EP2920798B1 - Planarübertrager - Google Patents
Planarübertrager Download PDFInfo
- Publication number
- EP2920798B1 EP2920798B1 EP13791791.0A EP13791791A EP2920798B1 EP 2920798 B1 EP2920798 B1 EP 2920798B1 EP 13791791 A EP13791791 A EP 13791791A EP 2920798 B1 EP2920798 B1 EP 2920798B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- winding
- separation distance
- ring
- conductor substrate
- coupling
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004804 winding Methods 0.000 claims description 187
- 230000005291 magnetic effect Effects 0.000 claims description 62
- 239000000758 substrate Substances 0.000 claims description 51
- 239000004020 conductor Substances 0.000 claims description 50
- 230000008878 coupling Effects 0.000 claims description 49
- 238000010168 coupling process Methods 0.000 claims description 49
- 238000005859 coupling reaction Methods 0.000 claims description 49
- 238000000926 separation method Methods 0.000 claims description 38
- 238000002955 isolation Methods 0.000 claims description 28
- 230000005294 ferromagnetic effect Effects 0.000 claims description 17
- 238000009413 insulation Methods 0.000 claims description 14
- 238000007142 ring opening reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 238000010276 construction Methods 0.000 description 3
- 230000004907 flux Effects 0.000 description 2
- 239000013641 positive control Substances 0.000 description 2
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 210000005069 ears Anatomy 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2895—Windings disposed upon ring cores
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2809—Printed windings on stacked layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/2804—Printed windings
- H01F2027/2819—Planar transformers with printed windings, e.g. surrounded by two cores and to be mounted on printed circuit
Definitions
- the invention relates to a planar transformer with a primary winding, with a secondary winding, with a coupling winding and with a conductor substrate which is the carrier of one or more magnetic core rings.
- the U.S. 8,022,802 B2 relates to a sensor for measuring electrical parameters in a high-voltage environment and includes isolation transformers in several embodiments, including an embodiment with a single main circuit board for a plurality of windings arranged side by side, which are magnetically linked via magnetic core rings, and another embodiment with a main circuit board, a Sub circuit board and two magnetic core rings passing through openings of the main and sub circuit boards.
- the primary winding and the secondary winding are located in and on the main circuit board, while the coupling winding for coupling the two magnetic core rings is arranged on the secondary circuit board.
- There is some clearance between the two circuit boards and the coupling winding on the slave circuit board is also spaced from the respective edge of the openings in the magnetic core rings. In this way, relatively large toroid openings are required in the magnetic core rings.
- the ferromagnetic cores are wound to form coils, with the windings of the coils on different ferromagnetic cores are attached in order to comply with the required insulation distances.
- the ferromagnetic cores are magnetically coupled to each other via an additional winding embedded in a printed circuit board. Because of the necessary winding of the ferromagnetic cores, a transformer constructed in this way can only be manufactured at high cost.
- U.S. 2011/0095620 A1 describes a planar transmitter for miniaturized applications, the coil windings of which are arranged on opposite sides of an insulating substrate.
- the device works on the basis of induction, without ferromagnetic cores.
- a planar transformer that contains a multi-layer circuit board, the high dielectric strength of the circuit board layers with each other, between the primary and the secondary windings, guaranteed.
- the transformer can be controlled potential-free with opposing signals.
- a signal to be transmitted in the positive direction of magnetic flux of a common primary winding or of a single primary winding immediately generates a positive control signal in a first secondary winding in the same coupling direction.
- a signal in the negative magnetic flux direction of a second or the same winding immediately generates a positive control signal in a second secondary winding in the opposite coupling direction to the first secondary winding, or a negative control signal in the first secondary winding, and if no further signal is to be transmitted, this takes place automatic or digitally controlled demagnetization of the transformer by circuit elements by one or two windings controlled as a short circuit immediately at the end of a previously transmitted signal.
- DE 10 2009 037 340 A1 shows a transformer in which wound, ring-shaped cores are connected via a short-circuit winding.
- the short-circuit winding is connected, for example by soldering, to corresponding contacts on a printed circuit board.
- the invention is based on the object of specifying a planar transformer which is easy to manufacture and which enables potential separation for two or more potential groups in the smallest of spaces.
- the object is solved in each case by the subject matter of independent claims 1 and 2.
- the new planar transmitter has at least two ferromagnetic cores and one provided with yoke legs single, plate-shaped conductor substrate for forming a primary winding and at least one secondary winding, which are coupled to one another by at least one coupling winding.
- the conductor substrate forms a plate-shaped carrier for the ferromagnetic cores, which are divided to form yoke core halves that can be assembled and have at least two yoke legs that reach through, which can be inserted through recesses in the conductor substrate in order to form a magnetic core ring by closing the yoke core halves.
- the magnetic core rings In order to achieve a potential separation between the primary winding and the secondary winding in the smallest of spaces, one has to accept that the magnetic core rings only maintain small separation distances from the plate-shaped conductor substrate, which closes parts of the primary winding in the area of a first ring core opening and parts of the secondary winding in the area of a second ring core opening the surface of the conductor substrate receives.
- the relevant magnetic core ring is thus added to the adjacent primary winding or secondary winding, although of course an insulating layer known as functional insulation separates the relevant winding from the ferromagnetic material of the at least two magnetic core rings, which are arranged at a distance and are electromagnetically linked to one another via the coupling winding, but at different potentials (the Primary winding or the secondary winding) lie.
- the coupling winding must maintain a sufficient insulation separation distance to adjacent inner sides of the toroidal openings and to adjacent turns of the primary winding and secondary winding, so that the Potentials can be separated from each other by an overall isolation distance. This total insulation separation distance can be divided among the respective separation distances between the coupling winding and the ring core opening or adjacent turn of the primary winding or secondary winding, although a respective minimum separation distance must be observed.
- one leg of the magnetic core ring accommodates the primary winding, while the other leg is wrapped by a first portion of the coupling winding, which also wraps with a second portion of the leg of an adjacent toroidal core, the other leg of which accommodates the secondary winding.
- Multiple secondary magnetic core rings provided with secondary windings can be coupled to a single primary magnetic core ring.
- a first leg of the two magnetic core rings is wrapped by two windings in different layer levels of the conductor substrate, with the coupling winding connecting the two magnetic core rings and the primary winding being assigned to one magnetic core ring, while the secondary winding is assigned to the other magnetic core ring.
- an auxiliary winding can be arranged there, for example for control purposes. But it is also possible that Primary winding or the secondary winding continue with a section on the free leg.
- the magnetic core rings are designed as two-part yoke cores and the windings, including the coupling winding, are designed as integral parts of the plate-shaped conductor substrate, the manufacture of the planar transformer is simplified, since the legs of the yoke cores only need to be inserted through cutouts in the plate-shaped conductor substrate and each need to be completed to form a magnetic core ring. At the same time, this design enables good space utilization of the ring core opening with simultaneous electrical isolation between adjacent magnetic core rings.
- Figures 1 and 2 represent a first embodiment of a transformer according to the invention in planar construction.
- the main parts of the transformer are a primary winding 1, a secondary winding 2, a coupling winding 3, a first two-part magnetic core ring 4, a second two-part magnetic core ring 5 and a single plate-shaped conductor substrate 6.
- the magnetic core rings 4, 5 each comprise two yoke core halves 41, 51 and 42, 52, which close to form the ring 4 with the first ring core opening 43 or the ring 5 with the second ring core opening 53.
- the magnetic core rings 4, 5 each have reach-through legs 44, 45 or 54, 55 and connecting legs between the reach-through legs.
- the leg 44 or 54 can belong to one or the other core half 41, 42 or 51, 52, or can also be divided, as in 9 shown.
- the plate-shaped conductor substrate 6 has two pairs of recesses 61, 62 and 63, 64, which form openings for the reach-through legs 44, 45 and 54, 55 of the magnetic core rings 4, 5.
- the pairs 61, 62 and 63, 64 of the recesses are separated from one another by an insulating gap and accommodate the reach-through legs 44, 45 or 54, 55 of the magnetic core rings 4, 5.
- the primary winding 1 surrounds the recess 61 in several Layer levels of the conductor substrate 6, of which four layer levels 11, 12, 13, 14 are indicated here and which extend on the surface of the conductor substrate, or near the surface, and in the conductor substrate interior.
- the conductor substrate 6 almost fills the toroidal openings 43 and 53, respectively.
- the primary winding 1 assumes a spiral course in each layer plane.
- the four spiral forms are interconnected to form the primary winding 1.
