[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2784874B1 - Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength - Google Patents

Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength Download PDF

Info

Publication number
EP2784874B1
EP2784874B1 EP14159092.7A EP14159092A EP2784874B1 EP 2784874 B1 EP2784874 B1 EP 2784874B1 EP 14159092 A EP14159092 A EP 14159092A EP 2784874 B1 EP2784874 B1 EP 2784874B1
Authority
EP
European Patent Office
Prior art keywords
antenna
monopole antenna
broadband monopole
strip
broadband
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP14159092.7A
Other languages
German (de)
French (fr)
Other versions
EP2784874A2 (en
EP2784874A3 (en
Inventor
Stefan Lindenmeier
Heinz Lindenmeier
Jochen Hopf
Leopold Reiter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Delphi Deutschland GmbH
Original Assignee
Delphi Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Delphi Deutschland GmbH filed Critical Delphi Deutschland GmbH
Publication of EP2784874A2 publication Critical patent/EP2784874A2/en
Publication of EP2784874A3 publication Critical patent/EP2784874A3/en
Application granted granted Critical
Publication of EP2784874B1 publication Critical patent/EP2784874B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • H01Q5/307Individual or coupled radiating elements, each element being fed in an unspecified way
    • H01Q5/314Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
    • H01Q5/321Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/32Vertical arrangement of element
    • H01Q9/36Vertical arrangement of element with top loading
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/30Resonant antennas with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/44Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions
    • H01Q9/46Resonant antennas with a plurality of divergent straight elements, e.g. V-dipole, X-antenna; with a plurality of elements having mutually inclined substantially straight portions with rigid elements diverging from single point

Definitions

  • the invention relates to a vertical broadband monopole antenna according to the preamble of claim 1 (see. WO 03/034538 A1 ).
  • a frequency range between 698 and 960 MHz is provided for the LTE mobile radio standard - hereinafter referred to as subband U - and above a frequency gap, the frequency range between 1460 MHz and 2700 MHz, denoted here by upper band O, is provided, as in FIG Fig. 1 shown.
  • a middle band M is provided in the frequency range between 1460 MHz and 1700 MHz, which is to be assigned to the upper band.
  • the frequency gap between lower band U and upper band O is desired for protection against the radio services located there.
  • antennas are needed, which are suitable in addition to the electrical function for vehicles, with the economy of production is of particular importance.
  • a multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting radio signals is known in which over an electrically conductive base area a rod-shaped monopoly with roof capacity is provided. Furthermore, at least one annular satellite receiving antenna arranged concentrically with an antenna connection point is provided above the conductive base. From the WO 96/24963 A1 Disc antennas are known which have a flat or a fan-like triangular structure.
  • the US 2002/0109643 A1 discloses an L-band antenna comprising conically arranged antenna rods which are interconnected at a lower foot point.
  • the object of the invention is to develop an antenna according to the preamble of claim 1 such that a satellite reception is possible, wherein the deformation of the directional diagram of the satellite antenna is minimized.
  • the antenna is a vertical broadband monopole antenna for two frequency bands separated by a frequency gap - the lower band for the lower frequencies and the upper band for the higher frequencies - both located in the Dezimeterwellen Scheme, for vehicles and for transmission and / or reception with terrestrial emitted vertically polarized radio signals above a substantially horizontal conductive base surface 6 as a vehicle mass with an antenna connection point 3 located in the monopole base, comprising an antenna connection point 5.
  • the broadband monopole antenna 0 can be formed from a top band monopole 1 and a subband monopole combined and is for example made of a mechanically stiff electrically conductive film 33 as a continuous, electrically conductive and, for example, planar structure over a conductive base 6 substantially in a vertical Designed to run to this oriented level.
  • an example flat triangular structure 4 is present as a top band monopole 1 with a substantially horizontally oriented baseline in a top band monopole 8 above the conductive base 6 whose tip is connected to the antenna connection point 5 ,
  • a roof capacitance 10 designed substantially as a rectangular planar structure 16, in particular, is designed underneath.
  • the triangular structure 4 and the rectangular structure 16 as a roofing capacity 10 are inductively connected by high impedance at least one conductor strip 15 with particular narrow stripline width 14 of, for example, less than or equal to 7 mm for the separation of radio signals in the upper band, whereby the sub-band monopole 2 is formed.
  • a vertical broadband monopole antenna for vehicles for two frequency bands separated frequency bands, namely a lower band U for lower frequencies and an upper band O for higher frequencies, both located in the Dezimeterwellen Scheme, for transmission and / or reception with terrestrially emitted vertically polarized radio signals a substantially horizontal conductive base 6 as a vehicle ground with an antenna connection point 3 located in the monopole base comprising the following features:
  • the broadband monopole antenna is formed of a self-supporting electrically conductive structure which is oriented over the base 6 substantially perpendicular to this.
  • the electrically conductive structure comprises at the lower end of the broadband monopole antenna a truncated triangular structure 4 with a substantially horizontally oriented baseline, the tip of which forms an antenna connection point 5 of the antenna connection point 3.
  • the electrically conductive structure comprises, adjacent to the upper end of the broadband monopole antenna 0 underneath, a roof capacitance 10 substantially configured as a rectangular structure 16.
  • the triangular structure 4 and the rectangular structure 16 are inductive by at least one conductor strip 15, 15a, 15b for separating radio signals in the upper band connected with high resistance.
  • the electrically conductive structure may have at least two spaced conductor strips 15, whereby a frame structure 11, consisting of the triangular structure 4, the rectangular structure 16 and the conductor strip 15 is formed.
  • the conductor strip or strips 15, 15a, 15b may contain meander-shaped forms 24 for the frequency-selective separation.
  • the inner angle 12 at the top of the triangular structure 4 may be approximately between 30 and 90 degrees.
  • the triangular structure 4 is designed by strip-like lamellae 20 arranged fan-like in the triangular plane and converging in the tip.
  • At least one annular satellite receiving antenna 25, 25a, 25b arranged concentrically with the antenna connection point 3 is present above the conductive base 6.
  • the rectangular structure 16 may be formed substantially by vertical strip conductors 19, 19a, 19b which are separated from each other vertically but electrically, but which are connected at their upper end by a remaining strip 31.
  • the strip-like lamellae 30, 30a, 30b converging in the tip can be bent out of the plane of the triangular structure (4) in such a way that they essentially run on the lateral surface of a tip-shaped cone with a circular or elliptical cross section.
  • the roof slats 19, 19a, 19b may be successively in the opposite direction in the way that they are arranged in the projection on a transverse to the strip 31 plane V-shaped.
  • the converging lamellae 20a, 20b in the tip can be successively contrasted in the manner out of the plane of the triangular structure 4 in such a way that they are arranged in the projection on a plane transverse to the triangular structure 4 in a V-shaped manner.
  • the broadband monopole antenna 0 can be arranged under a covering hood 32 and the at least one conductor strip 15, 15a, 15b can be guided at least partially and in particular as far as possible along the inner wall of the covering hood.
  • the electrically conductive structure may be made of electrically conductive sheet and only one, i. a single self-supporting conductor strip 15 may be present.
  • the electrically conductive structure may be provided by metallic coating 33 on a printed circuit board whose contour substantially follows the contours of the electrically conductive structure of the broadband monopole antenna 0.
  • the mirror image of the broadband monopole antenna 0 at the conductive base 6 can be replaced by their omission by a same to this other broadband monopole antenna in such a way that is given to the plane of the conductive base 6 symmetrical dipole and a symmetrical antenna junction of this dipole between the antenna connection point 5 of the broadband monopole antenna 0 and the - this accordingly - mirrored at the conductive base 6 antenna connection point 5 of the further broadband monopole antenna is formed.
  • the broadband monopole antenna in its flat designed basic version in Fig. 2 is essentially formed of a subband monopole 2 for covering the sub-band with a required antenna height 9 in combination with a top band monopole 1 with the top band monopole 8 with a common antenna connection point 3.
  • a subband monopole 2 for covering the sub-band with a required antenna height 9 in combination with a top band monopole 1 with the top band monopole 8 with a common antenna connection point 3.
  • To avoid an excessive effective antenna height 9 in the frequency range of the upper band of the lower band monopole 2 is designed in the frequency range of the upper band inductively high impedance conductor strips 15 with narrow stripline width 14 in conjunction with a roofing capacity 10.
  • the latter is essentially embodied as a flat rectangular structure 16 and designed with a large horizontal extension 23 compared to the vertical extension 22.
  • the monopole antenna according to the invention is made, for example, from an electrically conductive foil 33 (FIG. Fig. 16 ) designed as a contiguous, electrically conductive structure extending in a plane substantially perpendicular to the conductive base 6 level extending.
  • an electrically conductive foil 33 (FIG. Fig. 16 ) designed as a contiguous, electrically conductive structure extending in a plane substantially perpendicular to the conductive base 6 level extending.
  • the self-supporting, electrically conductive structure which is in particular integrally formed to use electrically conductive sheet or a self-supporting electrically conductive film, resulting in the entire broadband monopole antenna 0 can produce a mechanically self-supporting structure.
  • This structure can be produced, for example, by a punching process or by a controlled cutting operation, for example by controlled laser cutting.
  • the production of a punching tool will prove to be economically advantageous in particularly large numbers, because the monopole antenna can be multiplied by automated punching operations extremely cost.
  • the computer-controlled laser cutting can be more economical.
  • Fabrication of the broadband monopole antenna 0 of sheet metal offers the particular advantage of metallic rigidity, which is of particular importance for use as a vehicle antenna.
  • a particular advantage of this flat design structure is their negligible wind resistance to call, if it is designed to extend in an advantageous manner in a plane whose normal is oriented perpendicular to the direction of travel of the vehicle.
  • the electrically conductive structure can be selected by the metallic coating of a dielectric plate, that is to say a printed circuit board.
  • a dielectric plate that is to say a printed circuit board.
  • This value can in principle be achieved in an antenna according to the invention in its complete embodiment at the antenna connection point 3 with an antenna height 9 of 6 cm.
  • the properties of the sub-band monopole 2 are essentially determined by its antenna height 9 and the size of the flat roof capacity 10, the horizontal extent 23 with about 6cm much larger, that is designed at least three times larger than the vertical extent 22. A much larger Although the vertical extent 22 increases the capacitance value of the roof capacitance 10, it reduces the effective height of the subband monopole 2, which, in contrast to the capacitance value, squares into the formation of the frequency bandwidth of the subband monopole 2.
  • the formation of the upper band monopole 1 is essentially given by the flat triangular structure 4, provided that the inductive effect of the conductor strips 15 with narrow stripline width 14 for the separation of radio signals in the upper band of the roof capacity 10 is sufficiently large. This is usually given with a stripline width of less than or equal to 7 mm. To increase this separating effect can be inventively provided to provide the conductor strips 15 with meandering shapes 24.
  • the functional division of the wideband monopole antenna 0 into the subband monopole 2 and the top band monopole 1 is not strictly seen. Rather, the transition between the effects is fluent and the subdivision is to be understood as a description of the main effects in the two frequency ranges.
  • the mode of action of the upper band monopole located above the conductive base 6 1 is essentially given by the design of the flat triangular structure 4.
  • an apex triangular structure 4 with a triangular opening angle 12 is provided in this embodiment, the tip of which is connected to the antenna connection point 5.
  • the antenna connection point 3 for the broadband monopole antenna 0 is formed.
  • the height of the baseline of the flat triangular structure 4 above the conductive base 6 essentially forms the effective upper band monopole height 8, by which the frequency response of the upper band monopole 1 is substantially determined.
  • the upper band monopole height 8 at the upper frequency limit of the upper band should not be greater than about 1/3 of the free space wavelength at this frequency.
  • values between 30 and 90 degrees have proved favorable.
  • the resulting wideband triangular structure allows it to meet the often-demanded impedance matching requirement at the VSWR ⁇ 2.5 in the upper band frequency range.
  • a frame structure 11 is designed to achieve a particular rigidity.
  • the electrically conductive structure consists of a material of particular rigidity, for example, thin sheet metal.
  • the broadband monopole antenna 0 can be used with only one conductor strip 15, as in FIG Fig. 8 represented, designed. In the interest of mechanical stability but then a larger stripline width 14 is provided for this.
  • a plurality of meander-shaped expression 24 is generally necessary.
  • a switching element with the operation of a parallel resonant circuit 28 in the conductor strips 15.
  • This parallel resonant circuit is used to support the frequency-selective separation of the sub-band monopole 2 of signals in the upper band.
  • the parallel resonant circuit 28 may, as in Fig. 4 in each case comprise a parallel capacitor 27 designed as an interdigital structure 26 and a parallel inductance 28 designed as a strip conductor.
  • this switching element can be punched or cut by way of example from sheet metal via the conductor strips 15 in the design of the mechanically self-supporting broadband monopole antenna 0 are included.
  • a three-dimensional structure may be provided for it in a (not claimed) embodiment which is formed from the two-dimensional structure in such a way that an approximately conical structure is sought instead of the flat triangular structure 4.
  • the form of such a monopoly is in Fig. 9 indicated by the conical monopole 18 with electrically conductive lateral surfaces.
  • the economically advantageous manufacturability of punched or cut sheet should be maintained.
  • the flat triangular structure 4 by a fan-like in the lower triangle tip co-existing strip-shaped fins 20, as in Fig. 5 shown to execute.
  • Fig. 10 By diffusing the slats 20 so that they lie on the lateral surface of a cone standing on the top, these become conical slats 30 and the conical monopole 18 in Fig. 9 is modeled in terms of its effect as a high band monopoly 1.
  • Fig. 10 shown in detail and also according to the section AA 'in Fig. 11 seen as a plan view.
  • Fig. 11 is the in Fig. 10 indicated cone cross section elliptical and thus the cone opening angle 17a ( Figure 10 ) in the x direction due to the requirements with respect to the aerodynamic properties of the antenna chosen smaller than the cone opening angle 17 in the direction of travel of the vehicle (y-direction).
  • a ring-shaped satellite receiving antenna 25 is disposed concentrically with the antenna junction 3 of a broadband monopole antenna 0.
  • the result in Fig. 6a illustrated azimuthal variations in the antenna gain of the satellite receiving antenna 25 at about 2.3 GHz.
  • the gain variation of 0.6 dBi is already above the tolerance value and can not be tolerated at 60 degrees with 1.2 dBi.
  • the inventive design of the triangular structure 4 from at the top of a fan-like running together slats 20, as in Fig. 5 more favorable than a closed flat triangular structure 4 according to Fig. 3 ,
  • This advantage of little influence on the radiation characteristics of the satellite receiving antenna 25 is particularly pronounced in the design of the upper band monopole 1 of cone blades 30. This is an example of the in Fig.
  • the strip width 21 should not be greater than 1/8 of the free space wavelength of the highest frequency in the upper band.
  • FIG. Fig. 13 with view across the direction of travel (x-direction) and in Fig. 14 with view in direction of travel (y-direction) is shown.
  • FIG. 14 visible extension of the cover 32 transversely to the direction of travel the possibility of further spatial design of the originally areal manufactured broadband monopole antenna 0 with the advantages of increasing the bandwidths of both monopolies 1 and 2.
  • This is expressed by a better configurability of the antenna impedance with respect to the VSWR Value at the antenna connection point 3 off. This gives the possibility to be able to largely do without a matching network.
  • the strip-shaped roof louvers 19 of the roofing capacity 10 which are contiguous at their upper end over a remaining strip, can be selected in such a way that they are arranged in a V-shape in the projection on a plane lying transversely to the direction of travel.
  • These are alternately the in Fig. 13 black filled marked roof slats 19a in the x direction and the white filled filled roof slats 19b deflected in the opposite direction in the negative x direction, so that in the projection in Fig. 13 visible V-shaped structure is given.
  • the capacity value of the roofing capacity 10 is greater. This leads to an increase in the bandwidth of the subband monopole 2 and facilitates compliance with the impedance matching condition at the VSWR value to be maintained.
  • the lamellae 20, 20a, 20b about the inner boundary of the cover 32 following be understoodknelt following. That is, the converging in the lower triangular tip strip-shaped fins 20, 20a, 20b of the upper band monopoly 1 are bent out of the plane of the flat triangular structure 4 successively in such a way that in the projection on a plane transverse to the direction of travel about V- are arranged shaped.
  • the slats 20 are in such a way dignified that the in Fig. 13 fills 20 a marked in black in the x direction and the lamellae 20 b marked filled in white are deflected in opposite directions in the negative x direction, so that the fins projected in the projection in FIG Fig. 14 visible V-shaped structure is given.
  • this measure serves to increase the frequency bandwidth of the upper band monopole 1 with the associated advantage in the realization of the impedance matching in the antenna base.
  • antennas as in the Fig. 13 .
  • the conductor strips can thus be shaped so that they extend as far as possible along the inner wall of the cover 32.
  • the spatial design according to the invention is additionally advantageous with respect to the problem of impedance matching over large frequency ranges.
  • the special advantage associated with the present invention is that this spatially designed antenna is punched out of a sheet-like electrically conductive structure (sheet or foil) or cut and shaped by simple subsequent bending as described above.
  • two broadband monopole antennas O and 0a according to the invention under a cover 32 in the direction of travel behind each other, as in Fig. 15 to install. It has been shown that the annular satellite antennas 25 in the base of a broadband monopole antenna 0 by the presence of the other broadband monopole antenna 0a undergoes no disturbing influence on their radiation properties. Conversely, this also applies with regard to the effect of the broadband monopole antenna 0 on the satellite antennas 25a at the base of the broadband monopole antenna 0a.
  • a broadband monopole antenna 0 in a further advantageous application of a broadband monopole antenna 0 according to the invention, this is supplemented by a further, same to this same broadband monopole antenna in a known per se to a dipole.
  • the mirror image of the broadband monopole antenna 0 is replaced at the conductive base 6 with their omission by this further broadband monopole antenna in such a way that a symmetrical to the plane of the conductive surface 6 dipole is given.
  • the symmetrical antenna connection point of this dipole is formed between the antenna connection point 5 of the broadband monopole antenna 0 and the antenna connection point 5 which is mirrored to the conductive base 6.
  • a broadband monopole antenna 0 is in support of the impedance matching at the lower frequency end of the lower band connected at its upper end with the roof capacity 10 and the conductive base 6 extending towards coupling ladder 35 is present, which at its lower end with the conductive base 6 is coupled.
  • This coupling conductor 35 is in Fig. 17 illustrates and complements the subband monopole 2 in such a way that it is possible to match the impedance at the antenna connection point 3, at the lower frequency end of the lower band.
  • the impedance matching can be further improved in that this coupling of the coupling conductor 35 with the conductive base 6 via a two-pole coupling network 36, consisting of reactive elements occurs.

