WO2020240916A1 - Multiband antenna - Google Patents
Multiband antenna Download PDFInfo
- Publication number
- WO2020240916A1 WO2020240916A1 PCT/JP2020/002036 JP2020002036W WO2020240916A1 WO 2020240916 A1 WO2020240916 A1 WO 2020240916A1 JP 2020002036 W JP2020002036 W JP 2020002036W WO 2020240916 A1 WO2020240916 A1 WO 2020240916A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antenna
- inductance
- frequency
- band
- high inductance
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q5/00—Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
- H01Q5/30—Arrangements for providing operation on different wavebands
- H01Q5/307—Individual or coupled radiating elements, each element being fed in an unspecified way
- H01Q5/314—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors
- H01Q5/321—Individual or coupled radiating elements, each element being fed in an unspecified way using frequency dependent circuits or components, e.g. trap circuits or capacitors within a radiating element or between connected radiating elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01Q—ANTENNAS, i.e. RADIO AERIALS
- H01Q9/00—Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
- H01Q9/04—Resonant antennas
- H01Q9/16—Resonant antennas with feed intermediate between the extremities of the antenna, e.g. centre-fed dipole
Definitions
- This disclosure relates to a multi-band antenna.
- wireless terminals based on standards such as wireless LAN (Local Area Network) and Bluetooth (registered trademark) have begun to be installed in home appliances such as televisions and audio equipment. ..
- wireless communication may be performed in a plurality of frequency bands corresponding to a plurality of standards.
- a multi-band antenna capable of transmitting and receiving signals in a plurality of frequency bands with one antenna has been proposed (for example, Patent Document 1 and the like). ).
- the dual band antenna described in Patent Document 1 includes a linear body portion and a helical coil-shaped portion.
- This helical coil-like portion functions as a choke coil for signals in a high frequency band, and functions as a part of a miniaturized antenna for signals in a low frequency band.
- Patent Document 1 attempts to realize a dual-band antenna that is compact and can have different effective electrical lengths depending on the frequency.
- the present disclosure provides a multi-band antenna that resonates in a plurality of frequency bands and can realize directivity perpendicular to the resonance direction in each frequency band.
- the multi-band antenna includes a substrate, an input terminal arranged on the substrate and input with a signal, and an antenna portion arranged on the substrate and connected to the input terminal.
- the first low inductance portion connected in series, the first high inductance portion having a meander shape, and the conductive antenna portion having the first tip portion, which are connected in series from the input terminal side, are arranged on the substrate.
- the first low inductance section has a lower inductance than the first high inductance section
- the second low inductance section has a lower inductance than the second high inductance section
- the first low inductance section has a conductive grounding section.
- the electric length of the low inductance portion is 1/4 wavelength of the first frequency, and the sum of the electrical lengths of the first low inductance portion, the first high inductance portion, and the first tip portion is from the first frequency. It is a quarter wavelength of the lower second frequency.
- the multi-band antenna it is possible to resonate in a plurality of frequency bands and realize directivity perpendicular to the resonance direction in each frequency band.
- FIG. 1 is a plan view showing the configuration of the multi-band antenna according to the first embodiment.
- FIG. 2 is a plan view showing the configuration of the multi-band antenna according to the comparative example.
- FIG. 3 is a diagram showing an outline of directivity at the first frequency of the multi-band antenna according to the first embodiment.
- FIG. 4 is a diagram showing an outline of the directivity of the multi-band antenna according to the comparative example at the first frequency.
- FIG. 5 is a graph showing an example of a simulation result of the directivity of the multi-band antenna according to the first embodiment.
- FIG. 6 is a graph showing another example of the directivity simulation result of the multi-band antenna according to the first embodiment.
- FIG. 7 is a graph showing the relationship between the width of the ground contact portion and the minimum inductance value of each high inductance element of the second high inductance portion according to the first embodiment.
- FIG. 8 is a first plan view showing the configuration of the antenna module according to the second embodiment.
- FIG. 9 is a second plan view showing the configuration of the antenna module according to the second embodiment.
- FIG. 10 is a plan view showing the configuration of the three distributors according to the second embodiment.
- FIG. 11 is a graph showing the directivity of the array antenna according to the second embodiment.
- FIG. 12 is a graph showing the directivity when the state of the phase shifter of the array antenna according to the second embodiment is changed.
- FIG. 13 is a perspective view showing the configuration of an audio device including the antenna module according to the second embodiment.
- FIG. 14 is a plan view showing the configuration of the multi-band antenna according to the third embodiment.
- FIG. 15 is a graph showing an example of the first simulation result of the directivity of the multi-band antenna according to the third embodiment.
- FIG. 16 is a graph showing an example of the second simulation result of the directivity of the multi-band antenna according to the third embodiment.
- FIG. 17 is a graph showing the relationship between the width of the ground contact portion and the minimum inductance value of each high inductance element of the second high inductance portion according to the third embodiment.
- each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
- FIG. 1 is a plan view showing the configuration of the multi-band antenna 1 according to the present embodiment.
- FIG. 1 shows a plan view of the substrate 40 of the multi-band antenna 1 in a plan view.
- the direction perpendicular to the main surface 41 of the substrate 40 of the multi-band antenna 1 is the Z-axis direction
- the two directions perpendicular to the Z-axis direction and perpendicular to each other are the X-axis direction and the Y-axis direction. It is said.
- the multi-band antenna 1 is an antenna that transmits and receives signals in a plurality of frequency bands.
- the multi-band antenna 1 transmits and receives a signal in the first frequency band including the first frequency and a signal in the second frequency band including the second frequency lower than the first frequency.
- the first frequency band and the second frequency band are not particularly limited, but in the present embodiment, the 5 GHz band and the 2.4 GHz band are used as the first frequency band and the second frequency band, respectively.
- the multi-band antenna 1 can be used as a dual-band antenna in the 5 GHz band and the 2.4 GHz band based on the wireless LAN standard.
- the multi-band antenna 1 includes a substrate 40, an input terminal 16, an antenna portion 10, and a grounding portion 20.
- the multi-band antenna 1 further includes a ground terminal 26.
- the substrate 40 is a member that serves as a base for the multi-band antenna 1.
- the substrate 40 is a circuit board, and the antenna portion 10 and the grounding portion 20 are arranged on one main surface 41 of the substrate 40.
- the substrate 40 is a rectangular plate-shaped dielectric.
- the substrate 40 is, for example, a glass epoxy substrate.
- the input terminal 16 is a terminal arranged on the board 40 to input a signal.
- the high frequency signal transmitted by the multi-band antenna 1 is input to the input terminal 16.
- the input terminal 16 also functions as an output terminal that outputs a high-frequency signal received by the multi-band antenna 1.
- a signal is input to the input terminal 16 from, for example, a main surface on the back side of the main surface 41 of the substrate 40 via a via wiring penetrating the substrate 40. Further, the input terminal 16 is connected to the antenna unit 10.
- the ground terminal 26 is a terminal arranged on the board 40 and connected to the ground.
- the ground terminal 26 is arranged on the main surface 41 of the substrate 40 and is connected to the ground portion 20.
- the ground terminal 26 is connected to the ground via, for example, a via wiring penetrating the substrate 40.
- the number of ground terminals 26 is not particularly limited, but is two in the present embodiment.
- the antenna portion 10 is a conductive member arranged on the substrate 40 and connected to the input terminal 16.
- the signal in the first frequency band and the signal in the second frequency band resonate in the antenna unit 10.
- radio waves are radiated from the antenna unit 10.
- the antenna portion 10 has a first low inductance portion 11, a first high inductance portion 12, and a first tip portion 13 connected in series from the input terminal 16 side.
- the sum of the electrical lengths of the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 is 1/4 wavelength of the second frequency.
- the signal in the second frequency band including the second frequency resonates in the antenna unit 10.
- the position where the antenna portion 10 is connected to the input terminal 16 is not particularly limited, but in the present embodiment, the input terminal 16 is arranged at the end of the first low inductance portion 11 on the grounding portion 20 side. More specifically, the input terminal 16 is arranged only at the end portion of the first low inductance portion 11 on the grounding portion 20 side, and is not arranged at the first high inductance portion 12 and the first tip portion 13.
- the end of the first low inductance portion 11 is, for example, a range of 10% or less of the length of the first low inductance portion 11 in the Y-axis direction from the end of the first low inductance portion 11 on the grounding portion 20 side. Means the area of.
- the antenna portion 10 is a conductive member patterned on the main surface 41 of the substrate 40, and is formed of, for example, a metal film such as a copper film. Further, the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 are arranged in the Y-axis direction of FIG. As a result, the Y-axis direction in FIG. 1 becomes the longitudinal direction of the antenna portion 10 and the resonance direction of the signal in the antenna portion 10. As shown in FIG. 1, the widths of the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 (that is, the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40). Dimensions) are the same.
- the first low inductance portion 11 is a portion of the antenna portion 10 connected to the input terminal 16.
- the input terminal 16 is connected to one end of the first low inductance portion 11, and the first high inductance portion 12 is connected to the other end.
- the electrical length of the first low inductance portion 11 is 1/4 wavelength of the first frequency.
- the first low inductance section 11 has a lower inductance than the first high inductance section 12.
- the first low inductance portion 11 has a meander shape, but does not function as a choke coil for signals in the first frequency band and the second frequency band. It has a low inductance (that is, it does not block the signal).
- the dimension of the first low inductance portion 11 in the resonance direction that is, the Y-axis direction in FIG. 1 can be reduced.
- the first high inductance portion 12 is a portion of the antenna portion 10 that is arranged between the first low inductance portion 11 and the first tip portion 13, and has a meander shape.