- spiral forms of the secondary winding are present in four layer planes 21, 22, 23, 24 and surround the recess 64.
- the coupling winding 3 wraps around the reach-through limb 45 with its partial area 34 and the reach-through limb 55 with its partial area 35 and is self-contained in the sense of a short-circuit winding, i. H. forms a ring of wires.
- the coupling winding can be arranged in two layer planes 31, 32 and is surrounded on all sides by an insulating layer with a thickness that results in a partial insulating separation distance of L/2.
- L means the overall insulation separation distance, which is calculated from the plate thickness of the conductor substrate 6 minus the distance between the layer planes 31, 32 from one another.
- the layer levels 12, 13 and 22, 23 are separated from one another by an insulating layer which is referred to as "functional insulation".
- the magnetic core rings 4 and 5 with their core halves 41, 42 or 51, 52 surround the respective ring opening 43 or 53.
- the core halves can be the same or different and can be composed of different geometric shapes.
- the cross sections can be rectangular, rounded, round or oval. Air gaps can be provided between the core halves, but it is also possible to largely close the air gaps if the core halves are assembled by gluing or clamping. Specifically, the core halves can take U, I, and E shapes.
- the layers of the primary winding 1 occupy approximately half of the cross-sectional area of the ring opening 43, while the layers 31, 32 of the coupling winding 3 occupy the other half of the cross-sectional area of the ring opening 43. Partial insulation separation distances of L/2 both to the yoke legs and to the primary winding 1 are maintained.
- the layers of the secondary winding 2 take up approximately half of the cross-sectional area of the annular opening and the coupling winding 3 has partial insulation separation distances of L/2 from the edge of the opening or from the layers of the secondary winding.
- the coupling winding 3 has partial insulation separation distances of L/2 from the edge of the opening or from the layers of the secondary winding.
- there is a potential separation between the primary winding 1 and the secondary winding 2 with a total isolation distance 2 ⁇ L/2 L, which is chosen at least as large as required by the standard EN 60079-11, i.e. the minimum total isolation distance, or more.
- the coupling winding 3 is constructed isolated from all other potentials.
- the isolation distance L can be built up in two partial isolation distances.
- the total isolation distance L can also be divided in a different way to the division L/2+L/2.
- the smaller partial isolation distance must be greater than L/3.
- no large insulation distances need to be maintained from the primary winding 1 or secondary winding 2 to the associated magnetic core ring 4 or 5.
- the functional insulation mentioned is often sufficient, so that the individual turns of the windings are not bridged by the adjacent connecting legs.
- the magnetic core rings can therefore be assigned the same electrical potential as the windings.
- the insulating separation distance between the adjacent magnetic core rings 4 and 5 is selected to be sufficiently large so that the magnetic core rings maintain their respective different potentials during operation of the transformer. If the primary and secondary windings do not maintain large insulating distances from the associated magnetic core rings, this means that a large part of the cross-sectional area of the ring opening 43 or 53 can be used for the turns of windings 1 or 2, and this space gain means a larger number of turns on the same Surface and thus the achievement of a higher inductance compared to the case where the windings are not allowed to reach the edge of the ring openings.
- the new planar transmitter is therefore suitable for miniaturization.
- the Figures 3, 4 show a variant of the transformer Figures 1, 2 ,
- the inner layer of the plate-shaped conductor substrate 6 being used only for the coupling winding 3, which is also separated from all other potentials by half the insulating separation distance L/2.
- the primary winding 1 and the secondary winding 2 are on the top and bottom of the conductor substrate 6, or close to the surface in overlapping with the portions 34 and 35 of the coupling winding 3.
- the ring opening 43, 53 can be smaller compared to the embodiment Figures 1, 2 be carried out, but at the expense of the number of turns of primary and secondary winding.
- Figures 5 and 6 show a variant of the transformer with two secondary windings. Accordingly, there are two secondary magnetic core rings 5a, 5b and two secondary windings 2a and 2b as well as a coupling winding 3 with two "ears" or branches 36, 37.
- the legs of the magnetic core rings penetrate the conductor substrate 6 at the openings 61, 62, 63a, 63b, 64a, 64b. Otherwise the details correspond to those of the transformer Figures 1 and 2 . But it can also be the details of how to Figures 3 and 4 described, applied.
- the outputs of the secondary windings 2a, 2b are independent of each other. The respective output voltage depends on the transformation ratio of the primary winding to the respective secondary winding, ie the outputs are connected in parallel. If an output is not used, current can still be drawn from the other output.
- FIG. 7 shows another variant of the transformer with two secondary windings 2a, 2b.
- three magnetic core rings 4, 5a, 5b and a coupling winding 3 are used, which links all three magnetic core rings 4, 5a, 5b together.
- the legs of the magnetic core rings penetrate the conductor substrate 6 at the openings 61, 62, 63a, 63b, 64a, 64b.
- the outputs of the two secondary windings are not independent of each other in terms of function, since they are in series in the equivalent circuit diagram. This means that in the ideal case, a current can only flow at both outputs at the same time.
- Figures 8 and 9 show a design of the transformer in which each of the magnetic core rings 4, 5 has a leg 44 or 54 wrapped around by two windings.
- the primary winding 1 and the portion 34 of the coupling winding 3 wrap around the leg 44
- the secondary winding 2 and the portion 35 of the coupling winding 3 wrap around the leg 54 .
- Leg 45 parallel to leg 44 and leg 55 parallel to leg 54 are thus free and can, for example, carry an auxiliary winding which can be used for control purposes.
- the primary winding 1 and the secondary winding 2 are on the top and bottom of the conductor substrate 6, or close to the surface and partially overlapping with the partial areas 34, 35 of the coupling winding 3, which can be arranged in two layers 31, 32.
- the legs 44, 45 and 54, 55 of the two magnetic core rings 4 and 5 are each covered with spiral winding sections 15, 16, 17, 18 and 25, 26, 27, 28, respectively.
- the winding section 15 forms left-handed spiral turns on the upper side of the conductor substrate 6 and pierces the conductor substrate in a via in order to again form left-handed spiral turns on the underside of the conductor substrate 6, which are largely covered by the winding section 15 in the drawing and are therefore in the drawing can only be seen in traces.
- the winding section 16 is conductively connected on the underside to the winding section 17, specifically to the outer wire turn of the winding section 17.
- the line is routed to the upper side of the conductor substrate 6 by means of a via, where the clockwise spiral windings continue up to the line terminal on the outer edge of the conductor substrate 6 .
- the shapes of the secondary winding 2 are mirror images of the shape of the primary winding 1.
- the coupling winding 3 extends in a layer plane inside the conductor substrate 6, corresponding to the illustration in FIG 9 .
- the 11 and 12 show an embodiment of the transformer in which the coupling winding 3 is on the top and bottom of the conductor substrate 6 and thus has the same potential as the magnetic core rings 4, 5. An isolation distance between the magnetic core rings is not necessary.
- the primary winding 1 and the Secondary winding 2 runs in the inner layers of the conductor substrate, each with half an insulating separation distance from the magnetic core rings 4, 5 and from the coupling winding 3.
- the core halves 41, 42 and 51, 52 are designed, for example, in a U-shape.
- the magnetic core rings can be assembled in other ways than shown, and each half can consist of more than one piece. For example, four leg rods can be joined together to form a magnetic core ring.
- the 13, 14 show an embodiment of the transformer with E-shaped core halves 41, 42, which form a central web corresponding to the leg 44 when combined, which extends through the opening 61 in the conductor substrate 6.
- the other magnetic core ring 6 also has such a central web to form the leg 54 .
- the leg 44 is surrounded by the primary winding 1 and the leg 54 by the secondary winding 2 spirally in two layer planes 11, 14, similar to that in FIG 9 is shown.
- the coupling winding 3 with its sections 34, 35 forms a closed loop around the two middle webs of the magnetic core rings. This can take place in two layer levels 31, 32 within the conductor substrate 6.
- the plate-shaped conductor substrate 6 in all of the embodiments is preferably produced as an electronic circuit board. However, production as a sprayed substrate is also possible.
- the transformer can be produced both as an individual component with a separate printed circuit board, in which case this component then has to be assembled on a main printed circuit board, and integrated directly into a main printed circuit board.
- the transformer is made as follows: Two-piece yoke-leg ferromagnetic cores are provided as described and illustrated.
- the ferromagnetic cores contain two halves 41, 42 or 51, 52, which can be assembled to form a closed ring structure, the magnetic core rings 4, 4a, 4b, 5, 5a, 5b, and do not necessarily consist of only two parts.
