[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2706312B1 - Verfahren zum Betreiben einer Kältemaschine und Kältemaschine - Google Patents

Verfahren zum Betreiben einer Kältemaschine und Kältemaschine Download PDF

Info

Publication number
EP2706312B1
EP2706312B1 EP12183137.4A EP12183137A EP2706312B1 EP 2706312 B1 EP2706312 B1 EP 2706312B1 EP 12183137 A EP12183137 A EP 12183137A EP 2706312 B1 EP2706312 B1 EP 2706312B1
Authority
EP
European Patent Office
Prior art keywords
compressor
subcooler
expansion valve
refrigerant
valve
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP12183137.4A
Other languages
English (en)
French (fr)
Other versions
EP2706312A1 (de
Inventor
Luigi Zamana
Raymond Steils
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Copeland Europe GmbH
Original Assignee
Emerson Climate Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Emerson Climate Technologies GmbH filed Critical Emerson Climate Technologies GmbH
Priority to EP12183137.4A priority Critical patent/EP2706312B1/de
Publication of EP2706312A1 publication Critical patent/EP2706312A1/de
Application granted granted Critical
Publication of EP2706312B1 publication Critical patent/EP2706312B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2509Economiser valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/19Pressures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2101Temperatures in a bypass
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the present invention relates to a method of operating a refrigerator, e.g. a refrigeration system, air conditioner or heat pump, comprising a refrigerant having a closed circuit in which an evaporator, a first compressor and at least one parallel connected second compressor, a condenser, a subcooler and a first expansion valve are arranged successively.
  • a refrigerator e.g. a refrigeration system, air conditioner or heat pump
  • a refrigerant having a closed circuit in which an evaporator, a first compressor and at least one parallel connected second compressor, a condenser, a subcooler and a first expansion valve are arranged successively.
  • Cooling machines of this type and methods for operating the same are known in principle, wherein cooling machines generally produce a cooling effect on their evaporator and a heating effect on their condenser.
  • heat pumps are used to convert heat stored in the soil, groundwater or air into thermal heat. Ideally, the thermal heat or heat energy generated thereby exceeds a necessary for operating the heat pump electrical energy by a multiple. Heat pumps thus represent a resource-saving option for supplying heat.
  • refrigerating machines are refrigerators, freezers or chests or air conditioning systems.
  • some chillers are equipped with several compressors in parallel, whereby one or more compressors are operated simultaneously depending on the required heat or cooling capacity.
  • two parallel compressors available so is also spoken by a tandem compressor.
  • the compressors compress the refrigerant evaporated in the evaporator and discharge the compressed refrigerant at its outputs as so-called pressurized gas having an increased pressure and an elevated temperature. If the compressors are operated at the limit of their capacity, the temperature of the compressed gas may exceed allowable limits and damage the compressors.
  • This form of compressor cooling is disadvantageous in that a separate according to its operating state controlled expansion valve is provided for each compressor. With regard to control effort and production costs, a refrigeration machine having such a compressor cooling is correspondingly complicated and expensive.
  • a method according to the preamble of claim 1 is known from FR 2 598 788 A1 known. Similar methods are further in the US 2005/0235689 A1 . WO 2008/082408 A1 and WO 2008/130359 A1 described.
  • the invention has for its object to provide a simpler method of operating a chiller of the type mentioned, which is accompanied at the same time with lower investment costs for the chiller and contributes to avoiding damage to the compressors and increasing their life.
  • the inventive method provides that liquid refrigerant branched off from the circuit between the condenser and the subcooler, expanded by means of a second expansion valve, at least partially evaporated by the subcooler and then supplied to the first and / or second compressor for cooling.
  • the second expansion valve is regulated by means of a control unit.
  • the second expansion valve is a regulated expansion valve, with the help of which, for example, the overheating of the diverted, expanded and vaporized refrigerant can be regulated.
  • a control unit is needed for the cooling of several and preferably all compressors.
  • Also required for an overheating control sensors for detecting pressure and temperature of the branched, expanded and vaporized refrigerant need to be provided only simply. It can be saved in this way so even more costs.
  • the second expansion valve is controlled in response to overheating of the refrigerant evaporated by the subcooler.
  • the second expansion valve is in this case controlled such that the refrigerant is not only evaporated by the subcooler, but also overheated. Overheating of the refrigerant ensures that the refrigerant has completely evaporated, i. exclusively in gaseous form.
  • overheating is regulated to a value between 0K and 10K.
  • the pressure and the temperature of the diverted refrigerant are advantageously detected after the subcooler, since the overheating of the refrigerant can be determined particularly reliably from these values.
  • a compressed gas temperature of the or each compressor in operation is detected, for example by means of a temperature sensor arranged in the region of the compressor outlet.
  • a temperature sensor arranged in the region of the compressor outlet.
