EP2725086A1 - Method for producing a diesel fuel - Google Patents
Method for producing a diesel fuel Download PDFInfo
- Publication number
- EP2725086A1 EP2725086A1 EP12802572.3A EP12802572A EP2725086A1 EP 2725086 A1 EP2725086 A1 EP 2725086A1 EP 12802572 A EP12802572 A EP 12802572A EP 2725086 A1 EP2725086 A1 EP 2725086A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fractions
- diesel fuel
- fraction
- mixture
- distillation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/14—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including at least two different refining steps in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/16—Oxygen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/20—Nitrogen-containing compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G21/00—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
- C10G21/06—Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents characterised by the solvent used
- C10G21/12—Organic compounds only
- C10G21/27—Organic compounds not provided for in a single one of groups C10G21/14 - C10G21/26
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G31/00—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for
- C10G31/08—Refining of hydrocarbon oils, in the absence of hydrogen, by methods not otherwise provided for by treating with water
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G45/00—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
- C10G45/02—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
- C10G45/04—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
- C10G45/06—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
- C10G45/08—Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G67/00—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
- C10G67/02—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
- C10G67/04—Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G7/00—Distillation of hydrocarbon oils
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L1/00—Liquid carbonaceous fuels
- C10L1/04—Liquid carbonaceous fuels essentially based on blends of hydrocarbons
- C10L1/08—Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1051—Kerosene having a boiling range of about 180 - 230 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/10—Feedstock materials
- C10G2300/1037—Hydrocarbon fractions
- C10G2300/1048—Middle distillates
- C10G2300/1055—Diesel having a boiling range of about 230 - 330 °C
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/201—Impurities
- C10G2300/202—Heteroatoms content, i.e. S, N, O, P
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2300/00—Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
- C10G2300/20—Characteristics of the feedstock or the products
- C10G2300/30—Physical properties of feedstocks or products
- C10G2300/301—Boiling range
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10G—CRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
- C10G2400/00—Products obtained by processes covered by groups C10G9/00 - C10G69/14
- C10G2400/04—Diesel oil
Definitions
- the invention relates to a process for the production of diesel fuel according to the preamble of claim 1.
- the invention relates to petroleum refining and can be used in the production of low-sulfur diesel fuel, which is becoming more widespread in Russia and in Europe.
- the diesel engine booster is explained by the fact that a diesel engine is 25 to 30% more economical than a gasoline engine.
- the disadvantage of the known methods is that they are not suitable for fuel with a sulfur content of max. 10 ppm to produce.
- a crude oil distillation is carried out after a petroleum desalination.
- a DK fraction having a boiling point of 171-341 ° C is taken from an atmospheric column.
- the fractions with a boiling point above 341 ° C are conveyed together with fuel oil in a vacuum column for further processing.
- the fractions with boiling point of 181-304 ° C and 226-326 ° C are taken from the vacuum column and mixed in an equilibrium relationship with the DK fraction from the atmospheric column.
- the balance mixture of these fractions in a distillation according to the ASTM D-86 method has a boiling point (SEP) of max. 340 ° C.
- SEP boiling point
- the mixture produced is subjected to hydrorefining.
- This is a low-sulfur diesel fuel with a sulfur content of max. 10 ppm generated.
- the technical result of the method according to the invention makes it possible to use a diesel fuel with a sulfur content of max. To get 10 ppm.
- the technical result is achieved by means of a process for the production of diesel fuel.
- the process comprises the following steps: petroleum desalination; Crude distillation; Separation of two DK fractions with a boiling point of 171-341 ° C and 199-360 ° C in an atmospheric column.
- the fraction of 199-360 ° C is conveyed for ABT removal by a liquid extraction process with subsequent admixture of the refined fraction of 199-360 ° C and the fraction of 171-341 ° C.
- the fractionation mixture for hydrorefining is passed on to an aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst.
- the hydrorefining of the fraction mixture is carried out in one step.
- the method of producing diesel fuel proposed by the invention solves this problem by removing ABT after the liquid extraction process.
- the procedure is carried out as follows.
- the desalinated petroleum is forwarded to an atmospheric column for distillation.
- two DK fractions with a boiling point of 171-341 ° C and 199-360 ° C are taken.
- the fraction of 199-360 ° C is passed for ABT removal by a liquid extraction process with subsequent mixing of refined fractions 199-360 ° C (raffinate) and 171-341 ° C.
- the fractionation mixture is promoted for hydrorefining on an aluminum-cobalt-molybdenum or on an aluminum-nickel-molybdenum catalyst.
- the balance mixture of these fractions (mixing depending on the yield) in a distillation according to the ASTM D-86 method has a SEP of max. 360 ° C.
- the nature of the catalytic process, its effectiveness, the quality of the raw material and the requirements of the product produced depend on the nature of the process. Thus, it is chosen depending on the project solution.
- the pressure 20-60 kg / cm 2 the temperature 340 - 400 ° C; the throughput volume for a raw material feed 1 - 3 hours -1 ; the circulation rate for hydrogen-containing gas 200 - 600 Nm 3 / m 3 ; the hydrogen content in the recycle gas is 85-95% (vol.).
- the inventive process for ABT removal from the feed diesel fuel of a hydrofinishing plant was developed for a pilot scale pilot plant using diesel fuel fractions produced in an industrial plant.