- a conductor substrate 6 provided with at least two pairs of cutouts 61, 62, 63, 64 as yoke leg openings, specifically for each magnet core ring its own pair of cutouts, separate from other pairs.
- At least one of the two recesses of the first pair namely the opening 61, has been made surrounded by the primary winding 1, as has the second recess 64 of the second pair with regard to the secondary winding 2.
- the other recess 62 of the first pair is connected via the coupling winding 3 to the Linked recess 63 of the adjacent pair of recesses.
- the yoke core halves 41, 42 and 51, 52 are assembled to form the magnetic core rings 4, 5 in that the yoke legs are pushed through the associated cutouts in the conductor substrate 6 and the yoke core halves are closed to form a magnetic circuit each.
- the primary winding 1 is electromagnetically linked to the coupling winding 3 and, via this, to the secondary winding 2 .
- the transformer according to the invention is easy to manufacture.
- a potential separation can be achieved between the primary side and the secondary side, as is required, for example, for potentially explosive areas according to the EN 60079-11 standard.
- Only small spaces are required within the ring structure of the magnetic core rings, since a relatively high packing density of the windings on the primary side and the secondary side is possible without having to resort to the conventional winding of the yoke legs. Therefore, the economical production of the new Transformer possible, even with a miniaturized design of the transformer.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Coils Or Transformers For Communication (AREA)
- Coils Of Transformers For General Uses (AREA)
Description
- Die Erfindung bezieht sich auf einen Planarübertrager mit einer Primärwicklung, mit einer Sekundärwicklung, mit einer Koppelwicklung und mit einem Leitersubstrat, das Träger eines oder mehrerer Magnetkernringe ist.
- Die
US 8,022,802 B2 betrifft einen Sensor zur Messung elektrischer Parameter in einer Hochspannungsumgebung und umfasst Trenntransformatoren in mehreren Ausführungsformen, darunter eine Ausführungsform mit einer einzigen Haupt-Schaltungsplatine für mehrere nebeneinander angeordnete Wicklungen, die über Magnetkernringe magnetisch verkettet sind, und eine weitere Ausführungsform mit einer Haupt-Schaltungsplatine, einer Neben-Schaltungsplatine und zwei Magnetkernringen, die durch Öffnungen der Haupt- und Neben-Schaltungsplatinen hindurchreichen. In und auf der Haupt-Schaltungsplatine befinden sich die Primärwicklung und die Sekundärwicklung, während auf der Neben-Schaltungsplatine die Koppelwicklung zur Kopplung der beiden Magnetkernringe angeordnet ist. Zwischen den beiden Schaltungsplatinen befindet sich einiger Zwischenraum, und die Koppelwicklung auf der Neben-Schaltungsplatine weist ebenfalls einen Abstand zu dem jeweiligen Rand der Öffnungen in den Magnetkernringen auf. Auf diese Weise werden relativ große Ringkernöffnungen in den Magnetkernringen benötigt. - Bei einem weiteren Übertrager (
DE 10 2005 041 131 A1 ) sind die ferromagnetischen Kerne zur Bildung von Spulen gewickelt, wobei die Wicklungen der Spulen auf verschiedenen ferromagnetischer Kernen angebracht sind, um geforderte Isolationsabstände einzuhalten. Die ferromagnetischen Kerne sind über eine zusätzliche, in eine Leiterplatte eingelassene Windung magnetisch miteinander gekoppelt. Wegen der notwendigen Bewicklung der ferromagnetischen Kerne ist ein so gebauter Übertrager nur mit hohen Kosten zu fertigen. - Aus
US 2011/0140824 A1 ist ein Übertrager bekannt, bei dem potentialmäßig zu trennende Wicklungen asymmetrisch auf verschiedenen Leiterplatten angebracht sind, die übereinander gestapelt mit einem zweiteiligen ferromagnetischen Kern zu dem Übertrager verbunden sind. - In
US 2011/0095620 A1 wird ein Planarübertrager für miniaturisierte Anwendungen beschrieben, dessen Spulenwindungen auf entgegenliegenden Seiten eines isolierenden Substrats angeordnet sind. Das Gerät arbeitet aufgrund von Induktion, ohne ferromagnetische Kerne. - Aus
EP 0 715 322 A1 ist ein in Planartechnik gefertigter Übertrager bekannt, bei dem Leiterbahnen in Schichtlagen in einer Leiterplatte untergebracht sind und so Transformatorwicklungen bilden. Ein ferromagnetischer Kern umgibt die Transformatorwicklungen mit ringförmigen Schenkeln außen, und mit einem zylindrischen Schenkel innen. - Aus
DE 20 2009 002 383 U1 ist ein Planartransformator bekannt, der eine mehrlagige Platine enthält, die hohe Spannungsfestigkeit der Leiterplattenlagen untereinander, zwischen den primären zu den sekundären Wicklungen, gewährleistet. Der Übertrager kann mit entgegengerichteten Signalen potentialfrei angesteuert werden. Ein zu übertragendes Signal in positiver magnetischer Flussrichtung einer gemeinsamen primären Wicklung, oder einer einzelnen primären Wicklung erzeugt unmittelbar ein positives Steuersignal in einer ersten sekundären Wicklung in gleicher Koppelrichtung. Ein Signal in negativer magnetischer Flussrichtung einer zweiten oder der gleichen Wicklung erzeugt unmittelbar in einer zweiten sekundären Wicklung in entgegengesetzter Koppelrichtung zur ersten sekundären Wicklung ein ebenfalls positives Steuersignal oder in der ersten sekundären Wicklung ein negatives Steuersignal, und wenn kein weiteres Signal übertragen werden soll, erfolgt eine durch Schaltungselemente automatische oder digital gesteuerte Entmagnetisierung des Übertragers durch eine oder zwei als Kurzschluss angesteuerte Wicklungen unmittelbar am Ende eines zuvor übertragenen Signals. -
DE 10 2009 037 340 A1 zeigt einen Übertrager, bei dem bewickelte, ringförmige Kerne über eine Kurzschlusswicklung verbunden sind. Die Kurzschlusswicklung wird bspw. durch Löten mit entsprechenden Kontakten einer Leiterplatte verbunden. - Der Erfindung liegt die Aufgabe zugrunde, einen Planarübertrager anzugeben, der einfach zu fertigen ist und auf kleinstem Raum eine Potentialtrennung für zwei oder mehrere Potentialgruppen ermöglicht. Die Aufgabe wird jeweils gelöst durch den Gegenstand der unabhängigen Ansprüche 1 und 2.
- Der neue Planarübertrager weist mindestens zwei mit Jochschenkeln versehene ferromagnetische Kerne und ein einziges, plattenförmiges Leitersubstrat zur Bildung einer Primärwicklung und mindestens einer Sekundärwicklung auf, die durch mindestens eine Koppelwicklung miteinander gekoppelt sind. Das Leitersubstrat bildet einen plattenförmigen Träger für die ferromagnetischen Kerne, welche unter Bildung von zusammenbaubaren Jochkernhälften geteilt sind und dabei mindestens zwei hindurchgreifende Jochschenkel aufweisen, die durch Aussparungen im Leitersubstrat gesteckt werden können, um durch Schließen der Jochkernhälften jeweils einen Magnetkernring zu bilden.
- Um auf kleinstem Raum eine Potentialtrennung zwischen Primärwicklung und Sekundärwicklung zu erzielen, muss man in Kauf nehmen, dass die Magnetkernringe nur geringe Trennabstände zu dem plattenförmigen Leitersubstrat einhalten, das im Bereich einer ersten Ringkernöffnung Teile der Primärwicklung und im Bereich einer zweiten Ringkernöffnung Teile der Sekundärwicklung nahe der Oberfläche des Leitersubstrates aufnimmt. Damit wird der betreffende Magnetkernring potentialmäßig der benachbarten Primärwicklung beziehungsweise Sekundärwicklung zugeschlagen, obzwar natürlich eine als Funktionsisolierung bezeichnete Isolationsschicht die betreffende Wicklung von dem ferromagnetischen Material der mindesten zwei Magnetkernringe trennt, die beabstandet angeordnet über die Koppelwicklung elektromagnetisch miteinander verkettet sind, jedoch auf unterschiedlichen Potentialen (der Primärwicklung beziehungsweise der Sekundärwicklung) liegen. Damit muss die Koppelwicklung einen ausreichenden Isolationstrennabstand zu benachbarten Innenseiten der Ringkernöffnungen und zu benachbarten Windungen von Primärwicklung und Sekundärwicklung einhalten, damit die Potentiale durch einen Gesamt-Isolationstrennabstand voneinander geschieden werden können. Dieser Gesamt-Isolationstrennabstand kann auf die jeweiligen Trennabstände zwischen Koppelwicklung und Ringkernöffnung beziehungsweise benachbarter Windung von Primärwicklung oder Sekundärwicklung aufgeteilt werden, wobei jedoch ein jeweiliges Mindestmaß an Trennabstand eingehalten werden muss.
