP10736959A EP2427284B1 EP 2427284 B1 EP2427284 B1 EP 2427284B1 EP 10736959 A EP10736959 A EP 10736959A EP 2427284 B1 EP2427284 B1 EP 2427284B1
Authority
EP
European Patent Office
Prior art keywords
powder
mass
metal
metal foam
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP10736959.7A
Other languages
German (de)
French (fr)
Other versions
EP2427284A2 (en
Inventor
Manas Mukherjee
Catalina Jimenez
John Banhart
Francisco Garcia-Moreno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Original Assignee
Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH filed Critical Helmholtz Zentrum Berlin fuer Materialien und Energie GmbH
Publication of EP2427284A2 publication Critical patent/EP2427284A2/en
Application granted granted Critical
Publication of EP2427284B1 publication Critical patent/EP2427284B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/11Making porous workpieces or articles
    • B22F3/1121Making porous workpieces or articles by using decomposable, meltable or sublimatable fillers
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • C22C1/0408Light metal alloys
    • C22C1/0416Aluminium-based alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/08Alloys with open or closed pores
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/11Making amorphous alloys

Definitions

  • the invention relates to a powder metallurgical process for the production of aluminum-based metal foam.
  • blowing agent or gas-releasing agent eg. US 3,087,807 ZrH 1.01 as a gas-releasing agent; US 2,935,396 CdCO 3 or MgCO 3 as a gas-releasing agent; US 2,983,597 - TiH 2 or ZrH 2 as blowing agent
  • blowing agent or gas-releasing agent eg. US 3,087,807 ZrH 1.01 as a gas-releasing agent; US 2,935,396 CdCO 3 or MgCO 3 as a gas-releasing agent; US 2,983,597 - TiH 2 or ZrH 2 as blowing agent
  • Powder metallurgical processes for the production of metal foams have also been developed for years and the metal foams produced have been investigated for their properties.
  • such a powder metallurgical process comprises the following process steps: mixing at least one metal powder and one blowing agent powder, then compacting to form a dense, foamable semi-finished product. If this semifinished product is heated above the melting point, it expands and the metal is converted into a semi-liquid, viscous state, at the same time releasing gas from the decomposing propellant and foaming the semifinished product.
  • a powder metallurgical process in which as blowing agent-containing powder, a metal compound is selected, the metal component consists exclusively of one or more metals to be foamed powdered metallic material to the metal component to change the alloy composition to a small extent and to cause no metallic impurities.
  • Preferred propellants are salts which are selected from acetates, hydrates, hydroxides, hydrides and carbonates or mixed salts thereof and which are particularly efficient gas formers which, when decomposed, preferably form hydrogen, carbon dioxide, carbon monoxide, water and / or methane.
  • the powder metallurgical process for the production of aluminum-based metal foam comprises at least the process steps: mixing a metal powder of at least aluminum with Al (1-x) Mg (x) with 10 mass% ⁇ x ⁇ 100 mass% as gas generator in the form of metal powder in a concentration of 4 to 50 mass%; then compacting the metal powder mixture; then heating the compact at atmospheric pressure to a temperature above the melting point of the metal matrix to produce a liquid metal foam and then cooling the resulting metal foam at a temperature below the solidus temperature of the metal matrix.
  • pre-alloyed Al-Mg metal powder is used.
  • the compacting of the metal powder mixture takes place for example by means of uniaxial compaction or by extrusion.
  • Al-based metal foam in a concentration of 50 to 96 mass% is mixed with Al (1-x) Mg (x) as the remainder.
  • up to 40 mass% of Cu powder or up to 15 mass% of Si powder or up to 40 mass% of Zn powder may optionally be used. Even small additions of up to 5 mass% of Sn or Sb or Mn or Ni powders to the metal powder mixture instead of the Al powder cause a reduction of the melting temperature.
  • Further embodiments relate to the compaction of the powder mixture, which is carried out at a temperature in the range of 200 ° C ⁇ T ⁇ 450 ° C and at a pressure in the range of 200 MPa ⁇ p ⁇ 500 MPa, and the temperature for the foaming process for an Al -based metal foam is set between 450 and 650 ° C.
  • the Al (1-x) Mg (x) alloy having 10 mass% ⁇ x ⁇ 100 mass% can be used both as a gas generator and as an alloying ingredient in the production of metal foams.
  • metal foams having a homogeneous and stable foam structure which has small pores with an average diameter between 0.05 and 2 mm, could be produced.
  • the pores are also not interconnected, which could not yet be achieved with the prior art according to known powder metallurgy processes.
  • Another advantage of the invention is - as already mentioned - is that with the admixture of Al (1-x) Mg (x) powder with 10 mass% ⁇ x ⁇ 100 mass% of the melting point of the Al-based alloy was lowered.
  • Fig. 1 and Fig. 2 show in each case a comparison of an Al-based metal foam prepared according to a known powder metallurgy process with propellant ( Fig. 1 ) and without propellant ( Fig. 2 ), ie produced according to the inventive method. Clearly visible are the significantly larger pores in the propellant produced metal foam.
  • Fig. 3 shows a microscope image of the foam structure of an Al-based metal foam produced by the process according to the invention, now in a higher magnification than in Fig. 1 .
  • This metal foam is produced as follows: 60% by weight of Al powder and 30% by weight of AlMg50 powder and 10% by weight of Cu powder are used to produce the powder mixture. The Cu powder was added to lower the melting point of the alloy. The compaction takes place at 400 ° C and a pressure of 300 MPa. For foaming the compacted sample, a temperature of 600 ° C is set.
  • the Al-based metal foam thus prepared has a density of 0.6 gcm -3 and pores having an average diameter of 800 ⁇ m.
  • Fig. 4 the curve for the stress-strain behavior of a metal foam with the composition AlMg15Cu10 is shown, which has a density of 0.72 gcm -3 and an average diameter of the pores of 1 mm. Investigations of the metal foam produced by the process according to the invention have shown that its compressive strength and rigidity are at least as good as those of other standard foams.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