- the first high inductance section 12 has a higher inductance than the first low inductance section 11.
- the meander shape of the first high inductance portion 12 has a smaller line width and spacing than the meander shape of the first low inductance portion 11. As a result, the inductance of the first high inductance section 12 becomes higher than that of the first low inductance section 11.
- the first high inductance portion 12 has a line width of 0.1 mm, an interval of 0.1 mm, a length (dimension in the Y-axis direction in FIG.
- the first high inductance unit 12 functions as a choke coil for signals in the first frequency band. That is, the effective electric length of the antenna unit 10 with respect to the signal of the first frequency band input from the input terminal 16 connected to the first low inductance unit 11 is the electric length of the first low inductance unit 11 (first frequency). 1/4 wavelength). Therefore, in the antenna unit 10, the signal in the first frequency band resonates.
- the first high inductance unit 12 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the first high inductance unit 12 does not block the signal in the second frequency band. Therefore, the signal in the second frequency band resonates in the path including the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 of the antenna portion 10.
- the first tip portion 13 is a portion of the antenna portion 10 arranged at the end portion farthest from the input terminal 16 in the resonance direction.
- the shape of the first tip portion 13 is not particularly limited, but is rectangular in the present embodiment. As a result, for example, the current density at the first tip portion 13 can be increased as compared with the case where the first tip portion 13 has a meander shape, so that the radiation efficiency of radio waves from the first tip portion 13 can be increased.
- the grounding portion 20 is a conductive member arranged on the substrate 40 and insulated from the input terminal 16.
- the grounding portion 20 is arranged at a distance of a predetermined distance from the antenna portion 10 in the resonance direction.
- the distance between the antenna portion 10 and the grounding portion 20 is, for example, greater than 0 and less than or equal to about 1 mm. In the present embodiment, the distance between the antenna portion 10 and the grounding portion 20 is 0.5 mm.
- the width of the grounding portion 20 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is wider than the width of the antenna portion 10.
- the grounding portion 20 has a second low inductance portion 21, a second high inductance portion 22, and a second tip portion 23 connected in series from the input terminal 16 side.
- the grounding portion 20 is a conductive member patterned on the main surface 41 of the substrate 40, and is formed of, for example, a metal film such as a copper film.
- the second low inductance portion 21, the second high inductance portion 22, and the second tip portion 23 are arranged in the Y-axis direction of FIG.
- the total electric length of the second low inductance portion 21, the second high inductance portion 22, and the second tip portion 23 is such that the directivity of the second frequency radio wave radiated from the antenna portion 10 is the longitudinal direction of the antenna portion 10 ( That is, it is set to spread along a plane perpendicular to the Y-axis direction of FIG. 1 (that is, a plane parallel to the ZX plane of FIG. 1).
- the relationship between the total electric length and the directivity of the radio wave of the second frequency can be obtained by, for example, simulation.
- the grounding portion 20 is connected to the grounding terminal 26.
- the arrangement of the ground terminal 26 is not particularly limited, but in the present embodiment, the ground terminal 26 is arranged at the end of the second low inductance portion 21 on the antenna portion 10 side (that is, the input terminal 16 side). More specifically, the two ground terminals 26 are arranged only at the end of the second low inductance portion 21 on the antenna portion 10 side, and are not arranged at the second high inductance portion 22 and the second tip portion 23.
- the end of the second low inductance portion 21 is, for example, the length of the second low inductance portion 21 in the resonance direction (Y-axis direction in FIG. 1) from the end of the second low inductance portion 21 on the antenna portion 10 side. It means an area in the range of 10% or less of the inductance.
- the second low inductance portion 21 is a portion of the grounding portion 20 that is arranged at the position closest to the antenna portion 10.
- the ground terminal 26 is connected to one end of the second low inductance portion 21, and the second high inductance portion 22 is connected to the other end.
- the electrical length of the second low inductance section 21 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 10.
- the relationship between the electric length of the second low inductance portion 21 and the directivity of the radio wave of the first frequency can be obtained by, for example, simulation.
- the second low inductance section 21 has a lower inductance than the second high inductance section 22.
- the second low inductance portion 21 has a rectangular shape, but the shape of the second low inductance portion 21 is not limited to this.
- the shape of the second low inductance portion 21 is designed so that the inductance of the second low inductance portion 21 has such a low inductance that it does not function as a choke coil with respect to the signals of the first frequency and the second frequency. Good.
- the second high inductance portion 22 is a portion of the grounding portion 20 that is arranged between the second low inductance portion 21 and the second tip portion 23, and has a meander shape.
- the second high inductance section 22 has a higher inductance than the second low inductance section 21.
- the second high inductance unit 22 functions as a choke coil for signals in the first frequency band. That is, the effective electrical length of the grounding portion 20 with respect to the signal in the first frequency band induced in the second low inductance portion 21 is the electrical length of the second low inductance portion 21. Further, the second high inductance unit 22 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band.
- the second high inductance unit 22 does not block the signal in the second frequency band. Therefore, the effective electrical length of the grounding portion 20 with respect to the signal in the second frequency band includes the electrical length of the path including the second high inductance portion 22 of the grounding portion 20.
- the second high inductance section 22 has two high inductance elements 22a and 22b connected to both ends of the second low inductance section 21 in the width direction (X-axis direction in FIG. 1), respectively.
- An opening 22c is formed between the two high inductance elements 22a and 22b. That is, a region in which the conductive member is not arranged is formed between the two high inductance elements 22a and 22b. The region corresponding to the opening 22c of the substrate 40 may not be provided with an opening.
- Each of the two high inductance elements 22a and 22b has a meander shape. Further, the two high inductance elements 22a and 22b have a structure that is horizontally inverted from each other.
- the electrical lengths of the two high inductance elements 22a and 22b are equal.
- the electric length of the second high inductance portion 22 of the multi-band antenna 1 is defined as the electric length of one of the two high inductance elements 22a and 22b.
- the line width and pitch of the two high inductance elements 22a and 22b in the meander-shaped portion may be the same as the line width and pitch of the first high-inductance portion 12 of the antenna portion 10 in the meander-shaped portion, respectively. This makes it possible to facilitate the design of the multi-band antenna 1.
- the current indicated by the broken line arrow in FIG. 1 is either the high inductance element 22a or the high inductance element 22b. Pass through.
- the second tip portion 23 is a portion of the grounding portion 20 arranged at the end portion farthest from the antenna portion 10 in the resonance direction.
- the shape of the second tip portion 23 is not particularly limited, but in the present embodiment, the second tip portion 23 has a rectangular shape.
- the second tip portion 23 connects the two high inductance elements 22a and 22b of the second high inductance portion 22. As a result, in the second tip portion 23, the current components flowing from the two high inductance elements 22a and 22b into the second tip portion 23 can be canceled out, so that the radiation of radio waves spreading in the resonance direction due to these current components can be suppressed. ..
- FIG. 2 is a plan view showing the configuration of the multi-band antenna 1001 according to the comparative example.
- FIG. 2 shows a plan view of the substrate 40 of the multi-band antenna 1001 according to the comparative example in a plan view.
- 3 and 4 are diagrams showing an outline of the directivity of the multi-band antenna according to the present embodiment and the comparative example at the first frequency, respectively.
- the multi-band antenna 1001 according to the comparative example shown in FIG. 2 has a substrate 40, an input terminal 16, a ground terminal 26, an antenna portion 10, and a ground portion, similarly to the multi-band antenna 1 according to the present embodiment. It is equipped with 1020.
- the multi-band antenna 1001 according to the comparative example is different from the multi-band antenna 1 according to the present embodiment in the configuration of the grounding portion 1020, and is consistent in other respects.
- the grounding portion 1020 according to the comparative example has an electric length equivalent to the electric length of the entire grounding portion 20 according to the present embodiment.
- the ground contact portion 1020 according to the comparative example has a flat plate shape. In other words, the grounding portion 1020 according to the comparative example has the same configuration as the second low inductance portion 21 of the grounding portion 20 according to the present embodiment as a whole.
- the directivity of the radio wave of the second frequency radiated from the antenna portion 10 is along the plane perpendicular to the longitudinal direction of the antenna portion 10.
- the electric length of the entire ground contact portion 20 is set so as to spread. Since the grounding portion 1020 according to the comparative example also has an electric length equivalent to that of the grounding portion 20 according to the present embodiment, the multi-band antenna 1001 according to the comparative example also has a second frequency radio wave radiated from the antenna portion 10. The directivity extends along a plane perpendicular to the longitudinal direction of the antenna portion 10.
- the multi-band antenna 1 includes the second high inductance section 22 which functions as a choke coil with respect to the signal of the first frequency, so that the second low inductance section 21
- the effective electrical length of the grounding section 20 is equal to the electrical length of the second low inductance section 21.
- the electrical length of the second low inductance section 21 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 10. .. Therefore, as shown in FIG. 3, the directivity of the radio wave of the first frequency spreads along the plane perpendicular to the longitudinal direction of the antenna portion 10.
- the electric length for the signal of the first frequency is the same as the electric length for the second frequency, and the entire grounding portion 1020. Is equal to the electrical length of.
- the directivity of the radio wave of the first frequency is closer to the grounding portion 20 with respect to the plane perpendicular to the longitudinal direction of the antenna portion 10. It spreads diagonally (that is, diagonally downward in FIG. 4). Although only the directivity in the plane parallel to the XY plane is shown in FIG.
- the multi-band antenna 1001 passes through the input terminal 16 of the multi-band antenna 1001 and is parallel to the Y axis in all the planes.