  • the second expansion valve is controlled in dependence on the pressure gas temperature of a compressor when the pressure gas temperature of at least one compressor exceeds a predetermined threshold. Normally, for example, an overheating control of the second expansion valve, so it is switched to a pressure gas temperature control of the expansion valve as soon as the pressure gas temperature of at least one compressor is unacceptably high. In the pressurized gas temperature control mode, the expansion valve is controlled so that the discharge gas temperature again becomes an allowable value. To this end, the overheating of the refrigerant is reduced as much as necessary to a waiver of overheating, i. Avoid complete evaporation of the refrigerant. If necessary, the refrigerant may also only partially evaporate, i. So with a certain amount of liquid, are introduced into the compressor. In this way damage to the compressors can be effectively avoided and their life can be increased.
  • the second expansion valve according to the invention is controlled as a function of the respective highest compressed gas temperature of all compressors in operation.
  • the condition of the compressor with the highest pressure gas temperature can be said to be most critical to the function of the refrigerator. This compressor must therefore be primarily cooled.
  • the regulation of the second expansion valve is therefore dependent on this reason performed by the discharge gas temperature of the compressor with the highest pressure gas temperature.
  • the other compressors in operation are cooled accordingly for easier control, even if not or at least not absolutely necessary.
  • the supply of the refrigerant evaporated by the subcooler is controlled to the first compressor by means of a first shut-off valve and to the second compressor by means of a second shut-off valve, wherein the respective valve associated with the shut-off valve is opened as soon as it starts its operation.
  • a compressor is only supplied with branched-off refrigerant for cooling when it is actually in operation. If a compressor is in operation, it is continuously supplied with refrigerant for cooling.
  • the check valves may for example be designed as solenoid valves.
  • Another object of the invention is a refrigerator with the features of claim 6.
  • the refrigerator according to the invention makes it possible to carry out the method according to the invention, so that the advantages described above can be achieved accordingly.
  • a chiller in the form of a heat pump 10 is shown.
  • the heat pump 10 comprises a main circuit 11 having a refrigerant, the refrigerant flowing through the heat pump 10 in normal operation in a direction indicated by arrows.
  • a first compressor 12 and a second compressor 14 connected in parallel therewith are provided which, if necessary, can operate either individually or both at the same time.
  • gaseous refrigerant also referred to as compressed gas
  • a condenser 16 The compressed by the compressors gaseous refrigerant, also referred to as compressed gas, is liquefied in a condenser 16 and thereby cooled.
  • the liquefied refrigerant is then supplied to a majority through a subcooler 18 through a first expansion valve 20, through which the liquid refrigerant is expanded.
  • the expanded refrigerant is then vaporized in an evaporator 22 and then fed back to the compressors 12, 14.
  • a smaller portion of the refrigerant liquefied in the condenser 16 is diverted from the main circuit 11 between the condenser 16 and the subcooler 18 and supplied to a second expansion valve 24.
  • the branched refrigerant is expanded in the second expansion valve 24 and then exchanges heat in the subcooler 18 with the liquid refrigerant of the main circuit 11, at least partially evaporating it.
  • the liquid refrigerant guided in the main circuit 11 through the subcooler 18 is further cooled by the heat exchange with the branched and expanded refrigerant.
  • the branched refrigerant evaporated in the subcooler is supplied to both the first compressor 12 and the second compressor 14 via injection ports 26 for cooling.
  • the cooling refrigerant is always supplied to a compressor 12, 14 when it is in operation. Only when a compressor 12, 14 is stopped, the cooling refrigerant supply is interrupted by means of a respective compressor 12, 14 associated solenoid valve 28a, 28b.
  • the control of the second expansion valve 24 is performed by a control unit 30 which is connected to temperature sensors 32a, 32b, which detect the temperatures of the compressed gas at the outputs of the compressors 12, 14. Furthermore, the control unit 30 is connected to a temperature sensor 34 and a pressure sensor 36, which detect the temperature and the pressure of the diverted in the subcooler 18 branched refrigerant downstream of the subcooler 18. From the temperature and pressure values detected by the temperature sensor 34 and the pressure sensor 36, the control unit 30 can calculate the overheating of the evaporated refrigerant.
  • the control unit 30 performs overheating control. That the second expansion valve 24 is controlled so as to maintain a desired value of the superheat of the branched refrigerant evaporated by the subcooler 18.
  • control unit 30 switches to compressed gas temperature control and increases the flow of refrigerant through the second expansion valve 24 so as to increase the cooling of the compressors 12, 14 and thus achieve a reduction in the compressed gas temperature below the predetermined threshold.
  • control unit 30 regulates the second expansion valve 24 as a function of the respectively highest pressure gas temperature detected by the temperature sensors 32a, 32b.
  • both compressors 12, 14 are actually operating and the pressurized gas temperature of only one of the compressors 12, 14 is above the predetermined threshold, both compressors 12, 14 are similarly cooled, i. also the respective other compressor 12, 14 undergoes a stronger cooling.
  • control unit 30 switches back to overheating control, which then takes place again on the basis of the measured values detected by the temperature sensor 34 and the pressure sensor 36.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