- the mass ratio of raw material: extractant was changed from 1: 1 to 1: 4. At a raw material to extractant ratio of 1: 1, a maximum residual ABT was observed. As optimum ratio, a raw material to extractant ratio of 1: 2-3 was chosen. Increasing the raw material to extractant ratio up to 1: 4 results in no further decrease in ABT.
- the optimum contact mixing time was experimentally selected to be 2 to 3 hours.
- the analysis of the ABT content shows that one hour is insufficient for blending (sample 1) and prolonging the blending time to 4 hours does not result in a further decrease in the ABT content (sample 4).
- Example 1 The desalted petroleum is pumped according to the process of the invention into an atmospheric distillation column.
- extractant is a product of an interaction between an organic amine, eg. Aniline, with an organic acid, e.g. Acetic acid, used.
- organic acid e.g. Acetic acid
- the produced anilide of acetic acid (extractant) is a dark cherry brown colored liquid with a boiling point above 300 ° C and a density of 1 kg / dm 3 (at 20 ° C).
- a light gasoline fraction NK-85 ° C with a mass ratio saturated extractant: NK-85 ° C fraction of 1: 2 is added to the lower layer.
- the mixture is mixed for 0.5 hours at 20 ° C and poured into the separating funnel.
- the lower layer (regenerated extractant) is separated and reused for extraction.
- the experimental conditions were changed according to the residual content of ABT in the raffinate - the refined diesel fuel.
- fraction mixture 171-341 ° C fraction and refined 199-360 ° C fraction - raffinate - (samples 2 to 6) with a percentage composition of 70-85% and 15-30% each is added to a hydrorefining using a Aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst promoted.
- the sulfur content in the diesel fuel after hydrorefining is less than 10 ppm.
- the process according to the invention makes it possible to reduce the total sulfur content in the distillation diesel fuel from 1.34% to 0.774%, thanks to the decrease of the ABT content in the raw material for diesel fuel hydrofinishing plants by the liquid extraction process and the production of a sulfur-containing hydrorefined diesel fuel below 10 ppm within a wide fractional composition of a distillation diesel fuel.
- the inventive method makes it possible to use a diesel fuel with a sulfur content of max. 10 ppm to produce. This meets the requirements of international standards.
- the new process also makes it possible to increase the amount of raw material used to produce diesel fuel by expanding the diesel fuel fraction composition from SEP 340 ° C to SEP 360 ° C.
- the process described in this invention for producing diesel fuel having a sulfur content of less than 10 ppm can be used in oil refineries and will make it possible to produce diesel fuel with a sulfur content of up to 10 ppm within an extended diesel fuel fractionation composition of 170-360 ° C.
- Table 1 parameters raw material raffinate sample number 1 2 3 4 5 6 Mass ratio of raw material: extractant 1: 1 1: 2 1: 2 1: 2 1: 3 1: 4 Temperature, ° C 40-45 Time, hour 1 2 3 4 3 3 total sulfur content 1,340 0.946 0.844 0.801 0.809 0.774 0,785 Thiophenes, sulfides, mercaptans, mixed 0.01 0.01 0.009 0.0095 0.0091 0.0092 0.0093 Benzothiophenes and alkyl-substituted benzothiophenes 0.81 0.624 0.546 0.507 0.515 0.491 0.499 Dibenzothiophenes and alkyl-substituted dibenzothiophenes 0.52 0.312 0,289 0.285 0.285 0,273 0.277
Landscapes
- Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
Abstract
Die Erfindung betrifft die Erdölaufarbeitung und kann bei der Herstellung vom schwefelarmen Dieselkraftstoff eingesetzt werden. Das Verfahren umfasst Erdölentsalzung, Erdöldestillation, Aussonderung von DK-Fraktionen, ihre Vermengung und eine nachfolgende Hydroraffination des Gemisches. Zwei bei 171 - 341° C und 199 - 360° C auskochende DK-Fraktionen werden einer atmosphärischen Kolonne entnommen. Die 199-360° C-Fraktion wird zu einer Flüssigkeitsextraktion gefördert, um Benzalkylthiophene zu entfernen. Als Extraktionsmittel wird ein Produkt einer Wechselwirkung zwischen einem organischen Amin und einer organischen Säure - Amid - verwendet. Danach werden die Fraktionen bei einer Gleichgewichtsbeziehung (je nach Ausbeute) von 171 - 341° C und 199 - 360° C nach der Raffination vermengt. Das Gemisch dieser Fraktionen weist während der Destillation nach dem ASTM D-86-Verfahren einen Siedendpunkt von max. 360° C auf. Der technische Effekt ist die Herstellung von einem Dieselkraftstoff mit einer Fraktionszusammensetzung von 171 - 360° C und einem Schwefelgehalt von max. 10 ppm.The invention relates to petroleum refining and can be used in the production of low-sulfur diesel fuel. The process comprises petroleum desalination, petroleum distillation, rejection of DK fractions, their admixture and subsequent hydrorefining of the mixture. Two DK fractions boiling at 171-341 ° C and 199-360 ° C are taken from an atmospheric column. The 199-360 ° C fraction is promoted for liquid extraction to remove benzalkylthiophenes. The extractant used is a product of an interaction between an organic amine and an organic acid - amide. Thereafter, the fractions are mixed in an equilibrium relationship (depending on the yield) of 171-341 ° C and 199-360 ° C after refining. The mixture of these fractions during the distillation according to the ASTM D-86 method has a boiling point of max. 360 ° C on. The technical effect is the production of a diesel fuel with a fraction composition of 171 - 360 ° C and a sulfur content of max. 10 ppm.