- Bei einer ersten Bauweise nimmt der eine Schenkel des Magnetkernringes die Primärwicklung auf, während der andere Schenkel von einem ersten Teilbereich der Koppelwicklung umschlungen ist, die mit einem zweiten Teilbereich auch den Schenkel eines benachbarten Ringkernes umschlingt, dessen anderer Schenkel die Sekundärwicklung aufnimmt. Es können mehrere mit Sekundärwicklungen versehene Sekundärmagnetkernringe mit einem einzelnen Primärmagnetkernring gekoppelt werden.
- Bei einer zweiten Bauweise wird jeweils ein erster Schenkel der beiden Magnetkernringe von zwei Wicklungen in unterschiedlichen Schichtebenen des Leitersubstrates umschlungen, wobei die Koppelwicklung die beiden Magnetkernringe verbindet und die Primärwicklung dem einen Magnetkernring zugeordnet ist, während die Sekundärwicklung dem anderen Magnetkernring zugeordnet ist. Soweit ein jeweils zweiter Schenkel der beiden Magnetkernringe in einer der unterschiedlichen Schichtebenen des Leitersubstrates frei von den erwähnten Wicklungen ist, kann dort eine Hilfswicklung, etwa zu Kontrollzwecken, angeordnet werden. Es ist aber auch möglich, die Primärwicklung oder die Sekundärwicklung mit einem Abschnitt auf dem freien Schenkel fortzusetzen.
- Indem die Magnetkernringe als zweigeteilte Jochkerne und die Wicklungen einschließlich der Koppelwicklung als integrale Teile des plattenförmigen Leitersubstrats ausgebildet werden, ist die Herstellung des Planarübertragers vereinfacht, da die Schenkel der Jochkerne nur durch Aussparungen in dem plattenförmigen Leitersubstrat gesteckt und zu jeweils einem Magnetkernring komplettiert werden brauchen. Gleichzeitig ermöglicht diese Ausbildung eine gute Raumausnutzung der Ringkernöffnung bei gleichzeitiger Potentialtrennung zwischen benachbarten Magnetkernringen.
- Ausführungsbeispiele der Erfindung werden anhand der Zeichnungen beschrieben. Dabei zeigen:
- Fig. 1
- eine erste Bauform eines Übertragers in Planarbauweise in schematischer Draufsicht,
- Fig. 2
- den Übertrager von
Fig. 1 gemäß Schnitt A-B, - Fig. 3
- eine zweite Bauform eines Übertragers in Draufsicht und
- Fig. 4
- gemäß Schnitt C-D,
- Fig. 5
- einen Übertrager mit zwei Sekundärwicklungen in Draufsicht und
- Fig. 6
- gemäß Schnitt E-F,
- Fig. 7
- einen weiteren Übertrager mit zwei Sekundärwicklungen in Draufsicht,
- Fig. 8
- einen weiteren Übertrager in schematischer Draufsicht und
- Fig. 9
- gemäß Schnitt G-H,
- Fig. 10
- eine Variante des weiteren Übertragers nach
Fig. 8, 9 in schematischer Draufsicht, - Fig. 11
- einen weiteren Übertrager mit Koppelwicklung oberflächennah in schematischer Draufsicht und
- Fig. 12
- gemäß Schnitt I-J,
- Fig. 13
- einen weiteren Übertrager mit E-förmigen Kernhälften in schematischer Draufsicht und
- Fig. 14
- gemäß Schnitt K-L.
-
Fig. 1 und 2 stellen eine erste Ausführungsform eines erfindungsgemäßen Übertragers in Planarbauweise dar. Die Hauptteile des Übertragers sind eine Primärwicklung 1, eine Sekundärwicklung 2, eine Koppelwicklung 3, ein erster zweiteiliger Magnetkernring 4, ein zweiter zweiteiliger Magnetkernring 5 und ein einziges plattenförmiges Leitersubstrat 6. Die Magnetkernringe 4, 5 umfassen jeweils zwei Jochkernhälften 41, 51 und 42, 52, die sich zu dem Ring 4 mit der ersten Ringkernöffnung 43 beziehungsweise dem Ring 5 mit der zweiten Ringkernöffnung 53 schließen. Die Magnetkernringe 4, 5 weisen jeweils Durchgriffsschenkel 44, 45 bzw. 54, 55 und Verbindungsschenkel zwischen den Durchgriffsschenkeln auf. Der Schenkel 44 bzw. 54 kann der einen oder der anderen Kernhälfte 41, 42 bzw. 51, 52 angehören, oder auch geteilt sein, wie inFig. 9 dargestellt. Das plattenförmige Leitersubstrat 6 weist zwei Paare von Aussparungen 61, 62 und 63, 64 auf, die Durchbrechungen für die Durchgriffsschenkel 44, 45 bzw. 54, 55 der Magnetkernringe 4, 5 bilden. Die Paare 61, 62 und 63, 64 der Aussparungen sind über eine Isolationsstrecke voneinander getrennt und nehmen die Durchgriffsschenkel 44, 45 bzw. 54, 55 der Magnetkernringe 4, 5 auf. Die Primärwicklung 1 umgibt die Aussparung 61 in mehreren Schichtebenen des Leitersubstrates 6, von denen hier vier Schichtebenen 11, 12, 13, 14 angedeutet sind und die sich auf der Oberfläche des Leitersubstrats, oder oberflächennah, und in dem Leitersubstratinneren erstrecken. Das Leitersubstrat 6 füllt die Ringkernöffnungen 43 beziehungsweise 53 beinahe aus. - Wie in
Fig. 1 angedeutet, nimmt die Primärwicklung 1 in jeder Schichtebene einen spiralförmigen Verlauf ein. Die vier Spiralformen sind untereinander verbunden, um die Primärwicklung 1 zu ergeben. In ähnlicher Weise sind Spiralformen der Sekundärwicklung in vier Schichtebenen 21, 22, 23, 24 vorhanden und umgeben die Aussparung 64. - Die Koppelwicklung 3 umschlingt mit ihrem Teilbereich 34 den Durchgriffsschenkel 45 und mit ihrem Teilbereich 35 den Durchgriffsschenkel 55 und ist im Sinne einer Kurzschlusswicklung in sich geschlossen, d. h. bildet einen Leitungsring. Die Koppelwicklung kann in zwei Schichtebenen 31, 32 angeordnet sein und ist von allen Seiten von einer Isolationsschicht mit einer Dicke umgeben, die einen Teil-Isolationstrennabstand von L/2 ergibt. Dabei bedeutet "L" den Gesamt-Isolationstrennabstand, der sich aus der Plattendicke des Leitersubstrates 6 minus dem Abstand der Schichtebenen 31, 32 voneinander errechnet. Die Schichtebenen 12, 13 und 22, 23 sind durch eine Isolierschicht voneinander getrennt, die als "Funktionsisolierung" bezeichnet wird.
- Durch Vermittlung der Magnetkernringe 4, 5 und der Koppelwicklung 3 sind die Primärwicklung 1 und die Sekundärwicklung 2 bei galvanischer Trennung im Gesamt-Isolationstrennabstand L miteinander gekoppelt.
- Die Magnetkernringe 4 und 5 mit ihren Kernhälften 41, 42 bzw. 51, 52 umgeben die jeweilige Ringöffnung 43, bzw. 53. Die Kernhälften können gleich oder ungleich sein, und können aus unterschiedlichen geometrischen Formen zusammengesetzt sein. Die Querschnitte können rechteckig, abgerundet, rund oder oval sein. Zwischen den Kernhälften können Luftspalte vorgesehen sein, es ist aber auch möglich, die Luftspalte weitgehend zu schließen, wenn die Kernhälften durch Aufeinanderkleben oder Klammern zusammenmontiert werden. Im Einzelnen können die Kernhälften U-, I- und E-Formen annehmen.