  • Die vorliegende Erfindung betrifft ein Verfahren zum Betreiben einer Kältemaschine, z.B. einer Kälteanlage, Klimaanlage oder Wärmepumpe, die einen ein Kältemittel aufweisenden geschlossenen Kreislauf umfasst, in dem nacheinander ein Verdampfer, ein erster Verdichter und zumindest ein dazu parallel geschalteter zweiter Verdichter, ein Verflüssiger, ein Unterkühler und ein erstes Expansionsventil angeordnet sind.
  • Derartige Kältemaschinen sowie Verfahren zum Betreiben derselben sind grundsätzlich bekannt, wobei Kältemaschinen generell an ihrem Verdampfer eine Kühlwirkung und an ihrem Verflüssiger eine Heizwirkung erzeugen. So werden zum Beispiel Wärmepumpen dazu verwendet, Wärme, die im Erdreich, im Grundwasser oder in der Luft gespeichert ist, in Heizwärme umzuwandeln. Idealerweise übersteigt die dabei erzeugte Heizwärme bzw. Heizenergie eine zum Betrieb der Wärmepumpe notwendige elektrische Energie um ein Mehrfaches. Wärmepumpen stellen somit eine ressourcenschonende Möglichkeit zur Wärmeversorgung dar. Weitere Beispiele für Kältemaschinen sind Kühlschränke, Gefrierschränke- oder truhen oder Klimaanlagen.
  • Um variabel auf verschiedene Lastanforderungen reagieren zu können, werden manche Kältemaschinen mit mehreren parallel geschalteten Verdichtern ausgerüstet, wobei je nach benötigter Wärme- oder Kühlleistung ein oder mehrere Verdichter gleichzeitig betrieben werden. Sind beispielsweise zwei parallel geschaltete Verdichter vorhanden, so wird auch von einem Tandem-Verdichter gesprochen.
  • Die Verdichter komprimieren das in dem Verdampfer verdampfte Kältemittel und stoßen das komprimierte Kältemittel an ihren Ausgängen als sogenanntes Druckgas aus, das einen erhöhten Druck und eine erhöhte Temperatur aufweist. Werden die Verdichter im Grenzbereich ihrer Leistungsfähigkeit betrieben, kann die Temperatur des Druckgases zulässige Höchstgrenzen überschreiten und die Verdichter beschädigen.
  • Zur Kühlung der Verdichter ist es daher bekannt, diesen über eigens dafür vorgesehene Einspritzanschlüsse expandiertes Kältemittel zuzuführen, welches eine geringere Temperatur als das Druckgas aufweist. Dabei wird für jeden Verdichter flüssiges Kältemittel aus dem Kreislauf abgezweigt, einem dem jeweiligen Verdichter zugeordneten Expansionsventil zugeführt, in diesem expandiert, in einem Unterkühler verdampft und anschließend in die Verdichter eingespritzt. Werden sogenannte Scroll-Verdichter verwendet, kann die Einspritzung dabei direkt in die Scroll-Spirale erfolgen.
  • Diese Form der Verdichterkühlung ist insofern nachteilig, als für jeden Verdichter ein eigenes entsprechend seines Betriebszustands geregeltes Expansionsventil vorgesehen wird. Bezüglich Regelaufwand und Herstellungskosten ist eine eine solche Verdichterkühlung aufweisende Kältemaschine dementsprechend aufwändig und teuer.
  • Ein Verfahren gemäß dem Oberbegriff des Anspruchs 1 ist aus der FR 2 598 788 A1 bekannt. Ähnliche Verfahren sind ferner in der US 2005/0235689 A1 , WO 2008/082408 A1 und WO 2008/130359 A1 beschrieben.
  • Der Erfindung liegt die Aufgabe zugrunde, ein einfacheres Verfahren zum Betreiben einer Kältemaschine der eingangs genannten Art zu schaffen, welches gleichzeitig mit geringeren Investitionskosten für die Kältemaschine einhergeht und zu einer Vermeidung von Schäden an den Verdichtern und einer Erhöhung deren Lebensdauer beiträgt.
  • Die Lösung dieser Aufgabe erfolgt durch ein Verfahren mit den Merkmalen des Anspruchs 1.