- the directivity of is the same as that of FIG. This is because, in the multi-band antenna 1001 according to the comparative example, the effective electric length of the grounding portion 1020 with respect to the signal of the first frequency is longer than that of the multi-band antenna 1 according to the present embodiment, so that the grounding portion 1020 It is considered that this is because the electric field component generated by the current flowing into the tip portion becomes stronger than the electric field component generated by the antenna portion 10.
- the grounding portion 20 has the second high inductance portion 22 having a meander shape, so that the effective electricity of the grounding portion 20 with respect to the first frequency is obtained.
- the length can be shorter than the effective electrical length for the second frequency signal. Therefore, by appropriately setting the effective electric length of the grounding portion 20 for each signal of the first frequency and the second frequency, it is possible to realize the directivity perpendicular to the resonance direction in the frequency band including each frequency. ..
- Such a multi-band antenna 1 is particularly effective when used in an array antenna, for example. That is, since the multi-band antenna 1 has a directivity perpendicular to the resonance direction, each multi-band antenna radiates when a plurality of multi-band antennas 1 are arranged in a direction perpendicular to the resonance direction to form an array antenna. It is possible to enhance the interaction between the radio waves.
- 5 and 6 are graphs showing an example of a simulation result of directivity of the multi-band antenna 1 according to the present embodiment.
- 5 and 6 show simulation results when the inductance of each high inductance element of the second high inductance portion 22 is 6 nH and 7 nH, respectively.
- the width Wg of the ground contact portion 20 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is set to 7 mm.
- the directivity in each case where the frequency of the signal of the first frequency band input to the input terminal 16 is 5.0 GHz, 5.2 GHz, 5.4 GHz, 5.6 GHz, 5.8 GHz, and 6.0 GHz.
- the sex is shown.
- the angle ⁇ yx in each figure indicates an angle of inclination from the Y-axis direction to the X-axis direction in each figure.
- FIG. 7 is a graph showing the relationship between the width Wg of the grounding portion 20 and the minimum inductance value Lmin of each high inductance element of the second high inductance portion 22 according to the present embodiment.
- the minimum inductance value Lmin means the inductance value of each high inductance element required to realize directivity substantially perpendicular to the resonance direction with respect to the signal in the first frequency band. In the graph shown in FIG. 7, the minimum inductance value Lmin when the first frequency band is the 5 GHz band is shown.
- the minimum inductance values Lmin of each high inductance element are 5 nH, 4 nH and 2.5 nH, respectively. From this, it can be seen that when the width Wg of the grounding portion 20 is 7 mm or more, the minimum inductance value Lmin of each high inductance element is 7 nH or more.
- the antenna module according to the second embodiment will be described.
- the antenna module according to the present embodiment is an application example of the multi-band antenna 1 according to the first embodiment.
- 8 and 9 are first and second plan views showing the configuration of the antenna module 100 according to the present embodiment, respectively.
- FIG. 8 a plan view of one main surface 141 of the substrate 140 of the antenna module 100 in a plan view is shown.
- FIG. 9 a plan view of each component arranged on the main surface on the back side of the main surface 141 on the substrate 140 is shown, and the outline of the substrate 140 is also shown by a dotted line.
- the antenna module 100 is a module including an array antenna 101 and a distributor that distributes signals to each multi-band antenna constituting the array antenna 101.
- the antenna module 100 is a module that performs wireless communication based on the wireless LAN standard, and transmits / receives signals in the 5 GHz band and the 2.4 GHz band as the first frequency band and the second frequency band, respectively.
- the antenna module 100 includes a 3 distributor 106 as a distributor.
- the antenna module 100 includes a ground electrode 190, lines 61, 62, 63, 71, 72 and 73, a phase shifter 80, and ground wiring 71 g, 72 g and 73 g. It further includes a connector Cn and a control terminal Ts.
- the array antenna 101 is an antenna having a plurality of multi-band antennas.
- the array antenna 101 has three multi-band antennas 1a, 1b and 1c.
- the three multi-band antennas 1a, 1b and 1c share a substrate 140.
- other components of the antenna module 100 are also arranged on the substrate 140.
- the configurations of the three multi-band antennas 1a, 1b, and 1c other than the substrate 140 are the same as those of the multi-band antenna 1 according to the first embodiment.
- the three multi-band antennas 1a, 1b and 1c are arranged in a direction (that is, an X-axis direction) perpendicular to their respective resonance directions (that is, the Y-axis direction).
- the multi-band antennas 1a, 1b and 1c have directivity perpendicular to the resonance direction as described in the first embodiment, the multi-band antennas 1a, 1b and 1c are arranged in a direction perpendicular to the resonance direction and arranged in an array.
- the antenna is configured, the interaction between the radio waves radiated by each multi-band antenna can be enhanced.
- the substrate 140 has the same configuration as the substrate 40 according to the first embodiment.
- the antenna portion 10 and the ground portion 20 of each multi-band antenna are arranged on one main surface 141 of the substrate 140.
- the ground electrode 190 is an electrode connected to the ground.
- the ground electrode 190 is arranged on the main surface 141 of the substrate 140. In the present embodiment, the ground electrode 190 is arranged at a position adjacent to the ground portion 20 of each multi-band antenna of the array antenna 101.
- the ground electrode 190 also functions as a shield wiring for each line arranged on the main surface on the back side of the main surface 141 of the substrate 140.
- the ground electrode 190 is, for example, a conductive member patterned on the main surface 141 of the substrate 140, and is formed of, for example, a metal film such as a copper film.
- the ground electrode 190 is connected to each of the conductive members arranged on the main surface on the back side of the main surface 141 of the substrate 140 via the via wiring penetrating the substrate 140 at the terminals 196a to 196c, 197, 198 and 199. ..
- the 3-distributor 106 is a distributor that distributes signals in the first frequency band and the second frequency band into three.
- the three distributor 106 according to the present embodiment will be described with reference to FIG.
- FIG. 10 is a plan view showing the configuration of the three distributor 106 according to the present embodiment. In FIG. 10, the inside of the broken line frame shown in FIG. 9 is enlarged and shown.
- the 3 distributor 106 includes an input terminal T0, a first output terminal T1, a second output terminal T2, a third output terminal T3, a first transmission line L1, and a second transmission. It includes a line L2, a third transmission line L3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
- Input terminal T0 is a terminal to which a signal is input.
- signals in the first frequency band including the first frequency and the second frequency band including the second frequency lower than the first frequency are input to the input terminal T0.
- the first output terminal T1, the second output terminal T2, and the third output terminal T3 are terminals that output three distributed signals in which the signal input from the input terminal T0 is divided into three, respectively.
- the three distributed signals having the same phase are output from the first output terminal T1, the second output terminal T2, and the third output terminal T3, respectively.
- the first transmission line L1, the second transmission line L2, and the third transmission line L3 are lines connecting the input terminal T0 and the first output terminal T1, the second output terminal T2, and the third output terminal T3, respectively. ..
- the first transmission line L1 includes a first input side line L11 and a first output side line L12 connected in series at the first connection point CP1 in order from the input terminal T0 side.
- the second transmission line L2 includes a second input side line L21 and a second output side line L22 connected in series at the second connection point CP2 in order from the input terminal T0 side.
- the third transmission line L3 includes a third input side line L31 and a third output side line L32 connected in series at the third connection point CP3 in order from the input terminal T0 side.
- the width of the second input side line L21 is narrower than the width of the first input side line L11 and the third input side line L31. In this way, by narrowing the width of the second input side line L21, the second input side line L21 is curved to secure the electric length, and the first input side line L11 and the third input side line L31 It becomes easy to fit the second input side line L21 in the sandwiched area.
- the width of the second output side line L22 is narrower than the width of the first output side line L12 and the third output side line L32. In this way, by narrowing the width of the second output side line L22, the second output side line L22 is curved to secure the electric length, and the first output side line L12 and the third output side line L32 It becomes easy to fit the second output side line L22 in the sandwiched region.
- the electrical length of each of the first input side line L11, the second input side line L21, and the third input side line L31 is 1/4 wavelength of the first frequency.
- the electrical length of each of the first transmission line L1, the second transmission line L2, and the third transmission line L3 is 1/4 wavelength of the second frequency lower than the first frequency.
- the terminal T3 and the second output terminal T2 are connected via a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4, respectively.
- the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are absorption resistors.
- the resistance values of the 3rd resistor R3 and the 4th resistor R4 are 100 ⁇ , which is twice the impedance on the output side, and the 1st resistor R1 and the 2nd resistor are
- the resistance value of the resistor R2 is twice or more and four times or less the impedance on the output side, that is, 100 ⁇ or more and 200 ⁇ or less.
- the resistance values of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are the same, and all of them are 100 ⁇ .
- the three distributor 106 according to the present embodiment has the effect of being smaller than a general Wilkinson type distributor by having the above configuration.
- the electrical lengths of the lines corresponding to the first output side line L12, the second output side line L22, and the third output side line L32 of the three distributor 106 according to the present embodiment are set to the second. It needs to be 1/4 wavelength of 2 frequencies.
- an absorption resistor is provided between the first connection point CP1 and the second connection point CP2 and between the third connection point CP3 and the second connection point CP2.
- the electrical length of the first transmission line L1, the second transmission line L2, and the third transmission line L3 can be set to 1/4 wavelength of the second frequency. Therefore, in the three-distributor 106 according to the present embodiment, the electrical lengths of the first transmission line L1, the second transmission line L2, and the third transmission line L3 are distributed by the Wilkinson type by only 1/4 wavelength of the first frequency. It can be made smaller than a vessel. As a result, the antenna module 100 can be miniaturized.
- the connector Cn is a connecting member for inputting a signal to the antenna module 100 from the outside.
- the configuration of the connector Cn is not particularly limited, but in the present embodiment, it is a coaxial connector.