Die Erfindung betrifft ein pulvermetallurgisches Verfahren zur Herstellung von Aluminium-basiertem Metallschaum.The invention relates to a powder metallurgical process for the production of aluminum-based metal foam.

Verfahren zur Herstellung von Metallschäumen mit Treibmittel bzw. gasabspaltendem Mittel (z. B. US 3,087,807 - ZrH1,01 als gasabspaltendes Mittel; US 2,935,396 - CdCO3 oder MgCO3 als gasabspaltendes Mittel; US 2,983,597 - TiH2 oder ZrH2 als Treibmittel) sind seit langem bekannt.Process for producing metal foams with blowing agent or gas-releasing agent (eg. US 3,087,807 ZrH 1.01 as a gas-releasing agent; US 2,935,396 CdCO 3 or MgCO 3 as a gas-releasing agent; US 2,983,597 - TiH 2 or ZrH 2 as blowing agent) have long been known.

Auch pulvermetallurgische Verfahren zur Herstellung von Metallschäumen werden seit Jahren weiterentwickelt und die hergestellten Metallschäume auf ihre Eigenschaften untersucht.Powder metallurgical processes for the production of metal foams have also been developed for years and the metal foams produced have been investigated for their properties.

Ganz allgemein umfasst ein solches pulvermetallurgisches Verfahren die folgenden Verfahrensschritte: Mischen mindestens eines Metallpulvers und eines Treibmittelpulvers, danach Kompaktieren zu einem dichten, aufschäumbaren Halbzeug. Wird dieses Halbzeug über den Schmelzpunkt hinaus erwärmt, expandiert es und das Metall wird in einen semi-flüssigen, viskosen Zustand überführt, wobei gleichzeitig Gas aus dem sich zersetzenden Treibmittel frei wird und das Aufschäumen des Halbzeugs erfolgt.In general, such a powder metallurgical process comprises the following process steps: mixing at least one metal powder and one blowing agent powder, then compacting to form a dense, foamable semi-finished product. If this semifinished product is heated above the melting point, it expands and the metal is converted into a semi-liquid, viscous state, at the same time releasing gas from the decomposing propellant and foaming the semifinished product.