  • Das erfindungsgemäße Verfahren sieht vor, dass zwischen dem Verflüssiger und dem Unterkühler flüssiges Kältemittel aus dem Kreislauf abgezweigt, mittels eines zweiten Expansionsventils expandiert, durch den Unterkühler zumindest teilweise verdampft und dann dem ersten und/oder zweiten Verdichter zur Kühlung zugeführt wird.
  • Mit anderen Worten ist zur Expansion des für die Kühlung mehrerer Verdichter abgezweigten Kältemittels lediglich ein einziges Expansionsventil vorgesehen, nämlich das zweite Expansionsventil. Eine Verzweigung des Kühlpfades zu den einzelnen Verdichtern erfolgt erfindungsgemäß erst nach der zumindest teilweisen Verdampfung des durch das gemeinsame zweite Expansionsventil expandierten Kältemittels.
  • Auf weitere, einzelnen Verdichtern zugeordnete Expansionsventile kann also verzichtet werden, wodurch nicht nur Komponenten und somit Kosten bei der Herstellung der Kältemaschine eingespart werden können, sondern im Fall der Verwendung eines geregelten Expansionsventils auch der Regelungsaufwand erheblich vereinfacht ist.
  • Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und der Zeichnung angegeben.
  • Gemäß einer Ausführungsform wird das zweite Expansionsventil mittels einer Regeleinheit geregelt. Es handelt sich bei dem zweiten Expansionsventil mit anderen Worten um ein geregeltes Expansionsventil, mit dessen Hilfe sich beispielsweise die Überhitzung des abgezweigten, expandierten und verdampften Kältemittels regeln lässt. Für die Kühlung mehrerer und bevorzugt aller Verdichter wird somit nur eine einzige Regeleinheit benötigt. Auch für eine Überhitzungsregelung erforderliche Sensoren zur Erfassung von Druck und Temperatur des abgezweigten, expandierten und verdampften Kältemittels brauchen jeweils nur einfach vorgesehen zu sein. Es lassen sich auf diese Weise also noch mehr Kosten einsparen.
  • Bevorzugt wird das zweite Expansionsventil in Abhängigkeit von einer Überhitzung des durch den Unterkühler verdampften Kältemittels geregelt. Das zweite Expansionsventil wird hierbei derart angesteuert, dass das Kältemittel durch den Unterkühler nicht nur verdampft, sondern auch überhitzt wird. Durch eine Überhitzung des Kältemittels wird gewährleistet, dass das Kältemittel vollständig verdampft ist, d.h. ausschließlich in Gasform vorliegt. Typischerweise wird die Überhitzung auf einen Wert zwischen 0 K und 10 K geregelt.
  • Zur Durchführung einer Überhitzungsregelung des zweiten Expansionsventils werden vorteilhafterweise der Druck und die Temperatur des abgezweigten Kältemittels nach dem Unterkühler erfasst, da sich aus diesen Werten besonders zuverlässig die Überhitzung des Kältemittels bestimmen lässt.
  • Erfindungsgemäß wird eine Druckgastemperatur des oder jedes im Betrieb befindlichen Verdichters erfasst, beispielsweise mittels eines im Bereich des Verdichterausgangs angeordneten Temperatursensors. Auf diese Weise kann eine unzulässig hohe Druckgastemperatur eines Verdichters rechtzeitig erkannt und eine entsprechende Kühlung des Verdichters veranlasst werden.
  • Ferner wird das zweite Expansionsventil in Abhängigkeit von der Druckgastemperatur eines Verdichters geregelt, wenn die Druckgastemperatur zumindest eines Verdichters einen vorbestimmten Schwellenwert übersteigt. Erfolgt normalerweise beispielsweise eine Überhitzungsregelung des zweiten Expansionsventils, wird also auf eine Druckgastemperaturregelung des Expansionsventils umgeschaltet, sobald die Druckgastemperatur zumindest eines Verdichters unzulässig hoch ist. Im Druckgastemperaturregelungsmodus wird das Expansionsventil so gesteuert, dass die Druckgastemperatur wieder einen zulässigen Wert annimmt. Hierzu wird die Überhitzung des Kältemittels soweit wie erforderlich reduziert bis hin zu einem Verzicht auf Überhitzung, d.h. Verzicht auf vollständige Verdampfung des Kältemittels. Bei Bedarf kann das Kältemittel auch nur teilweise verdampft, d.h. also mit einem gewissen Flüssigkeitsanteil, in die Verdichter eingeleitet werden. Auf diese Weise können Schäden an den Verdichtern wirksam vermieden und deren Lebensdauer erhöht werden.
