EP2822731B1 - Method for polishing an optical surface by means of a polishing tool - Google Patents
Method for polishing an optical surface by means of a polishing tool Download PDFInfo
- Publication number
- EP2822731B1 EP2822731B1 EP13707873.9A EP13707873A EP2822731B1 EP 2822731 B1 EP2822731 B1 EP 2822731B1 EP 13707873 A EP13707873 A EP 13707873A EP 2822731 B1 EP2822731 B1 EP 2822731B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- equal
- polishing
- less
- during
- polished
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005498 polishing Methods 0.000 title claims description 95
- 238000000034 method Methods 0.000 title claims description 41
- 230000003287 optical effect Effects 0.000 title claims description 35
- 230000002093 peripheral effect Effects 0.000 claims description 9
- 238000003754 machining Methods 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- 238000004590 computer program Methods 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims description 3
- 238000011105 stabilization Methods 0.000 claims description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical group [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 239000007788 liquid Substances 0.000 description 3
- 229920005830 Polyurethane Foam Polymers 0.000 description 2
- 239000011496 polyurethane foam Substances 0.000 description 2
- 238000010408 sweeping Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 208000001491 myopia Diseases 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- -1 poly(diethylene glycol bis(allyl carbonate)) Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000004634 thermosetting polymer Substances 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24B—MACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
- B24B13/00—Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor
- B24B13/06—Machines or devices designed for grinding or polishing optical surfaces on lenses or surfaces of similar shape on other work; Accessories therefor grinding of lenses, the tool or work being controlled by information-carrying means, e.g. patterns, punched tapes, magnetic tapes
Definitions
- the present invention relates to a method for polishing an optical surface by means of a polishing tool, as well as to a method for surfacing a surface, and to a computer program product comprising a series of instructions which, when loaded on a computer, leads to the steps of the methods according to the invention being carried out (see for example DE-A-10 2004 047563 ).
- the optical surface of an optical lens is obtained by means of a surfacing method comprising a machining step followed by a step of polishing the machined surface.
- the machining step consists in machining the surface of the optical lens with a machining tool in order to impart the desired thickness and radii of curvature to the lens.
- the lens has the curvatures and thickness corresponding to the desired optical function, but the machined surface of the lens is depolished.
- the machined surface of the lens is polished by means of a polishing tool.
- the polishing step is intended to eliminate all marks left on the surface of the lens by the machining.
- the lens is smooth and transparent and capable of fulfilling the optical function for which it was designed.
- an ophthalmic lens polishing centre requires several varieties of polishing tool (more or less curved and/or of variable diameter) in order to be able to process all the lenses which may be encountered.
- the parameters of the polishing method vary depending on the type of lens to be polished. For example, for a given polishing tool and a given surface, it is suitable to set the angle of inclination, the inner cusp point, the outer cusp point, the speed of advance of the tool, the speed of rotation of the lens to be polished, and the bearing force of the polishing tool on the surface to be polished.
- the base the cylinder
- the diameter the material
- the addition the design, for example in the case of a progressive lens the progression length and the inset of the near vision.
- the choice of the polishing tool and of the parameters of the polishing method may depend on the operator, who might make a choice which turns out not to be optimal.
- the polishing time may vary greatly from one lens to another. Thus, some lenses risk being insufficiently or poorly polished whereas, for other lenses, the polishing time will be longer than the time necessary.
- the invention provides a method for polishing an optical surface by means of a polishing tool, the polishing method comprising:
- the method according to the invention makes it possible to set the parameters of the polishing machine independently of the lens to be polished, and to obtain a good compromise between the duration of the polishing method, compliance with the shape of the surface to be polished and a sufficient level of polishing so as not to impair the wearer's vision.
- the Inventors have been able to observe that, when the parameters of the polishing machine are selected in the value ranges according to the invention, it is possible to polish lenses comprising a rear face having a base, expressed in terms of an index of 1.53, of between -12 and -0.25 dioptres and a cylinder ranging up to 4 dioptres for a lens having an index of 1.53. These lenses represent about 80% of the ophthalmic lenses manufactured.
- the method according to the invention makes it possible to polish ophthalmic lenses by using a single type of polishing tool.
- it is not necessary to have several varieties of polishing tool.
- a method for polishing an optical surface according to the invention may furthermore comprise one or more of the optional characteristics below, considered individually and/or according to all possible combinations:
- the invention also relates to a method for surfacing an optical surface, comprising:
- the invention also relates to a computer program product comprising a series of instructions which, when loaded in a computer, leads to the said computer or a polishing machine, for example, carrying out the steps of a method according to the invention.