In DE 101 15 230 A1 wird ein pulvermetallurgisches Verfahren beschrieben, bei dem als treibmittelhaltiges Pulver eine Metallverbindung ausgewählt wird, deren Metallkomponente ausschließlich aus einem oder mehreren Metallen des zu schäumenden pulverförmigen metallischen Materials besteht, um mit der Metallkomponente die Legierungszusammensetzung in geringem Umfang zu ändern und keine metallischen Verunreinigungen zu verursachen. Als Treibmittel sind bevorzugt Salze angegeben, die aus Acetaten, Hydraten, Hydroxiden, Hydriden und Carbonaten bzw. Mischsalze hieraus ausgewählt werden und die besonders effiziente Gasbildner sind, die bei ihrer Zersetzung bevorzugt Wasserstoff, Kohlendioxid, Kohlenmonoxid, Wasser und/oder Methan bilden.In DE 101 15 230 A1 a powder metallurgical process is described in which as blowing agent-containing powder, a metal compound is selected, the metal component consists exclusively of one or more metals to be foamed powdered metallic material to the metal component to change the alloy composition to a small extent and to cause no metallic impurities. Preferred propellants are salts which are selected from acetates, hydrates, hydroxides, hydrides and carbonates or mixed salts thereof and which are particularly efficient gas formers which, when decomposed, preferably form hydrogen, carbon dioxide, carbon monoxide, water and / or methane.

In den letzten Jahren sind auch pulvermetallurgische Verfahren zur Herstellung von Metallschäumen ohne Verwendung eines Treibmittels entwickelt worden. So ist beispielsweise in DE 10 2005 037 305 A1 ein Verfahren beschrieben, bei dem das Metallpulver zunächst unter mechanischem Druck und einer Temperatur von bis zu 400 °C zu einem formstabilen Halbzeug gepresst wurde, dieses anschließend in einer druckdicht verschlossenen Kammer bei einem gewählten Anfangsdruck von bis zu 5 MPa auf die Schmelz- bzw. die Solidustemperatur des Metallpulvers aufgeheizt wird. Nach Erreichen dieser Temperatur wird der Druck definiert reduziert, das Halbzeug schäumt sich auf, der entstandene Metallschaum erstarrt während der abschließenden Absenkung der Temperatur. Dieses Verfahren ist durch die Notwendigkeit druckdichter Behälter relativ aufwändig.In recent years, powder metallurgical processes for producing metal foams have also been developed without the use of a blowing agent. For example, in DE 10 2005 037 305 A1 described a method in which the metal powder was first pressed under mechanical pressure and a temperature of up to 400 ° C to a dimensionally stable semi-finished, this then in a pressure-tight chamber sealed at a selected initial pressure of up to 5 MPa on the melt or the solidus temperature of the metal powder is heated. After reaching this temperature, the pressure is reduced defined, the semi-finished foams up, the resulting metal foam solidifies during the final lowering of the temperature. This method is relatively expensive due to the necessity of pressure-tight containers.

Ein in US 4,283,465 A beschriebenes Verfahren betrifft die Herstellung eines porösen Sinterkörpers. Bei diesem Verfahren wird einem ersten Bestandteil aus einem AI-Legierungspulver mit 0,1 % Mg, 0,1 % Si, 1 % Cu und 0,2 % Mn ein zweiter Bestandteil aus einem Al-Mg(20 %)-Pulver bzw.-Granulat zugemischt. Der zugemischte Bestandteil bildet den zweiten Schmelzanteil für den dem Mischschritt folgenden Flüssigphasen-Sinterprozess beider Bestandteile. Der dabei angewendete Druck von kleiner 80 Pa dient der Formgebung des Sinterkörpers sowie der Verringerung der beim Sintern entstandenen Hohlräume, die alle miteinander verbunden sind. Eine Gasfreisetzung erfolgt hierbei nicht.An in US 4,283,465 A The method described relates to the production of a porous sintered body. In this method, a first component of an Al alloy powder with 0.1% Mg, 0.1% Si, 1% Cu and 0.2% Mn is a second component of an Al-Mg (20%) powder or Granules mixed. The admixed component forms the second melt fraction for the liquid phase sintering process of the two components following the mixing step. The applied pressure of less than 80 Pa is used to shape the sintered body and reduce the resulting sintering cavities, which are all connected. A gas release does not take place here.