  • Zur noch weiteren Reduzierung des Regelungsaufwands wird das zweite Expansionsventil erfindungsgemäß in Abhängigkeit von der jeweils höchsten Druckgastemperatur aller im Betrieb befindlichen Verdichter geregelt. Der Zustand des Verdichters mit der höchsten Druckgastemperatur kann als am kritischsten für die Funktion der Kältemaschine bezeichnet werden. Dieser Verdichter muss deshalb vorrangig gekühlt werden. Die Regelung des zweiten Expansionsventils wird aus diesem Grund also in Abhängigkeit von der Druckgastemperatur des Verdichters mit der höchsten Druckgastemperatur durchgeführt. Die anderen im Betrieb befindlichen Verdichter werden zugunsten einer einfacheren Regelung entsprechend gekühlt, selbst wenn dies nicht oder zumindest noch nicht unbedingt erforderlich ist.
  • Nach einer weiteren Ausführungsform wird die Zufuhr des durch den Unterkühler verdampften Kältemittels zu dem ersten Verdichter mittels eines ersten Sperrventils und zu dem zweiten Verdichter mittels eines zweiten Sperrventils gesteuert, wobei das dem jeweiligen Verdichter zugeordnete Sperrventil geöffnet wird, sobald dieser seinen Betrieb aufnimmt. Einem Verdichter wird mit anderen Worten nur dann abgezweigtes Kältemittel zur Kühlung zugeführt, wenn er tatsächlich in Betrieb ist. Ist ein Verdichter in Betrieb, so wird ihm kontinuierlich Kältemittel zur Kühlung zugeführt. Die Sperrventile können beispielsweise als Magnetventile ausgebildet sein.
  • Weiterer Gegenstand der Erfindung ist eine Kältemaschine mit den Merkmalen des Anspruchs 6.
  • Die erfindungsgemäße Kältemaschine ermöglicht die Durchführung des erfindungsgemäßen Verfahrens, so dass sich die voranstehend beschriebenen Vorteile entsprechend erreichen lassen.
  • Nachfolgend wird die Erfindung rein beispielhaft anhand einer möglichen Ausführungsform unter Bezugnahme auf die beigefügte Zeichnung beschrieben. Es zeigt:
  • Fig. 1
    eine schematische Ansicht einer erfindungsgemäßen Kältemaschine.
  • In Fig. 1 ist eine Kältemaschine in Form einer Wärmepumpe 10 dargestellt. Die Wärmepumpe 10 umfasst einen ein Kältemittel aufweisenden Hauptkreislauf 11, wobei das Kältemittel die Wärmepumpe 10 im Normalbetrieb in einer durch Pfeile angedeuteten Richtung durchströmt.
  • Zur Verdichtung gasförmigen Kältemittels sind ein erster Verdichter 12 sowie ein dazu parallel geschalteter zweiter Verdichter 14 vorgesehen, die bedarfsweise jeweils einzeln oder beide gleichzeitig arbeiten können.
  • Das von den Verdichtern verdichtete gasförmige Kältemittel, auch als Druckgas bezeichnet, wird in einem Verflüssiger 16 verflüssigt und dabei abgekühlt. Das verflüssigte Kältemittel wird anschließend zu einem Großteil durch einen Unterkühler 18 hindurch einem ersten Expansionsventil 20 zugeleitet, durch welches das flüssige Kältemittel expandiert wird. Das expandierte Kältemittel wird anschließend in einem Verdampfer 22 verdampft und danach wieder den Verdichtern 12, 14 zugeführt.