- Wie in
Fig. 1 dargestellt, nehmen die Lagen der Primärwicklung 1 in etwa die Hälfte der Querschnittsfläche der Ringöffnung 43 ein, während die Lagen 31, 32 der Koppelwicklung 3 die andere Querschnittsflächenhälfte der Ringöffnung 43 einnehmen. Dabei werden Teil-Isolationstrennabstände von L/2 sowohl zu den Jochschenkeln, als auch zu der Primärwicklung 1 eingehalten. - Die gleiche Situation findet sich hinsichtlich der Sekundärseite wieder. Auch hier nehmen die Lagen der Sekundärwicklung 2 in etwa die Hälfte der Querschnittsfläche der Ringöffnung ein und die Koppelwicklung 3 weist Teil-Isolationstrennabstände von L/2 zum Öffnungsrand bzw. zu den Lagen der Sekundärwicklung auf. Auf diese Weise gibt es eine Potentialtrennung zwischen der Primärwicklung 1 und der Sekundärwicklung 2 mit einem Gesamt-Isolationstrennabstand 2·L/2 = L, der mindestens so groß gewählt wird, wie von der Norm EN 60079-11 gefordert, dass heißt den minimalen Gesamt-Isolationstrennabstand, oder mehr, ergibt.
- Die Koppelwicklung 3 ist zu allen anderen Potentialen isoliert aufgebaut. Dadurch kann der Isolationstrennabstand L in zwei Teil-Isolationstrennabständen aufgebaut werden. Die Aufteilung des Gesamt-Isolationstrennabstandes L kann abweichend von der Aufteilung L/2 + L/2 auch in anderer Weise erfolgen. Zur Erfüllung der Anforderungen aus der EN 60079-11 muss der kleinere Teil-Isolationstrennabstand größer L/3 sein. Wie auch aus den zeichnerischen Darstellungen ersichtlich, brauchen von der Primärwicklung 1 bzw. Sekundärwicklung 2 zu dem zugehörigen Magnetkernring 4 bzw. 5 keine großen Isolationsabstände eingehalten werden. Es genügt häufig die erwähnte Funktionsisolierung, so dass die einzelnen Windungen der Wicklungen nicht durch die benachbarten Verbindungsschenkel überbrückt werden. Man kann deshalb den Magnetkernringen das gleiche elektrische Potential zuordnen wie den Wicklungen.
- Der Isolationstrennabstand zwischen den benachbarten Magnetkernringen 4 und 5 wird ausreichend groß gewählt, damit die Magnetkernringe ihre jeweiligen unterschiedlichen Potentiale im Betrieb des Übertragers halten. Wenn die Primär- und Sekundärwicklungen zu den zugehörigen Magnetkernringen keine großen Isolierabstände einhalten, bedeutet dies, dass sehr viel von der Querschnittsfläche der Ringöffnung 43 oder 53 für die Windungen der Wicklungen 1 bzw. 2 genutzt werden kann und dieser Platzgewinn bedeutet eine größere Windungsanzahl auf gleicher Fläche und damit die Erzielung einer höheren Induktivität, verglichen mit dem Fall, dass die Wicklungen nicht an dem Rand der Ringöffnungen heranreichen dürfen. Der neue Planarübertrager eignet sich deshalb zur Miniaturisierung.
- Die
Fig. 3, 4 zeigen eine Variante des Übertragers nachFig. 1, 2 , wobei die Innenlage des plattenförmigen Leitersubstrats 6 nur für die Koppelwicklung 3 benutzt wird, die auch hier mit jeweils dem halben Isolationstrennabstand L/2 von allen anderen Potentialen getrennt ist. Die Primärwicklung 1 und die Sekundärwicklung 2 liegen auf der Ober- und Unterseite des Leitersubstrats 6, oder oberflächennah in Überdeckung mit den Teilbereichen 34 bzw. 35 der Koppelwicklung 3. Gegenüber der Ausführungsform nachFig. 1, 2 kann die Ringöffnung 43, 53 kleiner gegenüber der Ausführungsform nachFig. 1, 2 ausgeführt werden, allerdings auf Kosten der Anzahl der Windungen von Primär- und Sekundärwicklung. -
Fig. 5 und 6 zeigen eine Variante des Übertragers mit zwei Sekundärwicklungen. Demgemäß gibt es zwei Sekundärmagnetkernringe 5a, 5b und zwei Sekundärwicklungen 2a und 2b sowie eine Koppelwicklung 3 mit zwei "Ohren" oder Zweigen 36, 37. Die Schenkel der Magnetkernringe durchdringen das Leitersubstrat 6 an den Öffnungen 61, 62, 63a, 63b, 64a, 64b. Ansonsten entsprechen die Einzelheiten dem des Übertragers nachFig. 1 und 2 . Es können aber auch die Einzelheiten, wie zuFig. 3 und 4 beschrieben, angewendet werden. Bei dem Aufbau des Übertragers nachFig. 5, 6 sind die Ausgänge der Sekundärwicklungen 2a, 2b voneinander unabhängig. Die jeweilige Ausgangsspannung hängt vom Übersetzungsverhältnis der Primärwicklung zur jeweiligen Sekundärwicklung ab, d. h. die Ausgänge sind parallel geschaltet. Wird ein Ausgang nicht benutzt, kann am anderen Ausgang trotzdem ein Strom abgenommen werden. -
Fig. 7 zeigt eine weitere Variante des Übertragers mit zwei Sekundärwicklungen 2a, 2b. Für diese Variante werden drei Magnetkernringe 4, 5a, 5b und eine Koppelwicklung 3 verwendet, die alle drei Magnetkernringe 4, 5a, 5b miteinander verkettet. Die Schenkel der Magnetkernringe durchdringen das Leitersubstrat 6 an den Öffnungen 61, 62, 63a, 63b, 64a, 64b. Die Ausgänge der beiden Sekundärwicklungen sind funktionsmäßig nicht unabhängig voneinander, da sie im Ersatzschaltbild in Reihe liegen. Dies bedeutet, dass im Idealfall nur an beiden Ausgängen gleichzeitig jeweils ein Strom fließen kann. -
Fig. 8 und 9 zeigen eine Bauweise des Übertragers, bei dem jeder der Magnetkernringe 4, 5 einen von zwei Wicklungen umschlungenen Schenkel 44 bzw. 54 aufweist. Der Schenkel 44 wird von der Primärwicklung 1 und von dem Teilbereich 34 der Koppelwicklung 3 umschlungen, während der Schenkel 54 von der Sekundärwicklung 2 und von dem Teilbereich 35 der Koppelwicklung 3 umschlungen wird. Der zum Schenkel 44 parallele Schenkel 45 und der zum Schenkel 54 parallele Schenkel 55 sind somit frei und können beispielsweise eine Hilfswicklung tragen, die zu Kontrollzwecken benutzbar ist. Wie ausFig. 9 ersichtlich, liegen die Primärwicklung 1 und die Sekundärwicklung 2 auf der Ober- und Unterseite des Leitersubstrates 6, oder oberflächennah und in teilweiser Überdeckung mit den Teilbereichen 34, 35 der Koppelwicklung 3, die in zwei Schichtlagen 31, 32 angeordnet sein kann. -
Fig. 10 zeigt eine Variante zur Ausführungsform nachFig. 8, 9 . Die Schenkel 44, 45 bzw. 54, 55, der beiden Magnetkernringe 4 und 5 sind jeweils mit spiralförmigen Wicklungsabschnitten 15, 16, 17, 18 bzw. 25, 26, 27, 28 belegt. Der Wicklungsabschnitt 15 bildet linksdrehende spiralförmige Windungen auf der Oberseite des Leitersubstrates 6 und durchstößt das Leitersubstrat in einem Via, um auf der Unterseite des Leitersubstrates 6 nochmals linksdrehende spiralförmige Windungen zu bilden, die in der Zeichnung weitgehend von dem Wicklungsabschnitt 15 überdeckt werden und deshalb in der Zeichnung nur in Spuren zu sehen sind. Der Wicklungsabschnitt 16 ist auf der Unterseite mit dem Wicklungsabschnitt 17 leitend verbunden, und zwar mit der äußeren Leitungswindung des Wicklungsabschnittes 17. Von dort werden rechtsdrehende spiralförmige Windungen durchlaufen, die wiederum teilweise von dem Wicklungsabschnitt 18 überdeckt werden. Mittels einer Via wird die Leitung auf die Oberseite des Leitersubstrates 6 geführt, wo sich die rechtsdrehenden spiralförmigen Windungen bis zur Leitungsklemme am äußeren Rand des Leitersubstrates 6 fortsetzen. Die Formen der Sekundärwicklung 2 sind spiegelbildlich zu der Form der Primärwicklung 1. Der Koppelwicklung 3 erstreckt sich in einer Schichtebene im Inneren des Leitersubstrates 6 korrespondierend zur Darstellung inFig. 9 . - Die
Fig. 11 und 12 zeigen eine Ausführungsform des Übertragers, bei der die Koppelwicklung 3 auf der Ober- und Unterseite des Leitersubstrates 6 liegt und somit das gleiche Potential wie die Magnetkernringe 4, 5 hat. Ein Isolationstrennabstand zwischen den Magnetkernringen ist nicht erforderlich. Die Primärwicklung 1 sowie die Sekundärwicklung 2 verläuft in den Innenlagen des Leitersubstrates mit je einem halben Isolationstrennabstand zu den Magnetkernringen 4, 5 und zur Koppelwicklung 3. Die Kernhälften 41, 42 bzw. 51, 52 sind beispielsweise U-förmig gestaltet. Hier, wie in den anderen Ausführungsformen, können die Magnetkernringe auch in anderer Weise als dargestellt zusammengebaut werden, wobei die Hälften jeweils aus mehr als einem Teil bestehen können. So kann man beispielsweise vier Schenkelstäbe zu einem Magnetkernring zusammenfügen. - Die