Deshalb ist es Aufgabe der Erfindung, ein weiteres pulvermetallurgisches Verfahren zur Herstellung von Aluminium-basiertem Metallschaum anzugeben, das im Vergleich zum Stand der Technik weniger aufwändig und kostengünstiger und nur mit legierungseigenen Bestandteilen realisierbar ist.Therefore, it is an object of the invention to provide a further powder metallurgical process for the production of aluminum-based metal foam, which is less expensive and less expensive and only with alloy-inherent components compared to the prior art.

Die Aufgabe wird durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.The object is achieved by a method having the features of claim 1.

Dabei wird das überraschenderweise bei Versuchen zur Änderung einer AI-Legierung durch Zugabe von Al(1-x)Mg(x) -Pulver gefundene Ergebnis ausgenutzt, dass das Al(1-x)Mg(x)-Pulver und sogar auch reines Mg-Pulver so viel Wasserstoff enthält, dass es eine für den Aufschäumprozess ausreichende Menge Wasserstoff bei der Temperaturerhöhung abgibt. Damit wirkt dieses Al(1-x)Mg(x)-Pulver sowohl als Legierungsbestandteil - bei dem erfindungsgemäßen Verfahren in einem wesentlich größeren Umfang als dem Stand der Technik nach bereits erwähnt - als auch als Gasbildner. Die Zuführung eines speziellen Treibmittels, das notwendigerweise auch legierungsfremde Bestandteile enthält, ist damit nicht mehr notwendig.The result surprisingly found in experiments to change an Al alloy by adding Al (1-x) Mg (x) powder found that the Al (1-x) Mg (x) powder and even pure Mg Powder contains so much hydrogen that it is one for the foaming process Sufficient amount of hydrogen at the temperature increase gives off. Thus, this Al (1-x) Mg (x) powder acts both as an alloying ingredient - in the inventive method to a much greater extent than the prior art after mentioned - and as a gas generator. The supply of a special propellant, which necessarily contains alien components, is therefore no longer necessary.

Erfindungsgemäß umfasst das pulvermetallurgische Verfahren zur Herstellung von Aluminium-basiertem Metallschaum mindestens die Verfahrensschritte: Mischen eines Metallpulvers aus mindestens Aluminium mit Al(1-x)Mg(x) mit 10 Massen% ≤ x ≤ 100 Massen% als Gasbildner in Form von Metallpulver in einer Konzentration von 4 bis 50 Massen%; anschließendes Verdichten der Metallpulvermischung; danach Erhitzen des Presslings bei Atmosphärendruck auf eine Temperatur oberhalb des Schmelzpunktes der Metallmatrix zur Erzeugung eines flüssigen Metallschaumes und abschließendes Kühlen des entstandenen Metallschaumes bei einer Temperatur unterhalb der Solidustemperatur der Metallmatrix.According to the invention, the powder metallurgical process for the production of aluminum-based metal foam comprises at least the process steps: mixing a metal powder of at least aluminum with Al (1-x) Mg (x) with 10 mass% ≦ x ≦ 100 mass% as gas generator in the form of metal powder in a concentration of 4 to 50 mass%; then compacting the metal powder mixture; then heating the compact at atmospheric pressure to a temperature above the melting point of the metal matrix to produce a liquid metal foam and then cooling the resulting metal foam at a temperature below the solidus temperature of the metal matrix.

Ist x < 100 Massen% wird vorlegiertes Al-Mg-Metallpulver verwendet.If x <100 mass%, pre-alloyed Al-Mg metal powder is used.

Das Verdichten der Metallpulvermischung erfolgt beispielsweise mittels uniaxialer Kompaktierung oder mittels Strangpressen.The compacting of the metal powder mixture takes place for example by means of uniaxial compaction or by extrusion.

In Ausführungsformen der Erfindung ist vorgesehen, dass für die Herstellung von Al-basiertem Metallschaum Al-Pulver in einer Konzentration von 50 bis 96 Massen% mit Al(1-x)Mg(x) als Rest vermischt wird.In embodiments of the invention it is envisaged that for the production of Al-based metal foam Al powder in a concentration of 50 to 96 mass% is mixed with Al (1-x) Mg (x) as the remainder.

