EP2817434A1 - Prétraitement de surfaces en zinc avant une passivation - Google Patents
Prétraitement de surfaces en zinc avant une passivationInfo
- Publication number
- EP2817434A1 EP2817434A1 EP13705479.7A EP13705479A EP2817434A1 EP 2817434 A1 EP2817434 A1 EP 2817434A1 EP 13705479 A EP13705479 A EP 13705479A EP 2817434 A1 EP2817434 A1 EP 2817434A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- water
- acid
- soluble
- zinc
- component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 title claims abstract description 63
- 229910052725 zinc Inorganic materials 0.000 title claims abstract description 63
- 239000011701 zinc Substances 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims abstract description 42
- 230000008569 process Effects 0.000 title claims abstract description 23
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 77
- 239000000203 mixture Substances 0.000 claims abstract description 77
- 229910052742 iron Inorganic materials 0.000 claims abstract description 55
- 150000003839 salts Chemical class 0.000 claims abstract description 41
- 239000002253 acid Substances 0.000 claims abstract description 30
- 229910001335 Galvanized steel Inorganic materials 0.000 claims abstract description 28
- 239000008397 galvanized steel Substances 0.000 claims abstract description 28
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims abstract description 22
- 239000000126 substance Substances 0.000 claims abstract description 22
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract description 19
- 229910052698 phosphorus Inorganic materials 0.000 claims abstract description 17
- 229910052757 nitrogen Inorganic materials 0.000 claims abstract description 14
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims abstract description 13
- 239000011574 phosphorus Substances 0.000 claims abstract description 13
- 229910052751 metal Inorganic materials 0.000 claims abstract description 12
- 150000004715 keto acids Chemical class 0.000 claims abstract description 11
- 239000002184 metal Substances 0.000 claims abstract description 10
- 125000003277 amino group Chemical group 0.000 claims abstract description 6
- -1 iron ions Chemical class 0.000 claims description 41
- 238000006243 chemical reaction Methods 0.000 claims description 15
- 150000007513 acids Chemical class 0.000 claims description 13
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 claims description 12
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 10
- 229910052726 zirconium Inorganic materials 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 9
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 claims description 8
- 125000004432 carbon atom Chemical group C* 0.000 claims description 7
- 239000004471 Glycine Substances 0.000 claims description 6
- AEMRFAOFKBGASW-UHFFFAOYSA-N Glycolic acid Chemical compound OCC(O)=O AEMRFAOFKBGASW-UHFFFAOYSA-N 0.000 claims description 6
- ROBFUDYVXSDBQM-UHFFFAOYSA-N hydroxymalonic acid Chemical compound OC(=O)C(O)C(O)=O ROBFUDYVXSDBQM-UHFFFAOYSA-N 0.000 claims description 6
- 150000001371 alpha-amino acids Chemical class 0.000 claims description 5
- 235000008206 alpha-amino acids Nutrition 0.000 claims description 5
- 150000002484 inorganic compounds Chemical class 0.000 claims description 5
- 229910010272 inorganic material Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 230000003647 oxidation Effects 0.000 claims description 5
- 238000007254 oxidation reaction Methods 0.000 claims description 5
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 5
- ACVYVLVWPXVTIT-UHFFFAOYSA-N phosphinic acid Chemical compound O[PH2]=O ACVYVLVWPXVTIT-UHFFFAOYSA-N 0.000 claims description 5
- PTFCDOFLOPIGGS-UHFFFAOYSA-N Zinc dication Chemical compound [Zn+2] PTFCDOFLOPIGGS-UHFFFAOYSA-N 0.000 claims description 4
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 4
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 4
- 235000014655 lactic acid Nutrition 0.000 claims description 4
- 239000004310 lactic acid Substances 0.000 claims description 4
- 125000004437 phosphorous atom Chemical group 0.000 claims description 4
- AFENDNXGAFYKQO-UHFFFAOYSA-N 2-hydroxybutyric acid Chemical compound CCC(O)C(O)=O AFENDNXGAFYKQO-UHFFFAOYSA-N 0.000 claims description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 claims description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 3
- 239000004472 Lysine Substances 0.000 claims description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 claims description 3
- 235000013922 glutamic acid Nutrition 0.000 claims description 3
- 239000004220 glutamic acid Substances 0.000 claims description 3
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910017604 nitric acid Inorganic materials 0.000 claims description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 3
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 claims description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 claims description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 claims description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 claims description 2
- IOVCWXUNBOPUCH-UHFFFAOYSA-N Nitrous acid Chemical compound ON=O IOVCWXUNBOPUCH-UHFFFAOYSA-N 0.000 claims description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical compound OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 claims description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 claims description 2
- 239000004473 Threonine Substances 0.000 claims description 2
- KCTSXBFNNAXQFG-UHFFFAOYSA-N [hydroxy(oxido)phosphaniumyl]phosphinic acid Chemical compound OP(=O)P(O)=O KCTSXBFNNAXQFG-UHFFFAOYSA-N 0.000 claims description 2
- 235000004279 alanine Nutrition 0.000 claims description 2
- 235000003704 aspartic acid Nutrition 0.000 claims description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- XQRLCLUYWUNEEH-UHFFFAOYSA-N diphosphonic acid Chemical compound OP(=O)OP(O)=O XQRLCLUYWUNEEH-UHFFFAOYSA-N 0.000 claims description 2
- FOBPTJZYDGNHLR-UHFFFAOYSA-N diphosphorus Chemical compound P#P FOBPTJZYDGNHLR-UHFFFAOYSA-N 0.000 claims description 2
- 150000008040 ionic compounds Chemical class 0.000 claims description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 2
- 208000013016 Hypoglycemia Diseases 0.000 claims 1
- 238000000576 coating method Methods 0.000 abstract description 34
- 230000007797 corrosion Effects 0.000 abstract description 30
- 238000005260 corrosion Methods 0.000 abstract description 30
- 239000011248 coating agent Substances 0.000 abstract description 26
- 239000010410 layer Substances 0.000 abstract description 24
- 238000007739 conversion coating Methods 0.000 abstract description 7
- 230000008021 deposition Effects 0.000 abstract description 7
