[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2953999A1 - Polystyrolhartschaumstoffe - Google Patents

Polystyrolhartschaumstoffe

Info

Publication number
EP2953999A1
EP2953999A1 EP14702860.9A EP14702860A EP2953999A1 EP 2953999 A1 EP2953999 A1 EP 2953999A1 EP 14702860 A EP14702860 A EP 14702860A EP 2953999 A1 EP2953999 A1 EP 2953999A1
Authority
EP
European Patent Office
Prior art keywords
polystyrene
foam
rigid
anthracite
graphitic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP14702860.9A
Other languages
English (en)
French (fr)
Inventor
Wilhelm Frohs
Werner Handl
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FROHS, WILHELM
Original Assignee
SGL Carbon SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SGL Carbon SE filed Critical SGL Carbon SE
Publication of EP2953999A1 publication Critical patent/EP2953999A1/de
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0019Use of organic additives halogenated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0014Use of organic additives
    • C08J9/0038Use of organic additives containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0095Mixtures of at least two compounding ingredients belonging to different one-dot groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/141Hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • C08J9/20Making expandable particles by suspension polymerisation in the presence of the blowing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • C08J9/232Forming foamed products by sintering expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0066Flame-proofing or flame-retarding additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/02Halogenated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/49Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/034Post-expanding of foam beads or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/14Saturated hydrocarbons, e.g. butane; Unspecified hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/10Rigid foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • C08J2325/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/003Additives being defined by their diameter
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/016Additives defined by their aspect ratio