Zur Verringerung der Schmelztemperatur einer Al-basierten Legierung kann wahlweise anstelle des Al-Pulvers bis zu 40 Massen% Cu-Pulver oder bis zu 15 Massen% Si-Pulver oder bis zu 40 Massen% Zn-Pulver verwendet werden. Auch geringe Zugaben von bis zu 5 Massen% Sn- oder Sb- oder Mn- oder Ni-Pulver zur Metallpulvermischung anstelle des Al-Pulvers bewirken eine Verringerung der Schmelztemperatur.To reduce the melting temperature of an Al-based alloy, instead of the Al powder, up to 40 mass% of Cu powder or up to 15 mass% of Si powder or up to 40 mass% of Zn powder may optionally be used. Even small additions of up to 5 mass% of Sn or Sb or Mn or Ni powders to the metal powder mixture instead of the Al powder cause a reduction of the melting temperature.

Weitere Ausführungsformen betreffen die Kompaktierung der Pulvermischung, die bei einer Temperatur im Bereich von 200 °C ≤ T ≤ 450 °C und bei einem Druck im Bereich von 200 MPa ≤ p ≤ 500 MPa durchgeführt wird, und die Temperatur für den Aufschäumprozess für einen Al-basierten Metallschaum zwischen 450 und 650 °C eingestellt wird.Further embodiments relate to the compaction of the powder mixture, which is carried out at a temperature in the range of 200 ° C ≤ T ≤ 450 ° C and at a pressure in the range of 200 MPa ≤ p ≤ 500 MPa, and the temperature for the foaming process for an Al -based metal foam is set between 450 and 650 ° C.

Die Al(1-x)Mg(x)-Legierung mit 10 Massen%≤ x ≤ 100 Massen% kann sowohl als Gasbildner als auch als Legierungsbestandteil bei der Herstellung von Metallschäumen verwendet werden.The Al (1-x) Mg (x) alloy having 10 mass% ≦ x ≦ 100 mass% can be used both as a gas generator and as an alloying ingredient in the production of metal foams.

Der bisher beim Schaumbildungsprozess unerwünschte Wasserstoff, der durch-die Zugabe von vorlegiertem Al(1-x)Mg(x)-Pulver zur-Veränderung der Legierung während der Temperaturerhöhung entstand, wird in dem erfindungsgemäßen Verfahren ganz bewusst als Gasbildner ausgenutzt, so dass kein weiteres Treibmittel zugegeben werden muss. Damit kommen bei dem erfindungsgemäßen Verfahren zur Herstellung von Metallschäumen keine legierungsfremden Bestandteile zum Einsatz.The hitherto undesirable in the foaming process hydrogen, which was caused by the addition of pre-alloyed Al (1-x) Mg (x) powder for-changing the alloy during the temperature increase, is deliberately exploited in the inventive method as a gas forming agent, so that no additional propellant must be added. Thus, in the process according to the invention for the production of metal foams, no alien components are used.

Mit dem erfindungsgemäßen Verfahren konnten Metallschäume mit einer homogenen und stabilen Schaumstruktur, die kleine Poren mit einem durchschnittlichen Durchmesser zwischen 0,05 und 2 mm aufweist, hergestellt werden. Die Poren sind außerdem nicht miteinander verbunden, was mit den bisher dem Stand der Technik nach bekannten pulvermetallurgischen Verfahren noch nicht erreicht werden konnte. Ein weiterer Vorteil der Erfindung besteht - wie schon erwähnt - darin, dass mit der Beimischung von Al(1-x)Mg(x)-Pulver mit 10 Massen% ≤ x ≤ 100 Massen% der Schmelzpunkt der Al-basierten Legierung abgesenkt wurde.With the method according to the invention, metal foams having a homogeneous and stable foam structure, which has small pores with an average diameter between 0.05 and 2 mm, could be produced. The pores are also not interconnected, which could not yet be achieved with the prior art according to known powder metallurgy processes. Another advantage of the invention is - as already mentioned - is that with the admixture of Al (1-x) Mg (x) powder with 10 mass% ≤ x ≤ 100 mass% of the melting point of the Al-based alloy was lowered.