- 230000009467 reduction Effects 0.000 abstract description 5
- 239000011247 coating layer Substances 0.000 abstract description 4
- 239000003638 chemical reducing agent Substances 0.000 abstract description 3
- 239000003513 alkali Substances 0.000 abstract 1
- 230000005012 migration Effects 0.000 abstract 1
- 238000013508 migration Methods 0.000 abstract 1
- 229910000831 Steel Inorganic materials 0.000 description 22
- 239000010959 steel Substances 0.000 description 22
- 239000003973 paint Substances 0.000 description 14
- 150000001875 compounds Chemical class 0.000 description 12
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- 238000002161 passivation Methods 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 8
- 239000000047 product Substances 0.000 description 8
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 7
- 239000008139 complexing agent Substances 0.000 description 7
- 238000000151 deposition Methods 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 229910052719 titanium Inorganic materials 0.000 description 6
- 239000010936 titanium Substances 0.000 description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 238000005520 cutting process Methods 0.000 description 5
- 230000008595 infiltration Effects 0.000 description 5
- 238000001764 infiltration Methods 0.000 description 5
- 125000004429 atom Chemical group 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 239000002736 nonionic surfactant Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- MIMUSZHMZBJBPO-UHFFFAOYSA-N 6-methoxy-8-nitroquinoline Chemical compound N1=CC=CC2=CC(OC)=CC([N+]([O-])=O)=C21 MIMUSZHMZBJBPO-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000008346 aqueous phase Substances 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 238000004090 dissolution Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 239000011572 manganese Substances 0.000 description 3
- 239000002987 primer (paints) Substances 0.000 description 3
- 230000001603 reducing effect Effects 0.000 description 3
- 238000003466 welding Methods 0.000 description 3
- LRXTYHSAJDENHV-UHFFFAOYSA-H zinc phosphate Chemical compound [Zn+2].[Zn+2].[Zn+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O LRXTYHSAJDENHV-UHFFFAOYSA-H 0.000 description 3
- 229910000165 zinc phosphate Inorganic materials 0.000 description 3
- ZNBNBTIDJSKEAM-UHFFFAOYSA-N 4-[7-hydroxy-2-[5-[5-[6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-2,8-dimethyl-1,10-dioxaspiro[4.5]decan-9-yl]-2-methyl-3-propanoyloxypentanoic acid Chemical compound C1C(O)C(C)C(C(C)C(OC(=O)CC)C(C)C(O)=O)OC11OC(C)(C2OC(C)(CC2)C2C(CC(O2)C2C(CC(C)C(O)(CO)O2)C)C)CC1 ZNBNBTIDJSKEAM-UHFFFAOYSA-N 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 2
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 2
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 2
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 2
- 229910002651 NO3 Inorganic materials 0.000 description 2
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 241001499740 Plantago alpina Species 0.000 description 2
- 208000027418 Wounds and injury Diseases 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000012141 concentrate Substances 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000011162 core material Substances 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 239000003925 fat Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 235000004554 glutamine Nutrition 0.000 description 2
- 229910001385 heavy metal Inorganic materials 0.000 description 2
- 229910000378 hydroxylammonium sulfate Inorganic materials 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000009863 impact test Methods 0.000 description 2
- 208000014674 injury Diseases 0.000 description 2
- VCJMYUPGQJHHFU-UHFFFAOYSA-N iron(3+);trinitrate Chemical compound [Fe+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O VCJMYUPGQJHHFU-UHFFFAOYSA-N 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 239000003446 ligand Substances 0.000 description 2
- 229910052748 manganese Inorganic materials 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 229910000510 noble metal Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000002203 pretreatment Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- VGTPCRGMBIAPIM-UHFFFAOYSA-M sodium thiocyanate Chemical compound [Na+].[S-]C#N VGTPCRGMBIAPIM-UHFFFAOYSA-M 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- WPWHSFAFEBZWBB-UHFFFAOYSA-N 1-butyl radical Chemical compound [CH2]CCC WPWHSFAFEBZWBB-UHFFFAOYSA-N 0.000 description 1
- IDCPFAYURAQKDZ-UHFFFAOYSA-N 1-nitroguanidine Chemical compound NC(=N)N[N+]([O-])=O IDCPFAYURAQKDZ-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 1
- RGHNJXZEOKUKBD-UHFFFAOYSA-N Isohexonic acid Chemical compound OCC(O)C(O)C(O)C(O)C(O)=O RGHNJXZEOKUKBD-UHFFFAOYSA-N 0.000 description 1
- JLVVSXFLKOJNIY-UHFFFAOYSA-N Magnesium ion Chemical compound [Mg+2] JLVVSXFLKOJNIY-UHFFFAOYSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- FATUQANACHZLRT-KMRXSBRUSA-L calcium glucoheptonate Chemical compound [Ca+2].OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O.OC[C@@H](O)[C@@H](O)[C@H](O)[C@@H](O)C(O)C([O-])=O FATUQANACHZLRT-KMRXSBRUSA-L 0.000 description 1
- 125000005392 carboxamide group Chemical group NC(=O)* 0.000 description 1
- 238000004210 cathodic protection Methods 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- JOPOVCBBYLSVDA-UHFFFAOYSA-N chromium(6+) Chemical compound [Cr+6] JOPOVCBBYLSVDA-UHFFFAOYSA-N 0.000 description 1
- 239000008199 coating composition Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 238000007772 electroless plating Methods 0.000 description 1
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 150000002191 fatty alcohols Chemical class 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- VBJZVLUMGGDVMO-UHFFFAOYSA-N hafnium atom Chemical compound [Hf] VBJZVLUMGGDVMO-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- TVZISJTYELEYPI-UHFFFAOYSA-N hypodiphosphoric acid Chemical compound OP(O)(=O)P(O)(O)=O TVZISJTYELEYPI-UHFFFAOYSA-N 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 235000014413 iron hydroxide Nutrition 0.000 description 1
- 159000000014 iron salts Chemical class 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- NCNCGGDMXMBVIA-UHFFFAOYSA-L iron(ii) hydroxide Chemical class [OH-].[OH-].[Fe+2] NCNCGGDMXMBVIA-UHFFFAOYSA-L 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 229910001425 magnesium ion Inorganic materials 0.000 description 1