- the method according to the invention for polishing an optical surface by means of a polishing tool comprises:
- the optical surface to be polished is received.
- a lens at least one of the faces of which has been machined, is received.
- the lens received comprises a rear face having a base, expressed in terms of an index of 1.53, of between -12 and -0.25 dioptres and a cylinder ranging up to 4 dioptres.
- Some received lenses may have a locally convex rear face.
- the optical lens may be made of various organic materials, for example polycarbonate, or of poly(diethylene glycol bis(allyl carbonate)) having an optical index of 1.498, known by the brand name CR39, or a thermosetting polymer having an optical index of 1.665, known by the brand name MR7.
- polycarbonate or of poly(diethylene glycol bis(allyl carbonate)) having an optical index of 1.498, known by the brand name CR39, or a thermosetting polymer having an optical index of 1.665, known by the brand name MR7.
- the polishing machine comprising the polishing tool is configured during the configuration step S2.
- the configuration parameters of the polishing machine are selected in predetermined value ranges.
- the angle of inclination ⁇ of the pin b of the polishing tool is greater than or equal to 2°, for example greater than or equal to 5°, and less than or equal to 20°, for example less than or equal to 15°.
- the angle of inclination ⁇ of the pin b is defined as being the angle between the rotation axis of the lens L and the straight line normal to the chord joining the centre of rotation of the lens to the highest point on the contour of the lens.
- the value of the angle of inclination of the pin may be selected discretely from the values 5°, 10° or 15°.
- the polishing tool p will execute a continuous sweeping movement, without stopping, over the surface of the lens L.
- the sweeping movement of the tool over the surface of the lens may be obtained either by movement of the polishing tool p or by movement of the lens to be polished, or by a combination of relative movements between the polishing tool p and the lens L.
- the inner cusp point corresponds to the point where the pin makes a U-turn in its translational movement before moving back towards the edge of the lens.
- the inner cusp point lies at a distance less than or equal to 10 mm, for example less than or equal to 5 mm, from the centre of the circle circumscribed on the surface to be polished.
- the inner cusp point is different from the centre of the circle circumscribed on the surface to be polished.
- the outer cusp point corresponds to the point where the pin makes a U-turn in its translational movement before moving back towards the centre of the lens.
- the outer cusp point lies at a distance greater than or equal to R-15 mm, for example greater than or equal to R-12 mm, and less than or equal to R-5mm, for example R-8mm, from the centre of the circle circumscribed on the surface to be polished, with R being the half-diameter of the circle circumscribed on the surface to be polished.
- the speed of advance of the polishing tool in translation is greater than or equal to 100 mm/min, for example greater than or equal to 500 mm/min, for example even greater than or equal to 750 mm/min, and less than or equal to 2000 mm/min, for example 1500 mm/min.
- the speed of rotation of the lens to be polished is greater than or equal to 500 rpm, for example 900 rpm, and less than or equal to 3000 rpm, for example less than or equal to 2100 rpm.
- the bearing force exerted by the pin which presses the polishing tool to match the surface to be polished is greater than or equal to 50 N, for example greater than or equal to 80 N, and less than or equal to 180 N, for example less than or equal to 150 N.
- the bearing force is selected to be greater than or equal to 100 N.
- the operator configures the parameters of the polishing machine in the ranges defined by the invention.
- the use of the polishing machine with parameters according to the invention makes it possible to obtain a surface both fulfilling the optical function of the lens, and ensuring a sufficient level of polishing so as not to impair the wearer's vision, in a polishing time greater than or equal to 20 s and less than or equal to 130 s.
- the optical surface is polished by means of the polishing machine configured during the configuration step.
- the polishing step has a duration independent of the surface properties and the material of the optical surface to be polished.
- the polishing step may have a duration greater than or equal to 60 s and less than or equal to 80 s.
- the method according to the invention may comprise a step of supplying the polishing tool, during which the polishing tool is supplied.
- the tool supplied comprises:
- the polishing tool may be a tool as described in WO2007/128894 .
- the polishing tool may have an overall diameter greater than or equal to 50 mm, for example greater than or equal to 55 mm, and less than or equal to 70 mm, for example less than or equal to 60 mm.
- the diameter of the transversal end surface of the rigid support is greater than or equal to 20 mm, for example greater than or equal to 29 mm, and less than or equal to 40 mm, for example less than or equal to 31 mm. According to one embodiment, the diameter of the transversal end surface of the rigid support is substantially equal to 30 mm.