Definitions

  • the present invention relates to polystyrene rigid foams comprising thermally pretreated, non-graphitic anthracite coke particles, shaped bodies containing these rigid polystyrene foams and the use of these shaped bodies for thermal insulation.
  • Polystyrene rigid foams have long been known and are used, inter alia, as thermal insulation materials in the form of boards in construction.
  • the rigid polystyrene foam has a closed-cell structure, ie this foam consists to a few percent of solid polystyrene and predominantly of trapped air.
  • This closed-cell structure leads to a low thermal conductivity, which gives the polystyrene foam the good suitability as a thermal insulation material.
  • the density of the polystyrene foam which is determined by the degree of foaming of the polystyrene particles, has a decisive influence on the thermal conductivity.
  • polystyrene foam thermal insulation boards used in the building industry have densities of 20 or 30 kg / m 3 , which corresponds to a thermal conductivity of 40 to 35 mW / mK.
  • polystyrene foam with a density of less than 20 kg / m 3 was also considered, but this polystyrene rigid foam has too high a thermal conductivity of more than 45 mW / mK.
  • Athermane materials are materials that absorb the heat, in particular the heat due to infrared radiation. Accordingly, the addition of athermanous materials reduces the radiation permeability to polystyrene foam.
  • metal oxides such as Al 2 O 3 or Fe 2 O 3
  • non-metal oxides such as SiO 2
  • metal powder, aluminum powder, carbon black, graphite, calcined petroleum coke, meta-anthracite, anthracite or organic Dyes or dye pigments proposed (EP 0620246, WO 97/45477, WO 98/51734, WO 00/43442, WO 2010/031537, DE 202010013 850, DE 202010013851).
  • the athermane material added here is intended to permit a more energy-efficient grinding, the In addition, these milled particles can be dispersed well in a polystyrene matrix.
  • this object is achieved by a rigid polystyrene foam which contains thermally pretreated, non-graphitic anthracite coke particles. In this case, these Anthrazitkoksteilchen act as athermanes material.
  • Anthracite coke particles when used herein, mean thermally pretreated, non-graphitic anthracite coke particles.
  • polystyrene rigid foams comprising anthracite coke particles, preferably gas-calcined anthracite coke particles, have a density of less than 40 kg / m 3 , preferably less than 20 kg / m 3 , and a heat conductivity of less than 40 mW / mK, preferably less than 35 mW / mK ie it is possible to provide the desired thermal insulation properties.
  • anthracite coke particles can be grinded in a more energy-efficient manner in comparison with, for example, graphite particles (natural graphite or synthetic graphite), since the corresponding throughput is increased, with the proportion of unusable by-product (fine filter dust) being lower in comparison with graphite.
  • graphite particles natural graphite or synthetic graphite
  • fine filter dust unusable by-product
  • Graphitic anthracite which can be obtained by a temperature treatment at over 2200 ° C, represents a synthetic graphite.
  • the ground Anthrazitkoksteilchen in the desired
  • the rigid polystyrene foam may be extruded polystyrene foam (XPS) or polystyrene foam (EPS).
  • XPS is produced on extrusion lines as a continuous foam strand;
  • polystyrene is melted in the extruder and after adding a blowing agent, such as CO2, continuously discharged through a slot die, which builds behind the slot die the foam strand.
  • foams can be produced with a thickness between 20 and 200 mm.
  • the foam strand is cut to the desired shape, ie into blocks, plates or shaped parts.
  • This extruded polystyrene foam is a closed-cell foam that absorbs only small amounts of moisture and is resistant to aging.
  • XPS is sold under the name Styrodur® C or Styrofoam®.
  • EPS polystyrene granules (polystyrene grit)
  • the blowing agent is copolymerized pentane, pre-expanded at temperatures above 90 ° C. Due to the temperature, the blowing agent evaporates and inflates the thermoplastic base material up to 20 to 50 times to polystyrene foam particles. From these foam particles blocks or plates or molded parts are then prepared in discontinuous or continuous systems by a second hot steam treatment between 1 10 ° C and 120 ° C.
  • EPS is a predominantly closed-cell insulation material with trapped air, whereby EPS consists of 98% air and is also moisture-resistant.
  • EPS is sold under the name Styropor®.
  • Polystyrene useful for the present invention can be obtained by a suspension polymerization of, for example, styrene in the presence of anthracite coke particles. In this process, the styrene is polymerized in aqueous suspension in the presence of anthracite coke particles, and the addition of a propellant, such as pentane, occurs before, during or after the polymerization.
  • styrene is emulsified in water, wherein emulsifiers are used for emulsion stabilization.
  • the initiators used for the polymerization are water-soluble, the polymerization likewise taking place in the presence of anthracite coke particles.
  • Polymers which can be used in the processes described above are expandable styrene polymers, in particular homopolymers and copolymers of styrene, preferably glass-clear polystyrene (GPPS), impact polystyrene (HIPS), anionically polymerized polystyrene or impact polystyrene (A-IPS), styrene-alpha-methylstyrene copolymers, acrylonitrile-butadiene-styrene polymers (ABS), styrene-acrylonitrile (SAN) acrylonitrile-styrene-acrylic esters (ASA), methyl acrylate-butadiene-styrene (MBS) and methyl methacrylate-acrylonitrile.
  • GPPS glass-clear polystyrene
  • HIPS impact polystyrene
  • A-IPS anionically polymerized polystyrene or impact polystyrene
  • the polystyrene has a weight average M w in the range of 150,000 g / mol to 350,000 g / mol, more preferably from 150,000 g / mol to 300,000 g / mol, most preferably from 180,000 g / mol to 250,000 g / mol.
  • the determination of the weight average M w can take place via the gel permeation chromatography at room temperature, it being possible, for example, to use tetrahydrofuran as eluent.
  • the anthracite coke particles are homogeneously distributed in the rigid polystyrene foam.
  • styrene particle foam EPS
  • EPS styrene particle foam
  • the anthracite coke particles do not interfere with nucleation in the production of, for example, EPS.
  • Anthrazitkoksteilchen is also supported by the good dispersibility of these particles in the polystyrene matrix. Due to the surface properties of these anthracite coke particles, they can be wetted well by the polystyrene matrix, which, in the course of dispersion, ensures that the agglomerates are better divided, ie there are fewer agglomerates overall in the polystyrene matrix.
  • the Anthrazitkoksteilchen are platelet-shaped.
  • the platelet form of the anthracite coke particles also does not impair the fine cell structure of the styrene polymer particles, in particular of the expanded styrene polymer particles.
  • the platelets have a larger surface, for example compared to the spherical shape, as a result of which these platelets have a highly reflective effect on the incident infrared radiation.
  • the anthracite coke particles have an aspect ratio of greater than 2, preferably greater than 10, more preferably greater than 20.
  • these aspect ratios are in the range of greater than 2 to 20, more preferably in the range of greater than 10 to 50, and most preferably in the range of greater than 20 to 100.
  • the circle diameter (D) of the surface of the wafer is added to the thickness (T ) of the platelet, as shown in FIG.
  • the incident infrared radiation is reflected particularly well.
  • the good reflection of the infrared radiation requires that this radiation Development is only slightly absorbed, which means that, for example, moldings made of the polystyrene foam according to the invention do not strongly heat when exposed to sunlight and thus are not deformed.
  • the d 50 value indicates the average particle size, with 50% of the particles being smaller than the stated value.
  • anthracite The thermal treatment of anthracite is carried out on an industrial scale usually in gas-fired shaft furnaces or in electrically operated furnaces.
  • This calcining technology is also referred to as gas-calcined anthracites (Gas Calcined Antracite, GCA) and electrically calcined anthracites (Electrically Calcined Anthracites, ECA).
  • GCA Gas-calcined Antracite
  • ECA Electrically calcined anthracites
  • the temperature range at which the anthracite is treated gives a non-graphitic anthracite coke.
  • an electrocalcination if the temperature treatment takes place at below 2200 ° C., a non-graphitic anthracite coke is likewise obtained.
  • a graphitic carbon i. an anthracite-based synthetic graphite.
  • the desired non-graphitic anthracite cokes can be made by the thermal treatment of green anthracite in a temperature range of greater than 500 ° C to 2200 ° C.
  • the thermal treatment takes the form of gas or electrocalcination, preferably in the form of gas calcination.
  • the anthracite is in the gas calcination at temperatures in a range of 1200 ° C to 1500 ° C and in the electrocalcination at temperatures in a range from 1800 ° C to 2200 ° C, with the formation of graphitic regions not taking place.
  • an anthracite coke which has been prepared by means of gas calcination is used.
  • the starting material is a green anthracite, ie a coal with the highest degree of coalification and a reflecting surface.
  • Anthracites are fundamentally different from other types of coal due to their low volatile content ( ⁇ 10% by weight), density of approx. 1.3 to 1.4 g / cm 3 and carbon content of> 92% by weight. % marked.
  • the energy content ranges from approx. 26 MJ / kg to 33 MJ / kg.
  • the macerate content, ie the content of organic, rock-forming components, should have the following values:
  • anthracite is used for the present invention, having a content of volatile constituents of less than 5 wt .-% and a carbon content of at least 95 wt .-% after gas or Elektrkalzintechnik.
  • An anthracite which has been subjected to either gas calcination at about 1250 ° C or electrocalcination at 1800 ° C to 2200 ° C, for example, can be characterized as follows:
  • Hydrogen content [% by weight] ⁇ 0.2, preferably ⁇ 0.15 ⁇ 0.08, preferably ⁇ 0.05
  • the anthracite coke according to the present invention preferably has a density of> 1, 8 g / cm 3 , preferably a sulfur content of ⁇ 5.0 weight percent (wt .-%), preferably a hydrogen content of ⁇ 0.15 wt .-% and preferably an ash content of ⁇ 5.0% by weight.
  • anthracite coke particles are structurally in a completely non-graphitic state.
  • the X-ray fine structure analysis is applied in the form of a powder diffractometer in Bragg-Brentano arrangement and Cu a radiation.
  • a graphitic or partially graphitic structure is present if the three-dimensional interferences of the graphite lattice (100/101/102/1 10 and 1 12) are detectable in the X-ray diffractogram, as shown in Figure 2 (see Fitzer, Funk, Rozploch, 4th London International Carbon and Graphite Conference, 1974).
  • Graphitic carbons are all carbon species that contain the element carbon in the allotropic form of graphite, regardless of existing structural defects.
  • graphitic carbon is justified when a three-dimensional hexagonal crystalline long-range order in the material can be detected by diffraction methods, regardless of the volume fraction and the homogeneity of the distribution of such crystalline domains. If no three-dimensional long-range order is detectable, the term non-graphitic carbon should be used.
  • Non-Graphitic Carbon Fibers are all types of solids consisting primarily of the element carbonaceous, with two-dimensional long-range ordering of carbon atoms in planar hexagonal networks. However, apart from the more or less parallel stacking, there is no measurable crystallographic order in the third direction (c direction).
  • Non-graphitic carbon converts some types of non-graphitic carbon into graphitic carbon, but not others (non-graphitizable carbon). Since (002) interference is easy to measure due to its high intensity, the average layer pitch available from it using the Bragg equation is often used for the first distinction between graphitic and non-graphitic carbons (Maire and Mehring (Proc Conf. On Carbon, Pergamon Press 1960, pp. 345-350). Accordingly, non-graphitic carbons have an average layer pitch of> 0.344 nm.
  • the athermanous particles used according to the invention are thermally pretreated, non-graphitic anthracite coke particles which are non-graphitic carbons.
  • thermally pretreated, non-graphitic Anthrazitkoksteilchen used in the examples an X-ray diffractogram results as shown in Fig. 3.
  • the X-ray diffractogram according to FIG. 3 shows only a broad (002) interference and the homologous (004) interference. Three-dimensional interference is not recognizable. Partial (002) interference in FIG. 4 also does not show a graphitized phase.
  • the mean layer-plane distance from the angle of (002) interference is 0.3523 nm, well above the limit for graphitic carbons ⁇ 0344 nm (see Table 1).
  • the polystyrene foam comprises anthracite coke particles in an amount of from 0.5% to 10.0% by weight, preferably from 1.0% to 8.0% by weight. , particularly preferably from 2.0 wt .-% to 6.0 wt .-%, most preferably from 2.5 wt .-% to 4.5 wt .-% based on the amount of rigid foam.
  • anthracite coke particles is further advantageous in that the particles are obtained after milling in the desired platelet form.
  • grinding jet mills can be selected from the group consisting of air, gas or steam jet mills.
  • the preferred air jet mill used is a spiral jet or counter jet mill, particularly preferably a spiral jet or counter jet mill having an integrated air classifier.
  • the rigid polystyrene foams are used as thermal insulation materials in the form of boards in construction, it is necessary that these insulating materials are difficult to incinerate, ie they pass the fire tests B1 and B2 according to DIN 4102. Thus, the polystyrene rigid foams according to the invention are not easy to incinerate and the required fire tests
  • the rigid foams may additionally contain flame retardants. These flameproofing agents are organic halogen compounds, preferably organic bromine compounds, particularly preferably aliphatic, cycloaliphatic or aromatic bromine compounds, and / or phosphorus compounds.
  • the organic bromine compounds are selected from the group consisting of hexabromocyclododecane, pentabromochlorocyclohexane or pentabromophenyl allyl ether and are used as phosphorus compounds 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide (DOP-O) or triphenyl phosphate (TPP) is particularly preferably used.
  • DOP-O 9,10-dihydro-9-oxa-10-phospha-phenanthrene-10-oxide
  • TPP triphenyl phosphate
  • the required amount of flame retardant can be reduced, ie the flame retardants are in the polystyrene foam in an amount of less than 2.0 wt .-%, preferably less than 1, 5 wt .-%, particularly preferably less than 1, 0 wt .-%, based on the amount of rigid foam before.
  • the polystyrene foam according to the invention can be produced cheaper and more environmentally friendly, since less flame retardants, in particular less organic bromine compounds and / or phosphorus compounds are needed.
  • a more cost-effective production of the polystyrene rigid foam according to the invention is also made possible by the rigid foam having a density of from 1 to 20 kg / m 3 , preferably from 5 to 20 kg / m 3 , particularly preferably from 10 to 20 kg / m 3 and especially preferably from 12 to 18 kg / m 3 .
  • the rigid foam having a density of from 1 to 20 kg / m 3 , preferably from 5 to 20 kg / m 3 , particularly preferably from 10 to 20 kg / m 3 and especially preferably from 12 to 18 kg / m 3 .
  • it comes to a material saving since less polystyrene can be used.
  • the rigid polystyrene foam according to the invention has a thermal conductivity of from 20 mW / mK to 40 mW / mK, preferably from 25 mW / mK to 35 mW / mK.
  • the present invention furthermore relates to a shaped body which contains a rigid polystyrene foam according to the invention and to the use of such a shaped body for thermal insulation.
  • a shaped body for example, plates can be considered, which are used for thermal insulation, preferably in construction.
  • polystyrene rigid foams which contain anthracite particles having graphitic structures as athermanous particles exhibit thermal conductivity values which are up to 2 W / m-K worse.
  • Polystyrene having a molecular weight of 220,000 g / mol was in an extruder together with 3.5 wt .-% gas calcined Anthrazitkoksteilchen, prepared on a jet mill, with a mean particle diameter d 5 o of 3.5 ⁇ and an aspect ratio of 20 and with 0.8 wt .-% Hexabromcyclododecan and 0.1 wt .-% dicumyl melted, mixed with 6.5 wt .-% pentane and cooled to about 120 ° C.
  • the mixture thus obtained was discharged through a perforated nozzle to endless strands cooled over a cooling bath and granulated by means of a strand granulator to individual pieces.
  • the cylindrical granules had a diameter of about 0.8 mm and a length of about 10.0 mm.
  • the granules were then foamed to a density of 15 kg / m 3 .
  • blocks were pressed and cut into 50 mm thick slabs using hot wire.
  • the plates thus produced had an average thermal conductivity of 32 mW / mK.
  • polystyrene having a molecular weight of 220,000 g / mol together with 1, 0 wt .-% hexabromocyclododecane and 0.2 wt .-% dicumyl and 3.5 wt .-% gas calcined Anthrazitkoksteilchen, prepared on an opposed jet mill, melted with a mean particle diameter of 4.0 ⁇ and an aspect ratio of 35.
  • the foaming was made directly in the extruder to the final density.
  • the polystyrene foam was discharged endlessly via a slot die and cooled.
  • the moldings had a density of 14 kg / m 3 and a thermal conductivity of 31 mW / mK.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