Description
Die Erfindung betrifft ein Verfahren zur Herstellung von Dieselkraftstoff nach dem Oberbegriff des Anspruchs 1.The invention relates to a process for the production of diesel fuel according to the preamble of claim 1.
Die Erfindung betrifft die Erdölaufarbeitung und kann bei der Herstellung vom schwefelarmen Dieselkraftstoff eingesetzt werden, welcher in Russland und in Europa immer mehr verbreitet ist.The invention relates to petroleum refining and can be used in the production of low-sulfur diesel fuel, which is becoming more widespread in Russia and in Europe.
Der voraussichtliche Bedarf an Brennstoff europaweit («Öl- und Gastechnik», Heft 6, 2007, S. 94) zeugt von einer Zunahme der Dieselkraftstoffausbeute im Vergleich zur Abnahme der Motorbenzinausbeute:
Die Verdieselung von Kraftfahrzeugen wird dadurch erklärt, dass ein Dieselmotor um 25 bis 30 % sparsamer als ein Benzinmotor ist.The diesel engine booster is explained by the fact that a diesel engine is 25 to 30% more economical than a gasoline engine.
Gemäß den fachtechnischen Regeln "
Durch das Patent
Durch das Patent
Der Nachteil der bekannten Verfahren besteht darin, dass sie nicht dafür geeignet sind, Kraftstoff mit einem Schwefelgehalt von max. 10 ppm herzustellen.The disadvantage of the known methods is that they are not suitable for fuel with a sulfur content of max. 10 ppm to produce.
Der nächstkommende Stand der Technik hinsichtlich der Erfindung ihrem technischen Wesen nach ist das Verfahren zur Herstellung von Dieselkraftstoff, das im Patent
Nach diesem Verfahren wird nach einer Erdölentsalzung eine Rohöldestillation vorgenommen. Dabei wird eine DK-Fraktion mit einem Siedepunkt von 171 - 341° C einer atmosphärischen Kolonne entnommen. Die Fraktionen mit einem Siedepunkt von über 341° C werden zur weiteren Verarbeitung zusammen mit Heizöl in eine Vakuumkolonne gefördert. Die Fraktionen mit Siedepunkt von 181 - 304° C und 226 - 326° C werden der Vakuumkolonne entnommen und in einer Gleichgewichtsbeziehung mit der DK-Fraktion aus der atmosphärischen Kolonne vermengt. Dabei hat das Bilanzgemisch dieser Fraktionen bei einer Destillation nach dem ASTM D-86-Verfahren einen Siedendpunkt (SEP) von max. 340° C. Das hergestellte Gemisch wird einer Hydroraffination ausgesetzt. Dabei wird ein schwefelarmer Dieselkraftstoff mit einem Schwefelgehalt von max. 10 ppm erzeugt. Das technische Ergebnis des erfindungsgemäßen Verfahrens ermöglicht es, einen Dieselkraftstoff mit einem Schwefelgehalt von max. 10 ppm zu bekommen.After this process, a crude oil distillation is carried out after a petroleum desalination. In this case, a DK fraction having a boiling point of 171-341 ° C is taken from an atmospheric column. The fractions with a boiling point above 341 ° C are conveyed together with fuel oil in a vacuum column for further processing. The fractions with boiling point of 181-304 ° C and 226-326 ° C are taken from the vacuum column and mixed in an equilibrium relationship with the DK fraction from the atmospheric column. The balance mixture of these fractions in a distillation according to the ASTM D-86 method has a boiling point (SEP) of max. 340 ° C. The mixture produced is subjected to hydrorefining. This is a low-sulfur diesel fuel with a sulfur content of max. 10 ppm generated. The technical result of the method according to the invention makes it possible to use a diesel fuel with a sulfur content of max. To get 10 ppm.
Der Effekt wird dadurch erklärt, dass der durch polyaromatische Ringe räumlich verhinderte Schwefel als Bestandteil von Alkylbenzothiophenen (ABT) aus Dieselkraftstoff mittels der Fraktionierung entfernt wird.The effect is explained by the fact that the sulfur spatially prevented by polyaromatic rings as a constituent of alkylbenzothiophenes (ABT) from diesel fuel is removed by fractionation.
Aus der Fachliteratur (z. B.,
Jedoch vermindert die Senkung von SEP der DK-Fraktion von 360° C auf 340° C das Auswahlpotential von Dieselkraftstoff.However, lowering the SEP of the DK fraction from 360 ° C to 340 ° C reduces the diesel fuel's selection potential.
Es ist Aufgabe der Erfindung, die Herstellung von Dieselkraftstoff mit einem Schwefelgehalt von max. 10 ppm mit einer breiten Fraktionszusammensetzung von 171 - 360° C zu erreichen.It is an object of the invention, the production of diesel fuel with a sulfur content of max. 10 ppm with a wide fraction composition of 171 - 360 ° C to achieve.