Landscapes

  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Details Of Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Waveguide Aerials (AREA)

Description

Die Erfindung betrifft eine vertikale Breitband-Monopolantenne nach dem Oberbegriff des Anspruchs 1 (vgl. WO 03/034538 A1 ).The invention relates to a vertical broadband monopole antenna according to the preamble of claim 1 (see. WO 03/034538 A1 ).

Andere Breitbandantennen aus dem Stand der Technik sind als mehrfach resonante Stabantennen gestaltet, wobei die Abdeckung mehrerer in der Frequenz durch Frequenzlücken voneinander getrennter Frequenzbänder anhand von mehrfachen, auf den länglichen Stab aufgebrachten Drahtwicklungen erfolgt, welche sich teilweise überdecken. Solche Antennen werden für Senden und Empfang im Dezimeterwellenbereich auf Fahrzeugen, vorzugsweise jeweils auf dem Fahrzeugdach eingesetzt. Antennen dieser Art besitzen zum einen den Nachteil, dass sie nur für relativ schmalbandige voneinander durch Frequenzlücken getrennte Frequenzbänder vorgesehen sind und für breite Frequenzbänder nur sehr bedingt infrage kommen. Insbesondere für den Einsatz auf Fahrzeugen sind die Bauhöhe, ihre aerodynamische Form und ihr Windwiderstandswert von Bedeutung. Die besondere Bedeutung kommt jedoch aufgrund der im Fahrzeugbau üblichen großen Stückzahlen der Wirtschaftlichkeit der Herstellung einer derartigen Antenne zu. Hierbei zeigt sich, dass die Aufbringung verschiedener Drahtwicklungen mechanisch sehr eng toleriert sein muss, damit die erforderliche Frequenzgenauigkeit erreicht wird. Weiterhin sind die Aufbringung der Wicklungen auf den Stab, ihre Befestigung und die Herstellung ihrer Langzeitbeständigkeit und die Reproduzierbarkeit der Leistungsfähigkeit der Antenne vergleichsweise kompliziert und wirtschaftlich aufwändig.Other prior art broadband antennas are designed as multi-resonant rod antennas, with multiple frequency bands separated by frequency gaps being covered by multiple wire windings applied to the elongate rod, which partially overlap. Such antennas are used for transmission and reception in the decimeter-wave range on vehicles, preferably in each case on the vehicle roof. Antennas of this type, on the one hand, have the disadvantage that they are only provided for relatively narrowband frequency bands separated from one another by frequency gaps, and that they are only of limited use for wide frequency bands. Especially for use on vehicles, the height, their aerodynamic shape and their wind resistance value are important. However, the special significance is due to the usual in vehicle large numbers of economic efficiency of the production of such an antenna. This shows that the application of different wire windings must be mechanically very tight tolerances, so that the required frequency accuracy is achieved. Furthermore, the application of the windings on the rod, their attachment and the production of their long-term stability and the reproducibility of the performance of the antenna are relatively complicated and economically expensive.

Die Vielzahl moderner Mobilfunknetze, wie sie zum Beispiel nach dem Mobilfunkstandard LTE (Long Term Evolution) gestaltet oder noch in Entwicklung sind, erfordert Antennen mit extremer Bandbreite. Für den LTE- Mobilfunk Standard ist zum Beispiel ein Frequenzbereich zwischen 698 und 960 MHz vorgesehen - im Folgenden mit Unterband U bezeichnet - und oberhalb einer Frequenzlücke ist der hier im Folgenden mit Oberband O bezeichnete Frequenzbereich zwischen 1460 MHz und 2700 MHz vorgesehen, wie in Fig. 1 dargestellt. Häufig wird zusätzlich ein Mittelband M im Frequenzbereich zwischen 1460 MHz und 1700 MHz vorgesehen, welches dem Oberband zuzuordnen ist. Bezüglich der Antennenfunktion wird die Frequenzlücke zwischen Unterband U und Oberband O zum Schutz gegen die dort angesiedelten Funkdienste gewünscht. Für diese Anwendung werden Antennen benötigt, welche neben der elektrischen Funktion für Fahrzeuge geeignet sind, wobei der Wirtschaftlichkeit der Herstellung eine besondere Bedeutung zukommt.The variety of modern mobile networks, such as those designed according to the LTE (Long Term Evolution) or still under development, requires antennas with extreme bandwidth. For example, a frequency range between 698 and 960 MHz is provided for the LTE mobile radio standard - hereinafter referred to as subband U - and above a frequency gap, the frequency range between 1460 MHz and 2700 MHz, denoted here by upper band O, is provided, as in FIG Fig. 1 shown. Frequently, in addition, a middle band M is provided in the frequency range between 1460 MHz and 1700 MHz, which is to be assigned to the upper band. With regard to the antenna function, the frequency gap between lower band U and upper band O is desired for protection against the radio services located there. For this application antennas are needed, which are suitable in addition to the electrical function for vehicles, with the economy of production is of particular importance.

Aus der DE 10 2012 003 460 A1 ist eine Multiband-Empfangsantenne für den kombinierten Empfang von Satellitensignalen und terrestrisch ausgestrahlten Rundfunksignalen bekannt, bei der über einer elektrisch leitenden Grundfläche ein stabförmiger Monopol mit Dachkapazität vorgesehen ist. Ferner ist über der leitenden Grundfläche mindestens eine konzentrisch zu einer Antennenanschlussstelle angeordnete ringförmige Satellitenempfangsantenne vorgesehen.
Aus der WO 96/24963 A1 sind Scheibenantennen bekannt, die eine flächige oder aber eine fächerartige Dreieckstruktur aufweisen.
From the DE 10 2012 003 460 A1 is a multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting radio signals is known in which over an electrically conductive base area a rod-shaped monopoly with roof capacity is provided. Furthermore, at least one annular satellite receiving antenna arranged concentrically with an antenna connection point is provided above the conductive base.
From the WO 96/24963 A1 Disc antennas are known which have a flat or a fan-like triangular structure.

Die US 2002/0109643 A1 offenbart eine L-Band Antenne, die konisch angeordnete Antennenstäbe umfasst, die an einem unteren Fußpunkt miteinander verbunden sind.The US 2002/0109643 A1 discloses an L-band antenna comprising conically arranged antenna rods which are interconnected at a lower foot point.

Aufgabe der Erfindung ist es, eine Antenne nach dem Oberbegriff des Anspruchs 1 derart weiterzubilden, dass ein Satellitenempfang möglich ist, wobei die Verformung des Richtdiagramms der Satellitenantenne minimiert ist.The object of the invention is to develop an antenna according to the preamble of claim 1 such that a satellite reception is possible, wherein the deformation of the directional diagram of the satellite antenna is minimized.

Die Lösung dieser Aufgabe erfolgt durch die Merkmale des Anspruchs 1.The solution of this object is achieved by the features of claim 1.

Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen und der Beschreibung beschrieben.Advantageous embodiments of the invention are described in the subclaims and the description.

Die Antenne ist eine vertikale Breitband-Monopolantenne für zwei durch eine Frequenzlücke getrennte Frequenzbänder - das Unterband für die niedrigeren Frequenzen und das Oberband für die höheren Frequenzen - beide im Dezimeterwellenbereich gelegen, für Fahrzeuge und für Senden und/oder Empfang mit terrestrisch ausgestrahlten vertikal polarisierten Funksignalen über einer im Wesentlichen horizontalen leitenden Grundfläche 6 als Fahrzeugmasse mit einer im Monopol-Fußpunkt befindlichen Antennenanschlussstelle 3, umfassend einen Antennenanschlusspunkt 5.The antenna is a vertical broadband monopole antenna for two frequency bands separated by a frequency gap - the lower band for the lower frequencies and the upper band for the higher frequencies - both located in the Dezimeterwellenbereich, for vehicles and for transmission and / or reception with terrestrial emitted vertically polarized radio signals above a substantially horizontal conductive base surface 6 as a vehicle mass with an antenna connection point 3 located in the monopole base, comprising an antenna connection point 5.

Die Breitband-Monopolantenne 0 kann aus einem Oberband-Monopol 1 und einem Unterband-Monopol kombiniert gebildet sein und ist beispielsweise aus einer mechanisch steifen elektrisch leitenden Folie 33 als zusammenhängende, elektrisch leitende und beispielsweise flächige Struktur über einer leitenden Grundfläche 6 im Wesentlichen in einer senkrecht zu dieser orientierten Ebene verlaufend gestaltet. Am unteren Ende der Breitband-Monopolantenne 0 ist eine auf der Spitze stehende beispielsweise flächige Dreieckstruktur 4 als Oberband-Monopol 1 mit im Wesentlichen horizontal orientierter Grundlinie in einer Oberband-Monopolhöhe 8 über der leitenden Grundfläche 6 vorhanden, deren Spitze mit dem Antennenanschlusspunkt 5 verbunden ist.The broadband monopole antenna 0 can be formed from a top band monopole 1 and a subband monopole combined and is for example made of a mechanically stiff electrically conductive film 33 as a continuous, electrically conductive and, for example, planar structure over a conductive base 6 substantially in a vertical Designed to run to this oriented level. At the lower end of the broadband monopole antenna 0, an example flat triangular structure 4 is present as a top band monopole 1 with a substantially horizontally oriented baseline in a top band monopole 8 above the conductive base 6 whose tip is connected to the antenna connection point 5 ,

Angrenzend an das in der Antennenhöhe 9 über der leitenden Grundfläche 6 befindliche obere Ende der Breitband-Monopolantenne 0 ist darunter eine im Wesentlichen als insbesondere flächige Rechteckstruktur 16 ausgeführte Dachkapazität 10 gestaltet.Adjacent to the upper end of the broadband monopole antenna 0 located in the antenna height 9 above the conductive base area 6, a roof capacitance 10 designed substantially as a rectangular planar structure 16, in particular, is designed underneath.