Die vorliegende Erfindung betrifft Polystyrolhartschaumstoffe enthaltend thermisch behandelte, nicht-graphitische Anthrazitkoksteilchen, Formkörper enthaltend diese Polystyrolhartschaumstoffe und die Verwendung von diesen Formkörpern zur Wärmedämmung.

Description

Polvstyrolhartschaumstoffe
Die vorliegende Erfindung betrifft Polystyrolhartschaumstoffe enthaltend thermisch vorbehandelte, nicht-graphitische Anthrazitkoksteilchen, Formkörper enthaltend diese Polystyrolhartschaumstoffe und die Verwendung von diesen Formkörpern zur Wärmedämmung.
Polystyrolhartschaumstoffe sind seit langem bekannt und werden unter anderem als Wärmedämmstoffe in Form von Platten im Bauwesen eingesetzt. Der Polystyrolhartschaumstoff weist eine geschlossenzellige Struktur auf, d.h. dieser Schaumstoff besteht zu wenigen Prozent aus festem Polystyrol und überwiegend aus eingeschlossener Luft. Diese geschlossenzellige Struktur führt zu einer geringen Wärmeleitfähigkeit, welche dem Polystyrolhartschaumstoff die gute Eignung als Wärmedämmstoff verleiht. Hierbei hat die Dichte des Polystyrolhartschaumstoffs, welche vom Aufschäumungsgrad der Polystyrolpartikel bestimmt wird, einen entscheidenden Einfluss auf die Wärmeleitfähigkeit. Die im Bauwesen verwendeten Wärmedämmplatten aus Polystyrolhartschaum weisen beispielsweise Dichten von 20 oder 30 kg/m3 auf, was einer Wärmeleitfähigkeit von 40 bis 35 mW/m-K ent- spricht. Um möglichst wenig Polystyrol einzusetzen, d.h. um Material einzusparen, wurde auch Polystyrolhartschaumstoff mit einer Dichte von unter 20 kg/m3 in Betracht gezogen, allerdings besitzt dieser Polystyrolhartschaumstoff eine zu hohe Wärmeleitfähigkeit von mehr als 45 mW/m-K. Um Polystyrolhartschaumstoffplatten aufweisend Dichten von unter 30 kg/m3, vorzugsweise von unter 20 kg/m3, bereitzustellen, die trotz der genannten niedrigen Dichte eine geringere, zufriedenstellende Wärmeleitfähigkeit für die Verwendung als Dämmstoff besitzen, ist es bekannt, dem Polystyrolhartschaumstoff athermane Materialien zuzusetzen. Unter athermanen Materialien werden Materialien verstanden, welche die Wärme, insbesondere die Wärme bedingt durch Infrarotstrahlung, absorbieren. Dement- sprechend vermindert also der Zusatz von athermanen Materialien die Strah- lungsdurchlässigkeit bei dem Polystyrolhartschaumstoff. Als athermane Materialien, welche dem Polystyrolhartschaumstoff zugesetzt werden können, wurden Metalloxide, z.B. AI2O3 oder Fe2O3, Nichtmetalloxide, z.B. SiO2, Metallpulver, Aluminiumpulver, Russ, Graphit, kalzinierter Petrolkoks, Meta-Anthrazit, Anthrazit- oder organische Farbstoffe bzw. Farbstoffpigmente vorgeschlagen (EP 0620246, WO 97/45477, WO 98/51734, WO 00/43442, WO 2010/031537, DE 202010013 850, DE 202010013851 ). Durch Zugabe dieser athermanen Materialien kann ein Polystyrolhartschaumstoff hergestellt werden, welcher eine Dichte von unter 20 kg/m3 und eine Wärmeleitfähigkeit von weniger als 40 mW/m-K, vorzugsweise weniger als 35 mW/m-K, aufweist. Bei Verwendung von fein gemahlenem Graphit oder kalziniertem Petrolkoks als athermanes Material ist allerdings eine energieintensive Mahlung nötig. Weiterhin ist es schwierig, die beispielsweise gemahlenen Graphitpartikel in der Polystyrol-Matrix zu dispergieren. Insbesondere bei der Verwendung anisotroper Petrolkokse, wie Nadelkokse, stellen die Rohstoffkosten einen zusätzlichen Nachteil dar. DE 202010013850 beschreibt die Verwendung von kohlenstoffhaltigen athermanen Materialien, wie beispielsweise Meta-Anthrazit oder Anthrazit, welche sowohl graphitische als auch turbostratische Strukturen aufweisen und somit in die Klasse graphitischer Kohlenstoffe gehören (siehe IUPAC Nomenklatur). Die Polystyrolhartschaumstoffe enthaltend solche atherma- nen Partikel weisen bedingt durch die teilweise graphitische Struktur dieser Partikel eine erhöhte intrinsische Wärmeleitung auf, was zu einem erhöhten Wärmeleitfähigkeitswert und damit einer schlechteren Wärmedämmung führt.
Daher ist es eine Aufgabe der vorliegenden Erfindung, einen alternativen Polysty- rolhartschaumstoff enthaltend ein athermanes Material bereitzustellen, der sich für die Wärmedämmung eignet, welcher eine Dichte von unter 40 kg/m3, vorzugsweise unter 20 kg/m3und eine Wärmeleitfähigkeit von weniger als 40 mW/m-K, vorzugsweise von weniger als 35 mW/m-K aufweist. Das hierbei zugesetzte athermane Material soll eine energiegünstigere Mahlung erlauben, wobei die ge- mahlenen Teilchen in der gewünschten Plättchenform erhalten werden und diese gemahlenen Teilchen sich zudem gut in einer Polystyrol-Matrix dispergieren lassen. Im Rahmen der vorliegenden Erfindung wird diese Aufgabe gelöst durch einen Polystyrolhartschaumstoff, welcher thermisch vorbehandelte, nicht-graphitische Anthrazitkoksteilchen enthält. Hierbei fungieren diese Anthrazitkoksteilchen als athermanes Material. Wenn im Folgenden von Anthrazitkoksteilchen gesprochen wird, sind damit thermisch vorbehandelte, nicht-graphitische Anthrazitkoksteilchen gemeint.
Erfindungsgemäß wurde erkannt, dass Polystyrolhartschaumstoffe enthaltend Anthrazitkoksteilchen, bevorzugt gaskalzinierte Anthrazitkoksteilchen, eine Dichte von unter 40 kg/m3, vorzugsweise unter 20 kg/m3, und eine Wärmeleitfähigkeit von weniger als 40 mW/m-K, vorzugsweise weniger als 35 mW/m-K aufweisen, d.h. es ist möglich, die gewünschten Wärmedämmeigenschaften zur Verfügung zu stellen. Zudem lassen sich die Anthrazitkoksteilchen im Vergleich mit z.B. Graphitteilchen (Naturgraphit oder synthetischer Graphit) energiegünstiger mahlen, da die entsprechende Durchsatzleistung erhöht ist, wobei zusätzlich der Anteil an unbrauchbarem Nebenprodukt (feiner Filterstaub) im Vergleich zu Graphit geringer ist. Graphitischer Anthrazit, welcher durch einen Temperaturbehandlung bei über 2200 °C erhalten werden kann, stellt einen synthetischen Graphit dar. Darüberhinaus können die gemahlenen Anthrazitkoksteilchen in der gewünschten
Plättchenform erhalten werden. Weiterhin lassen sich die Anthrazitkoksteilchen im Vergleich zu Graphitteilchen besser in der Polystyrol-Matrix dispergieren, da sie auf Grund ihrer Oberflächeneigenschaften besser von der Polystyrol-Matrix benetzt und somit besser dispergiert werden. Es hat sich überraschend herausgestellt, dass die Anthrazitkoksteilchen weniger Agglomerate bilden und deshalb zur homogenen Dispergierung weniger Scherkräfte benötigen. Dies ist insbesondere bei der Einarbeitung der Anthrazitkoksteilchen im Suspensions- und/oder Emulsi- onspolymerisationsverfahren von Vorteil. Gemäß der vorliegenden Erfindung kann es sich bei dem Polystyrolhartschaumstoff um extrudierten Polystyrol-Hartschaum (XPS) oder Polystyrol-Partikelschaum (EPS) handeln.