Das technische Ergebnis wird mit Hilfe eines Verfahrens zur Herstellung von Dieselkraftstoff erreicht. Das Verfahren umfasst folgende Schritte: Erdölentsalzung; Rohöldestillation; Aussonderung von zwei DK-Fraktionen mit einem Siedepunkt von 171 - 341° C und 199 - 360° C in einer atmosphärischen Kolonne. Die Fraktion von 199 - 360° C wird zur ABT-Entfernung nach einem Flüssigkeitsextraktions-Verfahren mit nachfolgender Vermengung der raffinierten Fraktion von 199 - 360° C und der Fraktion von 171 - 341° C gefördert. Danach wird das Fraktionsgemisch zur Hydroraffination auf einen Aluminium-Kobalt-Molybdän- oder Aluminium-Nickel-Molybdän-Katalysator weitergeleitet. Die Hydroraffination des Fraktionsgemisches wird in einem Schritt durchgeführt.The technical result is achieved by means of a process for the production of diesel fuel. The process comprises the following steps: petroleum desalination; Crude distillation; Separation of two DK fractions with a boiling point of 171-341 ° C and 199-360 ° C in an atmospheric column. The fraction of 199-360 ° C is conveyed for ABT removal by a liquid extraction process with subsequent admixture of the refined fraction of 199-360 ° C and the fraction of 171-341 ° C. Thereafter, the fractionation mixture for hydrorefining is passed on to an aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst. The hydrorefining of the fraction mixture is carried out in one step.
Das als Erfindung vorgeschlagene Verfahren zur Herstellung von Dieselkraftstoff löst dieses Problem, indem ABT nach dem Flüssigkeitsextraktions-Verfahren entfernt wird.The method of producing diesel fuel proposed by the invention solves this problem by removing ABT after the liquid extraction process.
Das Verfahren wird wie folgt ausgeführt. Das entsalzte Erdöl wird zur Destillation in eine atmosphärische Kolonne weitergeleitet. Außer der Benzin- und der Kerosin-Fraktion werden zwei DK-Fraktionen mit einem Siedepunkt von 171 - 341 ° C und 199 - 360° C entnommen. Die Fraktion von 199 - 360° C wird zur ABT-Entfernung nach einem Flüssigkeitsextraktions-Verfahren mit einer nachfolgenden Vermengung der raffinierten Fraktionen 199 - 360° C (Raffinat) und 171 - 341° C weitergeleitet. Danach wird das Fraktionsgemisch zur Hydroraffination auf einen Aluminium-Kobalt-Molybdän- oder auf einen Aluminium-Nickel-Molybdän-Katalysator gefördert. Das Bilanzgemisch dieser Fraktionen (Vermengung je nach Ausbeute) bei einer Destillation nach dem ASTM D-86-Verfahren hat einen SEP von max. 360° C.The procedure is carried out as follows. The desalinated petroleum is forwarded to an atmospheric column for distillation. In addition to the gasoline and kerosene fractions, two DK fractions with a boiling point of 171-341 ° C and 199-360 ° C are taken. The fraction of 199-360 ° C is passed for ABT removal by a liquid extraction process with subsequent mixing of refined fractions 199-360 ° C (raffinate) and 171-341 ° C. Thereafter, the fractionation mixture is promoted for hydrorefining on an aluminum-cobalt-molybdenum or on an aluminum-nickel-molybdenum catalyst. The balance mixture of these fractions (mixing depending on the yield) in a distillation according to the ASTM D-86 method has a SEP of max. 360 ° C.
Bei einer Aussonderung der DK-Fraktionen stimmen die verfahrenstechnischen Parameter der atmosphärischen Kolonne mit den Entwurfsvorgaben überein:
- Druck in der atmosphärischen Kolonne bis zu 2,5 kg/cm2,
- Temperatur im oberen Teil der Kolonne 120 - 170° C,
- Temperatur im unteren Teil der Kolonne bis zu 360° C.
- Pressure in the atmospheric column up to 2.5 kg / cm 2 ,
- Temperature in the upper part of the column 120-170 ° C,
- Temperature in the lower part of the column up to 360 ° C.
Der Hydroraffinationsverlauf von Dieselkraftstoff hängt von der Art des Katalysators, seiner Wirksamkeit, von der Rohstoffqualität sowie von den Anforderungen an das erzeugte Produkt ab. Somit wird er je nach Projektlösung gewählt. Z. B. bei einem Aluminium-Kobalt-Molybdän- bzw. Aluminium-Nickel-Molybdän-Katalysator: der Druck 20 - 60 kg/cm2; die Temperatur 340 - 400° C; das Durchsatzvolumen bei einer Rohstoffbeschickung 1 - 3 Stunden-1; die Umwälzzahl für wasserstoffhaltiges Gas 200 - 600 Nm3/m3; der Wasserstoffgehalt im Umlaufgas 85 - 95 % (vol.).The nature of the catalytic process, its effectiveness, the quality of the raw material and the requirements of the product produced depend on the nature of the process. Thus, it is chosen depending on the project solution. For example, in an aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst: the pressure 20-60 kg / cm 2 ; the temperature 340 - 400 ° C; the throughput volume for a raw material feed 1 - 3 hours -1 ; the circulation rate for hydrogen-containing gas 200 - 600 Nm 3 / m 3 ; the hydrogen content in the recycle gas is 85-95% (vol.).
Der Abbau des Schwefels im Dieselkraftstoff leitet eine Abnahme von seinen Schmiereigenschaften ein. Deswegen setzt die Herstellung von Dieselkraftstoff nach bestimmten technischen Normen die Zugabe von Additivs voraus, wie z. B. ein Schmiermittel, einen Dispersant-Stockpunktverbesserer zur Erfüllung von bestimmten Betriebsanforderungen hinsichtlich der Kälteresistenz, Detergentzusätze usw.The removal of sulfur in diesel fuel initiates a decrease of its lubricating properties. Therefore, the production of diesel fuel according to certain technical standards requires the addition of additives such. A lubricant, a dispersant pour point improver to meet certain operational requirements for cold resistance, detergent additives, etc.