- the transversal end surface of the rigid support may have a radius of curvature greater than or equal to 70 mm and less than or equal to 200 mm.
- the elastically compressible interface has a thickness greater than or equal to 6 mm, for example greater than or equal to 8 mm, and less than or equal to 12 mm, for example less than or equal to 10 mm.
- the thickness of the elastically compressible interface may be substantially equal to 9 mm.
- a plurality of different materials may be used for the elastically compressible interface.
- the polyurethane foam known by the brand name Sylomer may be mentioned. This is a polyurethane foam having a density of between 150 kg/m 3 and 1000 kg/m 3 , withstanding a high allowable load ranging up to 2105 N/m 2 , and a compression of up to 40% of its thickness.
- the flexible pad has a thickness greater than or equal to 0.8 mm and less than or equal to 1.2 mm.
- the flexible pad may have a Shore A hardness greater than or equal to 50, for example greater than or equal to 60, and less than or equal to 80, for example less than or equal to 70.
- the material constituting the flexible pad is porous in order to allow liquid abrasive to pass through and to remove the material eroded during the polishing step.
- the abrasive is aluminium oxide (alumina Al 2 O 3 ) having a median dimension (D50) of between 1 and 2.5 ⁇ m, in suspension in a liquid in a ratio of about 200 g of abrasive per litre of liquid.
- D50 median dimension
- polishing method according to the invention may be carried out by means of polishing machines known to the person skilled in the art.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
- Crushing And Grinding (AREA)
Description
- The present invention relates to a method for polishing an optical surface by means of a polishing tool, as well as to a method for surfacing a surface, and to a computer program product comprising a series of instructions which, when loaded on a computer, leads to the steps of the methods according to the invention being carried out (see for example
DE-A-10 2004 047563 ). - Conventionally, the optical surface of an optical lens, in particular an ophthalmic lens, is obtained by means of a surfacing method comprising a machining step followed by a step of polishing the machined surface.
- The machining step consists in machining the surface of the optical lens with a machining tool in order to impart the desired thickness and radii of curvature to the lens.
- At the end of the machining step, the lens has the curvatures and thickness corresponding to the desired optical function, but the machined surface of the lens is depolished.
- During the polishing step, the machined surface of the lens is polished by means of a polishing tool. The polishing step is intended to eliminate all marks left on the surface of the lens by the machining.
- At the end of the polishing step, the lens is smooth and transparent and capable of fulfilling the optical function for which it was designed.
- Often, an ophthalmic lens polishing centre requires several varieties of polishing tool (more or less curved and/or of variable diameter) in order to be able to process all the lenses which may be encountered.
- Furthermore, the parameters of the polishing method vary depending on the type of lens to be polished. For example, for a given polishing tool and a given surface, it is suitable to set the angle of inclination, the inner cusp point, the outer cusp point, the speed of advance of the tool, the speed of rotation of the lens to be polished, and the bearing force of the polishing tool on the surface to be polished.
- Among the parameters of lenses which can have an influence on the choice of the polishing tool and the parameters of the polishing machine, the following may be mentioned: the base, the cylinder, the diameter, the material, the addition and the design, for example in the case of a progressive lens the progression length and the inset of the near vision.
- Finally, the choice of the polishing tool and of the parameters of the polishing method may depend on the operator, who might make a choice which turns out not to be optimal. In particular, depending on the tool selected and the parameters adopted, the polishing time may vary greatly from one lens to another. Thus, some lenses risk being insufficiently or poorly polished whereas, for other lenses, the polishing time will be longer than the time necessary.
- There is therefore a need for a polishing method which is simple to carry out and which permits a compromise between the duration of the polishing method, compliance with the shape of the surface to be polished and a sufficient level of polishing so as not to impair the wearer's vision.
- To this end, the invention provides a method for polishing an optical surface by means of a polishing tool, the polishing method comprising:
- a step of receiving a surface, during which an optical surface to be polished is received,
- a configuration step, during which the polishing machine comprising a polishing tool is configured,
- a polishing step, during which the optical surface is polished by means of the polishing machine configured during the configuration step,
- during the configuration step, the polishing machine is configured in such a way that:
- ▪ the angle of inclination of the pin is greater than or equal to 2° and less than or equal to 20°,
- ▪ the inner cusp point is greater than or equal to -10 mm and less than or equal to 10 mm,
- ▪ the outer cusp point is greater than or equal to R-15mm and less than or equal to R-5mm, with R being the half-diameter of the circle circumscribed on the surface to be polished, expressed in millimetres;
- ▪ the speed of advance is greater than or equal to 100 mm/min and less than or equal to 2000 mm/min;
- ▪ the speed of rotation of the surface to be polished is greater than or equal to 500 rpm and less than or equal to 3000 rpm; and
- ▪ the bearing force is greater than or equal to 50 N and less than or equal to 180 N.