Die Dreieckstruktur 4 und die Rechteckstruktur 16 als Dachkapazität 10 sind durch mindestens einen Leiterstreifen 15 mit insbesondere schmaler Streifenleiterbreite 14 von beispielsweise kleiner oder gleich 7 mm zur Abtrennung von Funksignalen im Oberband induktiv hochohmig verbunden, wodurch der Unterband-Monopol 2 gebildet ist.The triangular structure 4 and the rectangular structure 16 as a roofing capacity 10 are inductively connected by high impedance at least one conductor strip 15 with particular narrow stripline width 14 of, for example, less than or equal to 7 mm for the separation of radio signals in the upper band, whereby the sub-band monopole 2 is formed.

Offenbart ist eine vertikale Breitband-Monopolantenne für Fahrzeuge für zwei durch eine Frequenzlücke getrennte Frequenzbänder, nämlich ein Unterband U für niedrigere Frequenzen und ein Oberband O für höhere Frequenzen, beide im Dezimeterwellenbereich gelegen, für Senden und/oder Empfang mit terrestrisch ausgestrahlten vertikal polarisierten Funksignalen über einer im Wesentlichen horizontalen leitenden Grundfläche 6 als Fahrzeugmasse mit einer im Monopol-Fußpunkt befindlichen Antennenanschlussstelle 3, umfassend folgende Merkmale: Die Breitband-Monopolantenne ist aus einer selbsttragenden elektrisch leitenden Struktur gestaltet, die über der Grundfläche 6 im Wesentlichen senkrecht zu dieser orientiert ist. Die elektrisch leitende Struktur umfasst am unteren Ende der Breitband-Monopolantenne eine auf einer Spitze stehende Dreieckstruktur 4 mit im Wesentlichen horizontal orientierter Grundlinie, deren Spitze einen Antennenanschlusspunkt 5 der Antennenanschlussstelle 3 bildet. Die elektrisch leitende Struktur umfasst angrenzend an das obere Ende der Breitband-Monopolantenne 0 darunter eine im Wesentlichen als Rechteckstruktur 16 ausgeführte Dachkapazität 10. Die Dreieckstruktur 4 und die Rechteckstruktur 16 sind durch mindestens einen Leiterstreifen 15, 15a, 15b zur Abtrennung von Funksignalen im Oberband induktiv hochohmig verbunden.Disclosed is a vertical broadband monopole antenna for vehicles for two frequency bands separated frequency bands, namely a lower band U for lower frequencies and an upper band O for higher frequencies, both located in the Dezimeterwellenbereich, for transmission and / or reception with terrestrially emitted vertically polarized radio signals a substantially horizontal conductive base 6 as a vehicle ground with an antenna connection point 3 located in the monopole base comprising the following features: The broadband monopole antenna is formed of a self-supporting electrically conductive structure which is oriented over the base 6 substantially perpendicular to this. The electrically conductive structure comprises at the lower end of the broadband monopole antenna a truncated triangular structure 4 with a substantially horizontally oriented baseline, the tip of which forms an antenna connection point 5 of the antenna connection point 3. The electrically conductive structure comprises, adjacent to the upper end of the broadband monopole antenna 0 underneath, a roof capacitance 10 substantially configured as a rectangular structure 16. The triangular structure 4 and the rectangular structure 16 are inductive by at least one conductor strip 15, 15a, 15b for separating radio signals in the upper band connected with high resistance.

Die elektrisch leitende Struktur kann mindestens zwei beabstandete Leiterstreifen 15 aufweisen, wodurch eine Rahmenstruktur 11, bestehend aus der Dreieckstruktur 4, der Rechteckstruktur 16 und den Leiterstreifen 15 gebildet ist.The electrically conductive structure may have at least two spaced conductor strips 15, whereby a frame structure 11, consisting of the triangular structure 4, the rectangular structure 16 and the conductor strip 15 is formed.

Der oder die Leiterstreifen 15, 15a, 15b können zur frequenzselektiven Trennung mäanderförmige Ausprägungen 24 enthalten.The conductor strip or strips 15, 15a, 15b may contain meander-shaped forms 24 for the frequency-selective separation.

Der Innenwinkel 12 an der Spitze der Dreieckstruktur 4 kann etwa zwischen 30 und 90 Grad betragen.The inner angle 12 at the top of the triangular structure 4 may be approximately between 30 and 90 degrees.

Die Dreieckstruktur 4 ist durch in der Dreiecksebene fächerartig angeordnete und in der Spitze zusammenlaufende streifenförmige Lamellen 20 gestaltet.The triangular structure 4 is designed by strip-like lamellae 20 arranged fan-like in the triangular plane and converging in the tip.

Über der leitenden Grundfläche 6 ist mindestens eine konzentrisch zur Antennenanschlussstelle 3 angeordnete ringförmige Satellitenempfangsantenne 25, 25a, 25b vorhanden.At least one annular satellite receiving antenna 25, 25a, 25b arranged concentrically with the antenna connection point 3 is present above the conductive base 6.

Zur Verbesserung der elektromagnetischen Entkopplung kann die Rechteckstruktur 16 im Wesentlichen durch vertikal elektrisch leitend voneinander getrennt verlaufende, jedoch an ihrem oberen Ende über einen verbleibenden Streifen 31 zusammenhängende streifenförmige Dachlamellen 19, 19a, 19b gebildet sein.In order to improve the electromagnetic decoupling, the rectangular structure 16 may be formed substantially by vertical strip conductors 19, 19a, 19b which are separated from each other vertically but electrically, but which are connected at their upper end by a remaining strip 31.

Die in der Spitze zusammenlaufenden streifenförmigen Lamellen 30, 30a, 30b können in der Weise aus der Ebene der Dreiecksstruktur (4) ausgewinkelt sein, dass sie im Wesentlichen auf der Mantelfläche eines auf der Spitze stehenden Kegels mit kreisrundem oder elliptischem Querschnitt verlaufen.The strip-like lamellae 30, 30a, 30b converging in the tip can be bent out of the plane of the triangular structure (4) in such a way that they essentially run on the lateral surface of a tip-shaped cone with a circular or elliptical cross section.

Die Dachlamellen 19, 19a, 19b können aufeinanderfolgend in der Weise gegensinnig ausgewinkelt sein, dass sie in der Projektion auf eine zu dem Streifen 31 quer verlaufende Ebene V- förmig angeordnet sind.The roof slats 19, 19a, 19b may be successively in the opposite direction in the way that they are arranged in the projection on a transverse to the strip 31 plane V-shaped.

Die in der Spitze zusammenlaufenden Lamellen 20a, 20b können in der Weise aus der Ebene der Dreiecksstruktur 4 aufeinanderfolgend gegensinnig ausgewinkelt sein, dass sie in der Projektion auf eine zu der Dreiecksstruktur 4 quer verlaufende Ebene V- förmig angeordnet sind.The converging lamellae 20a, 20b in the tip can be successively contrasted in the manner out of the plane of the triangular structure 4 in such a way that they are arranged in the projection on a plane transverse to the triangular structure 4 in a V-shaped manner.

Die Breitband-Monopolantenne 0 kann unter einer Abdeckhaube 32 angeordnet sein und der mindestens eine Leiterstreifen 15, 15a, 15b kann zumindest teilweise und insbesondere so weit wie möglich entlang der Innenwandung der Abdeckhaube geführt sein.The broadband monopole antenna 0 can be arranged under a covering hood 32 and the at least one conductor strip 15, 15a, 15b can be guided at least partially and in particular as far as possible along the inner wall of the covering hood.

Die elektrisch leitende Struktur kann aus elektrisch leitendem Blech bestehen und es kann nur ein, d.h. ein einziger selbsttragender Leiterstreifen 15 vorhanden sein.The electrically conductive structure may be made of electrically conductive sheet and only one, i. a single self-supporting conductor strip 15 may be present.

Die elektrisch leitende Struktur kann durch metallische Beschichtung 33 auf einer Leiterplatte gegeben sein, deren Kontur im Wesentlichen den Umrissen der elektrisch leitenden Struktur der Breitband-Monopolantenne 0 folgt.The electrically conductive structure may be provided by metallic coating 33 on a printed circuit board whose contour substantially follows the contours of the electrically conductive structure of the broadband monopole antenna 0.

Das Spiegelbild der Breitband-Monopolantenne 0 an der leitenden Grundfläche 6 kann unter deren Wegfall durch eine zu dieser gleiche weitere Breitband-Monopolantenne in der Weise ersetzt sein, dass ein zur Ebene der leitenden Grundfläche 6 symmetrischer Dipol gegeben ist und eine symmetrische Antennenanschlussstelle dieses Dipols zwischen dem Antennenanschlusspunkt 5 der Breitband-Monopolantenne 0 und dem - diesem entsprechend - an der leitenden Grundfläche 6 gespiegelten Antennenanschlusspunkt 5 der weiteren Breitband-Monopolantenne gebildet ist.The mirror image of the broadband monopole antenna 0 at the conductive base 6 can be replaced by their omission by a same to this other broadband monopole antenna in such a way that is given to the plane of the conductive base 6 symmetrical dipole and a symmetrical antenna junction of this dipole between the antenna connection point 5 of the broadband monopole antenna 0 and the - this accordingly - mirrored at the conductive base 6 antenna connection point 5 of the further broadband monopole antenna is formed.

Es kann ein an seinem oberen Ende mit der Dachkapazität 10 verbundener Koppelleiter 35 vorhanden sein, welcher an seinem unteren Ende mit der leitenden Grundfläche 6 verkoppelt istThere may be a connected at its upper end with the roof capacitance 10 coupling conductor 35, which is coupled at its lower end to the conductive base 6

Die Erfindung wird im Folgenden an Hand von Ausführungsbeispielen näher erläutert. Die zugehörigen Figuren zeigen im Einzelnen:

Fig. 1:
Frequenzbereiche nach dem LTE- Mobilfunk Standard als Beispiel für zwei durch eine Frequenzlücke getrennte Frequenzbänder im Dezimeterwellenbereich mit einem Frequenzbereich zwischen 698 und 960 MHz als Unterband U und einem Frequenzbereich zwischen 1460 MHz und 2700 MHz als Oberband O oberhalb einer Frequenzlücke
Fig. 2:
Zweidimensionale Breitband-Monopolantenne 0 über der elektrisch leitenden Grundfläche 6 und der im Fußpunkt gebildeten Antennenanschlussstelle 3 mit auf der Spitze stehender flächiger Dreieckstruktur 4 als OberbandMonopol 1 und der Dachkapazität 10, welche über zwei Leiterstreifen 15 mit mäanderförmiger Ausprägung 24 mit der Dreiecksstruktur 4 zur Bildung des Unterband-Monopols 2 verbunden sind. Die Struktur der BreitbandMonopolantenne 0 kann ganzheitlich beispielhaft aus Blech gestanzt oder geschnitten werden.
Fig. 3:
Breitband-Monopolantenne 0 wie in Fig. 2, kombiniert mit einer konzentrisch zur Spitze der flächigen Dreieckstruktur 4 konzentrisch gestalteten, ringförmigen Satellitenempfangsantenne 25. Zur weiteren Erhöhung der induktiven Wirkung der Leiterstreifen 15 sind beispielhaft weitere mäanderförmige Ausprägungen 24 ausgebildet.
Fig. 4:
Beispiel einer aus leitender Folie oder Blech durch Stanzen oder Schneiden herstellbaren Struktur mit dem Frequenzverhalten eines elektrischen Parallelschwingkreises 29 im Leiterstreifen 15 zur Gestaltung der frequenzselektiven Trennung des Unterband-Monopols 2 vom Oberband-Monopol 1. Der Parallelschwingkreis 29 ist durch Interdigitalstruktur 26 als Parallelkapazität 27 und die Leiterschleife als Parallelinduktivität 28 gebildet.
Fig. 5:
Zweidimensionale Breitband-Monopolantenne 0 wie in den Fig. 2 und 3, wobei die flächige Dreieckstruktur 4 des Oberband-Monopols 1 durch in der Dreiecksebene fächerartig angeordnete und an der unteren Dreiecksspitze zusammen laufende streifenförmige Lamellen 20 gestaltet ist. Die ausschließlich über die Dreiecksspitze miteinander leitend verbundenen Lamellen 20 bewirken die elektromagnetische Entkopplung des OberbandMonopols 1 von der ringförmigen Satellitenempfangsantenne 25.
Fig. 6a:
Schwankung des Antennengewinns über dem Azimutwinkel Phi der Satellitenempfangsantenne 25 in dBi bei Vorhandensein der flächigen Dreiecksstruktur 4 als geschlossene elektrisch leitende Fläche.
Fig. 6b:
Wie in Fig. 6a jedoch mit durch fächerartig verlaufende, streifenförmige Lamellen 20 gestaltete Dreieckstruktur 4. Die azimutalen Schwankungen sind jeweils für die Zenitwinkel Theta (Winkel gegen die vertikale, d.h. z-Achse) 20°, 40° und 60° dargestellt.
Fig. 7:
Monopolantenne wie in Fig. 4 mit ringförmiger Satellitenempfangsantenne 25 wobei jedoch zur Verbesserung der elektromagnetischen Entkopplung zwischen dieser und dem Unterband-Monopol 2 die die Dachkapazität 10 bildende flächige Rechteckstruktur 16 durch vertikal voneinander getrennt verlaufende, jedoch an ihrem oberen Ende über einen verbleibenden Streifen 31 zusammenhängende streifenförmige Dachlamellen 19 gebildet ist.
Fig. 8:
Monopolantenne wie in Fig. 7, jedoch mit nur einem selbsttragenden Leiterstreifen 15 mit größerer Blechstärke zu Gunsten besonderer mechanischer Steifigkeit und zur Erreichung der notwendigen eigenen Induktivität des Leiterstreifens 15 mit entsprechend mehreren mäanderförmigen Ausprägungen 24.
Fig. 9:
Monopolantenne wie in Fig. 7, jedoch mit einem anstelle der flächigen Dreieckstruktur kegelförmig und auf der Spitze stehend ausgebildeten Oberband-Monopol 1 zur Vergrößerung der Bandbreite im Oberband. Der elektrisch leitende Kegelmantel ist punktiert angedeutet.
Fig. 10:
Oberband-Monopol 1wie in den Fig. 5, 7 und 8, wobei jedoch die in der unteren Dreiecksspitze fächerartig zusammenlaufenden streifenförmigen Lamellen 30 des Oberband-Monopols 1 in der Weise aus der Ebene der flächigen Dreiecksstruktur 4 ausgewinkelt sind, dass sie etwa wie die Mantellinien eines gemäß Fig. 8 auf der Spitze stehenden Kegels mit kreisrundem bzw. elliptischem Querschnitt verlaufen.
Fig. 11:
Draufsicht auf eine Antenne gemäß der in Fig. 10 angedeuteten Schnittlinie A-A' zur Klarstellung des Verlaufs der fächerartig verlaufenden streifenförmigen Lamellen 30, 30a, 30b. Die ringförmigen Satellitenempfangsantennen 25a und 25b sind durch unterbrochene Linien angedeutet.
Fig. 12:
Maximalwert der azimutalen Schwankung des Antennengewinns in dBi bei geschlossenem elektrisch leitendem Kegelmantel und bei einem aus streifenförmigen Lamellen 20 gebildetem Kegelmantel in Abhängigkeit vom Zenitwinkel (Winkel gegen die z-Achse).
Fig. 13:
Einbausituation einer Breitband-Monopolantenne unter einer Abdeckhaube 32 mit Blick auf die Antenne quer zur Fahrtrichtung (y-Richtung) zusammen mit einer ringförmigen Satellitenempfangsantenne 25. Die schwarz unterlegten und mit a) gekennzeichneten Leiterteile sind die Leiterstreifen 15a, die Dachlamellen 19a sowie die streifenförmigen Lamellen 20a sind aus der y-z-Ebene der flächigen Dreiecksstruktur 4 in Richtung der x-Achse ausgewinkelt und entsprechend die Leiterstreifen 15b, die Dachlamellen 19b sowie die streifenförmigen Lamellen 20b sind in Richtung der negativen x-Achse ausgewinkelt, so dass eine räumliche Antennenstruktur gebildet ist.
Fig. 14:
Einbausituation gemäß Fig. 13 jedoch mit Blick auf die Anordnung in Fahrtrichtung.
Fig. 15:
Einbausituation von zwei Breitband-Monopolantennen 0 und 0a gemäß Fig. 14 in Fahrtrichtung hintereinander unter einer gemeinsamen Abdeckhaube 32 bestehend aus Oberband-Monopol 1 bzw. 1a und UnterbandMonopol 2 bzw.2a mit jeweils einer ringförmigen Satellitenempfangsantenne 25a bzw. 25b am Fußpunkt der Breitband-Monopolantenne 0 bzw.0a.
Fig. 16:
Breitband-Monopolantenne 0 wie in Fig. 2, wobei die elektrisch leitende Struktur 33 durch die metallische Beschichtung einer Leiterplatte gegeben ist und die Leiterplatte mit ihrer Beschichtung ungefähr gemäß den Umrissen der Breitband-Monopolantenne 0 , dargestellt durch die Schnittlinien der dielektrischen Platte 34, gestaltet ist.
Fig. 17:
Breitband-Monopolantenne 0 wie in Fig. 2, 3, 5, 7, 8, 9, 10, jedoch mit einem mit der Dachkapazität 10 verbundenen Koppelleiter 35 als Ergänzung des Unterband-Monopols 2 zur Verbesserung der ImpedanzAnpassung an der Antennenanschlussstelle 3 am unteren Frequenzende des Unterbandes der Breitband- Monopolantenne 0. Die Verkopplung des Koppelleiters 35 am seinem unteren Ende mit der leitenden Grundfläche 6 ist wahlweise durch galvanischen Anschluss bzw. über ein zweipoliges verlustarmes Koppelnetzwerk 36 gestaltet.
The invention will be explained in more detail below with reference to exemplary embodiments. The accompanying figures show in detail:
Fig. 1:
Frequency ranges according to the LTE mobile standard as an example of two separated by a frequency gap frequency bands in the decimeter wave range with a frequency range between 698 and 960 MHz as sub-band U and a frequency range between 1460 MHz and 2700 MHz as the upper band O above a frequency gap
Fig. 2:
Two-dimensional broadband monopole antenna 0 over the electrically conductive base 6 and formed at the base antenna connection point 3 with standing on top flat triangular structure 4 as OberbandMonopol 1 and the roof capacity 10, which two conductor strips 15 with meander-shaped expression 24 with the triangular structure 4 to form the Subband monopoly 2 are connected. The structure of the broadband monopole antenna 0 can be holistically punched or cut from sheet metal, for example.
3:
Broadband monopole antenna 0 as in Fig. 2 , combined with a concentric with the top of the flat triangular structure 4 concentrically shaped, annular satellite receiving antenna 25. To further increase the inductive effect of the conductor strip 15 further meandering shapes 24 are formed by way of example.
4:
Example of a conductive foil or sheet produced by punching or cutting structure with the frequency response of an electrical parallel resonant circuit 29 in the conductor strip 15 to design the frequency-selective separation of the sub-band monopole 2 from the upper band monopole 1. The parallel resonant circuit 29 is by interdigital structure 26 as a parallel capacitor 27 and the conductor loop is formed as a parallel inductance 28.
Fig. 5:
Two-dimensional broadband monopole antenna 0 as in Fig. 2 and 3 wherein the planar triangular structure 4 of the upper band monopole 1 is designed by strip-shaped lamellae 20 arranged in a fan-like manner in the triangular plane and running together at the lower triangular tip. The louvers 20, which are conductively connected to one another via the triangular tip, effect the electromagnetic decoupling of the upper band monopole 1 from the annular satellite receiving antenna 25.
6a:
Fluctuation of the antenna gain over the azimuth angle Phi of the satellite receiving antenna 25 in dBi in the presence of the flat triangular structure 4 as a closed electrically conductive surface.
Fig. 6b:
As in Fig. 6a however, with triangular structure 4 formed by fan-shaped, strip-like lamellae 20. The azimuthal fluctuations are shown in each case for the zenith angle theta (angle with respect to the vertical, ie z-axis) 20 °, 40 ° and 60 °.
Fig. 7:
Monopole antenna as in Fig. 4 with annular satellite receiving antenna 25, however, to improve the electromagnetic decoupling between this and the lower band monopole 2, the roof capacity 10 forming flat rectangular structure 16 by vertically separated from each other, but at its upper end via a remaining strip 31 contiguous strip-shaped roof blades 19 is formed.
Fig. 8:
Monopole antenna as in Fig. 7 , but with only a self-supporting conductor strip 15 with greater sheet thickness in favor of special mechanical rigidity and to achieve the necessary own inductance of the conductor strip 15 with a corresponding plurality of meandering shapes 24th
Fig. 9:
Monopole antenna as in Fig. 7 , However, with a instead of the flat triangular structure conical and standing on the top trained upper band monopoly 1 to increase the bandwidth in the upper band. The electrically conductive conical surface is indicated by dots.
Fig. 10:
Upper-band monopoly 1wie in the Fig. 5 . 7 and 8th However, wherein the converging fan-like in the lower triangular tip strip-like fins 30 of the upper band monopoly 1 are in the way out of the plane of the flat triangular structure 4 that they are approximately like the generatrices of a according to Fig. 8 on the top of standing cone with circular or elliptical cross section.
Fig. 11:
Top view of an antenna according to the in Fig. 10 indicated section line AA 'to clarify the course of the fan-like strip-shaped strips 30, 30a, 30b. The annular satellite receiving antennas 25a and 25b are indicated by broken lines.
Fig. 12:
Maximum value of the azimuthal fluctuation of the antenna gain in dBi with closed electrically conductive cone sheath and with a cone sheath formed from strip-shaped lamellae 20 as a function of the zenith angle (angle with respect to the z-axis).
Fig. 13:
Installation situation of a broadband monopole antenna under a cover 32 with a view to the antenna transverse to the direction of travel (y-direction) together with an annular satellite receiving antenna 25. The black highlighted and marked with a) ladder parts are the conductor strips 15a, the roof lamellae 19a and the strip-shaped lamellae 20a are from the yz-plane of the flat triangular structure 4 in the direction of the x-axis and accordingly the conductor strips 15b, the roof lamellae 19b and the strip-like lamellae 20b are in the direction of the negative x-axis, so that a spatial antenna structure is formed.
Fig. 14:
Installation situation according to Fig. 13 but with a view to the arrangement in the direction of travel.
Fig. 15:
Installation situation of two broadband monopole antennas 0 and 0a according to Fig. 14 in the direction of travel behind each other under a common cover 32 consisting of upper band monopoly 1 and 1a and subband monopole 2 bzw.2a each having an annular satellite receiving antenna 25a and 25b at the base of the broadband monopole antenna 0 bzw.0a.
Fig. 16:
Broadband monopole antenna 0 as in Fig. 2 wherein the electrically conductive structure 33 is given by the metallic coating of a printed circuit board and the printed circuit board is designed with its coating approximately according to the contours of the broadband monopole antenna 0, represented by the cut lines of the dielectric plate 34.
Fig. 17:
Broadband monopole antenna 0 as in Fig. 2 . 3 . 5 . 7 . 8th . 9 . 10 but with a coupling conductor 35 connected to the roofing capacitor 10 as a supplement to the subband monopole 2 for improving the impedance matching at the antenna connection 3 at the lower frequency end of the subband of the broadband monopole antenna 0. Coupling of the coupling conductor 35 at its lower end to the conductive base 6 is optionally designed by galvanic connection or via a two-pole low-loss coupling network 36.

Ein besonderer Vorteil einer Breitband-Monopolantenne 0 nach der Erfindung ist die Eigenschaft, dass die an der Antennenanschlussstelle 3 messbare Impedanz breitbandig in die Nähe der für Antennensysteme für Fahrzeuge vorgeschriebenen genormten Impedanz von Z0= 50 Ohm weitgehend problemfrei gestaltet werden kann. Daraus ergibt sich weiterhin der wirtschaftliche Vorteil, dass ein Anpassnetzwerk zwischen der Antennenanschlussstelle 3 im Fußpunkt der Breitband-Monopolantenne und der weiterführenden Schaltung zumeist entfallen oder zumindest besonders aufwandsarm gestaltet werden kann.A particular advantage of a broadband monopole antenna 0 according to the invention is the property that the measurable at the antenna connection point 3 impedance broadband in the vicinity of prescribed for antenna systems for vehicles standard impedance of Z0 = 50 ohms can be made largely problem-free. This also results in the economic advantage that a matching network between the antenna connection point 3 in the base of the broadband monopole antenna and the secondary circuit usually accounts for or can be designed at least particularly low.

Im Folgenden wird beispielhaft eine Breitband-Monopolantenne 0 nach der Erfindung für die beiden durch eine Frequenzlücke getrennten Frequenzbereiche gemäß dem in Fig. 1 dargestellten Unterband U und dem Oberband O erläutert. Die Breitband-Monopolantenne in ihrer flächig gestalteten Grundausführung in Fig. 2 ist im Wesentlichen aus einem Unterband-Monopol 2 zur Abdeckung des Unterbandes mit einer dafür erforderlichen Antennenhöhe 9 in Kombination mit einem Oberband-Monopol 1 mit der Oberband-Monopolhöhe 8 mit einer gemeinsamen Antennenanschlussstelle 3 gebildet. Zur Vermeidung einer zu großen wirksamen Antennenhöhe 9 im Frequenzbereich des Oberbandes ist der Unterband-Monopol 2 aus im Frequenzbereich des Oberbandes induktiv hochohmigen Leiterstreifen 15 mit schmaler Streifenleiterbreite 14 in Verbindung mit einer Dachkapazität 10 gestaltet. Letztere ist im Wesentlichen als flächige Rechteckstruktur 16 ausgeführt und mit im Vergleich zur Vertikalausdehnung 22 großer Horizontalausdehnung 23 gestaltet.The following is an example of a broadband monopole antenna 0 according to the invention for the two separated by a frequency gap frequency ranges according to the in Fig. 1 illustrated sub-band U and the upper band O explained. The broadband monopole antenna in its flat designed basic version in Fig. 2 is essentially formed of a subband monopole 2 for covering the sub-band with a required antenna height 9 in combination with a top band monopole 1 with the top band monopole 8 with a common antenna connection point 3. To avoid an excessive effective antenna height 9 in the frequency range of the upper band of the lower band monopole 2 is designed in the frequency range of the upper band inductively high impedance conductor strips 15 with narrow stripline width 14 in conjunction with a roofing capacity 10. The latter is essentially embodied as a flat rectangular structure 16 and designed with a large horizontal extension 23 compared to the vertical extension 22.