Fig. 13, 14 zeigen eine Ausführungsform des Übertragers mit E-förmigen Kernhälften 41, 42, die beim Zusammenschluss einen mittleren Steg korrespondierend zu dem Schenkel 44 bilden, der durch die Öffnung 61 im Leitersubstrat 6 hindurch reicht. Auch der andere Magnetkernring 6 weist einen solchen mittleren Steg zur Bildung des Schenkels 54 auf. Der Schenkel 44 wird von der Primärwicklung 1 und der Schenkel 54 von der Sekundärwicklung 2 spiralförmig in zwei Schichtebenen 11, 14 umrundet, ähnlich wie dies inFig. 9 dargestellt ist. Die Koppelwicklung 3 mit ihren Teilbereichen 34, 35 bildet eine geschlossene Schleife um die beiden mittleren Stege der Magnetkernringe. Es kann dies in zwei Schichtebenen 31, 32 innerhalb des Leitersubstrates 6 erfolgen. - Wegen der E-Form der Kernhälften 41, 42 bzw. 51, 52 werden jeweils drei Öffnungen 61, 62a, 62b bzw. 64, 63a, 63b in dem Leitersubstrat 6 benötigt. Je zwei dieser Öffnungen werden als Paare im Sinne der nachfolgenden Patentansprüche angesehen. Die Ausführungsform nach
Fig. 13, 14 entspricht funktionell der Ausführungsform nachFig. 8, 9 . Es kann aber auch eine Bauweise gemäßFig. 10 angewendet werden, wobei der dritte Schenkel 46 bzw. 56 noch für eine Hilfswicklung zur Verfügung steht. Auch könnte man für die Jochschenkel 44, 45 und 54, 55 die Bauweise nachFig. 1, 2 bei freien Schenkeln 46, 56 zu Ersatzzwecken anwenden. Schließlich könnte man auch zwei oder drei Primärwicklungen und entsprechende Sekundärwicklungen miteinander, z. B. zwecks Ausfallersatzes, kombinieren. - Das plattenförmige Leitersubstrat 6 in allen Ausführungsformen wird vorzugsweise als Elektronik-Leiterplatte hergestellt. Die Herstellung als gespritztes Substrat ist jedoch auch möglich. Der Übertrager lässt sich sowohl als einzelnes Bauteil mit separater Leiterplatte herstellen, wobei dann dieses Bauteil auf einer Hauptleiterplatte bestückt werden muss, als auch direkt in eine Hauptleiterplatte integrieren.
- Zu den beschriebenen Varianten können weitere Varianten hinzutreten. Beispielsweise ist es möglich, die Primärwicklung und/oder die Sekundärwicklung mit einer oder mehreren Mittenanzapfungen zu versehen.
- Der Übertrager wird wie folgt hergestellt:
Es werden zweiteilige, Jochschenkel aufweisende ferromagnetische Kerne, wie beschrieben und dargestellt, bereitgestellt. Die ferromagnetischen Kerne enthalten zwei Hälften 41, 42, bzw. 51, 52, die zu einer geschlossenen Ringstruktur, den Magnetkernringen 4, 4a, 4b, 5, 5a, 5b, zusammengebaut werden können und nicht unbedingt aus nur zwei Teilen bestehen. Außerdem wird ein Leitersubstrat 6 mit wenigstens zwei Paaren von Aussparungen 61, 62, 63, 64 als Jochschenkel-Durchbrechungen bereitgestellt, und zwar für jeden Magnetkernring ein eigenes, von anderen Paaren getrenntes Paar von Aussparungen. Mindestens eine der beiden Aussparungen des ersten Paares, nämlich die Durchbrechung 61, ist von der Primärwicklung 1 umgeben hergestellt worden, ebenso die zweite Aussparung 64 des zweiten Paares hinsichtlich der Sekundärwicklung 2. Die andere Aussparung 62 des ersten Paares ist über die Koppelwicklung 3 mit der Aussparung 63 des benachbarten Paares von Aussparungen verknüpft. - Die Jochkernhälften 41, 42 bzw. 51, 52 werden dadurch zu den Magnetkernringen 4, 5 montiert, dass die Jochschenkel durch die zugehörigen Aussparungen des Leitersubstrates 6 durchgesteckt werden und die Joch-Kernhälften zur Bildung je eines magnetischen Kreises geschlossen werden. Dadurch wird die Primärwicklung 1 mit der Koppelwicklung 3 und über diese mit der Sekundärwicklung 2 elektromagnetisch verkettet.
- Aus Vorstehendem ist ersichtlich, dass der erfindungsgemäße Übertrager einfach zu fertigen ist. Zwischen der Primärseite und der Sekundärseite kann eine Potentialtrennung erreicht werden, wie sie beispielsweise für explosionsgefährdete Bereiche nach der Norm EN 60079-11 gefordert wird. Dabei werden nur kleine Räume innerhalb der Ringstruktur der Magnetkernringe benötigt, da eine relativ große Packungsdichte der Wicklungen auf der Primärseite und der Sekundärseite möglich ist, ohne dass man auf die konventionelle Bewicklung der Jochschenkel zurückgreifen muss. Deshalb ist die wirtschaftliche Fertigung der neuen Übertrager möglich, auch bei miniaturisierter Bauweise der Übertrager.
Claims (2)
- Planarübertrager, umfassend:- eine Primärwicklung (1),- wenigstens eine Sekundärwicklung (2),- wenigstens eine Koppelwicklung (3),- einen ersten, mit Jochschenkeln (44, 45) versehenen, aus einem ferromagnetischen Kern bestehenden Magnetkernring (4), der zwei Jochkernhälften (41, 42) enthält, die eine erste Ringkernöffnung (43) umgeben,- einen zweiten, mit Jochschenkeln (54, 55) versehenen, aus einem ferromagnetischen Kern bestehendem Magnetkernring (5), der zwei Jochkernhälften (51, 52) enthält, die eine zweite Ringkernöffnung (53) umgeben, und- ein einziges plattenförmiges Leitersubstrat (6), welches die erste Ringkernöffnung (43) und die zweite Ringkernöffnung (53) beinahe ausfüllt und wenigstens zwei Paaren von Aussparungen (61, 62; 63, 64) aufweist, die Durchbrechungen zur Aufnahme der Jochschenkel (44, 45; 54, 55) der ferromagnetischen Kerne bilden,- wobei wenigstens eine (61) der beiden Aussparungen des ersten Paares von der Primärwicklung (1) umgeben ist und diese Aussparung (61) oder die andere Aussparung (62) des ersten Paares von einem ersten Teilbereich (34) der Koppelwicklung (3) umschlungen ist,- wobei ferner wenigstens eine (64) der beiden Aussparungen des zweiten Paares von der Sekundärwicklung (2) umgeben ist und diese Aussparung (64) oder die andere Aussparung (63) von einem zweiten Teilbereich (35) der Koppelwicklung (3) umschlungen ist,- wobei die Primärwicklung (1), die Sekundärwicklung (2) und die Koppelwicklung (3) als integrale Teile des einzigen plattenförmigen Leitersubstrates ausgebildet sind,- wobei zur Potentialtrennung zwischen der Primärwicklung (1) und der Sekundärwicklung (2) wenigstens ein Gesamt-Isolationstrennabstand der Länge L eingehalten ist,- wobei die Primärwicklung (1) einen spiralförmigen Verlauf in zwei oder mehreren Schichtebenen (11, 12, 13, 14) des einzigen plattenförmigen Leitersubstrates (6) einnimmt,- wobei die wenigstens eine Sekundärwicklung (2) einen spiralförmigen Verlauf in zwei oder mehreren Schichtebenen (21, 22, 23, 24) des einzigen plattenförmigen Leitersubstrates (6) einnimmt,- wobei die Koppelwicklung (3) sich in Schichtebenen (31, 32) innerhalb des plattenförmigen Leitersubstrates (6) erstreckt, wobei Schichtebenen (11, 14) der Primärwicklung (1) und Schichtebenen (21, 24) der Sekundärwicklung (2) sich auf der Oberfläche des Leitersubstrates (6) oder oberflächennah erstrecken, wobeidie Koppelwicklung (3) zu benachbarten Lagen der Primärwicklung (1) und zum ersten Magnetkernring (4) jeweils einen ersten Teil-Isolationstrennabstand einhält, wobei die Koppelwicklung (3) zu benachbarten Lagen der Sekundärwicklung (2) und zum zweiten Magnetkernring (5) jeweils einen zweiten Teil-Isolationstrennabstand einhält,und wobei der Gesamt-Isolationstrennabstand sich aus der Summe des ersten Teil-Isolationstrennabstands und des zweiten Teil-Isolationstrennabstands ergibt, wobei der erste Teil-Isolationstrennabstand 1/3 bis 1/2 des Gesamt-Isolationstrennabstands beträgt, während der zweite Teil-Isolationstrennabstand 2/3 bis 1/2 des Gesamt-Isolationstrennabstands beträgt, oder umgekehrt.