- Advantageously, the method according to the invention makes it possible to set the parameters of the polishing machine independently of the lens to be polished, and to obtain a good compromise between the duration of the polishing method, compliance with the shape of the surface to be polished and a sufficient level of polishing so as not to impair the wearer's vision.
- Surprisingly, the Inventors have been able to observe that, when the parameters of the polishing machine are selected in the value ranges according to the invention, it is possible to polish lenses comprising a rear face having a base, expressed in terms of an index of 1.53, of between -12 and -0.25 dioptres and a cylinder ranging up to 4 dioptres for a lens having an index of 1.53. These lenses represent about 80% of the ophthalmic lenses manufactured.
- Thus, by applying the method according to the invention, at least 80% of ophthalmic lenses can be polished effectively.
- Furthermore, the method according to the invention makes it possible to polish ophthalmic lenses by using a single type of polishing tool. Thus, when carrying out a method according to the invention, it is not necessary to have several varieties of polishing tool.
- A method for polishing an optical surface according to the invention may furthermore comprise one or more of the optional characteristics below, considered individually and/or according to all possible combinations:
- the polishing step has a duration greater than or equal to 20 seconds and less than or equal to 130 seconds;
- the polishing step has a duration independent of the surface properties and the material of the optical surface to be polished, the duration of the said polishing step being greater than or equal to 60 seconds and less than or equal to 80 seconds;
- the polishing tool comprises:
- a rigid support having a transversal end surface and belonging to a base having a flexible flange surrounding the support;
- an elastically compressible interface which is applied against and covers the end surface of the flexible flange located on the same side as the said end surface;
- a flexible pad which is adapted to be applied against the optical surface and which is applied against and at least partly covers the interface opposite and in line with the said end surface, the pad having a so-called central part which lies in line with the said end surface and a so-called peripheral part which lies transversely beyond the end surface; and
- elastic returning means connecting the peripheral part to the support,
- the angle of inclination of the pin is greater than or equal to 5°;
- the angle of inclination of the pin is less than or equal to 15°;
- the angle of inclination of the pin is greater than or equal to 5° and less than or equal to 15°;
- the inner cusp point is non-zero;
- the inner cusp point is greater than or equal to -5 mm;
- the inner cusp point is less than or equal to 5 mm;
- the inner cusp point is non-zero and greater than or equal to -5 mm and less than or equal to 5 mm;
- the outer cusp point is greater than or equal to R-12mm;
- the outer cusp point is less than or equal to R-8mm;
- the outer cusp point is greater than or equal to R-12mm and less than or equal to R-8mm;
- the speed of advance is greater than or equal to 500 mm/min;
- the speed of advance is greater than or equal to 750 mm/min;
- the speed of advance is less than or equal to 1500 mm/min;
- the speed of advance is greater than or equal to 750 mm/min and less than or equal to 1500 mm/min;
- the speed of rotation of the surface to be polished is greater than or equal to 900 rpm;
- the speed of rotation of the surface to be polished is less than or equal to 2100 rpm;
- the speed of rotation of the surface to be polished is greater than or equal to 900 rpm and less than or equal to 2100 rpm;
- the bearing force of the polishing tool on the lens is greater than or equal to 80 N;
- the bearing force of the polishing tool on the lens is less than or equal to 150 N;
- the bearing force of the polishing tool on the lens is greater than or equal to 80 N and less than or equal to 150 N.
- The invention also relates to a method for surfacing an optical surface, comprising:
- a data reception step, during which surface data defining the optical properties of a surface are received,
- a step of machining the optical surface, during which the optical surface is machined as a function of the surface data,
- a polishing step, during which the machined surface is polished by means of a polishing method according to the invention.
- The invention also relates to a computer program product comprising a series of instructions which, when loaded in a computer, leads to the said computer or a polishing machine, for example, carrying out the steps of a method according to the invention.
- The invention will be understood more clearly on reading the following description, given solely by way of example and provided with reference to the appended drawings, in which:
-
Figure 1 illustrates the steps of the processing method according to the invention, -
Figure 2 illustrates the angle of inclination of the pin, and -
Figures 3 and 4 illustrate the inner and outer cusp points. - For reasons of clarity, the various elements represented in the figures are not necessarily to scale.