Um die Forderung nach einer möglichst einfachen und wirtschaftlichen Herstellungsweise zu erfüllen, ist die Monopolantenne nach der Erfindung beispielsweise aus einer elektrisch leitenden Folie 33 (Fig. 16) als zusammenhängende, elektrisch leitende Struktur in einer im Wesentlichen senkrecht zur leitenden Grundfläche 6 ausgedehnten Ebene verlaufend gestaltet. Hierbei zeigt es sich als besonders vorteilhafte Ausführungsform der Erfindung für die selbsttragende, elektrisch leitende Struktur, die insbesondere einstückig ausgebildet ist, elektrisch leitendes Blech oder eine selbstragende elektrisch leitende Folie zu verwenden, woraus sich für die gesamte Breitband-Monopolantenne 0 eine mechanisch selbsttragende Struktur herstellen lässt. Diese Struktur kann beispielhaft durch einen Stanzvorgang oder durch einen gesteuerten Schneidevorgang, zum Beispiel durch gesteuertes Laserschneiden hergestellt werden. Hierbei wird sich bei besonders großen Stückzahlen die Herstellung eines Stanzwerkzeugs als wirtschaftlich vorteilhaft erweisen, weil die Monopolantenne durch automatisierte Stanzvorgänge extrem kostengünstig vervielfältigt werden kann. Andererseits kann bei kleineren Stückzahlen das vom Computer gesteuerte Laserschneiden sich als wirtschaftlicher zeigen. Die Herstellung der Breitband-Monopolantenne 0 aus Blech bietet den besonderen Vorteil der metallischen Steifigkeit, welche für die Verwendung als Fahrzeugantenne von besonderer Bedeutung ist. Als besonderer Vorteil dieser flächig gestalteten Struktur ist ihr vernachlässigbarer Windwiderstand zu nennen, wenn sie in vorteilhafter Weise in einer Ebene verlaufend gestaltet ist, deren Normale senkrecht zur Fahrtrichtung des Fahrzeugs orientiert ist.In order to meet the demand for the simplest and most economical method of production, the monopole antenna according to the invention is made, for example, from an electrically conductive foil 33 (FIG. Fig. 16 ) designed as a contiguous, electrically conductive structure extending in a plane substantially perpendicular to the conductive base 6 level extending. Here it turns out to be a particularly advantageous embodiment of the invention for the self-supporting, electrically conductive structure, which is in particular integrally formed to use electrically conductive sheet or a self-supporting electrically conductive film, resulting in the entire broadband monopole antenna 0 can produce a mechanically self-supporting structure. This structure can be produced, for example, by a punching process or by a controlled cutting operation, for example by controlled laser cutting. In this case, the production of a punching tool will prove to be economically advantageous in particularly large numbers, because the monopole antenna can be multiplied by automated punching operations extremely cost. On the other hand, with smaller quantities the computer-controlled laser cutting can be more economical. Fabrication of the broadband monopole antenna 0 of sheet metal offers the particular advantage of metallic rigidity, which is of particular importance for use as a vehicle antenna. A particular advantage of this flat design structure is their negligible wind resistance to call, if it is designed to extend in an advantageous manner in a plane whose normal is oriented perpendicular to the direction of travel of the vehicle.

Weiterhin kann die elektrisch leitende Struktur in einer vorteilhaften Ausführungsform der Erfindung durch die metallische Beschichtung einer dielektrischen Platte, also einer Leiterplatte, gewählt werden. Hierbei ist jedoch zu beachten, dass ein aus wirtschaftlichen Gründen in Betracht kommendes Material für die Leiterplatte im Dezimeterwellenbereich verlustbehaftet ist, so dass erfindungsgemäß vorgesehen sein kann, die Struktur der Breitband-Monopolantenne 0 auf die Leiterplatte auf an sich bekannte Weise zu drucken, diese jedoch etwa gemäß den Umrissen der Breitband-Monopolantenne 0 mit geringfügigem Überstand zu beschneiden, um den Verlauf elektrischer Feldlinien in der verlustbehafteten dielektrischen Platte möglichst klein zu halten. Die Beschneidung der dielektrischen Platte längs der strich-punktierten Schnittlinien 34 ist in Fig. 16 dargestellt. Diese Form der Darstellung ist insbesondere bei komplizierter geometrischer Struktur der Breitband-Monopolantenne 0 vorteilhaft, weil die Schnittlinien 34 weniger fein der geometrisehen Struktur folgend gestaltet werden können und deshalb ein weniger aufwändiges Stanzwerkzeug bedingen.Furthermore, in an advantageous embodiment of the invention, the electrically conductive structure can be selected by the metallic coating of a dielectric plate, that is to say a printed circuit board. It should be noted, however, that a coming into consideration for economic reasons material for the circuit board in the decimeter wave range is lossy, so that according to the invention can be provided to print the structure of the broadband monopole antenna 0 on the circuit board in a known per se, but these for example, according to the contours of the broadband monopole antenna 0 with slight protrusion to keep the course of electric field lines in the lossy dielectric plate as small as possible. The trimming of the dielectric plate along the dot-dashed lines 34 is shown in FIG Fig. 16 shown. This form of representation is particularly advantageous in complicated geometric structure of the broadband monopole antenna 0, because the cutting lines 34 are less fine the geometrisehen Structure can be designed following and therefore require a less expensive punching tool.

Bei einer Breitband-Monopolantenne 0 dieser Art wird zum Beispiel für die Anpassung von Antennensystemen an die für Fahrzeuge vorgeschriebene genormte Impedanz von Z0= 50 Ohm im oben bezeichneten Unterband das VSWR (voltage standing wave ratio) < 3 gefordert. Dieser Wert kann bei einer Antenne nach der Erfindung in ihrer vollständigen Ausführung an der Antennenanschlussstelle 3 bereits mit einer Antennenhöhe 9 von 6 cm grundsätzlich erreicht werden. Die Eigenschaften des Unterband-Monopols 2 sind im Wesentlichen bestimmt durch seine Antennenhöhe 9 und durch die Größe der flächigen Dachkapazität 10, deren Horizontalausdehnung 23 mit ca. 6cm wesentlich größer, das heißt etwa mindestens dreimal größer gestaltet ist als die Vertikalausdehnung 22. Eine wesentlich größere Vertikalausdehnung 22 vergrößert zwar den Kapazitätswert der Dachkapazität 10, mindert jedoch die wirksame Höhe des Unterband-Monopols 2, welche im Gegensatz zum Kapazitätswert quadratisch in die Bildung der Frequenzbandbreite des Unterband-Monopols 2 eingeht.For a broadband monopole antenna 0 of this type, for example, the adaption of antenna systems to the standard impedance of Z0 = 50 ohms prescribed for vehicles in the above-described subband requires the VSWR <3. This value can in principle be achieved in an antenna according to the invention in its complete embodiment at the antenna connection point 3 with an antenna height 9 of 6 cm. The properties of the sub-band monopole 2 are essentially determined by its antenna height 9 and the size of the flat roof capacity 10, the horizontal extent 23 with about 6cm much larger, that is designed at least three times larger than the vertical extent 22. A much larger Although the vertical extent 22 increases the capacitance value of the roof capacitance 10, it reduces the effective height of the subband monopole 2, which, in contrast to the capacitance value, squares into the formation of the frequency bandwidth of the subband monopole 2.

Die Bildung des Oberband-Monopols 1 ist im Wesentlichen durch die flächige Dreieckstruktur 4 gegeben, sofern die induktive Wirkung der Leiterstreifen 15 mit schmaler Streifenleiterbreite 14 zur Abtrennung von Funksignalen im Oberband von der Dachkapazität 10 hinreichend groß ist. Dies ist bei einer Streifenleiterbreite von kleiner oder gleich 7 mm in der Regel gegeben. Zur Erhöhung dieser abtrennenden Wirkung kann erfindungsgemäß vorgesehen sein, die Leiterstreifen 15 mit mäanderförmigen Ausprägungen 24 zu versehen. Naturgemäß ist die funktionelle Unterteilung der Breitband-Monopolantenne 0 in den Unterband-Monopol 2 und den Oberband-Monopol 1 nicht streng zu sehen. Vielmehr ist der Übergang zwischen den Wirkungen fließend und die Unterteilung als Beschreibung für die hauptsächlichen Wirkungen in den beiden Frequenzbereichen zu verstehen. Die Wirkungsweise des über der leitenden Grundfläche 6 befindlichen Oberband-Monopols 1 ist im Wesentlichen durch die Gestaltung der flächigen Dreieckstruktur 4 gegeben. Im Interesse eines besonders breitbandigen Verhaltens ist bei diesem Ausführungsbeispiel eine auf der Spitze stehende flächige Dreieckstruktur 4 mit Dreieck-Öffnungswinkel 12 vorgesehen, deren Spitze mit dem Antennenanschlusspunkt 5 verbunden ist. Durch diesen ist zusammen mit dem Masse-Anschlusspunkt 7 auf der leitenden Grundfläche 6 die Antennenanschlussstelle 3 für die Breitband-Monopolantenne 0 gebildet. Die Höhe der Grundlinie der flächigen Dreieckstruktur 4 über der leitenden Grundfläche 6 bildet im Wesentlichen die wirksame Oberband-Monopol-Höhe 8, durch welche das Frequenzverhalten der Oberband-Monopols 1 wesentlich bestimmt ist. Aus Gründen des vertikalen Strahlungsdiagramms für die Kommunikation mit terrestrischen Sende-und Empfangsstellen sollte die Oberband-Monopolhöhe 8 bei der oberen Frequenzgrenze des Oberbands nicht größer sein als etwa 1/3 der Freiraumwellenlänge bei dieser Frequenz. Als Dreieck-Öffnungswinkel 12 haben sich Werte zwischen 30 und 90 Grad als günstig erwiesen. Die dadurch entstandene breitbandig wirkende Dreieckstruktur ermöglicht es zum Beispiel, die häufig gestellte Forderung für die Impedanzanpassung im Fußpunkt bei einem Wert von VSWR< 2,5 im Frequenzbereich des Oberbandes zu erfüllen.The formation of the upper band monopole 1 is essentially given by the flat triangular structure 4, provided that the inductive effect of the conductor strips 15 with narrow stripline width 14 for the separation of radio signals in the upper band of the roof capacity 10 is sufficiently large. This is usually given with a stripline width of less than or equal to 7 mm. To increase this separating effect can be inventively provided to provide the conductor strips 15 with meandering shapes 24. Of course, the functional division of the wideband monopole antenna 0 into the subband monopole 2 and the top band monopole 1 is not strictly seen. Rather, the transition between the effects is fluent and the subdivision is to be understood as a description of the main effects in the two frequency ranges. The mode of action of the upper band monopole located above the conductive base 6 1 is essentially given by the design of the flat triangular structure 4. In the interest of a particularly broadband behavior, an apex triangular structure 4 with a triangular opening angle 12 is provided in this embodiment, the tip of which is connected to the antenna connection point 5. Through this, together with the ground terminal 7 on the conductive base 6, the antenna connection point 3 for the broadband monopole antenna 0 is formed. The height of the baseline of the flat triangular structure 4 above the conductive base 6 essentially forms the effective upper band monopole height 8, by which the frequency response of the upper band monopole 1 is substantially determined. For reasons of the vertical radiation pattern for communication with terrestrial transmitting and receiving stations, the upper band monopole height 8 at the upper frequency limit of the upper band should not be greater than about 1/3 of the free space wavelength at this frequency. As a triangle opening angle 12, values between 30 and 90 degrees have proved favorable. For example, the resulting wideband triangular structure allows it to meet the often-demanded impedance matching requirement at the VSWR <2.5 in the upper band frequency range.

Entsprechend der Aufgabenstellung im Hinblick auf die geforderte mechanische Stabilität zur Halterung der Dachkapazität 10 durch schmale Leiterstreifen 15 ist es erfindungsgemäß vorgesehen, diese mechanisch hinreichend steif auszuführen. In einer besonders vorteilhaften Ausführungsform einer aus gestanztem oder geschnittenem Blech ausgeführten Breitband-Monopolantenne 0 nach der Erfindung ist eine Rahmenstruktur 11 zur Erreichung einer besonderen Steifigkeit gestaltet. Dabei ist die Rahmenstruktur 11, wie in den Fig. 2 und 3 dargestellt, aus zwei in hinreichendem Abstand 13 voneinander geführten schmalen Leiterstreifen 15, der Grundlinie der flächigen Dreieckstruktur 4 und der flächigen Rechteckstruktur 16 der Dachkapazität 10 gebildet.According to the task with regard to the required mechanical stability for holding the roofing capacity 10 by narrow conductor strips 15, it is inventively provided to perform this mechanically sufficiently stiff. In a particularly advantageous embodiment of a broadband monopole antenna 0 according to the invention made of stamped or cut sheet metal, a frame structure 11 is designed to achieve a particular rigidity. In this case, the frame structure 11, as in the Fig. 2 and 3 illustrated, formed from two spaced apart 13 spaced narrow conductor strips 15, the baseline of the flat triangular structure 4 and the flat rectangular structure 16 of the roof capacity 10.

In einer weiteren vorteilhaften Ausgestaltung der Erfindung besteht die elektrisch leitende Struktur aus einem Material besonderer Steifigkeit, beispielsweise dünnem Blech. Bei Verwendung solcher Materialien kann die Breitband-Monopolantenne 0 mit nur einem Leiterstreifen 15, wie in Fig. 8 dargestellt, gestaltet werden. Im Interesse der mechanischen Stabilität ist für diesen jedoch dann eine größere Streifenleiterbreite 14 vorzusehen. Zur Gestaltung einer hinreichend großen induktiven Wirkung des Leiterstreifens 15 erweisen sich in der Regel mehrere mäanderförmige Ausprägung 24 als notwendig.In a further advantageous embodiment of the invention, the electrically conductive structure consists of a material of particular rigidity, for example, thin sheet metal. Using such materials, the broadband monopole antenna 0 can be used with only one conductor strip 15, as in FIG Fig. 8 represented, designed. In the interest of mechanical stability but then a larger stripline width 14 is provided for this. In order to design a sufficiently large inductive effect of the conductor strip 15, a plurality of meander-shaped expression 24 is generally necessary.