- 229910001512 metal fluoride Inorganic materials 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- BUIMWOLDCCGZKZ-UHFFFAOYSA-N n-hydroxynitramide Chemical compound ON[N+]([O-])=O BUIMWOLDCCGZKZ-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 238000010422 painting Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 125000002572 propoxy group Chemical group [*]OC([H])([H])C(C([H])([H])[H])([H])[H] 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000011253 protective coating Substances 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 239000012465 retentate Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 239000012086 standard solution Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- 150000003609 titanium compounds Chemical class 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/02—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/07—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing phosphates
- C23C22/08—Orthophosphates
- C23C22/18—Orthophosphates containing manganese cations
- C23C22/182—Orthophosphates containing manganese cations containing also zinc cations
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/06—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6
- C23C22/34—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using aqueous acidic solutions with pH less than 6 containing fluorides or complex fluorides
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/05—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions
- C23C22/60—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using aqueous solutions using alkaline aqueous solutions with pH greater than 8
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/73—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/78—Pretreatment of the material to be coated
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C22/00—Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C22/82—After-treatment
- C23C22/83—Chemical after-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C8/00—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
- C23C8/40—Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using liquids, e.g. salt baths, liquid suspensions
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2222/00—Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
Definitions
- the present invention relates to a wet-chemical pretreatment of zinc surfaces prior to the application of a corrosion-protective coating.
- Pretreatment causes the deposition of a thin inorganic coating consisting essentially of oxidic and / or metallic iron.
- a layer of iron applied according to the invention - referred to below as icing - requires an improvement in the achievable corrosion protection of wet-chemical conversion coatings known from the prior art on zinc surfaces.
- the icing causes both a reduction in the contact corrosion of assembled metallic components having zinc and iron surfaces as well as a reduction of corrosive paint infiltration of cut edges of galvanized steel strip with
- Paint layer structure particularly relates to an alkaline composition for icing containing a source of iron ions, a reducing agent based on oxo acids of the elements nitrogen and phosphorus and water-soluble organic
- Carboxylic acids with an amino group in the a, ß, or ⁇ position to the acid group and / or their water-soluble salts are Carboxylic acids with an amino group in the a, ß, or ⁇ position to the acid group and / or their water-soluble salts.
- the metallic zinc coatings which are applied to the steel strip either electrolytically or by hot dip coating, impart a cathodic protective effect which permits active dissolution of the nobler core material by mechanically causing injuries to the material Zinc coating effectively prevented.
- German Patent Application DE 197 33 972 A1 teaches a process for the alkaline passivating pretreatment of galvanized and alloy-galvanized
- the surface-treated steel strip is brought into contact with an alkaline treatment agent containing magnesium ions, iron (III) ions and a complexing agent.
- an alkaline treatment agent containing magnesium ions, iron (III) ions and a complexing agent.
- the zinc surface is passivated thereby forming the corrosion protection layer.
- Such a passivated surface already offers, according to the teaching of DE19733972, a paint adhesion which is comparable with nickel- and cobalt-containing processes.
- this pretreatment can be followed by further treatment steps such as chromium-free post-passivation to improve the corrosion protection before the paint system is applied.
- DE 10 2010 001 686 A1 pursues the passivation of galvanized steel surfaces using alkaline compositions containing iron (III) ions, phosphate ions and one or more complexing agents to prepare the zinc surfaces for subsequent acid passivation and resist coating.
- the alkaline passivation serves primarily to improve the corrosion protection of chromium-free
- the aim is to achieve an alkaline cleaning step that leads to alkaline passivation and subsequent acidic passivation to provide a coating base which is comparable to zinc phosphating and protects against corrosion.
- DE 10 2007 021 364 A1 additionally pursues the goal of realizing a thin metallic layer coating on galvanized steel surfaces by means of electroless plating of electrolytic metal cations without external current, which together with a following
- the icing and tinning of galvanized and alloy-galvanized steel strip is proposed to improve the edge protection.
- the icing preferably acidic compositions containing iron ions, a complexing agent with oxygen and / or nitrogen ligands and phosphinic acid are used as the reducing agent.
- the object of the present invention is to further develop the icing of metallic components having zinc surfaces such that, in conjunction with subsequent wet-chemical conversion coatings, improved corrosion protection and paint adhesion on the zinc surfaces results, in particular the edge protection is to be improved at cutting edges of galvanized steel surfaces ,
- the present invention therefore relates in a first aspect to an alkaline
- Composition for pretreatment of metallic components having zinc surfaces having a pH of at least 8.5
- Water solubility in the context of the present invention means that the solubility of the compound at a temperature of 25 ° C and a pressure of 1 bar in deionized
- Oxidation stage refers to the hypothetical charge of an atom, which consists of the number of electrons of the atom in comparison to its
- surfaces of galvanized steel and alloy-galvanized steel are considered as zinc surfaces in addition to surfaces of metallic zinc if the zinc coating is at least 5 g / m 2 based on the element zinc and the proportion of zinc in the zinc layer on the steel is at least 40 at% ,
- the source of iron ions dissolved in water are all compounds which release iron ions in water.