- As represented in
Figure 1 , the method according to the invention for polishing an optical surface by means of a polishing tool comprises: - a step S1 of receiving a surface,
- a configuration step S2, and
- a polishing step S3.
- During the step S1 of receiving a surface, the optical surface to be polished is received. For example, a lens, at least one of the faces of which has been machined, is received.
- According to one embodiment of the invention, the lens received comprises a rear face having a base, expressed in terms of an index of 1.53, of between -12 and -0.25 dioptres and a cylinder ranging up to 4 dioptres. Some received lenses may have a locally convex rear face.
- The optical lens may be made of various organic materials, for example polycarbonate, or of poly(diethylene glycol bis(allyl carbonate)) having an optical index of 1.498, known by the brand name CR39, or a thermosetting polymer having an optical index of 1.665, known by the brand name MR7.
- Following the reception of the surface to be polished, the polishing machine comprising the polishing tool is configured during the configuration step S2.
- During the configuration step S2, the configuration parameters of the polishing machine are selected in predetermined value ranges.
- The angle of inclination α of the pin b of the polishing tool is greater than or equal to 2°, for example greater than or equal to 5°, and less than or equal to 20°, for example less than or equal to 15°.
- As represented in
Figure 2 , the angle of inclination α of the pin b is defined as being the angle between the rotation axis of the lens L and the straight line normal to the chord joining the centre of rotation of the lens to the highest point on the contour of the lens. - According to one embodiment of the invention, the value of the angle of inclination of the pin may be selected discretely from the values 5°, 10° or 15°.
- As represented in
Figures 3 and 4 , during the polishing step the polishing tool p will execute a continuous sweeping movement, without stopping, over the surface of the lens L. Depending on the variants of the polishing method, the sweeping movement of the tool over the surface of the lens may be obtained either by movement of the polishing tool p or by movement of the lens to be polished, or by a combination of relative movements between the polishing tool p and the lens L. - As represented in
Figure 3 , the inner cusp point corresponds to the point where the pin makes a U-turn in its translational movement before moving back towards the edge of the lens. - According to one embodiment of the invention, the inner cusp point lies at a distance less than or equal to 10 mm, for example less than or equal to 5 mm, from the centre of the circle circumscribed on the surface to be polished.
- According to one embodiment, the inner cusp point is different from the centre of the circle circumscribed on the surface to be polished.
- As illustrated in
Figure 3 , the outer cusp point corresponds to the point where the pin makes a U-turn in its translational movement before moving back towards the centre of the lens. - According to one embodiment of the invention, the outer cusp point lies at a distance greater than or equal to R-15 mm, for example greater than or equal to R-12 mm, and less than or equal to R-5mm, for example R-8mm, from the centre of the circle circumscribed on the surface to be polished, with R being the half-diameter of the circle circumscribed on the surface to be polished.
- The speed of advance of the polishing tool in translation is greater than or equal to 100 mm/min, for example greater than or equal to 500 mm/min, for example even greater than or equal to 750 mm/min, and less than or equal to 2000 mm/min, for example 1500 mm/min.
- The speed of rotation of the lens to be polished is greater than or equal to 500 rpm, for example 900 rpm, and less than or equal to 3000 rpm, for example less than or equal to 2100 rpm.
- The bearing force exerted by the pin which presses the polishing tool to match the surface to be polished is greater than or equal to 50 N, for example greater than or equal to 80 N, and less than or equal to 180 N, for example less than or equal to 150 N.
- According to one embodiment of the invention, the bearing force is selected to be greater than or equal to 100 N.
- During the configuration step, the operator configures the parameters of the polishing machine in the ranges defined by the invention.
- Advantageously, the use of the polishing machine with parameters according to the invention makes it possible to obtain a surface both fulfilling the optical function of the lens, and ensuring a sufficient level of polishing so as not to impair the wearer's vision, in a polishing time greater than or equal to 20 s and less than or equal to 130 s.
- During the polishing step S3, the optical surface is polished by means of the polishing machine configured during the configuration step.
- According to one embodiment of the invention, the polishing step has a duration independent of the surface properties and the material of the optical surface to be polished. The polishing step may have a duration greater than or equal to 60 s and less than or equal to 80 s.
- According to one embodiment of the invention, the method according to the invention may comprise a step of supplying the polishing tool, during which the polishing tool is supplied.