  • Ein kleinerer Teil des in dem Verflüssiger 16 verflüssigten Kältemittels wird zwischen dem Verflüssiger 16 und dem Unterkühler 18 aus dem Hauptkreislauf 11 abgezweigt und einem zweiten Expansionsventil 24 zugeführt. Das abgezweigte Kältemittel wird in dem zweiten Expansionsventil 24 expandiert und tauscht anschließend in dem Unterkühler 18 Wärme mit dem flüssigen Kältemittel des Hauptkreislaufs 11, wobei es zumindest teilweise verdampft. Das in dem Hauptkreislauf 11 durch den Unterkühler 18 geführte flüssige Kältemittel wird durch den Wärmetausch mit dem abgezweigten und expandierten Kältemittel weiter abgekühlt.
  • Das in dem Unterkühler verdampfte abgezweigte Kältemittel wird sowohl dem ersten Verdichter 12 als auch dem zweiten Verdichter 14 über Einspritzanschlüsse 26 zur Kühlung zugeführt. Dabei wird das kühlende Kältemittel einem Verdichter 12, 14 stets zugeführt, wenn dieser in Betrieb ist. Lediglich wenn ein Verdichter 12, 14 stillsteht, wird die kühlende Kältemittelzufuhr mittels eines dem jeweiligen Verdichter 12, 14 zugeordnetes Magnetventil 28a, 28b unterbrochen.
  • Die Steuerung des zweiten Expansionsventils 24 erfolgt durch eine Regeleinheit 30, die mit Temperatursensoren 32a, 32b verbunden ist, welche die Temperaturen des Druckgases an den Ausgängen der Verdichter 12, 14 erfassen. Weiterhin ist die Regeleinheit 30 mit einem Temperatursensor 34 sowie einem Drucksensor 36 verbunden, welche die Temperatur und den Druck des in dem Unterkühler 18 verdampften abgezweigten Kältemittels stromabwärts des Unterkühlers 18 erfassen. Aus den durch den Temperatursensor 34 und den Drucksensor 36 erfassten Temperatur- und Druckwerten kann die Regeleinheit 30 die Überhitzung des verdampften Kältemittels errechnen.
  • Solange die von den Temperatursensoren 32a, 32b erfassten Druckgastemperaturen an den Ausgängen der Verdichter 12, 14 unterhalb eines vorbestimmten Schwellenwerts liegen, führt die Regeleinheit 30 eine Überhitzungsregelung durch. D.h. das zweite Expansionsventil 24 wird derart gesteuert, dass ein gewünschter Wert der Überhitzung des durch den Unterkühler 18 verdampften abgezweigten Kältemittels eingehalten wird.
  • Wird mittels der Temperatursensoren 32a, 32b an einem der Verdichter 12, 14 eine oberhalb des vorbestimmten Schwellenwerts liegende Druckgastemperatur erfasst, schaltet die Regeleinheit 30 auf Druckgastemperaturregelung um und erhöht den Durchfluss von Kältemittel durch das zweite Expansionsventil 24, um auf diese Weise die Kühlung der Verdichter 12, 14 zu verstärken und somit eine Reduzierung der Druckgastemperatur unter den vorbestimmten Schwellenwert zu erreichen.
  • Die Regeleinheit 30 regelt das zweite Expansionsventil 24 dabei in Abhängigkeit von der jeweils höchsten der von den Temperatursensoren 32a, 32b erfassten Druckgastemperatur. Sind beide Verdichter 12, 14 tatsächlich in Betrieb und liegt die Druckgastemperatur nur eines der Verdichter 12, 14 oberhalb des vorbestimmten Schwellenwerts, werden beide Verdichter 12, 14 gleichermaßen gekühlt, d.h. auch der jeweils andere Verdichter 12, 14 erfährt eine stärkere Kühlung.
  • Sinkt die Druckgastemperatur des heißesten Verdichters 12, 14 wieder unter einen vorbestimmten Schwellenwert, so schaltet die Regeleinheit 30 auf Überhitzungsregelung zurück, welche dann wieder auf der Grundlage der von dem Temperatursensor 34 und dem Drucksensor 36 erfassten Messwerte erfolgt.
  • Bezugszeichenliste
  • 10
    Wärmepumpe
    11
    Hauptkreislauf
    12
    erster Verdichter
    14
    zweiter Verdichter
    16
    Verflüssiger
    18
    Unterkühler
    20
    erstes Expansionsventil
    22
    Verdampfer
    24
    zweites Expansionsventil
    26
    Einspritzanschlüsse
    28a, 28b
    Magnetventil
    30
    Regeleinheit
    32a, 32b
    Temperatursensor
    34
    Temperatursensor
    36
    Drucksensor