- one or more water-soluble salts of di- or trivalent iron in a composition according to the invention can serve as a source of iron ions dissolved in water, wherein the use of water-soluble salts of divalent iron ions is preferred, such as, for example, iron (II) nitrate or iron (II) sulfate.
- Particularly suitable water-soluble compounds are the corresponding salts of the ⁇ -hydroxycarboxylic acids having not more than 8 carbon atoms, which in turn are preferably selected from salts of polyhydroxymonocarboxylic acid, polyhydroxydicarboxylic acid each having at least 4 carbon atoms, tartronic acid, glycolic acid, lactic acid and / or ⁇ -hydroxybutyric acid.
- compositions according to the invention for a sufficiently fast kinetics of icing from aqueous solution, preference is given to compositions according to the invention in which at least 0.1 g / l, preferably at least 1 g / l, particularly preferably at least 2 g / l, of iron ions dissolved in the aqueous phase are included.
- additional amounts of dissolved iron ions initially cause a further increase in the deposition kinetics, so that, depending on the
- Coil coating plant is the case, the composition preferably contains at least 3 g / l of iron ions.
- the upper limit for the amount of iron ions becomes
- composition primarily determined by the stability of the composition and is for one
- Composition according to the invention preferably at 50 g / l.
- the amounts with respect to the iron ions in a composition according to the invention relate
- iron ions available for the freezing and thus the amount of dissolved in the aqueous phase iron ions, for example.
- Iron ions in non-freezing form ie for example, bound in undissolved iron salts do not contribute to the proportion of iron ions in the composition of the invention.
- the molar ratio of iron ions to water-soluble organic carboxylic acids according to component b) and their water-soluble salts is not greater than 2: 1. Above this molar ratio, the accelerating effect of the organic carboxylic acids according to component b) decreases Icing already noticeable. Therefore, according to the invention are particularly preferred
- a reduction of the aforementioned molar ratio below 1:12 with a constant amount of iron ions, ie a further increase in the proportion of component b) causes no appreciable additional acceleration in the
- compositions in which the molar ratio of iron ions to water-soluble organic carboxylic acids according to component b) and their water-soluble salts is at least 1: 12, preferably at least 1: 8.
- compositions according to the invention are particularly suitable for producing uniform and adequate iron coating layers on zinc surfaces in a time interval typical for wet-chemical pretreatment.
- those compositions are preferred according to the invention in which the organic carboxylic acids and / or their salts according to component b) are selected from water-soluble ⁇ -amino acids and their water-soluble salts, in particular from ⁇ -amino acids and their water-soluble salts, in addition to amino and carboxyl Groups have exclusively hydroxyl groups and / or carboxamide groups, wherein the ⁇ -amino acids preferably have not more than 7 carbon atoms.
- a composition according to the invention contains
- Glutamic acid glutamine and / or their water-soluble salts, particularly preferably glycine and / or its water-soluble salts.
- an alkaline composition for the pretreatment of metallic surfaces having zinc surfaces is preferred according to the invention, for which the proportion of glycine and / or its water-soluble salts of water-soluble organic carboxylic acids according to component b) and / or their water-soluble salts at least 50 wt .-%, more preferably at least 80 wt .-%, particularly preferably at least 90 wt .-% is.
- the oxo acids of phosphorus or nitrogen according to component c) of the composition according to the invention have reducing properties and thus bring about rapid and homogeneous icing of the zinc surfaces brought into contact with the composition according to the invention.
- the molar ratio of iron ions to oxo acids of phosphorus or nitrogen according to component c) and their water-soluble salts is for economic reasons at least 1:10, preferably at least 1: 6. On the other hand, the relative proportion of these compounds should be
- Component c) be sufficiently large for a sufficient icing of the zinc surfaces.
- the aforementioned molar ratio in a composition according to the invention is not greater than 3: 1, more preferably not greater than 2: 1. It is further preferred if the proportion of oxo acids of phosphorus in a
- Composition according to the invention based on the total amount of components c) at least 50 mol .-%, particularly preferably at least 80 mol .-% is.
- the compounds according to component c) of a composition according to the invention are preferably selected from hyposalphurous acid, hypo nitric acid, nitrous acid, hypophosphoric acid, hypodiphosphonic acid,
- composition according to the invention therefore preferably additionally contains chelating complexing agents with oxygen and / or nitrogen ligands which do not contain water-soluble carboxylic acids according to component b) of the invention Compositions are.
- Particularly preferred in this context are compositions according to the invention which comprise as additional component d) one or more such complexing agents which are selected from water-soluble
- ⁇ -hydroxycarboxylic acids which have at least one hydroxyl and one carboxyl group and are not water-soluble organic carboxylic acids according to component b), and from their water-soluble salts.
- the water-soluble a-hydroxycarboxylic acids according to component d) preferably have not more than 8 carbon atoms and are in particular selected from polyhydroxymonocarboxylic acids and / or polyhydroxydicarboxylic acids each having at least 4 carbon atoms, tartronic acid, glycolic acid, lactic acid and / or ⁇ -hydroxybutyric acid and from their water-soluble salts, most preferably selected from lactic acid and / or 2, 3,4,5, 6-pentahydroxyhexanoic acid and from their water-soluble salts.
- a particularly effective formulation of the inventive composition with the aforementioned complexing agents according to component d) has a molar ratio of iron ions to water-soluble ⁇ -hydroxycarboxylic acids and their water-soluble salts of at least 1: 4, preferably of at least 1: 3, but not greater than 2: 1, preferably not greater than 1: 1.
- composition according to the invention as optional
- Component e) reducing accelerators are used, which are known to the person skilled in the art in the phosphating. These include hydrazine, hydroxylamine, nitroguanidine, N-methylmorpholine N-oxide, glucoheptonate, ascorbic acid and reducing sugars.