- According to one embodiment of the invention, during the step of supplying the polishing tool, the tool supplied comprises:
- a rigid support having a transversal end surface and belonging to a base having a flexible flange surrounding the support;
- an elastically compressible interface which is applied against and covers the end surface of the flexible flange located on the same side as the said end surface;
- a flexible pad which is adapted to be applied against the optical surface and which is applied against and at least partly covers the interface opposite and in line with the said end surface, the pad having a so-called central part which lies in line with the said end surface and a so-called peripheral part which lies transversely beyond the end surface; and
- elastic returning means connecting the peripheral part to the support,
- According to one embodiment of the invention, the polishing tool may be a tool as described in
WO2007/128894 . - The polishing tool may have an overall diameter greater than or equal to 50 mm, for example greater than or equal to 55 mm, and less than or equal to 70 mm, for example less than or equal to 60 mm.
- According to one embodiment of the invention, the diameter of the transversal end surface of the rigid support is greater than or equal to 20 mm, for example greater than or equal to 29 mm, and less than or equal to 40 mm, for example less than or equal to 31 mm. According to one embodiment, the diameter of the transversal end surface of the rigid support is substantially equal to 30 mm.
- The transversal end surface of the rigid support may have a radius of curvature greater than or equal to 70 mm and less than or equal to 200 mm.
- According to one embodiment of the invention, the elastically compressible interface has a thickness greater than or equal to 6 mm, for example greater than or equal to 8 mm, and less than or equal to 12 mm, for example less than or equal to 10 mm. The thickness of the elastically compressible interface may be substantially equal to 9 mm.
- A plurality of different materials may be used for the elastically compressible interface. Among the materials which can be used, the polyurethane foam known by the brand name Sylomer may be mentioned. This is a polyurethane foam having a density of between 150 kg/m3 and 1000 kg/m3, withstanding a high allowable load ranging up to 2105 N/m2, and a compression of up to 40% of its thickness.
- According to one embodiment, the flexible pad has a thickness greater than or equal to 0.8 mm and less than or equal to 1.2 mm. The flexible pad may have a Shore A hardness greater than or equal to 50, for example greater than or equal to 60, and less than or equal to 80, for example less than or equal to 70.
- Preferably, the material constituting the flexible pad is porous in order to allow liquid abrasive to pass through and to remove the material eroded during the polishing step.
- According to one embodiment of the invention, the abrasive is aluminium oxide (alumina Al2O3) having a median dimension (D50) of between 1 and 2.5 µm, in suspension in a liquid in a ratio of about 200 g of abrasive per litre of liquid.
- The polishing method according to the invention may be carried out by means of polishing machines known to the person skilled in the art.
- For example, the machine described in
US 2009/0011688 may be used for carrying out a method according to the invention. - It is to be understood that the invention may be reproduced in forms other than those of the embodiments which have been described in detail.
- The invention is not limited to the embodiments described,and includes all equivalent versions, without departing from the scope of the invention as defined by the appended claims.
Claims (12)
- Method for polishing an optical surface by means of a polishing tool, the polishing method comprising:• a step of receiving a surface, during which an optical surface to be polished is received,• a configuration step, during which the polishing machine comprising a polishing tool is configured,• a polishing step, during which the optical surface is polished by means of the polishing machine configured during the configuration step,the method being characterised in that:• during the configuration step, the polishing machine is configured in such a way that:▪ the angle of inclination (α) of the pin is greater than or equal to 2° and less than or equal to 20°,▪ the inner cusp point is greater than or equal to -10 mm and less than or equal to 10 mm,▪ the outer cusp point is greater than or equal to R-15mm and less than or equal to R-5mm, with R being the half-diameter of the circle circumscribed on the surface to be polished, expressed in millimetres;▪ the speed of advance is greater than or equal to 100 mm/min and less than or equal to 2000 mm/min;▪ the speed of rotation of the surface to be polished is greater than or equal to 500 rpm and less than or equal to 3000 rpm; and▪ the bearing force is greater than or equal to 50 N and less than or equal to 180 N.
- Method according to Claim 1, wherein the polishing step has a duration greater than or equal to 20 seconds and less than or equal to 130 seconds.
- Method according to one of Claims 1 and 2, wherein the polishing step has a duration independent of the surface properties and the material of the optical surface to be polished, the duration of the said polishing step being greater than or equal to 60 seconds and less than or equal to 80 seconds.