- Planarübertrager, umfassend:- eine Primärwicklung (1),- wenigstens eine Sekundärwicklung (2),- wenigstens eine Koppelwicklung (3),- einen ersten, mit Jochschenkeln (44, 45) versehenen, aus einem ferromagnetischen Kern bestehenden Magnetkernring (4), der zwei Jochkernhälften (41, 42) enthält, die eine erste Ringkernöffnung (43) umgeben,- einen zweiten, mit Jochschenkeln (54, 55) versehenen, aus einem ferromagnetischen Kern bestehendem Magnetkernring (5), der zwei Jochkernhälften (51, 52) enthält, die eine zweite Ringkernöffnung (53) umgeben, und- ein einziges plattenförmiges Leitersubstrat (6), welches die erste Ringkernöffnung (43) und die zweite Ringkernöffnung (53 beinahe ausfüllt und wenigstens zwei Paaren von Aussparungen (61, 62; 63, 64) aufweist, die Durchbrechungen zur Aufnahme der Jochschenkel (44, 45; 54, 55) der ferromagnetischen Kerne bilden,- wobei wenigstens eine (61) der beiden Aussparungen des ersten Paares von der Primärwicklung (1) umgeben ist und diese Aussparung (61) oder die andere Aussparung (62) des ersten Paares von einem ersten Teilbereich (34) der Koppelwicklung (3) umschlungen ist,- wobei ferner wenigstens eine (64) der beiden Aussparungen des zweiten Paares von der Sekundärwicklung (2) umgeben ist und diese Aussparung (64) oder die andere Aussparung (63) von einem zweiten Teilbereich (35) der Koppelwicklung (3) umschlungen ist,- wobei die Primärwicklung (1), die Sekundärwicklung (2) und die Koppelwicklung (3) als integrale Teile des einzigen plattenförmigen Leitersubstrates ausgebildet sind,- wobei zur Potentialtrennung zwischen der Primärwicklung (1) und der Sekundärwicklung (2) wenigstens ein Gesamt-Isolationstrennabstand der Länge L eingehalten ist,- wobei die Primärwicklung (1) einen spiralförmigen Verlauf in zwei oder mehreren Schichtebenen (12, 13) des einzigen plattenförmigen Leitersubstrates (6) einnimmt,- wobei die wenigstens eine Sekundärwicklung (2) einen spiralförmigen Verlauf in zwei oder mehreren Schichtebenen (22, 23) des einzigen plattenförmigen Leitersubstrates (6) einnimmt,- wobei die Koppelwicklung (3) sich in Schichtebenen (31, 32) des plattenförmigen Leitersubstrates (6) erstreckt,wobei die Schichtebenen (12, 13) der Primärwicklung (1) und die Schichtebenen (22, 23) der Sekundärwicklung (2) sich jeweils nur im Inneren des Leitersubstrates (6) erstrecken, wobei die Koppelwicklung (3) sich auf der Oberfläche des Leitersubstrates (6) oder oberflächennah erstreckt, wobei die Lagen der Primärwicklung (1) zur Koppelwicklung (3) und zum ersten Magnetkernring (4) jeweils einen ersten Teil-Isolationstrennabstand einhalten, wobei die Lagen der Sekundärwicklung (2) zur Koppelwicklung (3) und zum zweiten Magnetkernring (5) jeweils einen zweiten Teil-Isolationstrennabstand einhalten,und wobei der Gesamt-Isolationstrennabstand sich aus der Summe des ersten Teil-Isolationstrennabstands und des zweiten Teil-Isolationstrennabstands ergibt, wobei der erste Teil-Isolationstrennabstand 1/3 bis 1/2 des Gesamt-Isolationstrennabstands beträgt, während der zweite Teil-Isolationstrennabstand 2/3 bis 1/2 des Gesamt-Isolationstrennabstands beträgt, oder umgekehrt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102012111069.7A DE102012111069A1 (de) | 2012-11-16 | 2012-11-16 | Planarübertrager |
PCT/EP2013/073594 WO2014076067A1 (de) | 2012-11-16 | 2013-11-12 | Planarübertrager |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2920798A1 EP2920798A1 (de) | 2015-09-23 |
EP2920798B1 true EP2920798B1 (de) | 2022-09-14 |
Family
ID=49584721
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13791791.0A Active EP2920798B1 (de) | 2012-11-16 | 2013-11-12 | Planarübertrager |
Country Status (5)
Country | Link |
---|---|
US (1) | US9711271B2 (de) |
EP (1) | EP2920798B1 (de) |
CN (1) | CN104838458B (de) |
DE (1) | DE102012111069A1 (de) |
WO (1) | WO2014076067A1 (de) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6227446B2 (ja) * | 2014-03-12 | 2017-11-08 | 日立オートモティブシステムズ株式会社 | トランスおよびそれを用いた電力変換装置 |
US10361023B2 (en) * | 2014-08-07 | 2019-07-23 | Nvidia Corporation | Magnetic power coupling to an integrated circuit module |
JP2017199800A (ja) * | 2016-04-27 | 2017-11-02 | Tdk株式会社 | コイル部品及び電源回路ユニット |
JP6690386B2 (ja) * | 2016-04-27 | 2020-04-28 | Tdk株式会社 | コイル部品及び電源回路ユニット |
GB201612032D0 (en) * | 2016-07-11 | 2016-08-24 | High Speed Trans Solutions Ltd | Isolating transformer |
US10252618B2 (en) * | 2016-09-06 | 2019-04-09 | Ford Global Technologies, Llc | Backup electrical supply for main capacitor discharge |
JP6572871B2 (ja) | 2016-11-22 | 2019-09-11 | トヨタ自動車株式会社 | トランス装置およびその組み立て方法 |
JP6938911B2 (ja) * | 2016-12-28 | 2021-09-22 | 富士電機株式会社 | 装置 |
CN106971829B (zh) * | 2017-04-28 | 2019-03-01 | 华为技术有限公司 | 平面变压器 |
CN109712785A (zh) * | 2017-10-26 | 2019-05-03 | 通用电气公司 | 隔离变压装置,开关驱动电路及脉冲电源系统 |
DE102018201488A1 (de) * | 2018-01-31 | 2019-08-01 | Siemens Aktiengesellschaft | Elektrisches Gerät mit Pressplatten zum Verspannen eines magnetisierbaren Kerns |
JP6948757B2 (ja) * | 2018-06-01 | 2021-10-13 | 株式会社タムラ製作所 | 電子部品 |
US11044022B2 (en) | 2018-08-29 | 2021-06-22 | Analog Devices Global Unlimited Company | Back-to-back isolation circuit |
CN109215994A (zh) * | 2018-10-09 | 2019-01-15 | 苏州康开电气有限公司 | 干式隔离变压器 |
US11791079B2 (en) * | 2019-03-22 | 2023-10-17 | Cyntec Co., Ltd. | Coil assembly |
US11450469B2 (en) | 2019-08-28 | 2022-09-20 | Analog Devices Global Unlimited Company | Insulation jacket for top coil of an isolated transformer |
US11387316B2 (en) | 2019-12-02 | 2022-07-12 | Analog Devices International Unlimited Company | Monolithic back-to-back isolation elements with floating top plate |
DE102019219726A1 (de) * | 2019-12-16 | 2021-06-17 | Robert Bosch Gmbh | Induktive Baugruppe, und Verfahren zur Herstellung der induktiven Baugruppe |
US11682515B2 (en) * | 2020-04-15 | 2023-06-20 | Monolithic Power Systems, Inc. | Inductors with magnetic core parts of different materials |
US20240186054A1 (en) * | 2022-10-25 | 2024-06-06 | Delta Electronics, Inc. | Isolated power supply for gate driver |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1743318A (en) * | 1927-08-09 | 1930-01-14 | Western Electric Co | Method of and apparatus for testing electrical conductors |
US2788486A (en) * | 1952-06-14 | 1957-04-09 | Gen Motors Corp | Electrical testing apparatus |
DE2529296A1 (de) * | 1975-07-01 | 1977-01-20 | Ferranti Ltd | Impuls-transformator |
US4201965A (en) * | 1978-06-29 | 1980-05-06 | Rca Corporation | Inductance fabricated on a metal base printed circuit board |
NO175394C (no) * | 1991-07-01 | 1994-10-05 | Abb En As | Anordning ved måling av ström |
JP3141562B2 (ja) * | 1992-05-27 | 2001-03-05 | 富士電機株式会社 | 薄膜トランス装置 |