- the pH of the alkaline composition according to the invention is preferably not greater than 11.0, more preferably preferably not greater than 10.5, particularly preferably not greater than 10.0.
- compositions according to the invention may contain surface-active compounds, preferably nonionic surfactants, in order to bring about additional purification and activation of the metal surfaces, so that a homogeneous icing on the surface
- the nonionic surfactants are preferably selected from one or more ethoxylated and / or propoxylated C10-C18
- Fatty alcohols having a total of at least two but not more than 12 alkoxy groups, particularly preferably ethoxy and / or propoxy groups, which are partially end-capped with an alkyl radical, more preferably with a methyl, ethyl, propyl, butyl radical can.
- the proportion of nonionic surfactants in a composition according to the invention is preferably at least 0.01 g / l, particularly preferably at least 0.1 g / l, for sufficient cleaning and activation of the metal surfaces, and for economic reasons preferably not more than 10 g / l nonionic surfactants are included.
- Compositions do not contain zinc ions in an amount for which the ratio of the total molar fraction of zinc ions and iron ions to the total molar fraction of water-soluble organic carboxylic acids according to component b) and water-soluble organic ⁇ -hydroxycarboxylic acids according to component d) and their respective
- water-soluble salts greater than 1: 1, more preferably greater than 2: 3.
- the present invention is further characterized in that no further heavy metals have to be added to a composition according to the invention in order to provide improved corrosion protection on the zinc surfaces as part of the icing in cooperation with a subsequent wet chemical conversion treatment.
- a composition according to the invention therefore preferably contains less than 50 ppm total of metal ions of the elements Ni, Co, Mo, Cr, Ce, V and / or Mn, particularly preferably less than 10 ppm, particularly preferably less than 1 ppm of these elements.
- composition according to the invention preferably contains less than 1 g / l of water-soluble or water-dispersible organic polymers, since a
- water-soluble or water-dispersible polymers are understood as meaning organic compounds which remain in the retentate during ultrafiltration with a nominal cutoff limit (NMWC) of 10,000 ⁇ .
- the present invention also includes a concentrate which, by dilution by a factor of 5-50, provides a previously described alkaline composition of the invention.
- a concentrate according to the invention has a pH above 8.5 and preferably contains a) 5-100 g / l of iron ions,
- water-soluble salts c) 20-300 g / l of oxo acids of phosphorus or nitrogen and their water-soluble salts, wherein at least one phosphorus atom or nitrogen atom in a middle
- Oxidation level is present.
- the present invention relates to a method for pretreatment ("icing") of metallic components having zinc surfaces, wherein at least the zinc surfaces of the component
- step ii) first of all, a coating layer consisting essentially of oxidic and / or metallic iron is produced on the zinc surfaces ("icing") .
- icing On the other surfaces of the metallic component, for example surfaces of iron, steel and / or Such an inorganic layer can not be detected, but the specific deposition of the passive layer on the zinc surfaces leads to a passivating process in the process according to the invention, in which the icing takes place
- Conversion treatment is a standard procedure in the steel and automotive industry for the pretreatment of an organic topcoat.
- the metallic component has galvanized steel surfaces. Particularly advantageous is the method in the treatment of galvanized steel strip, as it has an excellent
- Edge corrosion protection provides, and of components consisting of assembled and / or assembled in mixed construction metallic components made of galvanized steel, iron and / or steel and possibly aluminum, since it greatly reduces the contact corrosion.
- the alkaline cleaning step i) in the process according to the invention is optional and necessary when the surfaces of zinc have impurities in the form of salts and fats, for example drawing fats and corrosion protection oils.
- the icing takes place in step ii) of the process according to the invention, the type of contacting with the alkaline composition according to the invention
- the zinc surfaces by dipping or spraying with the inventive
- Composition brought into contact with the icing.
- the metallic component is for at least 3 seconds, but not more than 4 minutes at a temperature of at least 30 ° C, more preferably at least 40 ° C, but not more than 70 ° C, more preferably not more than 60 ° C brought into contact with an alkaline composition according to the invention.
- the compositions according to the invention cause an icing of the zinc surfaces.
- the formation of icing is self-limiting, ie with increasing icing of the zinc surfaces, the deposition rate of iron decreases.
- the preferred treatment or contact times should be selected in the method according to the invention so that the layer of iron is at least 20 mg / m 2 based on the element iron.
- the treatment and contact times for the realization of such a minimum layer coverage vary depending on the type of application and depend in particular on the flow of the aqueous fluids acting on the metal surface to be treated.
- the formation of icing in processes in which the composition is applied by spraying faster than in immersion applications.
- the coating compositions according to the invention do not show any layer deposits on iron significantly above that due to the self-limiting freezing
- Treatment of galvanized steel surfaces should immediately after the icing in step ii) with or without subsequent rinsing step iron coatings of preferably at least 20 mg / m 2 , more preferably at least 50 mg / m 2 , more preferably more than 100 mg / m 2 , but preferably not more than 250 mg / m 2 in each case based on the element iron realized realized.
- the coating of iron on the zinc surfaces can be determined after dissolution of the coating by means of a spectroscopic method which is described in the examples of the present invention.
- step ii) of the method according to the invention is preferably carried out without external current, ie without applying an external voltage source to the metallic component.
- step iii) of the method according to the invention a passivating wet-chemical takes place in step ii) with or without an intermediate rinsing step
- a conversion coating is any inorganic coating on the metallic zinc substrate which does not represent an oxide or hydroxide coating whose cationogenic main constituent is zinc ions.