Eine Unterscheidung der Hartschaumstoffe erfolgt gemäß dem Herstellungsver- fahren. XPS wird auf Extrusionsanlagen als kontinuierlicher Schaumstoffstrang hergestellt; hierbei wird Polystyrol im Extruder aufgeschmolzen und nach Zugabe eines Treibmittels, wie z.B. CO2, durch eine Breitschlitzdüse kontinuierlich ausgetragen, wobei sich hinter der Breitschlitzdüse der Schaumstoffstrang aufbaut. Mit diesem Verfahren lassen sich Schaumstoffe mit einer Dicke zwischen 20 und 200 mm herstellen. Nach Durchlaufen einer Kühlzone wird mit nachgeschalteten Maschinen der Schaumstoffstrang zu der gewünschten Form, d.h. zu Blöcken, Platten oder Formteilen, gesägt. Dieser extrudierte Polystyrolhartschaum ist ein geschlossenzelliger Schaumstoff, nimmt nur geringe Mengen an Feuchtigkeit auf und ist alterungsbeständig. XPS wird beispielsweise unter dem Namen Styrodur® C oder Styrofoam® vertrieben. Bei der Herstellung von EPS wird Polystyrolgranulat (Polystyrol-Gries), in welches das Treibmittel Pentan einpolymerisiert ist, mit Temperaturen von über 90 °C vorgeschäumt. Durch die Temperatur verdampft das Treibmittel und bläht das thermoplastische Grundmaterial bis auf das 20 bis 50-fache zu Polystyrol-Schaumpartikeln auf. Aus diesen Schaumpartikeln werden dann in diskontinuierlich oder kontinuierlich arbeitenden Anlagen durch eine zweite Heißdampfbehandlung zwischen 1 10 °C und 120 °C Blöcke, Platten oder Formteile hergestellt. EPS stellt einen überwiegend geschlossenzelligen Dämmstoff mit eingeschlossener Luft dar, wobei EPS zu 98 % aus Luft besteht und zudem feuchtebeständig ist. EPS wird beispielsweise unter dem Namen Styropor® vertrieben. Polystyrol, verwendbar für die vorliegende Erfindung, kann durch eine Suspen- sionspolyme sation von beispielsweise Styrol in Gegenwart von Anthrazitkoksteilchen erhalten werden. Bei diesem Verfahren wird das Styrol in wässriger Suspension in Gegenwart von Anthrazitkoksteilchen polymerisiert, und die Zusetzung eines Treibmittels, wie beispielsweise von Pentan, erfolgt vor, während oder nach der Polymerisation. Bei der Emulsionspolymerisation wird beispielsweise Styrol in Wasser emulgiert, wobei zur Emulsionsstabilisierung Emulgatoren eingesetzt werden. Die verwendeten Initiatoren für die Polymerisation sind wasserlöslich, wobei die Polymerisation ebenfalls in Gegenwart von Anthrazitkokstteilchen statt- findet.
Als Polymerisate können bei den oben beschriebenen Verfahren expandierbare Styrolpolymerisate, insbesondere aus Homo- und Copolymeren von Styrol, vorzugsweise glasklares Polystyrol (GPPS), Schlagzähpolystyrol (HIPS), anionisch polymerisiertes Polystyrol oder Schlagzähpolystyrol (A-IPS), Styrol-alpha-Me- thylstyrol-copolymere, Acrylnitril-Butadien-Styrolpolymerisate (ABS), Styrol-Acryl- nitril (SAN) Acrylnitril-Styrol-Acrylester (ASA), Methyacrylat-Butadien-Styrol (MBS) und Methylmethacrylat-Acrylnitril, eingesetzt werden. Bevorzugt weist das Polystyrol ein Gewichtsmittel Mw im Bereich von 150.000 g/mol bis 350.000 g/mol, besonders bevorzugt von 150.000 g/mol bis 300.000 g/mol, ganz besonders bevorzugt von 180.000 g/mol bis 250.000 g/mol auf. Die Bestimmung des Gewichtsmittels Mw kann über die Gelpermeationschroma- tographie bei Raumtemperatur erfolgen, wobei beispielsweise als Elutionsmittel Tetrahydrofuran verwendet werden kann.
Im Rahmen der Erfindung wird es bevorzugt, dass die Anthrazitkoksteilchen im Polystyrolhartschaumstoff homogen verteilt vorliegen. Diese homogene Verteilung der Anthrazitkoksteilchen im Polystyrolhartschaumstoff, insbesondere beim Poly- styrol-Partikelschaum (EPS), führt einerseits zu keiner Beeinträchtigung der feinen Zellstruktur der Styrolpolymerisatteilchen, insbesondere der expandierten Styrolpolymerisatteilchen, und andererseits ergeben sich verbesserte Wärme- dä mm eigen schaffen des hergestellten Polymerhartschaumstoffs. Folglich wirken die Anthrazitkoksteilchen bei der Herstellung von beispielsweise EPS nicht störend bei der Keimbildung. Diese homogene Verteilung der Anthrazitkoksteilchen wird auch durch die gute Dispergierbarkeit dieser Teilchen in der Polystyrol-Matrix unterstützt. Auf Grund der Oberflächeneigenschaften dieser Anthrazitkoksteilchen können diese von der Polystyrol-Matrix gut benetzt werden, was bei der Disper- gierung dafür sorgt, dass die Agglomerate besser zerteilt werden, d.h. es liegen insgesamt weniger Agglomerate in der Polystyrol-Matrix vor.
In einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung sind die Anthrazitkoksteilchen plättchenförmig. Die Plättchenform der Anthrazitkoksteil- chen führt einerseits ebenfalls zu keiner Beeinträchtigung der feinen Zellstruktur der Styrolpolymerisatteilchen, insbesondere der expandierten Styrolpolymerisatteilchen, andererseits weisen die Plättchen eine beispielsweise im Vergleich zur Kugelform größere Oberfläche auf, wodurch diese Plättchen stark reflektierend auf die einfallende Infrarotstrahlung einwirken. In einer noch weiteren bevorzugten Ausführungsform der vorliegenden Erfindung weisen die Anthrazitkoksteilchen ein Aspektverhältnis von größer 2, bevorzugt von größer 10, besonders bevorzugt von größer 20 auf. Vorteilhafterweise liegen diese Aspektverhältnisse im Bereich von größer 2 bis 20, besonders bevorzugt im Bereich von größer 10 bis 50 und ganz besonders bevorzugt im Bereich von größer 20 bis 100. Unter Aspektverhältnis wird der Kreisdurchmesser (D) der Fläche des Plättchens zu der Dicke (T) des Plättchens verstanden, so wie es in Figur 1 gezeigt wird.
Bei diesen Aspektverhältnissen wird die einfallende Infrarotstrahlung besonders gut reflektiert. Die gute Reflexion der Infrarotstrahlung bedingt, dass diese Strah- lung nur geringfügig absorbiert wird, was dazu führt, dass sich beispielweise Formkörper hergestellt aus dem erfindungsgemäßen Polystyrolhartschaumstoff bei Sonneneinstrahlung nicht stark erwärmen und damit nicht verformt werden. Im Rahmen der Erfindung wird es bevorzugt, dass die Anthrazittkoksteilchen einen Durchmesser d5o von 0,2 bis 20,0 μιτι, besonders bevorzugt von 0,5 bis 15,0 μιτι, ganz besonders bevorzugt von 1 ,0 bis 10,0 μιτι, am höchsten bevorzugt von 2,0 bis 6,0 μιτι aufweisen. Der d50-Wert gibt die mittlere Teilchengröße an, wobei 50 % der Teilchen kleiner sind als der angegebene Wert.
Die thermische Behandlung von Anthrazit erfolgt im industriellen Maßstab in aller Regel in gasbefeuerten Schachtöfen oder in elektrisch betriebenen Öfen. Aufgrund dieser Kalzinierungstechnologie spricht man auch von gaskalzinierten Anthraziten (Gas Calcined Antracite, GCA) und elektrisch kalzinierten Anthraziten (Electrically Calcined Anthracite, ECA). Bei dem gaskalzinierten Anthrazit erhält man durch den verwendeten Temperaturbereich, bei welcher der Anthrazit behandelt wird, einen nicht-graphitischen Anthrazitkoks. Bei einer Elektrokalzinierung erhält man, wenn die Temperaturbehandlung bei unter 2200 °C erfolgt, ebenfalls einen nicht-graphitischen Anthrazitkoks. Wird grüner Anthrazit bei Temperaturen von über 2200 °C behandelt, so wird ein graphitischer Kohlenstoff, d.h. ein synthetischer Graphit auf Anthrazitbasis, erhalten.