Die Erfindung wird nun in Ausführungsbeispielen anhand von Figuren näher erläutert.The invention will now be explained in more detail in exemplary embodiments with reference to FIGS.

Dabei zeigen

Fig. 1:
Aufnahme eines Al-basierten Metallschaums gemäß Stand der Technik-Verfahren hergestellt;
Fig. 2:
Aufnahme eines Al-basierten Metallschaums gemäß erfindungsgemäßem Verfahren hergestellt;
Fig. 3:
Mikroskopaufnahme eines Al-basierten Metallschaums hergestellt mit erfindungsgemäßem Verfahren;
Fig. 4:
Spannungs-Druckverhalten des Al-basierten Metallschaums gemäß Fig. 2 und 3.
Show
Fig. 1:
Recording of an Al-based metal foam prepared according to prior art methods;
Fig. 2:
Recording an Al-based metal foam prepared according to the inventive method;
3:
Microscope image of an Al-based metal foam prepared by the method according to the invention;
4:
Stress-pressure behavior of the Al-based metal foam according to Fig. 2 and 3 ,

Fig. 1 und Fig. 2 zeigen zur Gegenüberstellung jeweils eine Aufnahme eines Al-basierten Metallschaumes hergestellt gemäß einem bekannten pulvermetallurgischen Verfahren mit Treibmittel (Fig. 1) und ohne Treibmittel (Fig. 2), d. h. gemäß erfindungsgemäßem Verfahren hergestellt. Gut erkennbar sind die deutlich größeren Poren in dem mit Treibmittel hergestellten Metallschaum. Fig. 1 and Fig. 2 show in each case a comparison of an Al-based metal foam prepared according to a known powder metallurgy process with propellant ( Fig. 1 ) and without propellant ( Fig. 2 ), ie produced according to the inventive method. Clearly visible are the significantly larger pores in the propellant produced metal foam.

Fig. 3 zeigt eine Mikroskopaufnahme der Schaumstruktur eines mit dem erfindungsgemäßen Verfahren hergestellten Al-basierten Metallschaums, nunmehr in einer höheren Vergrößerung als in Fig. 1. Dieser Metallschaum wird wie folgt hergestellt: Für die Herstellung der Pulvermischung wird 60 Massen% Al-Pulver und 30 Massen% AlMg50-Pulver sowie 10 Massen% Cu-Pulver verwendet. Das Cu-Pulver wurde hinzugefügt, um den Schmelzpunkt der Legierung zu verringern. Die Kompaktierung erfolgt bei 400 °C und einem Druck von 300 MPa. Für das Aufschäumen der kompaktierten Probe wird eine Temperatur von 600 °C eingestellt. Der so hergestellte Al-basierte Metallschaum weist eine Dichte von 0,6 gcm-3 auf und Poren mit einem durchschnittlichen Durchmesser von 800 µm. Fig. 3 shows a microscope image of the foam structure of an Al-based metal foam produced by the process according to the invention, now in a higher magnification than in Fig. 1 , This metal foam is produced as follows: 60% by weight of Al powder and 30% by weight of AlMg50 powder and 10% by weight of Cu powder are used to produce the powder mixture. The Cu powder was added to lower the melting point of the alloy. The compaction takes place at 400 ° C and a pressure of 300 MPa. For foaming the compacted sample, a temperature of 600 ° C is set. The Al-based metal foam thus prepared has a density of 0.6 gcm -3 and pores having an average diameter of 800 μm.

In Fig. 4 ist die Kurve für das Spannungs-Stauchungs-Verhalten eines Metallschaums mit der Zusammensetzung AlMg15Cu10 dargestellt, der eine Dichte von 0,72 gcm-3 und einen durchschnittlichen Durchmesser der Poren von 1 mm aufweist. Untersuchungen des mit dem erfindungsgemäßen Verfahren hergestellten Metallschaums haben gezeigt, dass seine Druckfestigkeit und Steifigkeit mindestens so gut sind wie bei anderen Standard-Schäumen.In Fig. 4 the curve for the stress-strain behavior of a metal foam with the composition AlMg15Cu10 is shown, which has a density of 0.72 gcm -3 and an average diameter of the pores of 1 mm. Investigations of the metal foam produced by the process according to the invention have shown that its compressive strength and rigidity are at least as good as those of other standard foams.