- the signal wiring of the connector Cn is connected to the input terminal T0 of the 3 distributor 106. As a result, a signal can be input to the 3 distributor 106 from the outside via the connector Cn.
- the connector Cn has a connector ground Cg connected to the ground.
- the shield wiring of the connector Cn is connected to the connector ground Cg.
- the connector ground Cg is connected to the terminal 198 of the ground electrode 190 via the via wiring penetrating the substrate 140.
- the line 61 is a conductive member that connects the line 71 and the first output terminal T1 of the 3 distributor 106.
- the electric length of the line 61 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric lengths of the lines 62 and 63.
- a phase shifter 80 is connected to the line 61, and the amount of phase delay in the line 61 changes according to the state of the phase shifter 80.
- the line 62 is a conductive member that connects the line 72 and the second output terminal T2 of the 3 distributor 106.
- the electric length of the line 62 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric length of the lines 61 and 63.
- the line 63 is a conductive member that connects the line 73 and the third output terminal T3 of the 3 distributor 106.
- the electric length of the line 63 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric lengths of the lines 61 and 62.
- the phase shifter 80 is a device connected to the line 61 and changing the amount of phase delay of the distributed signal on the line 61.
- the phase shifter 80 is a loaded line type phase shifter.
- the phase shifter 80 has lines 81 and 82, capacitors 83 and 84, PIN diodes 86 and 87, and a ground electrode 85.
- the line 81 is a line coupled to the line 61 via a capacitor 83. One end of the line 81 is connected to the capacitor 83 and the other end is connected to the PIN diode 86.
- the line 82 is a line coupled to the line 61 via a capacitor 84.
- the line 82 is coupled to the line 61 at a position different from the position where the line 81 is connected.
- One end of the line 82 is connected to the capacitor 84 and the other end is connected to the PIN diode 87.
- the capacitors 83 and 84 are elements for connecting the line 61 and the lines 81 and 82, respectively.
- the phase shifter 80 and the line 61 are coupled by capacitors 83 and 84.
- the ground electrode 85 is an electrode connected to the ground.
- the ground electrode 190 is connected to the terminal 197 via a via wiring penetrating the substrate 140.
- the PIN diodes 86 and 87 are switches that switch the connection state between the lines 81 and 82 and the ground electrode 85, respectively, between the open state and the closed state.
- the PIN diodes 86 and 87 are controlled by a control signal input to the control terminals Ts.
- the phase delay amount of the distributed signal on the line 61 can be switched by setting the states of the PIN diodes 86 and 87 in the open state or the closed state together.
- the control terminal Ts is a terminal to which a control signal for controlling the states of the PIN diodes 86 and 87 of the phase shifter 80 is input.
- the control terminal Ts has a ground terminal, and the ground terminal is connected to the terminal 191 on the substrate 140 and the terminal 199 of the ground electrode 190 via the via wiring penetrating the substrate 140.
- Each of the lines 71, 72, and 73 is a long conductive member to which the distribution signal distributed by the three distributor 106 is input, and is in the Y-axis direction of FIG. 9 (that is, the resonance direction of each multi-band antenna). ).
- one end of the line 71 is connected to the line 61.
- a terminal 74 is arranged at the other end of the line 71.
- the terminal 74 is connected to the input terminal 16 of the multi-band antenna 1a via a via wiring penetrating the substrate 140.
- the line 71 receives the distribution signal from the first output terminal T1 of the 3 distributor 106 via the line 61, and outputs the distribution signal to the multi-band antenna 1a.
- One end of the line 72 is connected to the line 62.
- a terminal 76 is arranged at the other end of the line 72.
- the terminal 76 is connected to the input terminal 16 of the multi-band antenna 1b via a via wiring penetrating the substrate 140.
- the line 72 receives the distribution signal from the second output terminal T2 of the 3 distributor 106 via the line 62, and outputs the distribution signal to the multi-band antenna 1b.
- One end of the line 73 is connected to the line 63.
- a terminal 78 is arranged at the other end of the line 73.
- the terminal 78 is connected to the input terminal 16 of the multi-band antenna 1c via a via wiring penetrating the substrate 140.
- the line 73 receives the distribution signal from the third output terminal T3 of the 3 distributor 106 via the line 63, and outputs the distribution signal to the multi-band antenna 1c.
- Each of the two ground wires 71g is a long conductive member connected to the ground and arranged along the line 71, and extends in the Y-axis direction of FIG.
- the two ground wires 71 g are arranged in the X-axis direction of FIG. 9, and the line 71 is arranged between the two ground wires 71 g.
- the two ground wires 71g and the line 71 are arranged apart from each other.
- a terminal 75g is arranged at one end of each of the two ground wires 71g, and a terminal 74g is arranged at the other end.
- the terminal 75g is connected to the terminal 196a of the ground electrode 190 via a via wiring penetrating the substrate 140.
- the terminal 74g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1a via a via wiring penetrating the substrate 140.
- Each of the two grounding wires 72g is a long conductive member connected to the ground and arranged along the line 72, and extends in the Y-axis direction of FIG.
- the two ground wires 72 g are arranged in the X-axis direction of FIG. 9, and the line 72 is arranged between the two ground wires 72 g.
- the two ground wires 72 g and the line 72 are arranged apart from each other.
- a terminal 77g is arranged at one end of each of the two ground wires 72g, and a terminal 76g is arranged at the other end.
- the terminal 77g is connected to the terminal 196b of the ground electrode 190 via the via wiring penetrating the substrate 140.
- the terminal 76g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1b via a via wiring penetrating the substrate 140.
- Each of the two ground wires 73g is a long conductive member connected to the ground and arranged along the line 73, and extends in the Y-axis direction of FIG.
- the two ground wires 73g are arranged in the X-axis direction of FIG. 9, and the line 73 is arranged between the two ground wires 73g.
- the two ground wires 73g and the line 73 are arranged apart from each other.
- a terminal 79g is arranged at one end of each of the two ground wires 73g, and a terminal 78g is arranged at the other end.
- the terminal 79g is connected to the terminal 196c of the ground electrode 190 via the via wiring penetrating the substrate 140.
- the terminal 78g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1c via a via wiring penetrating the substrate 140.
- the transmission lines, lines 61, 62, 63, 71 to 73, 81 and 82 of the three distributor 106 according to the present embodiment, and the ground wirings 71g, 72g and 73g are, for example, the main surface 141 of the substrate 140. It is a conductive member patterned on the main surface on the back side, and is formed of, for example, a metal film such as a copper film.
- the lines 71, 72 and 73 form a coplanar line together with the ground wires 71 g, 72 g and 73 g, respectively.
- the transmission lines of the three distributor 106 and the lines 61, 62 and 63 of the phase shifter 80 and the lines 81 and 82 of the phase shifter 80 according to the present embodiment are arranged at positions facing the ground electrode 190 via the substrate 140. Has been done. As a result, each line and the ground electrode 190 form a microstrip line.
- the line 71 and the ground wiring 71g shown in FIG. 9 are arranged at positions facing the ground portion 20 of the multi-band antenna 1a shown in FIG.
- the width (dimension in the X-axis direction) of the grounding portion 20 is the portion of the two grounding wires 71g that is arranged along the line 71 (that is, in the example shown in FIG. 9, the terminal 75g of the grounding wiring 71g. It is larger than the distance between the outer edges in the X-axis direction (the portion excluding the periphery of). That is, the grounding portion 20 projects outward from the two grounding wires 71g in the X-axis direction.
- the width of the grounding portion 20 is 7 mm, and the distance between the outer edges of the two grounding wires 71g arranged along the line 71 in the X-axis direction is 3 mm. ..
- the distance between the outer edges of the two grounding wires 71g arranged along the line 71 in the X-axis direction is 3 mm. ..
- the width of the grounding portion 20 of the multi-band antennas 1b and 1c is also the same as the width of the grounding portion 20 of the multi-band antenna 1a, which is the X of the portion of the two opposing grounding wires arranged along the lines 72 and 73. Greater than the distance between the outer edges in the axial direction.
- the operation and effect of the antenna module 100 according to the present embodiment will be described.
- the antenna module 100 according to the present embodiment by appropriately setting the electric lengths of the lines 61, 62, and 63, the signal input to each multi-band antenna constituting the array antenna 101 can be obtained.
- the phase can be adjusted.
- the directivity of the array antenna 101 can be adjusted. For example, when there is an antenna near the antenna module 100 that transmits / receives signals in a frequency band close to the frequency band handled by the antenna module 100, the array antenna in the direction from the array antenna 101 of the antenna module 100 toward the other antenna.
- the directivity of 101 it is possible to reduce the interference of radio waves between the antenna module 100 and the other antenna.
- FIG. 11 is a graph showing the directivity of the array antenna 101 according to the present embodiment. Note that FIG. 11 shows the directivity when both the PIN diodes 86 and 87 of the phase shifter 80 of the antenna module 100 are turned off.
- the angle ⁇ zx in FIG. 11 indicates an angle that is inclined from the Z-axis direction to the X-axis direction in each figure.
- the directivity in the positive direction in the X-axis direction is reduced. Therefore, when there is another antenna on the positive side of the array antenna 101 having such directivity in the X-axis direction, the interference between the array antenna 101 and the other antenna can be reduced.
- the phase shifter 80 can switch the phase of the signal input to the multi-band antenna 1a.
- the phase of the signal input to the multi-band antenna 1a is about 50 depending on whether the PIN diodes 86 and b87 are both OFF and both are ON. ° Can be changed.
- the effect of the phase shifter 80 will be described with reference to FIG.
- FIG. 12 is a graph showing the directivity when the state of the phase shifter 80 of the array antenna 101 according to the present embodiment is changed.