Die gewünschten nicht-graphitischen Anthrazitkokse können durch die thermische Behandlung von grünem Anthrazit in einem Temperaturbereich von größer 500 °C bis 2200 °C erfolgen. Bei der Verwendung von thermisch behandeltem Anthrazit gemäß dieser Erfindung erfolgt die thermische Behandlung in Form einer Gasoder Elektrokalzinierung, vorzugsweise in Form einer Gaskalzinierung. Der Anthrazit wird bei der Gaskalzinierung bei Temperaturen in einem Bereich von 1200 °C bis 1500 °C und bei der Elektrokalzinierung bei Temperaturen in einem Bereich von 1800 °C bis 2200 °C behandelt, wobei die Ausbildung von graphitischen Bereichen nicht stattfindet. Im Rahmen der Erfindung wird es bevorzugt, dass ein Anthrazitkoks der mittels Gaskalzinierung hergestellt wurde, eingesetzt wird. Generell handelt es sich bei dem Ausgangsmaterial um einen grünen Anthrazit, d.h. um eine Kohle mit dem höchsten Inkohlungsgrad und einer reflektierenden Oberfläche. Anthrazite sind grundsätzlich gegenüber anderen Kohlesorten durch einen niedrigen Gehalt an flüchtigen Bestandteilen (< 10 Gewichtsprozent (Gew.-%)), einer Dichte von ca. 1 ,3 bis 1 ,4 g/cm3 und einem Kohlenstoffgehalt von > 92 Gew.-% gekennzeichnet. Der Energieinhalt reicht von ca. 26 MJ/kg bis 33 MJ/kg. Der Mazeralgehalt, d.h. der Gehalt an organischen, gesteinsbildenden Komponenten, soll dabei folgende Werte aufweisen:
Colinitgehalt > 20 %, bevorzugt > 50 %, Telinitgehalt < 45%, bevorzugt < 20 % und Vitrinitgehalt > 60 %, bevorzugt > 70 %. Vorzugsweise wird für die vorliegende Erfindung ein hochwertiger Anthrazit verwendet, der nach einer Gas- bzw. Elektrokalzinierung einen Gehalt an flüchtigen Bestandteilen von weniger als 5 Gew.-% und einen Kohlenstoffgehalt von mindestens 95 Gew.-% aufweist. Ein Anthrazit, welcher beispielsweise entweder einer Gaskalzinierung bei ca. 1250 °C oder einer Elektrokalzinierung bei 1800 °C bis 2200 °C unterzogen wurde, kann wie folgt charakterisiert werden:
Gaskalzinierung Elektrokalzinierung
Dichte [g/cm13] >1 ,7, bevorzugt > 1 ,8 >1 ,7, bevorzugt > 1 ,8
Schwefel [Gew.-%] < 7,0, bevorzugt < 5,0 < 1 ,0, bevorzugt < 0,5
Wasserstoffgehalt [Gew.-%] < 0,2, bevorzugt < 0,15 < 0,08, bevorzugt < 0,05
Asche [Gew.-%] < 8,0, bevorzugt < 5,0 < 6,0, bevorzugt < 5,0 Der Anthrazitkoks gemäß der vorliegenden Erfindung weist bevorzugt eine Dichte von > 1 ,8 g/cm3, bevorzugt einen Schwefelgehalt von < 5,0 Gewichtsprozent (Gew.-%), bevorzugt einen Wasserstoffgehalt von < 0,15 Gew.-% und bevorzugt eine Aschegehalt von < 5,0 Gew. % auf.
Um die niedrige Wärmeleitfähigkeit der Wärmedämmplatten sowie auch die vergleichsweise energetisch günstige Partikelaufbereitung zu gewährleisten, ist es essentiell, dass sich die Anthrazitkoksteilchen strukturell in einem komplett nicht- graphitischen Zustand befinden.
Zum Nachweis dieser nicht-graphitischen Struktur und deren Abgrenzung zu graphitischen Strukturen oder teilgraphitischen Strukturen wird die Röntgenfein- strukturananalyse in Form einer Pulverdiffrakomet e in Bragg-Brentano Anordnung und Cua- Strahlung angewendet. Eine graphitische oder teilgraphitische Struktur liegt vor, wenn im Röntgendiffraktogramm die dreidimensionale Interferenzen des Graphitgitters (100/101/102/1 10 und 1 12) nachweisbar sind, wie es in Figur 2 gezeigt wird (s. Fitzer, Funk, Rozploch, 4th London International Carbon and Graphite Conference, 1974) . Die International Union of Pure and Applied Chemistry (IUPC) gibt für die beiden Ausdrücke "graphitischer und nicht-graphitischer Kohlenstoff folgende Beschreibungen (Deutsche Übersetzung, Deutsche Keramische Gesellschaft, Fachausschußbericht Nr. 33, 3. Bericht des Arbeitskreises„Kohlenstoff, Terminologie zur Beschreibung von Kohlenstoff als Feststoff, W. Klose, K.-H. Köchling, C. Vogler, R- Wolf, 2009, ISBN 978-3-89958-770-8. Graphitischer Kohlenstoff:
Beschreibung:
Graphitischer Kohlenstoffe sind alle Kohlenstoffarten, die das Element Kohlenstoff in der allotropen Form des Graphits enthalten, unabhängig von vorhandenen Strukturdefekten.
Anmerkung:
Die Verwendung des Terms Graphitischer Kohlenstoff ist gerechtfertigt, wenn eine dreidimensionale hexagonale kristalline Fernordnung im Material durch Beugungsmethoden nachgewiesen werden kann, unabhängig vom Volumenanteil und der Homogenität der Verteilung solcher kritalliner Domänen. Wenn keine dreidimensionale Fernordnung nachweisbar ist, sollte der Term Nicht-Graphitischer Kohlenstoff verwendet werden.
Nicht-Graphitischer Kohlenstoff
Beschreibung:
Nicht-Graphitische Kohlenstofffe sind alle Arten von Feststoffen, die hauptsächlich aus dem Element Kohlesntoff bestehen, mit zweidimensionaler Fernordnung der Kohlenstoff-Atome in planaren hexagonalen Netzwerken. Abgesehen von der mehr oder weniger parallelen Stapelung gibt es jedoch keine messbaren kristallo- graphische Ordnung in der dritten Richtung (c-Richtung). Anmerkung:
Durch thermische Behandlung werden einige Arten von Nicht-Graphitischem Kohlenstoff in Graphitischen Kohlenstoff (Graphitierbarer Kohlenstoff) umgewandelt, andere aber nicht (Nicht-Graphitierbarer Kohlenstoff). Da die (002) Interferenz aufgrund ihrer hohen Intensität einfach zu messen ist, wird oftmals der sich aus ihr mittels der Braggschen Gleichung erhältliche mittlere Schichtebenabstand für die erste Unterscheidung zwischen graphitischen und nicht-graphitischen Kohlenstoffen herangezogen (Maire und Mehring (Proc. of the 4th Conf. On Carbon, Pergamon Press 1960, S. 345-350). Demnach haben nicht -graphitische Kohlenstoffe einen mittleren Schichtebenabstand von > 0,344 nm. Aus den Schichtebenabständen zwischen 0,3354 nm und 0,344 nm wird oftmals ein Graphitierungsgrad nach Maire und Mehring errechnet. Kleine graphitische Volumenanteile in einer nichtgraphitischen Kohlenstoffumgebung sind aufgrund ihrer erhöhten Röntgenintensität leicht gegenüber einer nicht-graphitischen Umgebung erkennbar. Dies kann der Fall sein bei einer Vermengung von nicht- graphitischen und graphitischen Kohlenstoffen. Andere Fälle dieser Vorkommnisse sind katalytische Graphitierungseffekte wie beim Ausbruch von Schwefel oder der Zersetzung von Metallkarbiden.
Bei den erfindungsgemäß eingesetzten athermanen Partikeln handelt es sich um thermisch vorbehandelte, nicht-graphitische Anthrazitkoksteilchen, welche nicht- graphitische Kohlenstoffe darstellen. Für die in den Beispielen eingesetzten thermisch vorbehandelten, nicht-graphitischen Anthrazitkoksteilchen ergibt sich ein Röntgendiffraktogramm wie in Fig. 3 gezeigt.
Tabelle 1 :
Röntgendaten des thermisch vorbehandelten, nicht graphitischen Anthrazitkokses
(002), 2 Theta Halbwertsbreite, Scheinbare Kristall it- Mittlere SchichtTheta größe in c- ebenabstand, c/2,
Richtung, Mittlere nm
Stapelhöhe, Lc, nm
25,28 4,45 180 0,3523 Das Röntgendiffraktogramm gemäß Figur 3 zeigt lediglich eine breite (002) - Interferenz und die homologe (004)-lnterferenz. Dreidimensionale Interferenzen sind nicht erkennbar. Auch ausschnittsweise die (002)-lnterferenz in Fig. 4 lässt keine graphitierte Phase erkennen. Der mittlere Schichtebenenabstand aus der Winkel- läge der (002) Interferenz errechnet sich zu 0,3523 nm und liegt damit weit über dem Grenzwert zu graphitischen Kohlenstoffen von < 0344 nm (s. Tabelle 1 ).