Claims (11)

  1. A powder-metallurgical method for producing aluminium-based metal foam, at least comprising the method steps of
    - mixing a metal powder formed of at least aluminium with Al(1- x)Mg(x) where 10 mass % ≤ x ≤ 100 mass % as gas producer in the form of metal powder in a concentration from 4 to 50 mass %;
    - then compacting the metal powder mixture,
    - then heating the compact at atmospheric pressure to a temperature above the melting point of the metal matrix in order to produce a liquid metal foam,
    - lastly cooling the produced microcellular metal foam at a temperature below the solidus temperature of the metal matrix.
  2. The method according to Claim 1, characterised in that Al(1-x)Mg(x) with 40 mass % ≤ x ≤ 60 mass %, preferably AlMg50, is used.
  3. The method according to Claim 1, characterised in that pre-alloyed metal powder is used for x < 100 mass %.
  4. The method according to Claim 1, characterised in that Zn is admixed to the metal powder.
  5. The method according to Claim 4, characterised in that for the production of Al-based metal foam, Al powder is mixed in a concentration of 50 to 96 mass % with Al(1-x)Mg(x) forming the rest.
  6. The method according to claim 4 and 5, characterised in that up to 40 mass % Cu powder is used selectively instead of the Al powder forming the basis of the metal foam.
  7. The method according to claim 4 and 5, characterised in that up to 15 mass % Si powder is used selectively instead of the Al powder forming the basis of the metal foam.
  8. The method according to claim 4 and 5, characterised in that up to 40 mass % Zn powder is used selectively instead of the Al powder forming the basis of the metal foam.
  9. The method according to claim 4 and 5, characterised in that up to 5 mass % Sn or Sb or Mn or Ni powder is used selectively instead of the Al powder forming the basis of the metal foam.
  10. The method according to Claim 1, characterised in that the compaction of the powder mixture is carried out at a temperature in the range of 200 °C ≤ T 450 °C and at a pressure in the range of 200 MPa ≤ p ≤ 500 MPa.
  11. The method according to Claim 1 and 4, characterised in that the compact for an Al-based metal foam is foamed at a temperature of 450 °C ≤ T ≤ 650 °C.
EP10736959.7A 2009-05-05 2010-04-30 Powder-metallurgical method for producing metal foam Active EP2427284B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009020004A DE102009020004A1 (en) 2009-05-05 2009-05-05 Powder metallurgical process for the production of metal foam
PCT/DE2010/000512 WO2010127668A2 (en) 2009-05-05 2010-04-30 Powder-metallurgical method for producing metal foam

Publications (2)

Publication Number Publication Date
EP2427284A2 EP2427284A2 (en) 2012-03-14
EP2427284B1 true EP2427284B1 (en) 2014-12-31

Family

ID=42932377

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10736959.7A Active EP2427284B1 (en) 2009-05-05 2010-04-30 Powder-metallurgical method for producing metal foam

Country Status (3)

Country Link
EP (1) EP2427284B1 (en)
DE (1) DE102009020004A1 (en)
WO (1) WO2010127668A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763371A (en) * 2017-10-27 2018-03-06 合肥紫金钢管股份有限公司 A kind of processing technology of steel sleeve steel insulation steam steel pipe

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110111250A1 (en) * 2009-11-10 2011-05-12 Ken Evans Process for producing a foamed metal article
DE102011089566A1 (en) 2011-12-22 2013-06-27 Tesa Se Liner for the protection of adhesives
DE102021126310A1 (en) 2021-10-11 2023-04-13 HAVEL metal foam GmbH Method and device for producing a foamable, band-shaped pressed powder metal blank by means of cold rolling and pressed powder metal blank
CN114905040B (en) * 2022-05-13 2023-08-08 广州大学 Density gradient foam metal and preparation method and application thereof