Die Zugabe von Additivs beeinflusst den Schwefelgehalt im gebrauchsfertigen Kraftstoff nicht.The addition of additive does not affect the sulfur content in the ready-to-use fuel.
Das erfindungsgemäße Verfahren zur ABT-Entfernung aus dem Einsatz-Dieselkraftstoff einer Hydroraffinationsanlage wurde für eine halbtechnische Versuchsanlage unter Anwendung von Dieselkraftstoff-Fraktionen entwickelt, welche in einer Industrieanlage hergestellt worden waren.The inventive process for ABT removal from the feed diesel fuel of a hydrofinishing plant was developed for a pilot scale pilot plant using diesel fuel fractions produced in an industrial plant.
Ausgestaltungen der Erfindung einschließlich der besten Ausgestaltung der ErfindungEmbodiments of the invention including the best mode of the invention
Die Versuchsdaten sind der Tabelle 1 zu entnehmen und ergeben sich wie folgt:The experimental data are shown in Table 1 and are as follows:
Alle Versuche wurden bei einer Temperatur von 40 - 45° C durchgeführt. Dieser Temperaturbereich stellt eine gute Vermengung des Dieselkraftstoffs und der Extraktionsmittel sicher. Sie reicht dafür aus, die Viskosität der Ausgangszutaten und zwar der DK-Fraktion 199 - 360° C und der Extraktionsmittel zu vermindern.All experiments were carried out at a temperature of 40-45 ° C. This temperature range ensures good mixing of the diesel fuel and the extractant. It is sufficient to reduce the viscosity of the starting ingredients and that of the DK fraction 199-360 ° C and the extractant.
Das Massenverhältnis Rohstoff: Extraktionsmittel wurde von 1 : 1 bis zu 1 : 4 geändert. Bei einem Rohstoff-Extraktionsmittel-Verhältnis von 1 : 1 wurde ein maximales Rest-ABT beobachtet. Als optimales Verhältnis wurde ein Rohstoff- Extraktionsmittel-Verhältnis von 1 : 2 - 3 gewählt. Die Vergrößerung des Rohstoff- Extraktionsmittel-Verhältnisses bis zu 1 : 4 ergibt keine weitere Abnahme von ABT mehr.The mass ratio of raw material: extractant was changed from 1: 1 to 1: 4. At a raw material to extractant ratio of 1: 1, a maximum residual ABT was observed. As optimum ratio, a raw material to extractant ratio of 1: 2-3 was chosen. Increasing the raw material to extractant ratio up to 1: 4 results in no further decrease in ABT.
Als optimale Kontakt-Vermengungszeit wurde versuchsgemäß eine Zeitspanne von 2 - 3 Stunden gewählt. Die Analyse des ABT-Anteils ergibt, dass eine Stunde für eine Vermengung nicht ausreicht (Probe 1) und eine Verlängerung der Vermengungsdauer auf 4 Stunden keine weitere Abnahme des ABT-Gehalts ergibt (Probe 4).The optimum contact mixing time was experimentally selected to be 2 to 3 hours. The analysis of the ABT content shows that one hour is insufficient for blending (sample 1) and prolonging the blending time to 4 hours does not result in a further decrease in the ABT content (sample 4).
Optimale Kenndaten sind wie folgt:
- Temperatur 40 - 45°C,
- Massenverhältnis Rohstoff : Extraktionsmittel 1 : 2 - 3,
- Vermengungszeit 2 - 3 Stunden.
- Temperature 40-45 ° C,
- Mass ratio of raw material: extractant 1: 2 - 3,
- Mixing time 2 - 3 hours.
Beispiel 1. Das entsalzte Erdöl wird gemäß dem erfindungsgemäßen Verfahren in eine atmosphärische Kolonne zur Destillation gefördert.Example 1. The desalted petroleum is pumped according to the process of the invention into an atmospheric distillation column.
Bei Destillation in der atmosphärischen Kolonne werden zwei DK-Fraktionen mit einem Siedepunkt von jeweils 171 - 341° C und 199 - 360° C ausgesondert. Die 199-360° C-Fraktion wird zur ABT-Entfernung nach einem Flüssigkeitsextraktions- Verfahren weitergeleitet.When distilling in the atmospheric column two DK fractions with a boiling point of 171 - 341 ° C and 199 - 360 ° C are separated out. The 199-360 ° C fraction is passed on for ABT removal by a liquid extraction procedure.
Als Extraktionsmittel wird ein Produkt einer Wechselwirkung zwischen einem organischen Amin, z. B. Anilin, mit einer organischen Säure, z .B. Essigsäure, verwendet. Das erzeugte Anilid der Essigsäure (Extraktionsmittel) stellt eine dunkelkirschbraun gefärbte Flüssigkeit mit einem Siedepunkt von über 300° C und einer Dichte von 1 kg/dm3 (bei 20° C) dar.As the extractant is a product of an interaction between an organic amine, eg. Aniline, with an organic acid, e.g. Acetic acid, used. The produced anilide of acetic acid (extractant) is a dark cherry brown colored liquid with a boiling point above 300 ° C and a density of 1 kg / dm 3 (at 20 ° C).