Zur Feinabstimmung des Zusammenwirkens zwischen dem Unterband-Monopol 2 und dem Oberband-Monopol 1 ist es in einer vorteilhaften Ausführung der Erfindung vorgesehen, ein Schaltelement mit der Wirkungsweise eines Parallelschwingkreises 28 in die Leiterstreifen 15 einzubringen. Dieser Parallelschwingkreis dient zur Unterstützung der frequenzselektiven Trennung des Unterband-Monopols 2 von Signalen im Oberband. Der Parallelschwingkreis 28 kann, wie in Fig. 4 dargestellt, jeweils eine als Interdigitalstruktur 26 ausgeführte Parallelkapazität 27 und eine als Streifenleiter ausgeführte Parallelinduktivität 28 umfassen. Auch dieses Schaltelement kann beispielhaft aus Blech gestanzt oder geschnitten über die Leiterstreifen 15 in die Gestaltung der mechanisch selbsttragenden Breitband-Monopolantenne 0 einbezogen werden.To fine-tune the interaction between the lower band monopole 2 and the upper band monopoly 1, it is provided in an advantageous embodiment of the invention to introduce a switching element with the operation of a parallel resonant circuit 28 in the conductor strips 15. This parallel resonant circuit is used to support the frequency-selective separation of the sub-band monopole 2 of signals in the upper band. The parallel resonant circuit 28 may, as in Fig. 4 in each case comprise a parallel capacitor 27 designed as an interdigital structure 26 and a parallel inductance 28 designed as a strip conductor. Also, this switching element can be punched or cut by way of example from sheet metal via the conductor strips 15 in the design of the mechanically self-supporting broadband monopole antenna 0 are included.

Zur weiteren Verbesserung der Frequenzbandbreite des Oberband-Monopols 1 kann in einer (nicht beanspruchten) Ausgestaltung für diesen eine dreidimensionale Struktur vorgesehen, welche aus der zweidimensionalen Struktur in der Weise gebildet ist, dass anstelle der flächigen Dreieckstruktur 4 eine etwa kegelförmige Struktur angestrebt wird. Die Form eines derartigen Monopols ist in Fig. 9 anhand des kegelförmigen Monopols 18 mit elektrisch leitenden Mantelflächen angedeutet. Dabei soll die wirtschaftlich vorteilhafte Herstellbarkeit aus gestanztem oder geschnittenem Blech beibehalten bleiben. Erfindungsgemäß ist es deshalb vorgesehen, die flächige Dreiecksstruktur 4 durch in der unteren Dreiecksspitze fächerartig zusammen laufende streifenförmige Lamellen 20, wie in Fig. 5 dargestellt, auszuführen. Durch Auswinkeln der Lamellen 20 derart, dass diese auf der Mantelfläche eines auf der Spitze stehenden Kegels liegen, werden diese zu Kegel-Lamellen 30 und der kegelförmige Monopol 18 in Fig. 9 wird im Hinblick auf seine Wirkung als Oberband-Monopol 1 nachgebildet. Dies ist in Fig. 10 detailliert dargestellt und ebenso gemäß der Schnittangabe A-A' in Fig. 11 als Draufsicht ersichtlich. In Fig. 11 ist der in Fig. 10 angedeutete Kegelquerschnitt elliptisch und somit der Kegel-Öffnungswinkel 17a (Fig.10) in x-Richtung aufgrund der Anforderungen im Hinblick auf die aerodynamischen Eigenschaften der Antenne kleiner gewählt als der Kegel-Öffnungswinkel 17 in Fahrtrichtung des Fahrzeugs (y-Richtung).In order to further improve the frequency bandwidth of the upper band monopole 1, a three-dimensional structure may be provided for it in a (not claimed) embodiment which is formed from the two-dimensional structure in such a way that an approximately conical structure is sought instead of the flat triangular structure 4. The form of such a monopoly is in Fig. 9 indicated by the conical monopole 18 with electrically conductive lateral surfaces. In this case, the economically advantageous manufacturability of punched or cut sheet should be maintained. According to the invention it is therefore provided, the flat triangular structure 4 by a fan-like in the lower triangle tip co-existing strip-shaped fins 20, as in Fig. 5 shown to execute. By diffusing the slats 20 so that they lie on the lateral surface of a cone standing on the top, these become conical slats 30 and the conical monopole 18 in Fig. 9 is modeled in terms of its effect as a high band monopoly 1. This is in Fig. 10 shown in detail and also according to the section AA 'in Fig. 11 seen as a plan view. In Fig. 11 is the in Fig. 10 indicated cone cross section elliptical and thus the cone opening angle 17a ( Figure 10 ) in the x direction due to the requirements with respect to the aerodynamic properties of the antenna chosen smaller than the cone opening angle 17 in the direction of travel of the vehicle (y-direction).

Aufgrund der knappen Bauräume besteht bei Fahrzeugantennen die wesentliche Anforderung nach Kleinheit und insbesondere auch danach, den Grundriss der Antenne zu minimieren. Insbesondere für Satellitenfunkdienste und Antennen für andere Funkdienste auf engem Raum ist dabei die Verformung des Richtdiagramms der Satellitenantenne aufgrund der Strahlungskopplung zwischen den Antennen problematisch. Diese Problematik besteht auch dann, wenn - wie in den Fig. 3, 5, 7, 8, 10, 11 und 15 - mindestens eine konzentrisch zur Antennenanschlussstelle 3 einer Breitband-Monopolantenne 0 angeordnete ringförmige Satellitenempfangsantenne 25, 25a, 25b vorhanden ist. Für diese besteht z. B. nach dem Standard des Satellitenrundfunks SDARS im Zenitwinkelbereich (Winkel gegenüber die z-Achse) z.B. zwischen 0 und 60 Grad die strenge Forderung nach einem Antennengewinn, welcher je nach Betreiber für zirkulare Polarisation von konstant z.B. 2 dBi bzw. z.B. 3 dBi bei einer azimutalen Schwankung von weniger als 0,5 dB beträgt. In Fig. 3 ist eine konzentrisch zur Antennenanschlussstelle 3 einer Breitband-Monopolantenne 0 angeordnete ringförmige Satellitenempfangsantenne 25 vorhanden. Bei Ausbildung des Oberband-Monopols 1 als geschlossene flächige Struktur (nicht beansprucht) ergeben sich die in Fig. 6a dargestellten azimutalen Schwankungen des Antennengewinns der Satellitenempfangsantenne 25 bei ca. 2,3 GHz. Bei einem Zenitwinkel Theta von 40 Grad ist die Gewinnschwankung mit 0,6 dBi bereits über dem Toleranzwert und ist bei 60 Grad mit 1,2 dBi untolerierbar. In diesem Zusammenhang ist die erfindungsgemäße Gestaltung der Dreieckstruktur 4 aus an der Spitze fächerartig zusammen laufenden Lamellen 20, wie in Fig. 5, günstiger als eine geschlossene flächige Dreieckstruktur 4 gemäß Fig. 3. Dieser Vorteil der geringen Beeinflussung der Strahlungseigenschaften der Satellitenempfangsantenne 25 ist bei der Gestaltung des Oberband-Monopols 1 aus Kegel-Lamellen 30 besonders ausgeprägt. Dies geht beispielhaft aus den in Fig. 6b unter verschieden Zenitwinkeln dargestellten azimutalen Schwankungen des Antennengewinns hervor, welche selbst bei einem Zenitwinkel von 60 Grad eine experimentell kaum nachweisbare Schwankung von 0,07dB besitzt. Der Unterschied zwischen den Einflüssen des Oberband-Monopols 1 in Form eines geschlossenen elektrisch leitfähigen Kegelmantels (nicht beansprucht) und eines Mantels aus Kegel-Lamellen 30 auf die azimutale Schwankung des Antennengewinns der Satellitenempfangsantenne 25 in Abhängigkeit vom Zenitwinkel in Grad geht weiterhin auch eindrucksvoll aus Fig. 12 hervor. Diese zeigt die azimutale Gain-Schwankung in dB für einen geschlossenen leitfähigen Kegelmantel (oberer Graph) und einen Kegelmantel aus Lamellen (unterer Graph). Durch Vermeidung von Ringströmen, welche von den Strömen auf der Satellitenantenne 25 auf einem leitfähigen Kegelmantel durch Strahlungskopplung der beiden Antennen hervorgerufen werden, ist bei Gestaltung des Kegelmantels aus Kegel-Lamellen 30 der Oberband-Monopols 1 dieser ohne Einfluss auf die Strahlungseigenschaften der Satellitenempfangsantenne 25.Due to the limited space available in vehicle antennas is the essential requirement for smallness and in particular to minimize the floor plan of the antenna. In particular for satellite radio services and antennas for other radio services in a confined space, the deformation of the directional diagram of the satellite antenna due to the radiation coupling between the antennas is problematic. This problem exists even if - as in the Fig. 3 . 5 . 7 . 8th . 10 . 11 and 15 - At least one concentric with the antenna connection point 3 of a broadband monopole antenna 0 arranged annular satellite receiving antenna 25, 25a, 25b is present. For this exists z. For example, according to the standard of satellite broadcasting SDARS in the zenith angle range (angle to the z-axis), for example, between 0 and 60 degrees the strict demand for an antenna gain, which depending on the operator for circular polarization of constant eg 2 dBi or eg 3 dBi at a azimuthal fluctuation of less than 0.5 dB. In Fig. 3 a ring-shaped satellite receiving antenna 25 is disposed concentrically with the antenna junction 3 of a broadband monopole antenna 0. When forming the upper band monopole 1 as a closed planar structure (not claimed), the result in Fig. 6a illustrated azimuthal variations in the antenna gain of the satellite receiving antenna 25 at about 2.3 GHz. At a zenith angle theta of 40 degrees, the gain variation of 0.6 dBi is already above the tolerance value and can not be tolerated at 60 degrees with 1.2 dBi. In this context, the inventive design of the triangular structure 4 from at the top of a fan-like running together slats 20, as in Fig. 5 , more favorable than a closed flat triangular structure 4 according to Fig. 3 , This advantage of little influence on the radiation characteristics of the satellite receiving antenna 25 is particularly pronounced in the design of the upper band monopole 1 of cone blades 30. This is an example of the in Fig. 6b under different zenith angles shown azimuthal fluctuations of the antenna gain, which even at a zenith angle of 60 degrees has an experimentally barely detectable variation of 0.07dB. The difference between the effects of the upper band monopole 1 in the form of a closed electrically conductive cone shroud (not claimed) and a sheath of cone blades 30 on the azimuthal fluctuation of the antenna gain of the satellite receiving antenna 25 as a function of the zenith angle in degrees continues to be impressive Fig. 12 out. This shows the azimuthal gain variation in dB for a closed conductive cone sheath (upper graph) and a conical shroud of lamellae (lower graph). By avoiding ring currents, which are caused by the currents on the satellite antenna 25 on a conductive cone sheath by radiation coupling of the two antennas, this is without influence on the radiation properties of the satellite receiving antenna 25 in the design of the cone sheath of cone blades 30 of the upper band monopoly.

Um auch die elektromagnetische Entkopplung zwischen der Satellitenempfangsantenne 2 und der die Dachkapazität 10 bildenden flächigen Rechteckstruktur 16 des Unterband-Monopols 2 zu vervollkommnen, kann diese im Wesentlichen durch vertikal elektrisch leitend voneinander getrennt verlaufende, jedoch an ihrem oberen Ende über einen verbleibenden Streifen 31 zusammenhängende streifenförmige Dachlamellen 19, wie in den Fig. 7, 8 und 9 dargestellt, ausgeführt werden. Dabei sollte deren Streifenbreite 21 nicht größer sein als 1/8 der Freiraumwellenlänge der höchsten Frequenz im Oberband.In order to perfect also the electromagnetic decoupling between the satellite receiving antenna 2 and the roofing capacity 10 forming rectangular structure 16 of the sub-band monopoly 2, this can substantially vertically vertically separated from each other running, but at its upper end via a remaining strip 31 contiguous strip-shaped Roof lamella 19, as in the Fig. 7 . 8th and 9 shown, executed. In this case, the strip width 21 should not be greater than 1/8 of the free space wavelength of the highest frequency in the upper band.

Häufig ist es vorgesehen, eine Breitband-Monopolantenne 0 unter einer Abdeckhaube 32, aus Plastikmaterial unterzubringen, wie es in Fig. 13 mit Sicht quer zur Fahrtrichtung (x-Richtung) und in Fig. 14 mit Sicht in Fahrtrichtung (y-Richtung) dargestellt ist. Hierbei ermöglicht die in Fig. 14 sichtbare Ausdehnung der Abdeckhaube 32 quer zur Fahrtrichtung die Möglichkeit einer weiteren räumlichen Gestaltung der ursprünglich flächenhaft hergestellten Breitband-Monopolantenne 0 mit den Vorteilen der Vergrößerung der Bandbreiten beider Monopole 1 und 2. Dies drückt sich durch eine bessere Gestaltbarkeit der Antennenimpedanz im Hinblick auf den VSWR-Wert an der Antennenanschlussstelle 3 aus. Dadurch ist die Möglichkeit gegeben, auf ein Anpassnetzwerk weitgehend verzichten zu können.Often it is intended to accommodate a broadband monopole antenna 0 under a cover 32 made of plastic material, as shown in FIG Fig. 13 with view across the direction of travel (x-direction) and in Fig. 14 with view in direction of travel (y-direction) is shown. Hereby, the in Fig. 14 visible extension of the cover 32 transversely to the direction of travel the possibility of further spatial design of the originally areal manufactured broadband monopole antenna 0 with the advantages of increasing the bandwidths of both monopolies 1 and 2. This is expressed by a better configurability of the antenna impedance with respect to the VSWR Value at the antenna connection point 3 off. This gives the possibility to be able to largely do without a matching network.