- a conversion coating can therefore be a
- a passivating wet chemical conversion treatment is carried out in step iii) by bringing into contact with an acidic aqueous composition which has a total of at least 5 ppm but not more than 1500 ppm total of water-soluble inorganic compounds of the elements Zr, Ti , Si and / or Hf based on the aforementioned elements, and preferably water-soluble inorganic compounds which release fluoride ions, for example, fluorocomplexes, hydrofluoric acid and / or metal fluorides.
- step iii) of the process according to the invention which contain as water-soluble compounds of the elements zirconium, titanium and / or hafnium only water-soluble compounds of the elements zirconium and / or titanium, more preferably water-soluble compounds of the element zirconium.
- both compounds which dissociate in aqueous solution into anions of fluorocomplexes of the elements titanium and / or zirconium for example H 2 ZrF 6 , K 2 ZrF 6 , Na 2 ZrF 6 and (NH 4 ) 2 ZrF 6 and the analogous titanium compounds, as well as fluorine-free compounds of the elements
- Zirconium and / or titanium for example (NH 4 ) 2 Zr (OH) 2 (CO 3 ) 2 or TiO (SO 4 ), in acidic aqueous compositions in step iii) of the process according to the invention.
- step iii) of the preferred process according to the invention the acidic aqueous
- Composition in total at least 5 ppm, but not more than
- a zinc phosphating is carried out in step iii), wherein the presence of the heavy metals Ni and / or Cu in the zinc phosphating can largely be dispensed with due to the previous icing of the zinc surfaces of the metallic component in step ii).
- the icing of the zinc surfaces thus provides for a subsequent Zinkphosphat ist the unexpected advantage that for such phosphated zinc surfaces, a corrosion protection and a
- Lacquer adhesion results comparable to the zinc phosphating of iron or steel surfaces.
- the passivating wet-chemical conversion treatment in step iii) consists in contacting the galvanized steel surfaces pretreated in step ii) with an acidic aqueous composition having a pH in the range of 2.5-3 , 6 and
- the pretreated metallic components which have surfaces of zinc directly resulting from a method according to the invention, are then preferably provided with an organic covering layer, with or without an intermediate rinsing and / or drying step.
- the first cover layer in the pretreatment of already cut, formed and assembled components is usually an electrodeposition paint, more preferably a cathodic dip.
- organic primer coatings are preferably used as the first organic cover layer in the
- compositions according to the invention (C1; C5) containing glycine are formed.
- the concentration of the active components in a composition according to the invention has an immediate effect on the deposition rate, so that dilute compositions must be brought into contact with the galvanized steel surface for a longer time in order to obtain a homogeneously coated zinc surface (see C1 in comparison to C5).
- Table 2 shows the corrosive infiltration of an immersion paint on electrolytically galvanized steel after the respective process chain for corrosion-protective pretreatment in
- Nickel-containing phosphating (trication-phosphating)
- Coating structure EV2007 (PPG company): layer thickness 17-19 m
- the coating weight of zinc phosphate results from the multiplication of the area-related amount of phosphorus with the factor 6.23.
- the calibration was carried out in two-step method by determining the absorption values of identical volumes (300 ⁇ ) of two standard solutions of iron (III) nitrate in 5% strength by weight nitric acid, which was used to determine the absorption values at 25 ° C. in the measuring cuvette containing 5 ml of a 1% sodium thiocyanate solution were transferred.
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Treatment Of Metals (AREA)
Abstract
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP13705479.7A EP2817434B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement de surfaces en zinc avant une passivation |
PL13705479T PL2817434T3 (pl) | 2012-02-24 | 2013-02-22 | Obróbka wstępna powierzchni cynkowych przed pasywacją |
EP16175371.0A EP3093370B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement des surfaces en zinc avant une zinc - phosphatation |
PL16175371T PL3093370T3 (pl) | 2012-02-24 | 2013-02-22 | Obróbka wstępna powierzchni cynkowych przed fosforanowaniem cynkowym |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12156863.8A EP2631333A1 (fr) | 2012-02-24 | 2012-02-24 | Prétraitement de surfaces en zinc avant une passivation |
EP13705479.7A EP2817434B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement de surfaces en zinc avant une passivation |
PCT/EP2013/053522 WO2013124400A1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement de surfaces en zinc avant une passivation |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16175371.0A Division-Into EP3093370B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement des surfaces en zinc avant une zinc - phosphatation |
EP16175371.0A Division EP3093370B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement des surfaces en zinc avant une zinc - phosphatation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2817434A1 true EP2817434A1 (fr) | 2014-12-31 |
EP2817434B1 EP2817434B1 (fr) | 2017-02-01 |
Family
ID=47747626
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12156863.8A Withdrawn EP2631333A1 (fr) | 2012-02-24 | 2012-02-24 | Prétraitement de surfaces en zinc avant une passivation |
EP13705479.7A Active EP2817434B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement de surfaces en zinc avant une passivation |