- Method according to any one of the preceding claims, wherein the polishing tool comprises:• a rigid support having a transversal end surface and belonging to a base having a flexible flange surrounding the support;• an elastically compressible interface which is applied against and covers the end surface of the flexible flange located on the same side as the said end surface;• a flexible pad which is adapted to be applied against the optical surface and which is applied against and at least partly covers the interface opposite and in line with the said end surface, the pad having a so-called central part which lies in line with the said end surface and a so-called peripheral part which lies transversely beyond the end surface; and• elastic returning means connecting the peripheral part to the support,the combination of the said peripheral part and the returning means forming a means for stabilization of the tool during the polishing.
- Method according to any one of the preceding claims, wherein the angle of inclination of the pin is greater than or equal to 5° and less than or equal to 15°.
- Method according to any one of the preceding claims, wherein the inner cusp point is non-zero and greater than or equal to -5 mm and less than or equal to 5 mm.
- Method according to any one of the preceding claims, wherein the outer cusp point is greater than or equal to R-12mm and less than or equal to R-8mm.
- Method according to any one of the preceding claims, wherein the speed of advance is greater than or equal to 500 mm/min and less than or equal to 1500 mm/min.
- Method according to any one of the preceding claims, wherein the speed of rotation is greater than or equal to 900 rpm and less than or equal to 2100 rpm.
- Method according to any one of the preceding claims, wherein the bearing force is greater than or equal to 80 N and less than or equal to 150 N.
- Method for surfacing an optical surface, comprising:- a data reception step, during which surface data defining the optical properties of a surface are received,- a step of machining the optical surface, during which the optical surface is machined as a function of the surface data,- a polishing step, during which the machined surface is polished by means of a polishing method according to any one of the preceding claims.
- Computer program product comprising a series of instructions which, when loaded in a computer, leads to the said computer carrying out the steps of the method according to any one of the preceding claims.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1252060A FR2987771B1 (en) | 2012-03-07 | 2012-03-07 | METHOD OF POLISHING AN OPTICAL SURFACE USING A POLISHING TOOL |
PCT/EP2013/054493 WO2013131950A1 (en) | 2012-03-07 | 2013-03-06 | Method for polishing an optical surface by means of a polishing tool |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2822731A1 EP2822731A1 (en) | 2015-01-14 |
EP2822731B1 true EP2822731B1 (en) | 2015-12-23 |
Family
ID=47833076
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP13707873.9A Active EP2822731B1 (en) | 2012-03-07 | 2013-03-06 | Method for polishing an optical surface by means of a polishing tool |
Country Status (6)
Country | Link |
---|---|
US (1) | US20150038053A1 (en) |
EP (1) | EP2822731B1 (en) |
CN (1) | CN104159708B (en) |
FR (1) | FR2987771B1 (en) |
IN (1) | IN2014DN06645A (en) |
WO (1) | WO2013131950A1 (en) |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5632668A (en) * | 1993-10-29 | 1997-05-27 | Minnesota Mining And Manufacturing Company | Method for the polishing and finishing of optical lenses |
US5577950A (en) * | 1993-11-29 | 1996-11-26 | Coburn Optical Industries, Inc. | Conformal tool operating apparatus and process for an ophthalmic lens finer/polisher |
JP3144752B2 (en) * | 1994-05-24 | 2001-03-12 | キヤノン株式会社 | Polishing method of diamond film |
NL1001418C2 (en) * | 1995-10-13 | 1997-04-15 | Tno | Method and device for forming a rotationally symmetrical surface. |
JP2001246539A (en) * | 2000-03-03 | 2001-09-11 | Inst Of Physical & Chemical Res | Grinding work method for non-axisymmetric aspherical mirror |
US6558586B1 (en) * | 2000-03-06 | 2003-05-06 | Essilor International (Compagnie Generale D'optique) | Process for fabricating a surface of an ophthalmic lens, installation for implementing the process and ophthalmic lens obtained by the process |
EP2065133B1 (en) * | 2002-01-09 | 2012-03-21 | Hoya Corporation | Polishing Apparatus |
FR2834662B1 (en) * | 2002-01-16 | 2004-05-14 | Essilor Int | TOOL FOR SURFACING AN OPTICAL SURFACE |
JP4556383B2 (en) * | 2002-11-29 | 2010-10-06 | コニカミノルタホールディングス株式会社 | Processing method of transfer optical surface |
JP2005001100A (en) * | 2003-02-21 | 2005-01-06 | Seiko Epson Corp | Method of working aspherical face and method of forming aspherical face |
DE102004047563A1 (en) * | 2004-09-30 | 2006-04-06 | Asphericon Gmbh | Method of polishing |