Zur Gestaltung der Räumlichkeit des Unterband-Monopols 2 können die an ihrem oberen Ende über einen verbleibenden Streifen zusammenhängenden streifenförmigen Dachlamellen 19 der Dachkapazität 10 in der Weise ausgewinkelt werden, dass sie in der Projektion auf eine zur Fahrtrichtung quer liegenden Ebene V-förmig angeordnet sind. Hierzu sind einander abwechselnd die in Fig. 13 schwarz ausgefüllt gekennzeichneten Dachlamellen 19a in x- Richtung und die weiß ausgefüllt gekennzeichneten Dachlamellen 19b in negativer x- Richtung gegensinnig ausgelenkt, so dass die in der Projektion in Fig. 13 sichtbare V-förmige Struktur gegeben ist. Durch die seitliche Auslenkung quer zur Fahrtrichtung bzw. zur Ebene der Dreieckstruktur oder des Streifens 31 wird der Kapazitätswert der Dachkapazität 10 größer. Dies führt zu einer Vergrößerung der Bandbreite des Unterband-Monopols 2 und erleichtert die Einhaltung der Bedingung für Impedanzanpassung bei dem einzuhaltenden VSWR-Wert.To design the spatiality of the sub-band monopoly 2, the strip-shaped roof louvers 19 of the roofing capacity 10, which are contiguous at their upper end over a remaining strip, can be selected in such a way that they are arranged in a V-shape in the projection on a plane lying transversely to the direction of travel. These are alternately the in Fig. 13 black filled marked roof slats 19a in the x direction and the white filled filled roof slats 19b deflected in the opposite direction in the negative x direction, so that in the projection in Fig. 13 visible V-shaped structure is given. Due to the lateral deflection transversely to the direction of travel or to the plane of the triangular structure or the strip 31, the capacity value of the roofing capacity 10 is greater. This leads to an increase in the bandwidth of the subband monopole 2 and facilitates compliance with the impedance matching condition at the VSWR value to be maintained.

In Analogie zur Gestaltung eines Kegels mit elliptischem Querschnitt durch entsprechende Auslenkung der Lamellen 20, 20a, 20b des Oberband-Monopols 1 in Fig. 11 können in einer weiteren vorteilhaften Ausgestaltung der Erfindung die Lamellen 20, 20a, 20b etwa der inneren Berandung der Abdeckhaube 32 folgend ausgewinkelt werden. Das heißt, die in der unteren Dreiecksspitze zusammenlaufenden streifenförmigen Lamellen 20, 20a, 20b des Oberband-Monopols 1 werden aus der Ebene der flächigen Dreiecksstruktur 4 aufeinanderfolgend in der Weise ausgebogen, dass sie in der Projektion auf eine zur Fahrtrichtung quer liegenden Ebene etwa V- förmig angeordnet sind. Ebenso wie oben für die Dachlamellen 19, 19a, 19b beschrieben, sind die Lamellen 20 in der Weise ausgewinkelt, dass die in Fig. 13 schwarz ausgefüllt gekennzeichneten Lamellen 20 a in x- Richtung und die weiß ausgefüllt gekennzeichneten Lamellen 20 b in negativer x- Richtung gegensinnig ausgelenkt sind, so dass die in der Projektion in Fig. 14 sichtbare V-förmige Struktur gegeben ist. Auch hier dient diese Maßnahme zur Vergrößerung der Frequenzbandbreite des Oberband-Monopols 1 mit dem damit verbundenem Vorteil bei der Realisierung der Impedanzanpassung im Antennenfußpunkt. Bei der Realisierung von Antennen, wie sie in den Fig. 13, 14 und 15 dargestellt sind, hat es sich als vorteilhaft erwiesen, auch die mindestens zwei Leiterstreifen 15, 15a, 15b in der Weise räumlich auszuführen, dass sie z. B. durch Auswinkeln in halber Antennenhöhe 9 um ca. 45°, bzw. -45° gegenüber der y-Achse die für sie verfügbare horizontale Ausdehnung quer zur Fahrtrichtung innerhalb der Abdeckhaube 32 ausfüllen. Die Leiterstreifen können also so geformt sein, dass sie so weit wie möglich entlang der Innenwandung der Abdeckhaube 32 verlaufen.In analogy to the design of a cone with an elliptical cross section through corresponding deflection of the slats 20, 20a, 20b of the upper band monopole 1 in FIG Fig. 11 can in a further advantageous embodiment of the invention, the lamellae 20, 20a, 20b about the inner boundary of the cover 32 following be ausgeknelt following. That is, the converging in the lower triangular tip strip-shaped fins 20, 20a, 20b of the upper band monopoly 1 are bent out of the plane of the flat triangular structure 4 successively in such a way that in the projection on a plane transverse to the direction of travel about V- are arranged shaped. As described above for the roof slats 19, 19a, 19b, the slats 20 are in such a way dignified that the in Fig. 13 fills 20 a marked in black in the x direction and the lamellae 20 b marked filled in white are deflected in opposite directions in the negative x direction, so that the fins projected in the projection in FIG Fig. 14 visible V-shaped structure is given. Again, this measure serves to increase the frequency bandwidth of the upper band monopole 1 with the associated advantage in the realization of the impedance matching in the antenna base. In the realization of antennas, as in the Fig. 13 . 14 and 15 are shown, it has proved to be advantageous, the at least two conductor strips 15, 15 a, 15 b in the manner spatially execute that they are z. B. by waving at half antenna height 9 by about 45 °, or -45 ° with respect to the y-axis, the available horizontal expansion transverse to the direction within the cover 32 fill. The conductor strips can thus be shaped so that they extend as far as possible along the inner wall of the cover 32.

Generell ist zu beobachten, dass die erfindungsgemäße räumliche Gestaltung ausgehend von der beschriebenen zweidimensionalen Gestaltung der erfindungsgemäßen Monopolantenne 0 bezüglich der Problematik der Impedanzanpassung über große Frequenzbereiche zusätzlich vorteilhaft ist. Mit der vorliegenden Erfindung ist somit der besondere Vorteil verbunden, dass diese räumlich gestaltete Antenne aus einer flächigen elektrisch leitenden Struktur (Blech oder Folie) gestanzt oder geschnitten und durch einfaches anschließendes Biegen, wie oben beschrieben, gestaltet werden kann.In general, it can be observed that the spatial design according to the invention, starting from the described two-dimensional design of the monopole antenna 0 according to the invention, is additionally advantageous with respect to the problem of impedance matching over large frequency ranges. Thus, the special advantage associated with the present invention is that this spatially designed antenna is punched out of a sheet-like electrically conductive structure (sheet or foil) or cut and shaped by simple subsequent bending as described above.

Es ist auch möglich, zwei Breitband-Monopolantennen Ound 0a nach der Erfindung unter einer Abdeckhaube 32 in Fahrtrichtung hintereinander, wie in Fig. 15, anzubringen. Hierbei hat sich gezeigt, dass die ringförmige Satellitenantennen 25 im Fußpunkt der einen Breitband-Monopolantenne 0 durch das Vorhandensein der anderen Breitband-Monopolantenne 0a keine störende Beeinflussung ihrer Strahlungseigenschaften erfährt. Umgekehrt gilt dies ebenso im Hinblick auf die Wirkung der Breitband-Monopolantenne 0 auf die Satellitenantennen 25a im Fußpunkt der einen Breitband-Monopolantenne 0a.It is also possible, two broadband monopole antennas O and 0a according to the invention under a cover 32 in the direction of travel behind each other, as in Fig. 15 to install. It has been shown that the annular satellite antennas 25 in the base of a broadband monopole antenna 0 by the presence of the other broadband monopole antenna 0a undergoes no disturbing influence on their radiation properties. Conversely, this also applies with regard to the effect of the broadband monopole antenna 0 on the satellite antennas 25a at the base of the broadband monopole antenna 0a.

In einer weiteren vorteilhaften Anwendung einer Breitband-Monopolantenne 0 nach der Erfindung ist diese durch eine weitere, zu dieser gleichen Breitband-Monopolantenne auf an sich bekannte Weise zu einem Dipol ergänzt. Dabei wird das Spiegelbild der Breitband-Monopolantenne 0 an der leitenden Grundfläche 6 unter deren Wegfall durch diese weitere Breitband-Monopolantenne in der Weise ersetzt, dass ein zur Ebene der leitenden Grundfläche 6 symmetrischer Dipol gegeben ist. Dabei ist die symmetrische Antennenanschlussstelle dieses Dipols zwischen dem Antennenanschlusspunkt 5 der Breitband-Monopolantenne 0 und dem - diesem entsprechenden - an der leitenden Grundfläche 6 gespiegelten Antennenanschlusspunkt 5 gebildet.In a further advantageous application of a broadband monopole antenna 0 according to the invention, this is supplemented by a further, same to this same broadband monopole antenna in a known per se to a dipole. In this case, the mirror image of the broadband monopole antenna 0 is replaced at the conductive base 6 with their omission by this further broadband monopole antenna in such a way that a symmetrical to the plane of the conductive surface 6 dipole is given. In this case, the symmetrical antenna connection point of this dipole is formed between the antenna connection point 5 of the broadband monopole antenna 0 and the antenna connection point 5 which is mirrored to the conductive base 6.

In einer weiteren vorteilhaften Anwendung einer Breitband-Monopolantenne 0 nach der Erfindung ist zur Unterstützung der Impedanzanpassung am unteren Frequenzende des Unterbandes ein an seinem oberen Ende mit der Dachkapazität 10 verbundener und zur leitenden Grundfläche 6 hin verlaufender Koppelleiter 35 vorhanden, welcher an seinem unteren Ende mit der leitenden Grundfläche 6 verkoppelt ist. Dieser Koppeleiter 35 ist in Fig. 17 dargestellt und ergänzt den Unterband-Monopol 2 in der Weise, dass es möglich ist, die Impedanzanpassung an der Antennenanschlussstelle 3, am unteren Frequenzende des Unterbandes zu verbessern. Durch Gestaltung der Koppelleiterbreite 37 bzw. durch teilweise mäanderförmige Ausprägung 24 des Koppelleiters 35 kann dessen induktive Wirkung an die Erfordernisse für die Impedanzanpassung (z.B. VSWR<3) geeignet eingestellt werden. Bei hinreichend induktiv hochohmiger Ausführung des Koppleiters 35 ist dieser im Frequenzbereich des Oberband-Monopols 1 in der Weise unwirksam, dass dessen Strahlungseigenschaften dadurch nicht beeinträchtigt werden. Hierbei ist es vielfach vorteilhaft, die Verkopplung des Koppelleiters 35 mit der leitenden Grundfläche 6 an seinem unteren Ende galvanisch bzw. kapazitiv herzustellen. Insbesondere bei besonders kleiner Antennenhöhe 9 kann die Impedanzanpassung noch dadurch verbessert werden, dass diese Verkopplung des Koppelleiters 35 mit der leitenden Grundfläche 6 über ein zweipoliges Koppelnetzwerk 36, bestehend aus Blindelementen, erfolgt. In einem Sonderfall kann es auch vorteilhaft sein, das Koppelnetzwerk 36 geringfügig verlustbehaftet zu gestalten, um am unteren Frequenzende des Unterbandes einen bestimmten VSWR-Wert unter Inkaufnahme möglichst kleiner Strahlungsverluste einzuhalten.In a further advantageous application of a broadband monopole antenna 0 according to the invention is in support of the impedance matching at the lower frequency end of the lower band connected at its upper end with the roof capacity 10 and the conductive base 6 extending towards coupling ladder 35 is present, which at its lower end with the conductive base 6 is coupled. This coupling conductor 35 is in Fig. 17 illustrates and complements the subband monopole 2 in such a way that it is possible to match the impedance at the antenna connection point 3, at the lower frequency end of the lower band. By designing the coupling conductor width 37 or by partially meandering expression 24 of the coupling conductor 35, its inductive effect can be suitably adjusted to the requirements for the impedance matching (eg VSWR <3). With sufficient inductively high-impedance design of the Koppleiters 35 this is ineffective in the frequency range of the upper band monopoly 1 in such a way that its radiation properties are not affected. It is often advantageous to produce the coupling of the coupling conductor 35 with the conductive base 6 at its lower end galvanically or capacitively. In particular, with a particularly small antenna height 9, the impedance matching can be further improved in that this coupling of the coupling conductor 35 with the conductive base 6 via a two-pole coupling network 36, consisting of reactive elements occurs. In a special case, it may also be advantageous to make the coupling network 36 slightly lossy in order to maintain a specific VSWR value at the lower frequency end of the lower band while accepting the smallest possible radiation losses.