EP16175371.0A Active EP3093370B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement des surfaces en zinc avant une zinc - phosphatation |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12156863.8A Withdrawn EP2631333A1 (fr) | 2012-02-24 | 2012-02-24 | Prétraitement de surfaces en zinc avant une passivation |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16175371.0A Active EP3093370B1 (fr) | 2012-02-24 | 2013-02-22 | Prétraitement des surfaces en zinc avant une zinc - phosphatation |
Country Status (11)
Country | Link |
---|---|
US (1) | US10227686B2 (fr) |
EP (3) | EP2631333A1 (fr) |
JP (1) | JP6526968B2 (fr) |
KR (1) | KR102095832B1 (fr) |
CN (1) | CN104185693B (fr) |
AU (1) | AU2013224115B2 (fr) |
CA (1) | CA2864467C (fr) |
ES (2) | ES2624195T3 (fr) |
HU (2) | HUE038740T2 (fr) |
PL (2) | PL2817434T3 (fr) |
WO (1) | WO2013124400A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016120670A1 (fr) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Procédé de préparation d'une tôle revêtue comprenant l'application d'une solution aqueuse comprenant un aminoacide et utilisation associée pour améliorer la compatibilité avec un adhésif |
WO2016120671A1 (fr) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Procédé de préparation d'une tôle revêtue comprenant l'application d'une solution aqueuse comprenant un aminoacide et utilisation associée pour améliorer les propriétés tribologiques |
WO2016120669A1 (fr) * | 2015-01-30 | 2016-08-04 | Arcelormittal | Procédé de préparation d'une tôle revêtue comprenant l'application d'une solution aqueuse comprenant un aminoacide et utilisation associée pour améliorer la résistance à la corrosion |
US10882771B2 (en) | 2015-02-06 | 2021-01-05 | Baker Hughes, A Ge Company, Llc | Use of phosphino polymer and polyhydroxypolycarboxylic acid as corrosion inhibitor |
WO2017109541A1 (fr) | 2015-12-21 | 2017-06-29 | Arcelormittal | Procédé de production d'une tôle d'acier revêtue de haute résistance présentant une ductilité et une aptitude au formage améliorées, et tôle d'acier revêtue ainsi obtenue |
US10683576B2 (en) | 2017-03-27 | 2020-06-16 | Baker Hughes, A Ge Company, Llc | Corrosion inhibitors for passivation of galvanized coatings and carbon steel |
US10655217B2 (en) * | 2018-05-01 | 2020-05-19 | Spts Technologies Limited | Method of forming a passivation layer on a substrate |
EP3569734A1 (fr) | 2018-05-18 | 2019-11-20 | Henkel AG & Co. KGaA | Composition de passivation à base de chrome trivalent |
EP3663435B1 (fr) | 2018-12-05 | 2024-03-13 | Henkel AG & Co. KGaA | Composition de passivation basée sur des mélanges d'acides phosphorique et phosphonique |
WO2021139955A1 (fr) | 2020-01-06 | 2021-07-15 | Henkel Ag & Co. Kgaa | Composition de passivation appropriée pour des surfaces internes de réservoirs d'acier revêtus de zinc stockant des hydrocarbures |
EP4274865A1 (fr) | 2021-01-06 | 2023-11-15 | Henkel AG & Co. KGaA | Passivation améliorée à base de cr(iii) pour un acier revêtu de zinc-aluminium |
GB2603194A (en) | 2021-02-01 | 2022-08-03 | Henkel Ag & Co Kgaa | Improved cr(iii) based dry-in-place coating composition for zinc coated steel |
CN113913827B (zh) * | 2021-09-09 | 2023-05-16 | 东风汽车集团股份有限公司 | 一种调质态镀锌碳素钢金相腐蚀剂及其应用 |
EP4174211A1 (fr) * | 2021-11-02 | 2023-05-03 | Henkel AG & Co. KGaA | Traitement en plusieurs étages permettant d'activer le phosphatation au zinc des composants métalliques pourvus de surfaces en zinc |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR1496683A (fr) * | 1965-10-19 | 1967-09-29 | Parker Ste Continentale | Procédé de revêtement de métaux |
US3444007A (en) * | 1967-03-13 | 1969-05-13 | Hooker Chemical Corp | Process of forming paint-base coatings on zinc and zinc alloy surfaces |
FR1538274A (fr) * | 1967-10-02 | 1968-08-30 | Parker Ste Continentale | Procédé et composition pour le traitement des métaux |
JPS51135840A (en) * | 1975-05-21 | 1976-11-25 | Nippon Packaging Kk | Surface treatment process for zinc or zinc alloy |
US4381203A (en) * | 1981-11-27 | 1983-04-26 | Amchem Products, Inc. | Coating solutions for zinc surfaces |
JPS6220880A (ja) * | 1985-07-19 | 1987-01-29 | Nippon Parkerizing Co Ltd | 亜鉛−アルミニウム合金めつき鋼板の表面処理方法 |
US5294266A (en) * | 1989-07-28 | 1994-03-15 | Metallgesellschaft Aktiengesellschaft | Process for a passivating postrinsing of conversion layers |
JP2901341B2 (ja) * | 1990-11-29 | 1999-06-07 | 日本鋼管株式会社 | 亜鉛又は亜鉛合金のクロメート処理の前処理方法 |
DE19733972A1 (de) | 1997-08-06 | 1999-02-11 | Henkel Kgaa | Alkalische Bandpassivierung |
DE102006052919A1 (de) * | 2006-11-08 | 2008-05-15 | Henkel Kgaa | Zr-/Ti-haltige Phosphatierlösung zur Passivierung von Metallverbundoberflächen |
DE102007021364A1 (de) * | 2007-05-04 | 2008-11-06 | Henkel Ag & Co. Kgaa | Metallisierende Vorbehandlung von Zinkoberflächen |
CN107012455B (zh) * | 2009-12-28 | 2019-06-04 | 汉高股份有限及两合公司 | 含有锆、铜、锌和硝酸盐的金属预处理组合物和在金属基材上相关的涂层 |
DE102010001686A1 (de) | 2010-02-09 | 2011-08-11 | Henkel AG & Co. KGaA, 40589 | Zusammensetzung für die alkalische Passivierung von Zinkoberflächen |
-
2012
- 2012-02-24 EP EP12156863.8A patent/EP2631333A1/fr not_active Withdrawn
-
2013
- 2013-02-22 ES ES13705479.7T patent/ES2624195T3/es active Active
- 2013-02-22 KR KR1020147026388A patent/KR102095832B1/ko active IP Right Grant
- 2013-02-22 AU AU2013224115A patent/AU2013224115B2/en not_active Ceased
- 2013-02-22 JP JP2014558113A patent/JP6526968B2/ja active Active
- 2013-02-22 HU HUE16175371A patent/HUE038740T2/hu unknown
- 2013-02-22 PL PL13705479T patent/PL2817434T3/pl unknown
- 2013-02-22 CA CA2864467A patent/CA2864467C/fr active Active
- 2013-02-22 PL PL16175371T patent/PL3093370T3/pl unknown
- 2013-02-22 EP EP13705479.7A patent/EP2817434B1/fr active Active