- FIG. 12 shows the directivity when both the PIN diodes 86 and 87 of the phase shifter 80 are turned on.
- the angle ⁇ zx in FIG. 12 indicates an angle inclined from the Z-axis direction to the X-axis direction in each figure.
- the directivity of the array antenna 101 can be significantly changed by the phase shifter 80.
- the effect of the phase shifter 80 is effective when the radio wave environment around the antenna module 100 changes. For example, when the arrangement of the antenna module 100 and other antennas is changed, the relative positions of the antenna module 100 and the other antennas may change.
- the relative positions of the antenna module 100 and the other antennas do not change, when the antenna module 100 and the other antennas are moved, the relative positions of the surrounding structures and the antenna module 100 may change.
- the interference of the reflected radio waves may become a problem in the array antenna 101 of the antenna module 100.
- the radio wave environment changes in this way, interference with other radio waves can be suppressed by changing the directivity of the array antenna 101 using the phase shifter 80.
- FIG. 13 is a perspective view showing the configuration of an audio device 103 including the antenna module 100 according to the present embodiment.
- the audio device 103 shown in FIG. 13 mainly includes a housing 103c, antenna modules 100, 100a and 104, and speakers Sp0 to Sp4.
- a housing 103c In FIG. 13, only the outline of the housing 103c is shown by a dotted line in order to show the arrangement of each component.
- the antenna module 100a is a module that performs wireless communication based on the wireless LAN standard like the antenna module 100, and transmits / receives signals in the 5 GHz band and the 2.4 GHz band.
- the antenna module 100a is a module similar to the antenna module 100, and the structure and arrangement of each component are reversed left and right with respect to the antenna module 100.
- the directivity of the array antenna included in the antenna module 100a is the one in which the directivity of the array antenna 101 of the antenna module 100 is inverted left and right (that is, the graphs shown in FIGS. 11 and 12 are inverted left and right). ).
- the antenna module 104 is a module that performs wireless communication with other devices. In the present embodiment, it is a module that transmits a 2.4 GHz band signal to another audio device based on a standard different from the wireless LAN standard.
- other audio equipment is, for example, a subwoofer.
- the sound device 103 since the sound device 103 includes three antenna modules 100, 100a and 104 that handle signals in the 2.4 GHz band, radio wave interference may occur between these modules.
- the array antenna 101 of the antenna module 100 according to the present embodiment has low directivity on the positive side in the X-axis direction as shown in FIG. 11, it is possible to reduce radio wave interference with other modules.
- the antenna module 100a has a structure in which the antenna module 100 is flipped horizontally, the array antenna of the antenna module 100a has low directivity on the negative side in the X-axis direction. Therefore, it is possible to reduce the interference of radio waves with other antenna modules arranged on the negative side in the X-axis direction of the antenna module 100a.
- the radio wave radiated from the antenna module 104 may be reflected by the structure and reach the antenna modules 100 and 100a.
- the directivity of each array antenna is changed by changing the setting of each phase shifter of the antenna modules 100 and 100a. By changing, the interference with the reflected radio wave can be reduced.
- the multi-band antenna according to the third embodiment will be described.
- the multi-band antenna according to the present embodiment is different from the multi-band antenna 1 according to the first embodiment in the resonating frequency band.
- the multi-band antenna according to the present embodiment will be described focusing on the differences from the multi-band antenna 1 according to the first embodiment.
- FIG. 14 is a plan view showing the configuration of the multi-band antenna 201 according to the present embodiment.
- FIG. 14 shows a plan view of the substrate 240 of the multi-band antenna 201 in a plan view.
- the direction perpendicular to the main surface 241 of the substrate 240 of the multi-band antenna 201 is the Z-axis direction
- the two directions perpendicular to the Z-axis direction and perpendicular to each other are X.
- the multi-band antenna 201 transmits and receives a signal in the first frequency band including the first frequency and a signal in the second frequency band including the second frequency lower than the first frequency.
- the 2.4 GHz band and the 920 MHz band are used as the first frequency band and the second frequency band, respectively.
- the multi-band antenna 201 includes a substrate 240, an input terminal 216, an antenna portion 210, and a ground portion 220.
- the multi-band antenna 201 further includes a ground terminal 226.
- the board 240 is a member that serves as a base for the multi-band antenna 201.
- the board 240 is a circuit board, and an antenna portion 210 and a grounding portion 220 are arranged on one main surface 241 of the board 240.
- the input terminal 216 is a terminal arranged on the board 240 to input a signal.
- the high frequency signal transmitted by the multi-band antenna 201 is input to the input terminal 216.
- the input terminal 216 also functions as an output terminal that outputs a high-frequency signal received by the multi-band antenna 201. Further, the input terminal 216 is connected to the antenna unit 210.
- the ground terminal 226 is a terminal arranged on the board 240 and connected to the ground.
- the ground terminal 226 is arranged on the main surface 241 of the substrate 240 and is connected to the ground portion 220.
- the number of ground terminals 226 is not particularly limited, but is two in the present embodiment.
- the antenna portion 210 is a conductive member arranged on the substrate 240 and connected to the input terminal 216.
- the signal in the first frequency band and the signal in the second frequency band resonate in the antenna unit 210.
- radio waves are radiated from the antenna unit 210.
- the antenna portion 210 has a first low inductance portion 211, a first high inductance portion 212, and a first tip portion 213 connected in series from the input terminal 216 side.
- the sum of the electrical lengths of the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 is 1/4 wavelength of the second frequency.
- the signal in the second frequency band including the second frequency resonates in the antenna unit 210.
- the position where the antenna portion 210 is connected to the input terminal 216 is not particularly limited, but in the present embodiment, the input terminal 216 is arranged at the end of the first low inductance portion 211 on the grounding portion 220 side. More specifically, the input terminal 216 is arranged only at the end of the first low inductance portion 211 on the grounding portion 220 side, and is not arranged at the first high inductance portion 212 and the first tip portion 213.
- the end of the first low inductance portion 211 is, for example, a range of 10% or less of the length of the first low inductance portion 211 in the Y-axis direction from the end of the first low inductance portion 211 on the grounding portion 20 side. Means the area of.
- the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 are arranged in the Y-axis direction of FIG.
- the Y-axis direction in FIG. 14 becomes the longitudinal direction of the antenna portion 210 and the resonance direction of the signal in the antenna portion 210.
- the widths of the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 are the same.
- the first low inductance portion 211 is a portion of the antenna portion 210 connected to the input terminal 216.
- the input terminal 216 is connected to one end of the first low inductance portion 211, and the first high inductance portion 212 is connected to the other end.
- the electrical length of the first low inductance portion 211 is 1/4 wavelength of the first frequency.
- the first low inductance section 211 has a lower inductance than the first high inductance section 212.
- the first low inductance portion 211 has a line width of 2.0 mm, an interval of 2.0 mm, and a length (Y-axis direction in FIG. 14). Dimension) 22 mm, width (dimension in the X-axis direction in FIG.
- the first low inductance portion 211 has a meander shape, but has a low inductance such that it does not function as a choke coil (that is, does not block the signal) with respect to the signals in the first frequency band and the second frequency band. ..
- the first low inductance portion 211 has portions that are not meander-shaped at both ends of the meander-shaped portion (that is, both ends in the Y-axis direction).
- the total length of the two portions at both ends that are not in the shape of a meander is 7 mm. Therefore, the total length of the first low inductance portion 211 in the Y-axis direction is 29 mm.
- the first high inductance portion 212 is a portion of the antenna portion 210 that is arranged between the first low inductance portion 211 and the first tip portion 213, and has a meander shape.
- the first high inductance section 212 has a higher inductance than the first low inductance section 211.
- the meander shape of the first high inductance portion 212 has a smaller line width and spacing than the meander shape of the first low inductance portion 211. As a result, the inductance of the first high inductance section 212 becomes higher than that of the first low inductance section 211.
- the first high inductance portion 212 has a line width of 0.1 mm, an interval of 0.1 mm, a length (dimensions in the Y-axis direction in FIG. 14) of 7.1 mm, and a width (in the X-axis direction in FIG. 14). Dimensions) It has a meander shape of 7.5 mm.
- the first high inductance portion 212 functions as a choke coil for signals in the first frequency band. That is, the effective electric length of the antenna unit 210 with respect to the signal of the first frequency band input from the input terminal 216 connected to the first low inductance unit 211 is the electric length of the first low inductance unit 211 (first frequency). 1/4 wavelength).
- the signal in the first frequency band resonates.
- the first high inductance portion 212 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the first high inductance portion 212 does not block the signal in the second frequency band. Therefore, the signal in the second frequency band resonates in the path including the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 of the antenna portion 210.
- the first tip portion 213 is a portion of the antenna portion 210 arranged at the end farthest from the input terminal 216 in the resonance direction.
- the shape of the first tip portion 213 is not particularly limited, but is rectangular in the present embodiment.
- the grounding portion 220 is a conductive member arranged on the substrate 240 and insulated from the input terminal 216.
- the grounding portion 220 is arranged at a distance from the antenna portion 210 by a predetermined distance in the resonance direction.
- the distance between the antenna portion 210 and the grounding portion 220 is, for example, greater than 0 and less than or equal to about 3 mm. In the present embodiment, the distance between the antenna portion 210 and the grounding portion 220 is 2.0 mm.
- the width of the grounding portion 220 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 241 of the substrate 240) is wider than the width of the antenna portion 210.
- the grounding portion 220 has a second low inductance portion 221, a second high inductance portion 222, and a second tip portion 223 connected in series from the input terminal 216 side. Further, the second low inductance portion 221 and the second high inductance portion 222 and the second tip portion 223 are arranged in the Y-axis direction of FIG.