Liste der BezeichnungenList of terms

  • Breitband-Monopolantenne 0,0aBroadband monopole antenna 0.0a
  • Oberband-Monopol 1, 1 aHigh-band monopoly 1, 1 a
  • Unterband-Monopol 2, 2aSubband monopole 2, 2a
  • Antennenanschlussstelle 3Antenna connection point 3
  • Dreieckstruktur 4Triangular structure 4
  • Antennenanschlusspunkt 5Antenna connection point 5
  • leitende Grundfläche 6conductive base 6
  • Masse-Anschlusspunkt 7Ground connection point 7
  • Oberband-Monopol-Höhe 8Upper Band Monopoly Height 8
  • Antennenhöhe 9Antenna height 9
  • Dachkapazität 10Roof capacity 10
  • Rahmenstruktur 11Frame structure 11
  • Dreieck-Öffnungswinkel 12Triangle opening angle 12
  • Abstand 13Distance 13
  • Streifenleiterbreite 14Stripline width 14
  • Leiterstreifen 15, 15a, 15bConductor strips 15, 15a, 15b
  • Rechteckstruktur 16Rectangular structure 16
  • Kegel-Öffnungswinkel in y-Richtung 17Cone opening angle in y-direction 17
  • Kegel-Öffnungswinkel in x-Richtung 17aCone opening angle in the x direction 17a
  • kegelförmiger-Monopol 18conical monopole 18
  • Dachlamelle 19, 19a, 19bRoof lamella 19, 19a, 19b
  • streifenförmige Lamellen 20strip-shaped slats 20
  • Streifenbreite 21Strip width 21
  • Vertikalausdehnung 22Vertical extension 22
  • Horizontalausdehnung 23Horizontal expansion 23
  • mäanderförmige Ausprägung 24meandering form 24
  • ringförmige Satellitenempfangsantenne 25, 25a, 25bannular satellite receiving antenna 25, 25a, 25b
  • Interdigitalstruktur 26Interdigital structure 26
  • Parallelkapazität 27Parallel capacity 27
  • Parallelinduktivität 28Parallel inductance 28
  • Parallelschwingkreis 29Parallel resonant circuit 29
  • Kegel-Lamelle 30, 30a, 30bCone blade 30, 30a, 30b
  • verbleibender Streifen 31remaining strip 31
  • Abdeckhaube 32Cover 32
  • elektrisch leitende Folie 33electrically conductive foil 33
  • Schnittlinien der dielektrischen Platte 34Cutting lines of the dielectric plate 34th
  • Koppelleiter 35Coupling conductor 35
  • Koppelnetzwerk 36Coupling network 36
  • Koppelleiterbreite 37Coupling conductor width 37

Claims (11)

  1. A vertical broadband monopole antenna for vehicles for two frequency bands, namely a lower band (U) for lower frequencies and an upper band (O) for higher frequencies, separated by a frequency gap and both disposed in the decimeter wave spectrum, for transmitting and/or receiving using terrestrially broadcast, vertically polarized radio signals over a substantially horizontal conductive base surface (6) as a vehicle ground having an antenna connection site (3) located in the monopole nadir comprising the following features:
    - the broadband monopole antenna (0) is designed from a self-supporting electrically conductive structure which is oriented above and substantially perpendicular to the base surface (6);
    - the electrically conductive structure comprises at the lower end of the broadband monopole antenna (0) a triangular structure (4) standing on its apex and having a substantially horizontally oriented baseline, the apex forming an antenna connection point (5) of the antenna connection site (3);
    - the electrically conductive structure comprises a roof capacitor (10) substantially designed as a rectangular structure (16) adjacent to and below the upper end of the broadband monopole antenna (0);
    - the triangular structure (4) and the rectangular structure (16) are inductively connected with high impedance by at least one conductor strip (15, 15a, 15b) for separating radio signals in the upper band,
    characterized in that
    - at least one annular satellite reception antenna (25, 25a, 25b) which is arranged concentrically to the antenna connection site (3) is present above the conductive base surface (6); and
    - in that the triangular structure (4) is designed by strip-shaped lamellas (20) arranged fan-like in the triangle plane and running together at the apex.
  2. A broadband monopole antenna (0) in accordance with claim 1,
    characterized in that
    the electrically conductive structure has at least two spaced apart conductor strips (15), whereby a frame structure (11) is formed comprising the triangular structure (4), the rectangular structure (16) and the conductor strips (15).
  3. A broadband monopole antenna (0) in accordance with claim 1 or claim 2,
    characterized in that
    the conductor strip or strips (15, 15a, 15b) contain meandering shapes (24) for a frequency-selective separation.
  4. A broadband monopole antenna (0) in accordance with at least one of the claims 1 to 3,
    characterized in that
    the internal angle (12) at the apex of the triangular structure (4) amounts approximately to between 30 and 90 degrees.
  5. A broadband monopole antenna (0) in accordance with at least one of the claims 1 to 4,
    characterized in that,
    to improve the electromagnetic decoupling, the rectangular structure (16) is substantially formed by strip-shaped roof lamellas (19, 19a, 19b) which extend vertically, electrically conductively and separate from one another, but contiguous at their upper end via a remaining strip (31).
  6. A broadband monopole antenna (0) in accordance with at least one of the claims 1 to 5,
    characterized in that
    the strip-shaped lamellas (30, 30a, 30b) which run together in the apex are angled out of the plane of the triangular structure (4) in a manner such that they extend substantially over the jacket surface of a cone standing on the apex and having a circular or elliptical cross-section.
  7. A broadband monopole antenna (0) in accordance with claim 5,
    characterized in that
    the roof lamellas (19, 19a, 19b) are angled in opposite senses following one another in a manner such that they are arranged in V shape in a projection onto a plane extending transversely to the strip (31).
  8. A broadband monopole antenna (0) in accordance with at least one of the claims 1 - 5 to and 7,
    characterized in that
    the lamellas (20a, 20b) running together in the apex are angled in opposite senses following one another from the plane of the triangular structure (4) in a manner such that they are arranged in V shape in a projection onto a plane extending transversely to the triangular structure (4).
  9. A broadband monopole antenna (0) in accordance with at least one of the claims 1 to 8,
    characterized in that
    the broadband monopole antenna (0) is arranged beneath a cover hood (32); and in that the at least one conductor strip (15, 15a, 15b) is conducted at least in part and in particular as far as possible along the inner wall of the cover hood.
  10. A broadband monopole antenna (0) in accordance with any one of the claims 1 to 9,
    characterized in that
    the electrically conductive structure comprises electrically conductive sheet metal and only one self-supporting conductor strip (15) is present whose strip conductor width (14) is in particular smaller than or equal to 7 mm.
  11. A broadband monopole antenna (0) in accordance with at least one of the claims 1 to 10,
    characterized in that
    a coupling conductor (35) is present which is connected at its upper end to the roof capacitor (10) and which is coupled at its lower end to the conductive base surface (6).
EP14159092.7A 2013-03-24 2014-03-12 Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength Active EP2784874B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102013005001.4A DE102013005001A1 (en) 2013-03-24 2013-03-24 Broadband monopole antenna for two frequency bands separated by a frequency gap in the decimeter wave range for vehicles

Publications (3)

Publication Number Publication Date
EP2784874A2 EP2784874A2 (en) 2014-10-01
EP2784874A3 EP2784874A3 (en) 2014-12-03
EP2784874B1 true EP2784874B1 (en) 2016-07-20

Family

ID=50276966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14159092.7A Active EP2784874B1 (en) 2013-03-24 2014-03-12 Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength

Country Status (3)

Country Link
US (1) US20140285387A1 (en)
EP (1) EP2784874B1 (en)
DE (1) DE102013005001A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3025611B1 (en) * 2014-09-05 2019-04-19 Centre National D'etudes Spatiales METHOD OF AUTHENTICATING SIGNALS RECEIVED FROM A CONSTELLATION OF SATELLITES
CN104810610A (en) * 2015-04-28 2015-07-29 邝嘉豪 Bipolar oscillator provided with spacer
CN104882665A (en) * 2015-04-28 2015-09-02 邝嘉豪 High-gain unipolarity oscillator having second radiation sheet
CN104810611A (en) * 2015-04-28 2015-07-29 邝嘉豪 Monopole antenna provided with first rectangular through hole
DE102016010200A1 (en) 2016-05-04 2017-11-09 Heinz Lindenmeier Antenna under a cup-shaped antenna cover for vehicles
DE102016005556A1 (en) 2016-05-06 2017-11-09 Heinz Lindenmeier Satellite antenna under an antenna cover
CN110034400A (en) * 2018-01-05 2019-07-19 台达电子工业股份有限公司 Antenna assembly and antenna system
CN211295369U (en) * 2018-09-28 2020-08-18 株式会社友华 Vehicle-mounted antenna device
WO2020240916A1 (en) * 2019-05-29 2020-12-03 パナソニックIpマネジメント株式会社 Multiband antenna
CN113109757A (en) * 2021-04-21 2021-07-13 广东圣大电子有限公司 Direction finding microwave channel assembly based on interferometer
DE102022001407A1 (en) 2022-04-25 2023-10-26 Heinz Lindenmeier Combination antenna for mobile communications and satellite reception
CN114899593B (en) * 2022-05-25 2024-09-20 陕西北斗科技开发应用有限公司 Be applicable to big dipper and WLAN system complementary structure loading microstrip antenna
US20240347920A1 (en) * 2023-04-12 2024-10-17 Raytheon Company Nested wire monopole hf antenna

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2634068B1 (en) * 1988-07-08 1990-09-14 Thomson Csf BROADBAND RECEIVING ANTENNA
WO1996024963A1 (en) * 1995-02-06 1996-08-15 Megawave Corporation Window glass antenna
US5872546A (en) * 1995-09-27 1999-02-16 Ntt Mobile Communications Network Inc. Broadband antenna using a semicircular radiator
JP3213564B2 (en) 1997-02-26 2001-10-02 日本アンテナ株式会社 Multi-resonant antenna
ES2241378T3 (en) * 1999-09-20 2005-10-16 Fractus, S.A. MULTI LEVEL ANTENNAS.
US6525691B2 (en) * 2000-06-28 2003-02-25 The Penn State Research Foundation Miniaturized conformal wideband fractal antennas on high dielectric substrates and chiral layers
US6693600B1 (en) * 2000-11-24 2004-02-17 Paul G. Elliot Ultra-broadband antenna achieved by combining a monocone with other antennas
US6677915B1 (en) * 2001-02-12 2004-01-13 Ethertronics, Inc. Shielded spiral sheet antenna structure and method
US6567053B1 (en) * 2001-02-12 2003-05-20 Eli Yablonovitch Magnetic dipole antenna structure and method
US6486849B2 (en) * 2001-02-14 2002-11-26 Raytheon Company Small L-band antenna
BR0117154A (en) * 2001-10-16 2004-10-26 Fractus Sa Loaded Antenna
US9755314B2 (en) * 2001-10-16 2017-09-05 Fractus S.A. Loaded antenna
US6917341B2 (en) * 2002-06-11 2005-07-12 Matsushita Electric Industrial Co., Ltd. Top-loading monopole antenna apparatus with short-circuit conductor connected between top-loading electrode and grounding conductor
JP2005057438A (en) * 2003-08-01 2005-03-03 Sony Corp Antenna assembly
US7245263B2 (en) * 2005-02-18 2007-07-17 Ricoh Company, Ltd. Antenna
US7248223B2 (en) * 2005-12-05 2007-07-24 Elta Systems Ltd Fractal monopole antenna
US7973731B2 (en) * 2008-05-23 2011-07-05 Harris Corporation Folded conical antenna and associated methods
JP2010021856A (en) * 2008-07-11 2010-01-28 Nippon Antenna Co Ltd Antenna device
KR101192298B1 (en) * 2011-01-25 2012-10-17 인팩일렉스 주식회사 Unified antenna for shark fin type
DE102012003460A1 (en) * 2011-03-15 2012-09-20 Heinz Lindenmeier Multiband receiving antenna for the combined reception of satellite signals and terrestrial broadcasting signals

Also Published As

Publication number Publication date
DE102013005001A1 (en) 2014-09-25
EP2784874A2 (en) 2014-10-01
EP2784874A3 (en) 2014-12-03
US20140285387A1 (en) 2014-09-25

Similar Documents

Publication Publication Date Title
EP2784874B1 (en) Broadband monopole antenna for vehicles for two frequency bands separated by a frequency gap in the decimeter wavelength
EP3178129B1 (en) Multi-structure broadband monopole antenna for two frequency bands in the decimeter wave range separated by a frequency gap, for motor vehicles
EP0841715B1 (en) Flat antenna
EP1522120B1 (en) Low-height dual or multi-band antenna, in particular for motor vehicles
EP2664025B1 (en) Multiband reception antenna for the combined reception of satellite signals and terrestrially emitted radio signals
DE10304911B4 (en) Combination antenna arrangement for multiple radio services for vehicles
DE102008007258A1 (en) Multi-band antenna and mobile communication terminal, which has these
EP2693565B1 (en) Electrical radiator for vertically polarised radio signals
EP1829158B1 (en) Disc-monopole antenna structure
EP3474374B1 (en) Antenna system for circular polarised satellite radio signals on a vehicle
EP3159967A1 (en) Multiband gnss antenna
DE10022107A1 (en) Integrated antenna for mobile phones
DE69824466T2 (en) Window glass antenna system
EP3734755B1 (en) Combination antenna for mobile radio services for vehicles
DE102014115054A1 (en) Printed dual-band monopole antenna
WO2002001674A1 (en) Slot antenna
DE102019105455A1 (en) BROADBAND ASYMMETRIC SLOTTING ANTENNA
WO2007048258A1 (en) Antenna arrangement having a broadband monopole antenna
EP2756550B1 (en) Multi-band aerial for a motor vehicle
DE102018126361A1 (en) Foil antenna
DE102018116631A1 (en) Spiral antenna system
DE102016005556A1 (en) Satellite antenna under an antenna cover
DE102005018531B4 (en) Folded monopole antenna
DE102007061740A1 (en) Multi-range antenna and method
EP4270647A1 (en) Combination antenna for mobile radio and satellite reception

Legal Events

Date Code Title Description
17P Request for examination filed

Effective date: 20140312

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 5/00 20060101ALI20141028BHEP

Ipc: H01Q 9/36 20060101ALI20141028BHEP

Ipc: H01Q 1/32 20060101AFI20141028BHEP

Ipc: H01Q 9/40 20060101ALI20141028BHEP

R17P Request for examination filed (corrected)

Effective date: 20150602

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160128

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 814739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20160815

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502014001130

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161120

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161021

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161121

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502014001130

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161020

26N No opposition filed

Effective date: 20170421

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170312

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170331

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20140312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160720

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20200323

Year of fee payment: 7

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 814739

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190312

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20210312

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210312

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20230324

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230328

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240528

Year of fee payment: 11