Die 199-360° C-Fraktion wird mit dem Extraktionsmittel (Anilid) in einem Mischer bei einem Verhältnis 1 : 1 und bei einer Temperatur von 40°C intensiv im Laufe von einer Stunde vermengt. Nach Abkühlung wird die Mischung in einen Scheidetrichter abgeschüttet, so dass sie in zwei Schichten geteilt wird. Die obere Schicht ist die raffinierte 199-360° C-Fraktion - Raffinat (85 %), und das gesättigte ABT- Extraktionsmittel (15 %) wird abgetrennt.The 199-360 ° C fraction with the extractant (anilide) in a mixer at a ratio of 1: 1 and at a temperature of 40 ° C intensively in the course of a Hour mixed. After cooling, the mixture is poured off into a separatory funnel so that it is divided into two layers. The top layer is the refined 199-360 ° C fraction-raffinate (85%) and the saturated ABT extractant (15%) is separated.
Um das Extraktionsmittel zu regenerieren, wird der unteren Schicht eine leichte Benzinfraktion NK-85° C mit einem Massenverhältnis gesättigtes Extraktionsmittel : NK-85° C-Fraktion von 1 : 2 zugegeben. Das Gemisch wird 0,5 Stunden lang bei 20° C vermengt und in den Scheidetrichter geschüttet. Die untere Schicht (regeneriertes Extraktionsmittel) wird abgetrennt und erneut zur Extraktion wiederverwendet.To regenerate the extractant, a light gasoline fraction NK-85 ° C with a mass ratio saturated extractant: NK-85 ° C fraction of 1: 2 is added to the lower layer. The mixture is mixed for 0.5 hours at 20 ° C and poured into the separating funnel. The lower layer (regenerated extractant) is separated and reused for extraction.
Die obere Schicht wird nach der Regeneration des Extraktionsmittels mittels einer Destillation in die NK-85° C-Fraktion und den Rest (ABT + schwere Benzolkohlenwasserstoffe) aufgeteilt. Die NK-85°C-Fraktion wird zur Regeneration des gesättigten Extraktionsmittels wiederverwendet, und die ausgesonderten ABT + schwere Benzolkohlenwasserstoffe (15 %) werden zu einem Vakuumgasöl weitergeleitet.The upper layer, after regeneration of the extractant, is divided by distillation into the NK-85 ° C fraction and the balance (ABT + heavy benzene hydrocarbons). The NK-85 ° C fraction is reused to regenerate the saturated extractant and the separated ABT + heavy benzene hydrocarbons (15%) are passed to a vacuum gas oil.
Die Beispiele 2 bis 6 weisen die Ergebnisse der Erfindung nach und werden ähnlich wie das Beispiel 1 durchgeführt. Die Ergebnisse sind der Tabelle 1 zu entnehmen.Examples 2 to 6 demonstrate the results of the invention and are carried out similarly to Example 1. The results are shown in Table 1.
Die Versuchsbedingungen wurden je nach dem Restgehalt von ABT im Raffinat - dem raffinierten Dieselkraftstoff - entsprechend geändert.The experimental conditions were changed according to the residual content of ABT in the raffinate - the refined diesel fuel.
Das Fraktionsgemisch 171-341° C-Fraktion und raffinierte 199-360° C-Fraktion - Raffinat - (Proben 2 bis 6) mit einer prozentualen Zusammensetzung von jeweils 70 - 85 % und 15 - 30 % wird zu einer Hydroraffination unter Einsatz von einem Aluminium- Kobalt-Molybdän- oder Aluminium-Nickel-Molybdän-Katalysator gefördert. Der Schwefelanteil im Dieselkraftstoff nach der Hydroraffination liegt unter 10 ppm.The fraction mixture 171-341 ° C fraction and refined 199-360 ° C fraction - raffinate - (samples 2 to 6) with a percentage composition of 70-85% and 15-30% each is added to a hydrorefining using a Aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst promoted. The sulfur content in the diesel fuel after hydrorefining is less than 10 ppm.
Das erfindungsgemäße Verfahren ermöglicht es, den gesamten Schwefelanteil im Destillations-Dieselkraftstoff von 1,34 % auf 0,774 % dank der Abnahme des ABT-Gehalts im Rohstoff für Dieselkraftstoff-Hydroraffinationsanlagen nach dem Flüssigkeitsextraktions-Verfahren herabzusetzen und die Herstellung von einem hydroraffinierten Dieselkraftstoff mit einem Schwefelgehalt unter 10 ppm innerhalb einer breiten Fraktionszusammensetzung eines Destillations-Dieselkraftstoffs sicherzustellen.The process according to the invention makes it possible to reduce the total sulfur content in the distillation diesel fuel from 1.34% to 0.774%, thanks to the decrease of the ABT content in the raw material for diesel fuel hydrofinishing plants by the liquid extraction process and the production of a sulfur-containing hydrorefined diesel fuel below 10 ppm within a wide fractional composition of a distillation diesel fuel.
Bei der Hydroraffination des Fraktionsgemisches von 171 - 341° C und 199 - 360° C (ohne ABT-Extraktion) bei einer prozentualen Zusammensetzung von jeweils 70 - 85 % und 15 - 30 % unter Einsatz von einem Aluminium-Kobalt-Molybdän- oder Aluminium-Nickel-Molybdän-Katalysator beträgt der Schwefelgehalt im Dieselkraftstoff nach der Hydroraffination über 50 ppm.Hydrorefining the fraction mixture from 171-341 ° C and 199-360 ° C (without ABT extraction) at a percent composition of 70-85% and 15-30%, respectively, using an aluminum-cobalt-molybdenum or aluminum Nickel-molybdenum catalyst, the sulfur content in the diesel fuel after hydrorefining is over 50 ppm.