- the total electrical lengths of the second low inductance section 221 and the second high inductance section 222 and the second tip section 223 are such that the directivity of the second frequency radio wave radiated from the antenna section 210 is the longitudinal direction of the antenna section 210. That is, it is set to spread along a plane perpendicular to the Y-axis direction of FIG. 14 (that is, a plane parallel to the ZX plane of FIG. 14).
- the grounding portion 220 is connected to the grounding terminal 226.
- the arrangement of the ground terminal 226 is not particularly limited, but in the present embodiment, the ground terminal 226 is arranged at the end of the second low inductance portion 221 on the antenna portion 210 side (that is, the input terminal 216 side). More specifically, the two ground terminals 226 are arranged only at the end of the second low inductance portion 221 on the antenna portion 210 side, and are not arranged at the second high inductance portion 222 and the second tip portion 223.
- the end of the second low inductance portion 221 is, for example, the length of the second low inductance portion 221 in the resonance direction (Y-axis direction in FIG. 14) from the end of the second low inductance portion 221 on the antenna portion 210 side. It means an area in the range of 10% or less of the inductance.
- the second low inductance portion 221 is a portion of the grounding portion 220 that is arranged at the position closest to the antenna portion 210.
- the ground terminal 226 is connected to one end of the second low inductance portion 221 and the second high inductance portion 222 is connected to the other end.
- the electrical length of the second low inductance section 221 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 210.
- the second low inductance section 221 has a lower inductance than the second high inductance section 222.
- the second low inductance portion 221 has a rectangular shape, but the shape of the second low inductance portion 221 is not limited to this.
- the shape of the second low inductance portion 221 is designed so that the inductance of the second low inductance portion 221 has such a low inductance that it does not function as a choke coil with respect to the signals of the first frequency and the second frequency. Good.
- the second high inductance portion 222 is a portion of the grounding portion 220 that is arranged between the second low inductance portion 221 and the second tip portion 223, and has a meander shape.
- the second high inductance section 222 has a higher inductance than the second low inductance section 221.
- the second high inductance section 222 functions as a choke coil for signals in the first frequency band. That is, the effective electrical length of the grounding portion 220 with respect to the signal in the first frequency band induced in the second low inductance portion 221 is the electrical length of the second low inductance portion 221. Further, the second high inductance portion 222 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band.
- the second high inductance section 222 does not block the signal in the second frequency band. Therefore, the effective electrical length of the grounding portion 220 with respect to the signal in the second frequency band includes the electrical length of the path including the second high inductance portion 222 of the grounding portion 220.
- the second high inductance portion 222 has two high inductance elements 222a and 222b connected to both ends of the second low inductance portion 221 in the width direction (X-axis direction in FIG. 14), respectively.
- An opening 222c is formed between the two high inductance elements 222a and 222b. That is, a region in which the conductive member is not arranged is formed between the two high inductance elements 222a and 222b. An opening may not be provided in the region corresponding to the opening 222c of the substrate 240.
- Each of the two high inductance elements 222a and 222b has a meander shape. Further, the two high inductance elements 222a and 222b have a structure that is horizontally inverted from each other.
- the electrical lengths of the two high inductance elements 222a and 222b are equal.
- the electric length of the second high inductance portion 222 of the multi-band antenna 201 is defined as the electric length of one of the two high inductance elements 222a and 222b.
- the line width and pitch of the two high inductance elements 222a and 222b in the meander-shaped portion may be the same as the line width and pitch of the first high-inductance portion 212 of the antenna portion 210 in the meander-shaped portion, respectively.
- a current corresponding to radio waves transmitted and received flows mainly along the edge edge. Therefore, by arranging the two high inductance elements 222a and 222b at the widthwise ends of the grounding portion 220, the current passes through either the high inductance element 222a and the high inductance element 222b.
- the second tip portion 223 is a portion of the grounding portion 220 arranged at the end portion farthest from the antenna portion 210 in the resonance direction.
- the second tip portion 223 has a rectangular shape. Further, the second tip portion 223 connects the two high inductance elements 222a and 222b of the second high inductance portion 222.
- 15 and 16 are graphs showing an example of a simulation result of directivity of the multi-band antenna 201 according to the present embodiment.
- 15 and 16 show simulation results when the inductance of each high inductance element of the second high inductance portion 222 is 37.5 nH and 45 nH, respectively.
- the width Wg of the ground contact portion 220 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is set to 20 mm.
- the directivity in each case where the frequencies of the signals of the first frequency band and the second frequency band input to the input terminal 216 are 2.45 GHz and 920 MHz, respectively, is shown.
- each high inductance element when the inductance of each high inductance element is less than 45 nH, directivity perpendicular to the resonance direction cannot be realized. It is considered that this is because the function of each high inductance element as a choke coil did not work sufficiently for a signal having a frequency of 2.45 GHz.
- FIG. 17 is a graph showing the relationship between the width Wg of the grounding portion 220 and the minimum inductance value Lmin of each high inductance element of the second high inductance portion 222 according to the present embodiment.
- the minimum inductance value Lmin means the inductance value of each high inductance element required to realize directivity substantially perpendicular to the resonance direction with respect to the signal in the first frequency band. In the graph shown in FIG. 17, the minimum inductance value Lmin when the first frequency band is the 2.45 GHz band is shown.
- the minimum inductance value Lmin of each high inductance element is 55 nH, respectively. It was 50 nH, 45 nH, 45 nH, 45 nH and 35 nH. From this, it can be seen that when the width Wg of the grounding portion 220 is 15 mm or more, the minimum inductance value Lmin of each high inductance element is 55 nH or more.
- the multi-band antenna 1 a dual band example of transmitting and receiving signals of two frequency bands has been shown, but the multi-band antenna of the present disclosure may transmit and receive three or more frequency bands.
- a multi-band antenna that transmits and receives a third frequency band including a third frequency lower than the first frequency and higher than the second frequency in addition to the first frequency band and the second frequency band can be realized.
- the first middle inductance section is inserted between the first low inductance section 11 and the first high inductance section 12, and the second low inductance section 21 and the second By inserting the second middle inductance section between the high inductance section 22 and the high inductance section 22, it is possible to realize a multi-band antenna capable of transmitting and receiving signals in three frequency bands from the first frequency band to the third frequency band.
- the first middle inductance portion has a higher inductance than the first low inductance portion 11 and a lower inductance than the first high inductance portion 12.
- the second middle inductance section has a higher inductance than the second low inductance section 21 and a lower inductance than the second high inductance section 22.
- the first low inductance section 11 and the second low inductance section 21 do not function as choke coils for signals of the third frequency.
- the first middle inductance portion and the second middle inductance portion function as choke coils for signals of the first frequency and do not function as choke coils for signals of the second frequency and the third frequency.
- the first high inductance section 12 and the second high inductance section 22 function as choke coils for signals of the third frequency.
- the total electric length of the first low inductance portion 11 and the first middle inductance portion is 1/4 wavelength of the third frequency.
- the example in which the antenna module 100 is used in the audio device 103 is shown, but it can also be used in other devices.
- the antenna module 100 may be used in a television receiver or the like.
- the present disclosure also includes a form realized by arbitrarily combining the components and functions in each embodiment without departing from the purpose of the present disclosure.
- the multi-band antenna of the present disclosure can be used as a part of an array antenna for an antenna module used in, for example, an audio device.
Landscapes
- Variable-Direction Aerials And Aerial Arrays (AREA)
Abstract
A multiband antenna (1) according to the invention is provided with: a board (40); an input terminal (16) to which signals are input; a conductive antenna part (10) connected to the input terminal (16) and having, in the order from the input terminal (16) side, a first low-inductance part (11), a first high-inductance part (12) in a meandering form, and a first front part (13) that are connected in series; and a conductive ground part (20) isolated from the input terminal (16) and having, in the order from the input terminal (16) side, a second low-inductance part (21), a second high-inductance part (22) in a meandering form, and a second front part (23) that are connected in series, wherein the electric length of the first low-inductance part (11) is one quarter-wavelength of a first frequency and wherein the sum of the electric lengths of the first low-inductance part (11), the first high-inductance part (12) and the first front part (13) is one quarter-wavelength of a second frequency.
Description
本開示は、マルチバンドアンテナに関する。
This disclosure relates to a multi-band antenna.
近年、パソコン等の情報機器に加え、例えば、テレビ、音響装置などのような家電機器においても、無線LAN(Local Area Network)、Bluetooth(登録商標)などの規格に基づく無線端末が搭載され始めている。これに伴い、家電機器において、複数の規格にそれぞれ対応する複数の周波数帯域において無線通信を行うことがある。このような複数の周波数帯域における無線通信を行うためのアンテナを小型化するために、一つのアンテナで複数の周波数帯域の信号を送受信できるマルチバンドアンテナが提案されている(例えば、特許文献1など)。
In recent years, in addition to information devices such as personal computers, wireless terminals based on standards such as wireless LAN (Local Area Network) and Bluetooth (registered trademark) have begun to be installed in home appliances such as televisions and audio equipment. .. Along with this, in home appliances, wireless communication may be performed in a plurality of frequency bands corresponding to a plurality of standards. In order to miniaturize an antenna for performing wireless communication in such a plurality of frequency bands, a multi-band antenna capable of transmitting and receiving signals in a plurality of frequency bands with one antenna has been proposed (for example, Patent Document 1 and the like). ).