Claims (9)

  1. Verfahren zum Betreiben einer Kältemaschine, die einen ein Kältemittel aufweisenden geschlossenen Kreislauf (11) umfasst, in dem nacheinander ein Verdampfer (22), ein erster Verdichter (12) und zumindest ein dazu parallel geschalteter zweiter Verdichter (14), ein Verflüssiger (16), ein Unterkühler (18) und ein erstes Expansionsventil (20) angeordnet sind,
    wobei zwischen dem Verflüssiger (16) und dem Unterkühler (18) flüssiges Kältemittel aus dem Kreislauf (11) abgezweigt, mittels eines zweiten Expansionsventils (24) expandiert, durch den Unterkühler (18) zumindest teilweise verdampft und dem ersten und/oder zweiten Verdichter (12, 14) zur Kühlung zugeführt wird,
    dadurch gekennzeichnet, dass
    eine Druckgastemperatur des oder jedes im Betrieb befindlichen Verdichters (12, 14) mittels eines im Bereich des jeweiligen Verdichterausgangs angeordneten Temperatursensors (32a, 32b) erfasst wird und
    das zweite Expansionsventil (24) in Abhängigkeit von der jeweils höchsten Druckgastemperatur aller im Betrieb befindlichen Verdichter (12, 14) geregelt wird, wenn die Druckgastemperatur zumindest eines Verdichters (12, 14) einen vorbestimmten Schwellenwert übersteigt.
  2. Verfahren nach Anspruch 1,
    dadurch gekennzeichnet, dass
    das zweite Expansionsventil (24) mittels einer Regeleinheit (30) geregelt wird.
  3. Verfahren nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass
    das zweite Expansionsventil (24) in Abhängigkeit von einer Überhitzung des durch den Unterkühler (18) verdampften Kältemittels geregelt wird.
  4. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    der Druck und die Temperatur des abgezweigten Kältemittels nach dem Unterkühler (18) erfasst werden, um eine Überhitzungsregelung des zweiten Expansionsventils (24) durchzuführen.
  5. Verfahren nach einem der vorstehenden Ansprüche,
    dadurch gekennzeichnet, dass
    die Zufuhr des durch den Unterkühler (18) verdampften Kältemittels zu dem ersten Verdichter (12) mittels eines ersten Sperrventils (28a) und zu dem zweiten Verdichter (14) mittels eines zweiten Sperrventils (28b) gesteuert wird, wobei das dem jeweiligen Verdichter (12, 14) zugeordnete Sperrventil (28a, 28b) geöffnet wird, wenn dieser seinen Betrieb aufnimmt.
  6. Kältemaschine mit einem ein Kältemittel aufweisenden geschlossenen Kreislauf (11), in dem nacheinander ein Verdampfer (22), ein erster Verdichter (12) und zumindest ein dazu parallel geschalteter zweiter Verdichter (14), ein Verflüssiger (16), ein Unterkühler (18) und ein erstes Expansionsventil (20) angeordnet sind,
    wobei zwischen dem Verflüssiger (16) und dem Unterkühler (18) ein Abzweigpfad aus dem Kreislauf (11) abzweigt, welcher ein zweites Expansionsventil (24) aufweist, mit dem Unterkühler (18) in Wärmetauschbeziehung steht und mit den Verdichtern (12, 14) verbunden ist, um flüssiges Kältemittel zu expandieren, zumindest teilweise zu verdampfen und dem ersten und/oder zweiten Verdichter (12, 14) zur Kühlung zuzuführen,
    dadurch gekennzeichnet, dass
    eine Regeleinheit (30) zur Regelung des zweiten Expansionsventils (24) mit Temperatursensoren (32a, 32b) im Bereich der Ausgänge der Verdichter (12, 14) verbunden ist und dazu ausgebildet ist, das zweite Expansionsventil (24) in Abhängigkeit von der jeweils höchsten Druckgastemperatur aller im Betrieb befindlichen Verdichter (12, 14) zu regeln, wenn die Druckgastemperatur zumindest eines Verdichters (12, 14) einen vorbestimmten Schwellenwert übersteigt.
  7. Kältemaschine (10) nach Anspruch 6,
    dadurch gekennzeichnet, dass
    die Regeleinheit (30) mit einem Drucksensor (36) und einem Temperatursensor (34) verbunden ist, die nach dem Unterkühler (18) an dem Abzweigpfad angeordnet sind.
  8. Kältemaschine (10) nach Anspruch 6 oder 7,
    dadurch gekennzeichnet, dass
    die Regeleinheit (30) dazu ausgebildet ist, das zweite Expansionsventil (24) in Abhängigkeit von einer Überhitzung des durch den Unterkühler (18) verdampften Kältemittels in dem Abzweigpfad zu regeln.
  9. Kältemaschine (10) nach einem der Ansprüche 6 bis 8,
    dadurch gekennzeichnet, dass
    die Zufuhr des durch den Unterkühler (18) verdampften Kältemittels zu dem ersten Verdichter (12) mittels eines ersten Sperrventils (28a) und zu dem zweiten Verdichter (14) mittels eines zweiten Sperrventils (28b) absperrbar ist.
EP12183137.4A 2012-09-05 2012-09-05 Verfahren zum Betreiben einer Kältemaschine und Kältemaschine Active EP2706312B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP12183137.4A EP2706312B1 (de) 2012-09-05 2012-09-05 Verfahren zum Betreiben einer Kältemaschine und Kältemaschine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP12183137.4A EP2706312B1 (de) 2012-09-05 2012-09-05 Verfahren zum Betreiben einer Kältemaschine und Kältemaschine