Das erfindungsgemäße Verfahren ermöglicht es, einen Dieselkraftstoff mit einem Schwefelgehalt von max. 10 ppm herzustellen. Das entspricht den Anforderungen von internationalen Normen. Das neue Verfahren ermöglicht es des Weiteren, die Rohstoffmenge zur Herstellung von Dieselkraftstoff zu vergrößern, indem die Fraktionszusammensetzung von Dieselkraftstoff von SEP 340° C bis zu SEP 360° C erweitert wird.The inventive method makes it possible to use a diesel fuel with a sulfur content of max. 10 ppm to produce. This meets the requirements of international standards. The new process also makes it possible to increase the amount of raw material used to produce diesel fuel by expanding the diesel fuel fraction composition from SEP 340 ° C to SEP 360 ° C.
Das in dieser Erfindung beschriebene Verfahren zur Herstellung von Dieselkraftstoff mit einem Schwefelgehalt von unter 10 ppm kann in den Ölraffinerien angewendet werden und wird es ermöglichen, Dieselkraftstoff mit einem Schwefelgehalt bis zu 10 ppm innerhalb einer erweiterten Fraktionszusammensetzung von Dieselkraftstoff 170 - 360° C zu produzieren.The process described in this invention for producing diesel fuel having a sulfur content of less than 10 ppm can be used in oil refineries and will make it possible to produce diesel fuel with a sulfur content of up to 10 ppm within an extended diesel fuel fractionation composition of 170-360 ° C.
Claims (2)
dadurch gekennzeichnet,
dass während der Destillation in einer atmosphärischen Kolonne zwei DK-Fraktionen entnommen werden, die im Temperaturbereich von 171 - 341° C und 199 - 360° C auskochen,
dass die 199-360° C-Fraktion zu einer Flüssigkeitsextraktion zwecks Entfernung von Benzalkylthiophenen gefördert wird,
dass als Extraktionsmittel ein Produkt einer Wechselwirkung zwischen einem organischen Amin mit einer organischen Säure - Amid - verwendet wird,
dass die 171-341° C- und 199-360° C-Fraktionen nach der Raffination vermengt werden und
dass das Gemisch dieser Fraktionen dabei bei einer Destillation nach dem ASTM D-86-Verfahren einen Siedendpunkt von max. 360° C aufweist.Process for the production of diesel fuel including the following process steps: petroleum desalination, petroleum distillation, separation of DK fractions, their mixing and subsequent hydrorefining of the mixture,
characterized,
that during the distillation in an atmospheric column DK two fractions are taken out in the temperature range of 171 - boil 360 ° C, - 341 ° C and 199
that the 199-360 ° C fraction is promoted for liquid extraction for the removal of benzalkylthiophenes,
in that the extractant used is a product of an interaction between an organic amine and an organic acid - amide -
that the 171-341 ° C and 199-360 ° C fractions are mixed after refining and
that the mixture of these fractions in a distillation according to the ASTM D-86 method has a boiling point of max. 360 ° C.
dadurch gekennzeichnet,
dass das hergestellte Gemisch einer Hydroraffination unter Einsatz von einem Aluminium-Kobalt-Molybdän- oder Aluminium-Nickel-Molybdän-Katalysator ausgesetzt wird.Method according to claim 1,
characterized,
that the produced mixture is subjected to hydrorefining using an aluminum-cobalt-molybdenum or aluminum-nickel-molybdenum catalyst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2011125759/04A RU2458104C1 (en) | 2011-06-22 | 2011-06-22 | Method of producing diesel fuel |
PCT/RU2012/000475 WO2012177180A1 (en) | 2011-06-22 | 2012-06-19 | Method for producing a diesel fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2725086A1 true EP2725086A1 (en) | 2014-04-30 |
EP2725086A4 EP2725086A4 (en) | 2014-06-25 |
Family
ID=46849593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12802572.3A Withdrawn EP2725086A4 (en) | 2011-06-22 | 2012-06-19 | Method for producing a diesel fuel |
Country Status (5)
Country | Link |
---|---|
US (1) | US20140291207A1 (en) |
EP (1) | EP2725086A4 (en) |
JP (1) | JP2014520194A (en) |
RU (1) | RU2458104C1 (en) |
WO (1) | WO2012177180A1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107236572B (en) * | 2016-03-29 | 2019-04-16 | 中国石油化工股份有限公司 | A kind of wax oil processing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL157455B1 (en) * | 1989-01-03 | 1992-05-29 | Method of obtaining an electrically insulating oil | |
EP0621334A1 (en) * | 1993-04-23 | 1994-10-26 | Institut Français du Pétrole | Process for producing a fuel by extraction and hydrotreatment of a hydrocarboneous feed and produced gasoil |
WO2000068342A1 (en) * | 1999-05-05 | 2000-11-16 | Total Raffinage Distribution S.A. | Method for obtaining oil products with low sulphur content by desulphurization of extracts |