US7396275B2 (en) * | 2005-12-30 | 2008-07-08 | Essilor International (Compagnie General D'optique) | Polishing machine comprising sliding means transverse to the front face |
FR2900356B1 (en) | 2006-04-27 | 2008-07-18 | Essilor Int | TOOL FOR SURFACING AN OPTICAL SURFACE |
FR2902683B1 (en) * | 2006-06-22 | 2008-10-10 | Essilor Int | PROCESS AND MACHINING MACHINE FOR OPTICAL OBJECT |
CN101046521A (en) * | 2007-03-16 | 2007-10-03 | 王中安 | Process of producing asymmetric aspheric lens |
DE102007031703A1 (en) | 2007-07-06 | 2009-01-08 | Satisloh Gmbh | Machine for processing optical workpieces, in particular plastic spectacle lenses |
DE102009004787A1 (en) * | 2009-01-13 | 2010-07-15 | Schneider Gmbh & Co. Kg | Apparatus and method for polishing lenses |
US20130017325A1 (en) * | 2009-08-31 | 2013-01-17 | Hoya Corporation | Polarizing element and method for manufacturing polarizing lens |
CN102049717A (en) * | 2010-07-19 | 2011-05-11 | 长春理工大学 | Controlling computerized numerical control (CNC) high-quality aspheric surface forming control method and hardware system |
JP5864298B2 (en) * | 2011-02-21 | 2016-02-17 | Hoya株式会社 | Manufacturing method of spectacle lens |
TWI584914B (en) * | 2013-07-22 | 2017-06-01 | 佳能股份有限公司 | Component manufacturing method and polishing apparatus |
-
2012
- 2012-03-07 FR FR1252060A patent/FR2987771B1/en active Active
-
2013
- 2013-03-06 EP EP13707873.9A patent/EP2822731B1/en active Active
- 2013-03-06 US US14/383,455 patent/US20150038053A1/en not_active Abandoned
- 2013-03-06 CN CN201380013371.7A patent/CN104159708B/en active Active
- 2013-03-06 IN IN6645DEN2014 patent/IN2014DN06645A/en unknown
- 2013-03-06 WO PCT/EP2013/054493 patent/WO2013131950A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
FR2987771B1 (en) | 2014-04-25 |
US20150038053A1 (en) | 2015-02-05 |
WO2013131950A1 (en) | 2013-09-12 |
CN104159708A (en) | 2014-11-19 |
IN2014DN06645A (en) | 2015-05-22 |
CN104159708B (en) | 2016-08-17 |
FR2987771A1 (en) | 2013-09-13 |
EP2822731A1 (en) | 2015-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100751173B1 (en) | Lens polishing method | |
ES2764652T3 (en) | Polishing disc for fine machining of optically active surfaces in eyeglass lenses | |
EP1827758B1 (en) | Polishing wheel | |
US8641192B2 (en) | System and method for manufacturing a lens, such as an ophthalmic lens | |
US20100041318A1 (en) | Method for producing a spectacle lens | |
CN109031694B (en) | Semi-finished lenses ready to be processed to form ophthalmic lenses to be mounted on spectacle frames, combinations and methods related thereto | |
EP2516110B1 (en) | A method for mounting an optical lens to be polished | |
EP2822731B1 (en) | Method for polishing an optical surface by means of a polishing tool | |
CA2867680C (en) | Tool for the polishing machining of optical surfaces | |
JP5206231B2 (en) | Manufacturing method of spectacle lens | |
EP2143527B1 (en) | Tool for polishing conventional and free-form optical surfaces | |
WO2010110271A1 (en) | Manufacturing method for lens and lens holder | |
JP4186809B2 (en) | Optical lens polishing method | |
JP4013966B2 (en) | Lens polishing method | |
JP5470078B2 (en) | Manufacturing method of spectacle lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140902 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150716 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 766325 Country of ref document: AT Kind code of ref document: T Effective date: 20160115 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602013004252 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160323 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 766325 Country of ref document: AT Kind code of ref document: T Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160324 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160426 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160423 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602013004252 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160306 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20160926 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160306 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160331 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602013004252 Country of ref document: DE Owner name: ESSILOR INTERNATIONAL, FR Free format text: FORMER OWNER: ESSILOR INTERNATIONAL (COMPAGNIE GENERALE D'OPTIQUE), CHARENTON-LE-PONT, FR |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20130306 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160331 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ESSILOR INTERNATIONAL, FR Effective date: 20180601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151223 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230525 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240327 Year of fee payment: 12 Ref country code: GB Payment date: 20240327 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240325 Year of fee payment: 12 |