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2935396A (en) 1957-03-07 1960-05-03 Dow Chemical Co Cellularized light metal
US2983597A (en) 1959-06-11 1961-05-09 Lor Corp Metal foam and method for making
US3087807A (en) 1959-12-04 1963-04-30 United Aircraft Corp Method of making foamed metal
DE2006445C3 (en) * 1969-02-19 1975-01-02 Ethyl Corp., Richmond, Va. (V.St.A.) Process for the production of aluminum foam moldings
JPS5440209A (en) * 1977-09-07 1979-03-29 Nippon Dia Clevite Co Method of producing porous body of aluminum and alloys thereof
DE19849600C1 (en) * 1998-10-28 2001-02-22 Schunk Sintermetalltechnik Gmb Process for the production of a metallic composite
DE10115230C2 (en) 2000-03-28 2002-11-28 Fraunhofer Ges Forschung Process for producing porous metal bodies and use thereof
RU2200647C1 (en) * 2001-07-17 2003-03-20 Литвинцев Александр Иванович Method for making porous semifinished products of aluminium alloy powders
AT413344B (en) * 2003-01-13 2006-02-15 Arc Leichtmetallkompetenzzentrum Ranshofen Gmbh METHOD FOR PRODUCING METAL FOAM BODIES
DE102005037305B4 (en) 2005-08-02 2007-05-16 Hahn Meitner Inst Berlin Gmbh Process for the powder metallurgy production of metal foam and parts made of metal foam

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107763371A (en) * 2017-10-27 2018-03-06 合肥紫金钢管股份有限公司 A kind of processing technology of steel sleeve steel insulation steam steel pipe
CN107763371B (en) * 2017-10-27 2019-09-27 合肥紫金钢管股份有限公司 A kind of processing technology of steel sleeve steel heat preservation steam steel pipe

Also Published As

Publication number Publication date
WO2010127668A2 (en) 2010-11-11
DE102009020004A1 (en) 2010-11-11
WO2010127668A3 (en) 2011-03-24
EP2427284A2 (en) 2012-03-14

Similar Documents

Publication Publication Date Title
EP0460392B1 (en) Process for making foamed metal bodies
EP1915226B1 (en) Process for the powder metallurgy production of metal foam and of parts made from metal foam
EP0183017B2 (en) Sintering process for prealloyed tungsten powder
EP2427284B1 (en) Powder-metallurgical method for producing metal foam
DE2125562A1 (en) Process for the production of a dense mass of nickel superalloy
EP1017864B1 (en) Alloy for producing metal foamed bodies using a powder with nucleating additives
WO2005080618A1 (en) Method for the production of a molybdenum alloy
DE19717894B4 (en) Process for the production of porous matrix materials, in particular moldings based on metals, and semi-finished products therefor
DE2200670B2 (en)
DE2814553A1 (en) COMPRESSED PRODUCTS OF NICKEL SUPER ALLOYS
EP3041631B1 (en) Chromium metal powder
DE2049546B2 (en) Process for the powder-metallurgical production of a dispersion-strengthened alloy body
DE10215086B4 (en) Foamable metal body, process for its production and its use
DE3873724T2 (en) ADDITIONAL TUNGSTEN HEAVY METAL ALLOYS WITH FINE TEXTURE.
DE2363264A1 (en) PROCESS FOR MANUFACTURING HARD AND NON-DEFORMABLE ALLOY OBJECTS
DE102017121512A1 (en) Process for foaming metal with thermal contact
EP2143809B1 (en) Aluminium alloy metal foams, its use and method for its manufacture
DE3043321A1 (en) SINTER PRODUCT FROM METAL ALLOY AND THE PRODUCTION THEREOF
DE102017121513A1 (en) Process for foaming metal in the liquid bath
EP1602739B1 (en) Method for recycling of light metal parts
DE3421858A1 (en) Process for manufacturing a porous body from stainless steel
DE2255975C2 (en) Application of the process of nitriding iron alloy particles to certain alloy powders for the manufacture of pole horns for magnetic heads
WO2003069002A1 (en) Expandable metal body, method for the production thereof and its use
WO2019053192A1 (en) Method for producing a semi-finished product for a composite material
WO2019053181A1 (en) Method for foaming metal with thermal contact

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111205

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20140402

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140910

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 704072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150215

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502010008624

Country of ref document: DE

Effective date: 20150219

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150331

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141231

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502010008624

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150430

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20151001

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20100430

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20170307

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150501

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20170330

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20170330

Year of fee payment: 8

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502010008624

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141231

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 704072

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 15