Temperaturbehandlungen von graphitierbaren Kohlenstoffen, wie beispielsweise Anthrazit, oberhalb von 2200 °C führen zur Ausbildung graphitischer Bereiche. Damit erhöht sich auch die thermische Leitfähigkeit dieser Kohlenstoffe, was in diesem Fall nicht erwünscht ist. Für einen elektrisch kalzinierten Anthrazit, welcher eine Temperaturbehandlung von über 2200 °C ausgesetzt wurde, ergeben sich beispielsweise folgende röntgenographischen Daten:
2Theat= 26,52°, c/2 = 0,3361 nm, Lc=1840 nm. Damit handelt es sich hierbei um einen nicht erwünschten Synthetischen Graphit auf Anthrazitbasis.
In einer noch weiteren bevorzugten Ausführungsform der vorliegenden Erfindung enthält der Polystyrolhartschaumschaumstoff Anthrazitkoksteilchen in einer Menge von 0,5 Gew.-% bis 10,0 Gew.-%, bevorzugt von 1 ,0 Gew.-% bis 8,0 Gew.-%, be- sonders bevorzugt von 2,0 Gew.-% bis 6,0 Gew.-%, ganz besonders bevorzugt von 2,5 Gew.-% bis 4,5 Gew.-% bezogen auf die Menge an Hartschaumstoff.
Die Verwendung von Anthrazitkoksteilchen ist weiterhin insofern vorteilhaft, als dass die Teilchen nach der Mahlung in der gewünschten Plättchenform erhalten werden. Zur Mahlung können Strahlmühlen ausgewählt aus der Gruppe bestehend aus Luft-, Gas- oder Dampfstrahlmühlen verwendet werden. Bevorzugt wird als Luftstrahlmühle eine Spiralstrahl- oder Gegenstrahlmühle, besonders bevorzugt eine Spiralstrahl- oder Gegenstrahlmühle aufweisend einen integrierten Windsichter, eingesetzt. Durch die Verwendung dieser Mühlen werden die zu zermahlenden Teilchen derart beschleunigt, dass die auf die Teilchen einwirkenden Kräfte eine richtungsabhängige Zerkleinerung ermöglichen, d.h. es kommt zu Zug- und Reibungskräften sowie zu Partikelkollisionen, welche zu einer gewünschten Zerkleinerung der Teilchen sowie zu einer bevorzugten Teilchenform führen.
Wenn die Polystyrolhartschaumstoffe als Wärmedämmstoffe in Form von Platten im Bauwesen eingesetzt werden, ist es notwendig, dass diese Dämmstoffe schwer entbrennbar sind, d.h. sie bestehen die Brandtests B1 und B2 gemäß der DIN 4102. Damit die erfindungsgemäßen Polystyrolhartschaumstoffe nicht leicht entbrennbar sind und die erforderlichen Brandtests bestehen, können die Hartschaumstoffe zusätzlich Flammschutzmittel enthalten. Diese Flammschutzmittel stellen organische Halogenverbindungen, vorzugsweise organische Bromverbindungen, besonders bevorzugt aliphatische, cycloaliphatische oder aromatische Bromverbindungen, und/oder Phosphorverbindungen dar. Besonders bevorzugt werden die organischen Bromverbindungen aus der Gruppe bestehend aus He- xabromcyclododecan, Pentabrommonochlorcyclohexan oder Pentabromphenyl- allylether ausgewählt und als Phosphorverbindungen werden besonders bevorzugt 9,10-Dihydro-9-oxa-10-phospha-phenantren-10-oxid (DOP-O) oder Triphenyl- phosphat (TPP) verwendet. In den erfindungsgemäßen Polystyrolhartschaumstoffen kann die erforderliche Menge an Flammschutzmittel reduziert werden, d.h. die Flammschutzmittel liegen im Polystyrolhartschaumstoff in einer Menge von weniger als 2,0 Gew.-%, bevorzugt von weniger als 1 ,5 Gew.-%, besonders bevorzugt von weniger als 1 ,0 Gew.-%, bezogen auf die Menge an Hartschaumstoff vor. Somit kann der erfindungsgemäße Polystyrolhartschaumstoff billiger und umweltfreundlicher hergestellt werden, da weniger Flammschutzmittel, insbesondere weniger organische Bromverbindungen und/oder Phosphorverbindungen, benötigt werden. Eine kostengünstigere Herstellung des erfindungsgemäßen Polystyrolhartschaum- stoffs wird auch dadurch ermöglicht, dass der Hartschaumstoff eine Dichte von 1 bis 20 kg/m3, bevorzugt von 5 bis 20 kg/m3, besonders bevorzugt von 10 bis 20 kg/m3 und ganz besonders bevorzugt von 12 bis 18 kg/m3 aufweist. Hier kommt es zu einer Materialeinsparung, da weniger Polystyrol eingesetzt werden kann.
Der erfindungsgemäße Polystyrolhartschaumstoff weist eine Wärmeleitfähigkeit von 20 mW/m-K bis 40 mW/m-K, bevorzugt von 25 mW/m-K bis 35 mW/m-K, auf. Die vorliegende Erfindung betrifft weiterhin einen Formkörper, welcher einen erfindungsgemäßen Polystyrolhartschaumstoff enthält, und die Verwendung eines solchen Formkörpers zur Wärmedämmung. Als Formkörper können beispielsweise Platten angesehen werden, welche zur Wärmedämmung, vorzugsweise im Bauwesen, verwendet werden.
Nachfolgend wird die Erfindung anhand von Beispielen erläutert werden, wobei allerdings diese Beispiele keine Einschränkung der Erfindung darstellen.
Im Vergleich zu diesen Beispielen zeigen Polystyrolhartschaumstoffe, welche als athermane Partikel Anthrazitteilchen aufweisend graphitische Strukturen enthalten, Wärmeleitfähigkeitswerte, welche bis zu 2 W/m-K schlechter sind.
Beispiele:
Beispiel 1 :
Polystyrol mit einem Molekulargewicht von 220.000 g/mol wurde in einem Extruder zusammen mit 3,5 Gew.-% gaskalzinierten Anthrazitkoksteilchen, hergestellt auf einer Strahlmühle, mit einem mittleren Teilchendurchmesser d5o von 3,5 μιτι und einem Aspektverhältnis von 20 sowie mit 0,8 Gew.-% Hexabromcyclododecan und 0,1 Gew.-% Dicumyl aufgeschmolzen, mit 6,5 Gew.-% Pentan versetzt und auf etwa 120°C abgekühlt. Die so erhaltene Mischung wurde durch eine Lochdüse zu endlosen Strängen ausgetragen über ein Kühlbad abgekühlt und mittels eines Stranggranulators zu einzelnen Stückchen granuliert. Die zylindrischen Granulate hatten einen Durchmesser von ca. 0,8 mm und eine Länge von ca.10,0 mm. Das Granulat wurde anschließend auf eine Dichte von 15 kg / m3 geschäumt. Nach 24 stündiger Konditionierung wurden daraus Blöcke gepresst und mittels Heißdraht zu 50 mm dicken Platten geschnitten. Die so hergestellten Platten hatten eine durchschnittliche Wärmeleitzahl von 32 mW/m-K.
Beispiel 2 :
In einem wässrigen Suspensionspolymerisationsverfahren nach dem bekannten Stand der Technik wurden bezogen auf die Styrolkomponenten 4 Gew.-% gaskalzinierter Anthrazitkoksteilchen, hergestellt auf einer Spiralstrahlmühle, mit einem mittleren Teilchendurchmesser von 3,0 μιτι und einem Aspektverhältnis von 45 eingemischt und zusammen mit 1 ,5 Gew.-% Hexabromcyclododecan als Flammschutzmittel sowie Pentan als Schaummittel peroxidisch polymerisiert. Die nach dem Abtrennen der wässrigen Phase erhaltenen Perlen hatten einen mittleren Durchmesser von 0,8 mm. Nach dem Verschäumen der Perlen mit Wasserdampf zu Platten mit einer Dichte von 14,5 kg/m3 konnte eine Wärmeleitzahl von 33 mW/m-K bestimmt werden.
Beispiel 3:
In einem kontinuierlich arbeitenden Extruder wird Polystyrol mit einem Molekulargewicht von 220.000 g/mol zusammen mit 1 ,0 Gew.-% Hexabromcyclododecan und 0,2 Gew.-% Dicumyl sowie 3,5 Gew.-% gaskalzinierte Anthrazitkoksteilchen, hergestellt auf einer Gegenstrahlmühle, mit einem mittleren Teilchendurchmesser von 4,0 μιτι und einem Aspektverhältnis von 35 aufgeschmolzen. Die Verschäum- ung wurde direkt im Extruder auf die Enddichte vorgenommen. Der Polystyrolschaum wurde über eine Breitschlitzdüse endlos ausgetragen und abgekühlt. Die Formteile hatten eine Dichte von 14 kg/m3 und eine Wärmeleitzahl von 31 mW/ m-K.