RU2387700C1 (en) * | 2008-09-22 | 2010-04-27 | ООО "ЛУКОЙЛ-Нижегороднефтеоргсинтез" | Method for diesel fuel generation |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2247140C2 (en) * | 2001-11-27 | 2005-02-27 | Открытое акционерное общество "Рязанский нефтеперерабатывающий завод" | Diesel fuel production process |
RU2303624C1 (en) * | 2006-05-02 | 2007-07-27 | Геннадий Васильевич Тараканов | Method of production of super-low-sulfur diesel fuel |
-
2011
- 2011-06-22 RU RU2011125759/04A patent/RU2458104C1/en not_active IP Right Cessation
-
2012
- 2012-06-19 US US14/119,441 patent/US20140291207A1/en not_active Abandoned
- 2012-06-19 JP JP2014516946A patent/JP2014520194A/en active Pending
- 2012-06-19 WO PCT/RU2012/000475 patent/WO2012177180A1/en active Application Filing
- 2012-06-19 EP EP12802572.3A patent/EP2725086A4/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
PL157455B1 (en) * | 1989-01-03 | 1992-05-29 | Method of obtaining an electrically insulating oil | |
EP0621334A1 (en) * | 1993-04-23 | 1994-10-26 | Institut Français du Pétrole | Process for producing a fuel by extraction and hydrotreatment of a hydrocarboneous feed and produced gasoil |
WO2000068342A1 (en) * | 1999-05-05 | 2000-11-16 | Total Raffinage Distribution S.A. | Method for obtaining oil products with low sulphur content by desulphurization of extracts |
RU2387700C1 (en) * | 2008-09-22 | 2010-04-27 | ООО "ЛУКОЙЛ-Нижегороднефтеоргсинтез" | Method for diesel fuel generation |
Non-Patent Citations (2)
Title |
---|
Anonymous: "Desalter - Wikipedia, the free encyclopedia", , 14. September 2010 (2010-09-14), XP055115450, Gefunden im Internet: URL:http://en.wikipedia.org/w/index.php?title=Desalter&direction=prev&oldid=444950133 [gefunden am 2014-04-25] * |
See also references of WO2012177180A1 * |
Also Published As
Publication number | Publication date |
---|---|
RU2458104C1 (en) | 2012-08-10 |
WO2012177180A1 (en) | 2012-12-27 |
EP2725086A4 (en) | 2014-06-25 |
US20140291207A1 (en) | 2014-10-02 |
JP2014520194A (en) | 2014-08-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE69914145T2 (en) | Integrated hydrogen treatment and hydrocracking process | |
DE69414448T2 (en) | Process for the production of fuel by extraction and hydrogen treatment of hydrocarbon feed and gas oil thus produced | |
DE69212107T2 (en) | Desulfurization and decolorization of a light oil by extraction | |
DE3586887T2 (en) | METHOD FOR THE PRODUCTION OF BASIC LUBRICANTS AND BASE LUBRICANTS OBTAINED THEREFORE. | |
DE69024337T2 (en) | Solvent extraction from lubricating oils | |
DE69100556T2 (en) | Process for the production of transformer oil from hydrocracked material. | |
DE3685787T2 (en) | METHOD FOR PRODUCING BASIC LUBRICANTS. | |
DE2424296A1 (en) | PRODUCTION OF LUBRICATING OILS | |
DE1470652A1 (en) | Process for the production of lubricating oils for cooling systems | |
DE2143972A1 (en) | Process for the production of lubricating oil with an improved viscosity index | |
DE961479C (en) | Process for the production of high quality lubricating oils | |
DE2015805C3 (en) | Process for the production of lubricating oil | |
EP2725086A1 (en) | Method for producing a diesel fuel | |
DE2424295A1 (en) | PROCESS FOR MANUFACTURING LUBRICATING OILS WITH IMPROVED VISCOSITY INDEX | |
DE1806460A1 (en) | Process for the production of lubricating oils by solvent extraction | |
DE1200459B (en) | Process for the refining of heavy hydrocarbons | |
DE3039263A1 (en) | SOLVENT EXTRACTION METHOD FOR COAL CONVERSION | |
DE2818129A1 (en) | PROCESS FOR THE PRODUCTION OF COOLING OILS | |
DE1959869B2 (en) | Process for the production of a lubricating oil fraction with an increased viscosity index | |
DE2524696A1 (en) | TECHNICAL OILS AND PROCESS FOR THEIR PRODUCTION | |
DE2024649A1 (en) | Process for the production of lubricating oils | |
DE2311133A1 (en) | WAXY COMPOSITION TO PROTECT RUBBER-LIKE COMPOUNDS FROM DEGRADATION BY OZONE AT MEDIUM AND / OR LOW TEMPERATURES | |
DE2160152A1 (en) | Hydrocracking of petroleum - after fractionation and solvent extraction of higher fractions, to obtain oils of increased | |
DE947014C (en) | Process for the production of lubricating oils with a high viscosity index | |
DD255745A1 (en) | METHOD FOR PRODUCING TRANSFORMERS OIL |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140122 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20140526 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C10G 67/04 20060101ALI20140520BHEP Ipc: C10G 67/14 20060101ALI20140520BHEP Ipc: C10G 21/27 20060101ALI20140520BHEP Ipc: C10L 1/08 20060101ALI20140520BHEP Ipc: C10G 21/16 20060101ALI20140520BHEP Ipc: C10G 31/08 20060101ALI20140520BHEP Ipc: C10G 21/20 20060101AFI20140520BHEP Ipc: C10G 45/08 20060101ALI20140520BHEP Ipc: C10G 7/00 20060101ALI20140520BHEP |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150205 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150616 |