Publications (2)

Publication Number Publication Date
EP2706312A1 EP2706312A1 (de) 2014-03-12
EP2706312B1 true EP2706312B1 (de) 2019-11-06

Family

ID=46801353

Family Applications (1)

Application Number Title Priority Date Filing Date
EP12183137.4A Active EP2706312B1 (de) 2012-09-05 2012-09-05 Verfahren zum Betreiben einer Kältemaschine und Kältemaschine

Country Status (1)

Country Link
EP (1) EP2706312B1 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111907301B (zh) 2019-05-07 2024-10-25 开利公司 组合式换热器、热交换系统及其优化方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142619A2 (en) * 2006-06-01 2007-12-13 Carrier Corporation Multi-stage compressor unit for a refrigeration system

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4787211A (en) * 1984-07-30 1988-11-29 Copeland Corporation Refrigeration system
JPH07190520A (ja) * 1993-12-27 1995-07-28 Kobe Steel Ltd 冷凍装置
US6718781B2 (en) * 2001-07-11 2004-04-13 Thermo King Corporation Refrigeration unit apparatus and method
US6474087B1 (en) * 2001-10-03 2002-11-05 Carrier Corporation Method and apparatus for the control of economizer circuit flow for optimum performance
US7997091B2 (en) * 2004-04-22 2011-08-16 Carrier Corporation Control scheme for multiple operating parameters in economized refrigerant system
JP2007255864A (ja) * 2006-03-27 2007-10-04 Mitsubishi Electric Corp 二段圧縮式冷凍装置
EP2097703B1 (de) * 2006-12-29 2018-04-18 Carrier Corporation Economiser-wärmetauscher
CN101688697B (zh) * 2007-04-24 2012-10-03 开利公司 具有双节能器回路的制冷剂蒸汽压缩系统

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142619A2 (en) * 2006-06-01 2007-12-13 Carrier Corporation Multi-stage compressor unit for a refrigeration system

Also Published As

Publication number Publication date
EP2706312A1 (de) 2014-03-12

Similar Documents

Publication Publication Date Title
DE102006035784B4 (de) Kälteanlage für transkritischen Betrieb mit Economiser und Niederdruck-Sammler
DE102015212550A1 (de) Kältekreis, Verfahren zur Klimatisierung eines Fahrzeugs und Fahrzeug
WO2009141282A2 (de) Kühlgerät mit kühlmittelspeicherung im verflüssiger und entsprechendes verfahren
DE69513765T2 (de) Kälteanlage
AT520000B1 (de) Kältemittelkreislauf einer Kälteanlage mit einer Anordnung zum Abtauen eines Wärmeübertragers und Verfahren zum Betreiben des Kältemittelkreislaufs
EP1957894B1 (de) Verfahren zum betreiben eines kühlschranks sowie kühlschrank mit einem zeitverzögerten einschalten des verdichters
EP3574269B1 (de) Expansionseinheit zum einbau in einen kältemittelkreislauf
EP2706312B1 (de) Verfahren zum Betreiben einer Kältemaschine und Kältemaschine
EP1771689B1 (de) Kältemaschine und verfahren zum betreiben einer kältemaschine
EP1355207A1 (de) Verfahren zum Betreiben einer Kompressionskälteanlage und Kompressionskälteanlage
DE102011012644A1 (de) Kälteanlage
EP1350068B1 (de) Verfahren zur regelung eines kühlgerätes
DE112017005948T5 (de) Klimatisierungsvorrichtung
EP3922926B1 (de) Verfahren zum regeln eines abtauvorgangs eines verdampfers einer kompressionskälteanlage und kompressionskälteanlage
DE102019119751B3 (de) Verfahren zum Betreiben eines Kältekreislaufs eines Kraftfahrzeugs und Kältekreislauf
EP1498673B1 (de) Heissgasabtauverfahren für Kälteanlagen
DE102018210477A1 (de) Verfahren zum Betreiben eines Kältemittelkreislaufs einer Kälteanlage eines Fahrzeugs
DE102009014682B4 (de) Wärmepumpe für einen Warmwasserbereiter
EP2063201B1 (de) Verfahren zum Betreiben einer Kälteanlage
EP1787072B1 (de) Kältekreislauf und verfahren zum betreiben eines kältekreislaufes
EP3922925A1 (de) Verfahren zum betrieb einer kompressionskälteanlage und kompressionskälteanlage
EP2827000B1 (de) Verfahren zum Steuern einer Lüftereinrichtung eines Verdampfers eines Wärmepumpenkreislaufs
EP3922931B1 (de) Kompressionskälteanlage und verfahren zum betrieb selbiger
DE102011112911A1 (de) Kälteanlage
DE102014016170B4 (de) Verfahren zum Betreiben einer Fahrzeugklimaanlage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

17P Request for examination filed

Effective date: 20140912

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20170612

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190425

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EMERSON CLIMATE TECHNOLOGIES GMBH

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1199281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502012015481

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191106

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200206

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200207

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200306

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502012015481

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200807

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502012015481

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F25B0041040000

Ipc: F25B0041200000

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200930

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1199281

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191106

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240822

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240820

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240820

Year of fee payment: 13

Ref country code: SE

Payment date: 20240820

Year of fee payment: 13