- 2013-02-22 EP EP16175371.0A patent/EP3093370B1/fr active Active
- 2013-02-22 ES ES16175371.0T patent/ES2658337T3/es active Active
- 2013-02-22 CN CN201380010446.6A patent/CN104185693B/zh active Active
- 2013-02-22 HU HUE13705479A patent/HUE033958T2/en unknown
- 2013-02-22 WO PCT/EP2013/053522 patent/WO2013124400A1/fr active Application Filing
-
2014
- 2014-08-22 US US14/466,377 patent/US10227686B2/en active Active
Non-Patent Citations (1)
Title |
---|
See references of WO2013124400A1 * |
Also Published As
Publication number | Publication date |
---|---|
KR102095832B1 (ko) | 2020-04-01 |
CN104185693B (zh) | 2016-06-29 |
EP2817434B1 (fr) | 2017-02-01 |
ES2658337T3 (es) | 2018-03-09 |
EP3093370A1 (fr) | 2016-11-16 |
PL3093370T3 (pl) | 2018-07-31 |
KR20140129238A (ko) | 2014-11-06 |
CA2864467A1 (fr) | 2013-08-29 |
PL2817434T3 (pl) | 2017-07-31 |
US10227686B2 (en) | 2019-03-12 |
AU2013224115A1 (en) | 2014-09-11 |
JP2015510550A (ja) | 2015-04-09 |
CN104185693A (zh) | 2014-12-03 |
AU2013224115B2 (en) | 2017-02-02 |
HUE033958T2 (en) | 2018-01-29 |
EP3093370B1 (fr) | 2018-01-17 |
WO2013124400A1 (fr) | 2013-08-29 |
JP6526968B2 (ja) | 2019-06-12 |
US20140360630A1 (en) | 2014-12-11 |
CA2864467C (fr) | 2020-05-05 |
HUE038740T2 (hu) | 2018-11-28 |
EP2631333A1 (fr) | 2013-08-28 |
ES2624195T3 (es) | 2017-07-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2817434B1 (fr) | Prétraitement de surfaces en zinc avant une passivation | |
EP2507408B1 (fr) | Procédé de prétraitement à étapes multiples pour des composants métalliques présentant des surfaces en zinc et en fer | |
EP2145031B1 (fr) | Prétraitement de métallisation de surfaces de zinc | |
EP0700452B1 (fr) | Traitement de revetement par conversion sans chrome pour l'aluminium | |
EP2534279B1 (fr) | Composition pour la passivation alcaline de surfaces en zinc | |
EP1390564B1 (fr) | Procede de revetement de surfaces metalliques et utilisation des substrats ainsi revetus | |
EP2503025B1 (fr) | Traitement en plusieurs étapes de protection contre la corrosion des pièces métalliques ayant au moins partiellement une surface en zinc ou en alliages de zinc | |
EP2092090A1 (fr) | Solution de phosphatage à base de zr/ti utilisée pour passiver des surfaces composites métalliques | |
WO2005061761A1 (fr) | Traitement de conversion en deux etapes | |
DE19834796A1 (de) | Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung | |
WO2017194187A1 (fr) | Couches de conversion pour surfaces métalliques | |
EP0359296B1 (fr) | Procédé de phosphatation | |
WO2001098557A1 (fr) | Agent adhesif dans des solutions pour conversion | |
WO2001006035A1 (fr) | Procede de traitement contre la corrosion ou de traitement posterieur de surfaces metalliques | |
DE102009047523A1 (de) | Mehrstufiges Vorbehandlungsverfahren für metallische Bauteile mit Zinnoberflächen | |
EP3728693B1 (fr) | Procédé de prétraitement de nettoyage et de protection anticorrosion de composants métalliques | |
EP2726650B1 (fr) | Placage électrolytique de fer sur des surfaces en zinc | |
DE19958192A1 (de) | Verfahren zur Phosphatierung, Nachspülung und kathodischer Elektrotauchlackierung | |
EP4283012A1 (fr) | Procédé de nettoyage alcalin des bandes en acier allié zinc-magnésium | |
EP1208246A1 (fr) | Procede de phosphatation au zinc faisant intervenir des epoxydes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140721 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160127 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20161004 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 865678 Country of ref document: AT Kind code of ref document: T Effective date: 20170215 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502013006238 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2624195 Country of ref document: ES Kind code of ref document: T3 Effective date: 20170713 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170502 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170501 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170501 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170601 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: SK Ref legal event code: T3 Ref document number: E 24043 Country of ref document: SK |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502013006238 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20171103 |
|
REG | Reference to a national code |
Ref country code: HU Ref legal event code: AG4A Ref document number: E033958 Country of ref document: HU |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170222 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20190116 Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170201 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20200229 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200229 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: LU Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240219 Year of fee payment: 12 Ref country code: ES Payment date: 20240325 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240220 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: HU Payment date: 20240222 Year of fee payment: 12 Ref country code: DE Payment date: 20240219 Year of fee payment: 12 Ref country code: CZ Payment date: 20240209 Year of fee payment: 12 Ref country code: SK Payment date: 20240212 Year of fee payment: 12 Ref country code: GB Payment date: 20240219 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20240210 Year of fee payment: 12 Ref country code: SE Payment date: 20240219 Year of fee payment: 12 Ref country code: PL Payment date: 20240208 Year of fee payment: 12 Ref country code: IT Payment date: 20240228 Year of fee payment: 12 Ref country code: FR Payment date: 20240221 Year of fee payment: 12 |