Claims

Patentansprüche: 1. Polystyrolhartschaumstoff,
dadurch gekennzeichnet, dass
dieser Hartschaumstoff thermisch vorbehandelte, nicht-graphitische Anthrazitkoksteilchen enthält.
2. Polystyrolhartschaumstoff nach Anspruch 1 ,
dadurch gekennzeichnet, dass
es sich bei dem Hartschaumstoff um extrudierten Polystyrol-Hartschaum (XPS) oder Polystyrol-Partikelschaum (EPS) handelt.
3. Polystyrolhartschaumstoff nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass
eine homogene Verteilung der Anthrazikokstteilchen im Hartschaumstoff vorliegt.
4. Polystyrolhartschaumstoff nach Anspruch 3,
dadurch gekennzeichnet, dass
die Anthrazitkoksteilchen plättchenförmig sind.
5. Polystyrol hartschau mstoff nach Anspruch 4,
dadurch gekennzeichnet, dass
die Anthrazitkokspartikel ein Aspektverhältnis von größer 2 aufweisen.
6. Polystyrol hartschau mstoff nach Anspruch 5,
dadurch gekennzeichnet, dass
die Anthrazitkoksteilchen einen Durchmesser d50 von 0,2 bis 20 μιτι aufweisen.
7. Polystyrol hartschau mstoff nach Anspruch 6,
dadurch gekennzeichnet, dass
der Anthrazitkoks entweder als gas- oder als elektrokalzinierter Anthrazit vorliegt.
8. Polystyrolhartschaumstoff nach Anspruch 7,
dadurch gekennzeichnet, dass
die Anthrazitkoksteilchen in einer Menge von 0,5 Gew.-% bis 10 Gew.-%, bezogen auf die Menge an Hartschaumstoff, enthalten ist.
9. Polystyrolhartschaumstoff nach Anspruch 8,
dadurch gekennzeichnet, dass
die Anthrazitkoksteilchen in Strahlmühlen ausgewählt aus der Gruppe bestehend aus Luft-, Gas- oder Dampfstrahlmühlen gemahlen wurden.
10. Polystyrolhartschaumstoff nach Anspruch 9,
dadurch gekennzeichnet, dass
die Luftstrahlmühle eine Spiralstrahl- oder Gegenstrahlmühle darstellt.
11. Polystyrol hartschau mstoff nach Anspruch 10,
dadurch gekennzeichnet, dass
der Hartschaumstoff zusätzlich Flammschutzmittel enthalten kann.
12. Polystyrolhartschaumstoff nach Anspruch 11 ,
dadurch gekennzeichnet, dass
die Flammschutzmittel organische Halogenverbindungen und/oder Phosphorverbindungen darstellen.
13. Polystyrol hartschau mstoff nach Anspruch 12,
dadurch gekennzeichnet, dass
der Hartschaumstoff eine Dichte von 1 bis 20 kg/m3 und eine Wärmleitfähigkeit von 20 mW/m-K bis 40 mW/m-K aufweist.
14. Formkörper,
dadurch gekennzeichnet, dass
er einen Polystyrol hartschau mstoff nach einem der Ansprüche 1 bis 13 enthält.
15. Verwendung eines Formkörpers nach Anspruch 15 zur Wärmedämmung.
EP14702860.9A 2013-02-05 2014-02-05 Polystyrolhartschaumstoffe Ceased EP2953999A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102013201844 2013-02-05
PCT/EP2014/052274 WO2014122190A1 (de) 2013-02-05 2014-02-05 Polystyrolhartschaumstoffe

Publications (1)

Publication Number Publication Date
EP2953999A1 true EP2953999A1 (de) 2015-12-16

Family

ID=50064614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14702860.9A Ceased EP2953999A1 (de) 2013-02-05 2014-02-05 Polystyrolhartschaumstoffe

Country Status (4)

Country Link
US (1) US20150337101A1 (de)
EP (1) EP2953999A1 (de)
KR (1) KR101782702B1 (de)
WO (1) WO2014122190A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057891A1 (en) 2017-09-22 2019-03-28 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna VINYL AROMATIC POLYMER GRANULATE AND FOAM CONTAINING TREATED ANTHRACITE PARTICLES AS AN ATHERMAN ADDITIVE AND PROCESS FOR PRODUCING THE SAME