特許文献1に記載されたデュアルバンドアンテナは、直線状体部と、ヘリカルコイル状部とを備える。このヘリカルコイル状部は、高い周波数帯域の信号に対しては、チョークコイルとして機能し、低い周波数帯域の信号に対しては、小型化されたアンテナの一部として機能する。これにより特許文献1では、小型で、かつ、周波数に応じて実効的な電気長を異ならせることができるデュアルバンドアンテナを実現しようとしている。
The dual band antenna described in Patent Document 1 includes a linear body portion and a helical coil-shaped portion. This helical coil-like portion functions as a choke coil for signals in a high frequency band, and functions as a part of a miniaturized antenna for signals in a low frequency band. As a result, Patent Document 1 attempts to realize a dual-band antenna that is compact and can have different effective electrical lengths depending on the frequency.
本開示は、複数の周波数帯域において共振し、かつ、各周波数帯域において共振方向に対して垂直な指向性を実現できるマルチバンドアンテナを提供する。
The present disclosure provides a multi-band antenna that resonates in a plurality of frequency bands and can realize directivity perpendicular to the resonance direction in each frequency band.
本開示の一態様に係るマルチバンドアンテナは、基板と、前記基板上に配置され、信号が入力される入力端子と、前記基板上に配置され、かつ、前記入力端子に接続されるアンテナ部であって、前記入力端子側から順に、直列に接続された第1低インダクタンス部、メアンダ形状を有する第1高インダクタンス部及び第1先端部を有する導電性のアンテナ部と、前記基板上に配置され、かつ、前記入力端子と絶縁される接地部であって、前記入力端子側から順に、直列に接続された第2低インダクタンス部、メアンダ形状を有する第2高インダクタンス部及び第2先端部を有する導電性の接地部とを備え、前記第1低インダクタンス部は、前記第1高インダクタンス部よりインダクタンスが低く、前記第2低インダクタンス部は、前記第2高インダクタンス部よりインダクタンスが低く、前記第1低インダクタンス部の電気長は、第1周波数の1/4波長であり、前記第1低インダクタンス部、前記第1高インダクタンス部及び前記第1先端部の電気長の和は、前記第1周波数より低い第2周波数の1/4波長である。
The multi-band antenna according to one aspect of the present disclosure includes a substrate, an input terminal arranged on the substrate and input with a signal, and an antenna portion arranged on the substrate and connected to the input terminal. The first low inductance portion connected in series, the first high inductance portion having a meander shape, and the conductive antenna portion having the first tip portion, which are connected in series from the input terminal side, are arranged on the substrate. A grounding portion that is insulated from the input terminal and has a second low inductance portion connected in series, a second high inductance portion having a meander shape, and a second tip portion in order from the input terminal side. The first low inductance section has a lower inductance than the first high inductance section, and the second low inductance section has a lower inductance than the second high inductance section, and the first low inductance section has a conductive grounding section. The electric length of the low inductance portion is 1/4 wavelength of the first frequency, and the sum of the electrical lengths of the first low inductance portion, the first high inductance portion, and the first tip portion is from the first frequency. It is a quarter wavelength of the lower second frequency.
本開示に係るマルチバンドアンテナによれば、複数の周波数帯域において共振し、かつ、各周波数帯域において共振方向に対して垂直な指向性を実現できる。
According to the multi-band antenna according to the present disclosure, it is possible to resonate in a plurality of frequency bands and realize directivity perpendicular to the resonance direction in each frequency band.
以下、実施の形態について、図面を参照しながら具体的に説明する。
Hereinafter, the embodiment will be specifically described with reference to the drawings.
なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本開示を限定する主旨ではない。
It should be noted that all of the embodiments described below show comprehensive or specific examples. Numerical values, shapes, materials, components, arrangement positions and connection forms of components, steps, order of steps, etc. shown in the following embodiments are examples, and are not intended to limit the present disclosure.
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。また、各図において、同じ構成部材については同じ符号を付している。
In addition, each figure is a schematic view and is not necessarily exactly illustrated. Further, in each figure, the same components are designated by the same reference numerals.
(実施の形態1)
実施の形態1に係るマルチバンドアンテナについて説明する。 (Embodiment 1)
The multi-band antenna according to the first embodiment will be described.
実施の形態1に係るマルチバンドアンテナについて説明する。 (Embodiment 1)
The multi-band antenna according to the first embodiment will be described.
[1-1.構成]
まず、実施の形態1に係るマルチバンドアンテナの構成について、図1を用いて説明する。図1は、本実施の形態に係るマルチバンドアンテナ1の構成を示す平面図である。図1には、マルチバンドアンテナ1の基板40の平面視における平面図が示されている。なお、図1において、マルチバンドアンテナ1の基板40の主面41に垂直な方向をZ軸方向とし、Z軸方向に垂直であって、互いに垂直な二つの方向をX軸方向及びY軸方向としている。 [1-1. Constitution]
First, the configuration of the multi-band antenna according to the first embodiment will be described with reference to FIG. FIG. 1 is a plan view showing the configuration of themulti-band antenna 1 according to the present embodiment. FIG. 1 shows a plan view of the substrate 40 of the multi-band antenna 1 in a plan view. In FIG. 1, the direction perpendicular to the main surface 41 of the substrate 40 of the multi-band antenna 1 is the Z-axis direction, and the two directions perpendicular to the Z-axis direction and perpendicular to each other are the X-axis direction and the Y-axis direction. It is said.
まず、実施の形態1に係るマルチバンドアンテナの構成について、図1を用いて説明する。図1は、本実施の形態に係るマルチバンドアンテナ1の構成を示す平面図である。図1には、マルチバンドアンテナ1の基板40の平面視における平面図が示されている。なお、図1において、マルチバンドアンテナ1の基板40の主面41に垂直な方向をZ軸方向とし、Z軸方向に垂直であって、互いに垂直な二つの方向をX軸方向及びY軸方向としている。 [1-1. Constitution]
First, the configuration of the multi-band antenna according to the first embodiment will be described with reference to FIG. FIG. 1 is a plan view showing the configuration of the
マルチバンドアンテナ1は、複数の周波数帯域の信号を送受信するアンテナである。本実施の形態では、マルチバンドアンテナ1は、第1周波数を含む第1周波数帯域の信号と、第1周波数より低い第2周波数を含む第2周波数帯域の信号とを送受信する。第1周波数帯域及び第2周波数帯域は特に限定されないが、本実施の形態では、第1周波数帯域及び第2周波数帯域として、それぞれ、5GHz帯及び2.4GHz帯を用いる。これにより、マルチバンドアンテナ1を無線LANの規格に基づく5GHz帯及び2.4GHz帯のデュアルバンドアンテナとして利用できる。図1に示されるように、マルチバンドアンテナ1は、基板40と、入力端子16と、アンテナ部10と、接地部20とを備える。本実施の形態では、マルチバンドアンテナ1は、さらに接地端子26を備える。
The multi-band antenna 1 is an antenna that transmits and receives signals in a plurality of frequency bands. In the present embodiment, the multi-band antenna 1 transmits and receives a signal in the first frequency band including the first frequency and a signal in the second frequency band including the second frequency lower than the first frequency. The first frequency band and the second frequency band are not particularly limited, but in the present embodiment, the 5 GHz band and the 2.4 GHz band are used as the first frequency band and the second frequency band, respectively. As a result, the multi-band antenna 1 can be used as a dual-band antenna in the 5 GHz band and the 2.4 GHz band based on the wireless LAN standard. As shown in FIG. 1, the multi-band antenna 1 includes a substrate 40, an input terminal 16, an antenna portion 10, and a grounding portion 20. In the present embodiment, the multi-band antenna 1 further includes a ground terminal 26.
基板40は、マルチバンドアンテナ1の基台となる部材である。基板40は、回路基板であり、基板40の一方の主面41に、アンテナ部10及び接地部20が配置される。本実施の形態では、基板40は、矩形板状の誘電体である。基板40は、例えば、ガラスエポキシ基板である。
The substrate 40 is a member that serves as a base for the multi-band antenna 1. The substrate 40 is a circuit board, and the antenna portion 10 and the grounding portion 20 are arranged on one main surface 41 of the substrate 40. In the present embodiment, the substrate 40 is a rectangular plate-shaped dielectric. The substrate 40 is, for example, a glass epoxy substrate.
入力端子16は、基板40上に配置され、信号が入力される端子である。本実施の形態では、入力端子16には、マルチバンドアンテナ1が送信する高周波信号が入力される。また、入力端子16は、マルチバンドアンテナ1が受信した高周波信号を出力する出力端子としても機能する。入力端子16には、例えば、基板40の主面41の裏側の主面から基板40を貫通するビア配線を介して信号が入力される。また、入力端子16は、アンテナ部10に接続される。
The input terminal 16 is a terminal arranged on the board 40 to input a signal. In the present embodiment, the high frequency signal transmitted by the multi-band antenna 1 is input to the input terminal 16. The input terminal 16 also functions as an output terminal that outputs a high-frequency signal received by the multi-band antenna 1. A signal is input to the input terminal 16 from, for example, a main surface on the back side of the main surface 41 of the substrate 40 via a via wiring penetrating the substrate 40. Further, the input terminal 16 is connected to the antenna unit 10.
接地端子26は、基板40上に配置され、グランドに接続される端子である。本実施の形態では、接地端子26は、基板40の主面41に配置され、接地部20に接続される。接地端子26は、例えば、基板40を貫通するビア配線を介してグランドに接続される。接地端子26の個数は特に限定されないが、本実施の形態では、2個である。
The ground terminal 26 is a terminal arranged on the board 40 and connected to the ground. In the present embodiment, the ground terminal 26 is arranged on the main surface 41 of the substrate 40 and is connected to the ground portion 20. The ground terminal 26 is connected to the ground via, for example, a via wiring penetrating the substrate 40. The number of ground terminals 26 is not particularly limited, but is two in the present embodiment.