GB9424349D0 (en) | 1994-12-02 | 1995-01-18 | Measurement Tech Ltd | Transformers |
DE19515494A1 (de) * | 1995-04-27 | 1996-10-31 | Vacuumschmelze Gmbh | Stromkompensierte Funkentstördrossel mit erhöhter Streuinduktivität |
GB2307795A (en) | 1995-12-01 | 1997-06-04 | Metron Designs Ltd | Isolation transformer with plural magnetic circuits coupled by a winding |
DE19637733C1 (de) * | 1996-09-16 | 1998-01-22 | Vacuumschmelze Gmbh | Stromkompensierte Funkentstördrossel mit erhöhter Streuinduktivität |
US7187263B2 (en) * | 2003-11-26 | 2007-03-06 | Vlt, Inc. | Printed circuit transformer |
DE102005041131B4 (de) | 2005-08-30 | 2008-01-31 | Phoenix Contact Gmbh & Co. Kg | Übertrager |
JP4312188B2 (ja) | 2005-09-30 | 2009-08-12 | Tdk株式会社 | インダクタ素子 |
US20080278275A1 (en) * | 2007-05-10 | 2008-11-13 | Fouquet Julie E | Miniature Transformers Adapted for use in Galvanic Isolators and the Like |
US9019057B2 (en) | 2006-08-28 | 2015-04-28 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Galvanic isolators and coil transducers |
JP5098572B2 (ja) * | 2006-11-02 | 2012-12-12 | 日立化成工業株式会社 | 金属箔張積層板及び多層印刷配線板 |
JP2009218392A (ja) * | 2008-03-11 | 2009-09-24 | Furukawa Electric Co Ltd:The | 金属コア多層プリント配線板 |
JP2010016190A (ja) * | 2008-07-03 | 2010-01-21 | Fuji Electric Systems Co Ltd | 変圧器 |
ATE550670T1 (de) * | 2008-07-11 | 2012-04-15 | Lem Liaisons Electron Mec | Sensor für eine hochspannungsumgebung |
US7859382B2 (en) * | 2008-09-26 | 2010-12-28 | Lincoln Global, Inc. | Planar transformer |
DE202009002383U1 (de) | 2009-02-20 | 2009-04-23 | Nucon GbR: Gert G. Niggemeyer & Jörg Niggemeyer (vertretungsberechtigter Gesellschafter: Herr Jörg Niggemeyer, 21244 Buchholz) | Schaltung zur potenzialfreien Ansteuerung mit entgegen gerichteten Signalen mittels eines Übertragers |
DE102009037430A1 (de) * | 2009-08-13 | 2011-03-24 | Frimo Group Gmbh | Verfahren zur Kaschierung von zumindest einem Formteil |
DE102009037340A1 (de) | 2009-08-14 | 2011-08-04 | Phoenix Contact GmbH & Co. KG, 32825 | Übertrager |
DE102009057788A1 (de) | 2009-12-11 | 2011-06-22 | Krohne Messtechnik GmbH, 47058 | Planartransformator |
JP2011154581A (ja) | 2010-01-28 | 2011-08-11 | Konica Minolta Business Technologies Inc | 展示会見学支援システム及び情報表示装置 |
JP2011181889A (ja) | 2010-02-04 | 2011-09-15 | Mitsubishi Electric Corp | 電源装置およびパワーモジュール |
GB201011085D0 (en) * | 2010-07-01 | 2010-08-18 | Micromass Ltd | Improvements in planar transformers particularly for use in ion guides |
DE102010049668A1 (de) * | 2010-10-26 | 2012-04-26 | Minebea Co., Ltd. | Transformator |
-
2012
- 2012-11-16 DE DE102012111069.7A patent/DE102012111069A1/de not_active Withdrawn
-
2013
- 2013-11-12 CN CN201380059544.9A patent/CN104838458B/zh active Active
- 2013-11-12 US US14/443,194 patent/US9711271B2/en active Active
- 2013-11-12 EP EP13791791.0A patent/EP2920798B1/de active Active
- 2013-11-12 WO PCT/EP2013/073594 patent/WO2014076067A1/de active Application Filing
Also Published As
Publication number | Publication date |
---|---|
US20150332838A1 (en) | 2015-11-19 |
WO2014076067A1 (de) | 2014-05-22 |
EP2920798A1 (de) | 2015-09-23 |
DE102012111069A1 (de) | 2014-05-22 |
US9711271B2 (en) | 2017-07-18 |
CN104838458A (zh) | 2015-08-12 |
CN104838458B (zh) | 2018-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2920798B1 (de) | Planarübertrager | |
DE19519594C2 (de) | Transformator | |
DE3834076C2 (de) | ||
DE69601460T2 (de) | Flache magnetische Anordnung für elektronische Schaltungen | |
DE69107633T2 (de) | Elektrischer Formgegenstand mit gestapelter Mehrschichtstruktur. | |
EP2818031B1 (de) | Planarer übertrager | |
DE2428942A1 (de) | Gedruckte schaltung | |
DE10260246A1 (de) | Spulenanordnung mit veränderbarer Induktivität | |
DE10112460A1 (de) | Mehrschicht-Induktor | |
DE102008037893B4 (de) | Induktiver Leitungsfähigkeitssensor | |
DE4337053A1 (de) | Spule | |
WO2018095757A1 (de) | Transformatorvorrichtung, transformator und verfahren zur herstellung einer transformatorvorrichtung | |
DE102010014281A1 (de) | Induktive elektronische Baugruppe und Verwendung einer solchen | |
DE9114783U1 (de) | Flachform-Planar-Transformator zur Verwendung in Offline-Schaltnetzteilen | |
DE1297217B (de) | Roehrenwicklung fuer Transformatoren | |
DE102008049756A1 (de) | Schaltungsträger mit Transformator | |
EP0134950B1 (de) | Hochfrequenz-Rohrkernübertrager mit in Drucktechnik ausgeführten Wicklungen | |
EP1557849B1 (de) | Zündspule für eine Brennkraftmaschine | |
DE3108161A1 (de) | Wicklung fuer eine statische induktionsvorrichtung | |
DE102004008961B4 (de) | Spulenkörper für geschlossenen magnetischen Kern und daraus hergestellte Entstördrossel | |
DE1638885A1 (de) | Hochspannungswicklung | |
DE102014117551A1 (de) | Mehrfachdrossel und Leistungswandler mit einer Mehrfachdrossel | |
DE3913558A1 (de) | Ferrittransformator mit mindestens einer primaeren und einer sekundaeren wicklung | |
WO1988007257A1 (en) | High-frequency component | |
EP4305650A1 (de) | Übertrager mit nichtgeschlossenem magnetkern |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20150616 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
17Q | First examination report despatched |
Effective date: 20181017 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20220511 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013016239 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 1519224 Country of ref document: AT Kind code of ref document: T Effective date: 20221015 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221214 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20221215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230116 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20230114 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230424 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013016239 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20221130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
26N | No opposition filed |
Effective date: 20230615 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221112 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221214 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221114 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221130 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1519224 Country of ref document: AT Kind code of ref document: T Effective date: 20221112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221112 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20231124 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20131112 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240129 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220914 |