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014213685A1 (de) * 2014-07-15 2016-01-21 Sgl Carbon Se Neuartige Polystyrolhartschaumstoffe
US20190263991A1 (en) * 2016-10-10 2019-08-29 Total Research & Technology Feluy Improved Expandable Vinyl Aromatic Polymers
US20190309155A1 (en) * 2016-10-10 2019-10-10 Total Research & Technology Feluy Improved Expandable Vinyl Aromatic Polymers
CN109863195B (zh) * 2016-10-10 2022-08-19 道达尔研究技术弗吕公司 改进的能膨胀的乙烯基芳族聚合物
JP6964653B2 (ja) * 2017-03-07 2021-11-10 株式会社カネカ スチレン系樹脂押出発泡体及びその製造方法
CN114341256A (zh) 2019-09-04 2022-04-12 道达尔能源一技术比利时公司 具有改进的阻燃性的可膨胀乙烯基芳族聚合物

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH280174A (de) * 1948-11-20 1952-01-15 Elektrokemisk As Verfahren zur Herstellung von Kohlenelektroden.
US3421991A (en) * 1966-03-22 1969-01-14 Kaiser Aluminium Chem Corp Preparation of carbon aggregate
DE9305431U1 (de) 1993-04-13 1994-08-11 AlgoStat GmbH & Co. KG, 29227 Celle Formkörper aus Polystyrol-Hartschaum
EP0902804A1 (de) 1996-05-28 1999-03-24 Basf Aktiengesellschaft Russpartikel enthaltende expandierbare styrolpolymerisate
BR9714665A (pt) 1997-05-14 2000-07-11 Basf Ag Processo para preparação de polìmeros expansìveis de estireno, e, uso dos mesmos
AT406477B (de) 1999-01-25 2000-05-25 Sunpor Kunststoff Gmbh Teilchenförmige, expandierbare styrolpolymerisate und verfahren zu ihrer herstellung
PL212329B1 (pl) 2007-10-30 2012-09-28 Boryszew Spolka Akcyjna Sposób wytwarzania kopoliestrów alifatyczno-aromatycznych metodą polikondensacji w stanie stopionym
PL384435A1 (pl) 2008-02-11 2009-08-17 Boryszew Spółka Akcyjna Kopoliestry alifatyczne i sposób wytwarzania kopoliestrów alifatycznych metodą polikondensacji w stanie stopionym
ITMI20080823A1 (it) * 2008-05-07 2009-11-08 Polimeri Europa Spa Composizioni di polimeri vinilaromatici espansibili a migliorata capacita' di isolamento termico, procedimento per la loro preparazione ed articoli espansi da esse ottenuti
DE102008047594A1 (de) * 2008-09-17 2010-04-15 H.C. Carbon Gmbh Infrarotblocker enthaltende Formkörper aus Polystyrolhartschaum oder Polystyrolpartikelschaum
AT510312B1 (de) * 2010-08-27 2013-02-15 Sunpor Kunststoff Gmbh Polymerschaumkörper oder teilchenförmige expandierbare polymerisatpartikel und verfahren zu deren herstellung
AT510311B1 (de) 2010-08-27 2013-02-15 Sunpor Kunststoff Gmbh Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
WO2015097112A1 (en) 2013-12-27 2015-07-02 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia S.K.A. Use of cenospheres for improving the self-extinguishing properties of polymer foam prepared from vinyl aromatic monomer and containing athermanous additive
UA123000C2 (uk) 2013-12-27 2021-02-03 Синтос Двори 7 Спулка З Оґранічонов Одповєдзяльносцьов Спулка Явна Комбінація мінерального компонента з вуглецевою сажею та її застосування для зниження теплопровідності вінілароматичного полімеру
PL3087127T3 (pl) 2013-12-27 2021-10-25 Synthos Dwory 7 spółka z ograniczoną odpowiedzialnością spółka jawna Wykorzystanie komonomeru styrenu z zawadą przestrzenną do poprawy termicznej stabilności ekspandowanego polimeru winyloaromatycznego
PL232855B1 (pl) 2014-04-14 2019-08-30 Synthos Spolka Akcyjna P-winylobenzyle oraz sposób ich otrzymywania
MA41344B1 (fr) 2015-01-14 2019-01-31 Synthos Sa Combinaison de silice et de graphite et son utilisation pour réduire la conductivité thermique d'une mousse de polymère aromatique vinylique
MA41342A (fr) 2015-01-14 2017-11-21 Synthos Sa Procédé pour la production de granulés de polymère vinylique aromatique expansible ayant une conductivité thermique réduite
CA2973629A1 (en) 2015-01-14 2016-07-21 Synthos S.A. Use of a mineral having perovskite structure in vinyl aromatic polymer foam
CN107406325B (zh) 2015-01-14 2021-01-15 西索斯公司 地质聚合物复合材料和可膨胀乙烯基芳香族聚合物颗粒及包含该颗粒的膨胀乙烯基芳香族聚合物泡沫

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None *
See also references of WO2014122190A1 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019057891A1 (en) 2017-09-22 2019-03-28 Synthos Dwory 7 Spolka Z Ograniczona Odpowiedzialnoscia Spolka Jawna VINYL AROMATIC POLYMER GRANULATE AND FOAM CONTAINING TREATED ANTHRACITE PARTICLES AS AN ATHERMAN ADDITIVE AND PROCESS FOR PRODUCING THE SAME
EP4219608A1 (de) 2017-09-22 2023-08-02 Synthos Dwory 7 spolka z ograniczona odpowiedzialnoscia Vinylaromatisches polymergranulat und schaumstoff mit behandelten anthrazitpartikeln als athermaner zusatz und verfahren zur herstellung davon

Also Published As

Publication number Publication date
KR101782702B1 (ko) 2017-09-27
US20150337101A1 (en) 2015-11-26
KR20150115879A (ko) 2015-10-14
WO2014122190A1 (de) 2014-08-14

Similar Documents

Publication Publication Date Title
WO2014122190A1 (de) Polystyrolhartschaumstoffe
EP2326685B1 (de) Körper, insbesondere formkörper aus polystyrol
EP2609145A1 (de) Polymerschaumkörper oder teilchenförmige expandierbare polymerisatpartikel und verfahren zu deren herstellung
DE102008023703B4 (de) Expandierbares granuläres Verbundwerkstoffmaterial, ein Verfahren für dessen Herstellung und ein Verbundwerkstoffschaum
EP0981574B1 (de) Graphitpartikel enthaltende expandierbare styrolpolymerisate
EP1137699B1 (de) Flammgeschützte polystyrolschaumstoffe
EP1694754A1 (de) Partikelschaumstoffformteile aus expandierbaren, füllstoff enthaltenden polymergranulaten
US9873772B2 (en) Polymer foams
WO2011073141A1 (de) Flammgeschützte polymerschaumstoffe
EP1102807A1 (de) Verfahren zur herstellung blähgraphitpartikel enthaltender expandierbarer styrolpolymerisate
WO1993024560A1 (de) Verfahren zur herstellung von schaumstoffplatten mit hoher druckfestigkeit aus styrolpolymerisaten
EP2274369B1 (de) Ps-schaumstoffe mit geringem metallgehalt
EP2609144A1 (de) Flammgeschützte, wärmedämmende polymerisate und verfahren zu deren herstellung
DE2631415C3 (de) Verfahren zur Herstellung gefüllter Schaumstoffe aus regenerierter Cellulose
EP2576473A2 (de) Brandhemmende materialmischung
DE4000542A1 (de) Schaumstoffplatten mit hoher waermeformbestaendigkeit
EP2975081A1 (de) Neuartige polystyrolhartschaumstoffe
EP3755742B1 (de) Formteil sowie mischung und verfahren zu seiner herstellung
EP0361096A1 (de) Verfahren zur Herstellung von Schaumstoffplatten mit hoher Druckfestigkeit
DE69228992T2 (de) Isolierende plastikverbundstruktur
DE112007003709B4 (de) Expandierbare Polystyrolbeads mit plättchenförmigem Talk, welcher mit Harz beschichtet ist, und Verfahren zu deren Herstellung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20150907

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160812

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAB Information related to observations by third parties deleted

Free format text: ORIGINAL CODE: EPIDOSDTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: FROHS, WILHELM

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HANDL WERNER

Inventor name: FROHS WILHELM

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20211011