アンテナ部10は、基板40上に配置され、入力端子16に接続される導電性部材である。本実施の形態では、アンテナ部10において第1周波数帯域の信号及び第2周波数帯域の信号が共振する。これにより、アンテナ部10から電波が放射される。アンテナ部10は、入力端子16側から順に、直列に接続された第1低インダクタンス部11、第1高インダクタンス部12及び第1先端部13を有する。第1低インダクタンス部11、第1高インダクタンス部12及び第1先端部13の電気長の和は、第2周波数の1/4波長である。これにより、アンテナ部10において第2周波数を含む第2周波数帯域の信号が共振する。
The antenna portion 10 is a conductive member arranged on the substrate 40 and connected to the input terminal 16. In the present embodiment, the signal in the first frequency band and the signal in the second frequency band resonate in the antenna unit 10. As a result, radio waves are radiated from the antenna unit 10. The antenna portion 10 has a first low inductance portion 11, a first high inductance portion 12, and a first tip portion 13 connected in series from the input terminal 16 side. The sum of the electrical lengths of the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 is 1/4 wavelength of the second frequency. As a result, the signal in the second frequency band including the second frequency resonates in the antenna unit 10.
アンテナ部10が入力端子16に接続される位置は特に限定されないが、本実施の形態では、入力端子16は、第1低インダクタンス部11の接地部20側の端部に配置される。より詳しくは、入力端子16は、第1低インダクタンス部11の接地部20側の端部のみに配置され、第1高インダクタンス部12及び第1先端部13には配置されない。なお、第1低インダクタンス部11の端部とは、例えば、第1低インダクタンス部11の接地部20側の端から、第1低インダクタンス部11のY軸方向における長さの10%以下の範囲の領域を意味する。
The position where the antenna portion 10 is connected to the input terminal 16 is not particularly limited, but in the present embodiment, the input terminal 16 is arranged at the end of the first low inductance portion 11 on the grounding portion 20 side. More specifically, the input terminal 16 is arranged only at the end portion of the first low inductance portion 11 on the grounding portion 20 side, and is not arranged at the first high inductance portion 12 and the first tip portion 13. The end of the first low inductance portion 11 is, for example, a range of 10% or less of the length of the first low inductance portion 11 in the Y-axis direction from the end of the first low inductance portion 11 on the grounding portion 20 side. Means the area of.
本実施の形態では、アンテナ部10は、基板40の主面41上にパターニングされた導電性部材であり、例えば、銅膜などの金属膜で形成される。また、第1低インダクタンス部11、第1高インダクタンス部12及び第1先端部13は、図1のY軸方向に配列される。これにより、図1のY軸方向が、アンテナ部10の長手方向、及び、アンテナ部10における信号の共振方向となる。図1に示されるように、第1低インダクタンス部11、第1高インダクタンス部12及び第1先端部13の幅(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)は、同一である。
In the present embodiment, the antenna portion 10 is a conductive member patterned on the main surface 41 of the substrate 40, and is formed of, for example, a metal film such as a copper film. Further, the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 are arranged in the Y-axis direction of FIG. As a result, the Y-axis direction in FIG. 1 becomes the longitudinal direction of the antenna portion 10 and the resonance direction of the signal in the antenna portion 10. As shown in FIG. 1, the widths of the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 (that is, the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40). Dimensions) are the same.
第1低インダクタンス部11は、アンテナ部10のうち、入力端子16に接続される部分である。第1低インダクタンス部11の一方の端部に入力端子16が接続され、他方の端部に第1高インダクタンス部12が接続される。第1低インダクタンス部11の電気長は、第1周波数の1/4波長である。第1低インダクタンス部11は、第1高インダクタンス部12より低いインダクタンスを有する。本実施の形態では、図1に示されるように、第1低インダクタンス部11は、メアンダ(meander)形状を有するが、第1周波数帯域及び第2周波数帯域の信号に対してチョークコイルとして機能しない(つまり、信号を阻止しない)程度に低いインダクタンスを有する。このように、第1低インダクタンス部11がメアンダ形状を有することにより、第1低インダクタンス部11の共振方向(つまり、図1におけるY軸方向)の寸法を低減できる。
The first low inductance portion 11 is a portion of the antenna portion 10 connected to the input terminal 16. The input terminal 16 is connected to one end of the first low inductance portion 11, and the first high inductance portion 12 is connected to the other end. The electrical length of the first low inductance portion 11 is 1/4 wavelength of the first frequency. The first low inductance section 11 has a lower inductance than the first high inductance section 12. In the present embodiment, as shown in FIG. 1, the first low inductance portion 11 has a meander shape, but does not function as a choke coil for signals in the first frequency band and the second frequency band. It has a low inductance (that is, it does not block the signal). As described above, since the first low inductance portion 11 has a meander shape, the dimension of the first low inductance portion 11 in the resonance direction (that is, the Y-axis direction in FIG. 1) can be reduced.
第1高インダクタンス部12は、アンテナ部10のうち、第1低インダクタンス部11と第1先端部13との間に配置される部分であり、メアンダ形状を有する。第1高インダクタンス部12は、第1低インダクタンス部11より高いインダクタンスを有する。本実施の形態では、第1高インダクタンス部12のメアンダ形状は、第1低インダクタンス部11のメアンダ形状より、線幅及び間隔が小さい。これにより、第1高インダクタンス部12のインダクタンスが第1低インダクタンス部11より高くなる。本実施の形態では、第1高インダクタンス部12は、線幅0.1mm、間隔0.1mm、長さ(図1におけるY軸方向の寸法)2.1mm、幅(図1におけるX軸方向の寸法)3mmのメアンダ形状を有する。第1高インダクタンス部12は、第1周波数帯域の信号に対してチョークコイルとして機能する。つまり、第1低インダクタンス部11に接続される入力端子16から入力された第1周波数帯域の信号に対するアンテナ部10の実効的な電気長は、第1低インダクタンス部11の電気長(第1周波数の1/4波長)となる。したがって、アンテナ部10において、第1周波数帯域の信号が共振する。なお、第1高インダクタンス部12は、第2周波数帯域の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有する。このため、第1高インダクタンス部12は、第2周波数帯域の信号を阻止しない。したがって、第2周波数帯域の信号は、アンテナ部10の第1低インダクタンス部11、第1高インダクタンス部12及び第1先端部13からなる経路において共振する。
The first high inductance portion 12 is a portion of the antenna portion 10 that is arranged between the first low inductance portion 11 and the first tip portion 13, and has a meander shape. The first high inductance section 12 has a higher inductance than the first low inductance section 11. In the present embodiment, the meander shape of the first high inductance portion 12 has a smaller line width and spacing than the meander shape of the first low inductance portion 11. As a result, the inductance of the first high inductance section 12 becomes higher than that of the first low inductance section 11. In the present embodiment, the first high inductance portion 12 has a line width of 0.1 mm, an interval of 0.1 mm, a length (dimension in the Y-axis direction in FIG. 1) of 2.1 mm, and a width (in the X-axis direction in FIG. 1). Dimensions) It has a meander shape of 3 mm. The first high inductance unit 12 functions as a choke coil for signals in the first frequency band. That is, the effective electric length of the antenna unit 10 with respect to the signal of the first frequency band input from the input terminal 16 connected to the first low inductance unit 11 is the electric length of the first low inductance unit 11 (first frequency). 1/4 wavelength). Therefore, in the antenna unit 10, the signal in the first frequency band resonates. The first high inductance unit 12 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the first high inductance unit 12 does not block the signal in the second frequency band. Therefore, the signal in the second frequency band resonates in the path including the first low inductance portion 11, the first high inductance portion 12, and the first tip portion 13 of the antenna portion 10.
第1先端部13は、アンテナ部10のうち、入力端子16から共振方向に最も離れた端部に配置された部分である。第1先端部13の形状は特に限定されないが、本実施の形態では矩形状である。これにより、例えば、第1先端部13をメアンダ形状とする場合より第1先端部13における電流密度を高めることができるため、第1先端部13からの電波の放射効率を高めることができる。
The first tip portion 13 is a portion of the antenna portion 10 arranged at the end portion farthest from the input terminal 16 in the resonance direction. The shape of the first tip portion 13 is not particularly limited, but is rectangular in the present embodiment. As a result, for example, the current density at the first tip portion 13 can be increased as compared with the case where the first tip portion 13 has a meander shape, so that the radiation efficiency of radio waves from the first tip portion 13 can be increased.
接地部20は、基板40上に配置され、入力端子16と絶縁される導電性部材である。接地部20は、アンテナ部10に対して、共振方向に所定の距離だけ離隔して配置されている。アンテナ部10と接地部20との間隔は、例えば、0より大きく、1mm程度以下である。本実施の形態では、アンテナ部10と接地部20との間隔は、0.5mmである。また、接地部20の幅(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)は、アンテナ部10の幅より広い。
The grounding portion 20 is a conductive member arranged on the substrate 40 and insulated from the input terminal 16. The grounding portion 20 is arranged at a distance of a predetermined distance from the antenna portion 10 in the resonance direction. The distance between the antenna portion 10 and the grounding portion 20 is, for example, greater than 0 and less than or equal to about 1 mm. In the present embodiment, the distance between the antenna portion 10 and the grounding portion 20 is 0.5 mm. Further, the width of the grounding portion 20 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is wider than the width of the antenna portion 10.
接地部20は、入力端子16側から順に、直列に接続された第2低インダクタンス部21、第2高インダクタンス部22及び第2先端部23を有する。本実施の形態では、接地部20は、基板40の主面41上にパターニングされた導電性部材であり、例えば、銅膜などの金属膜で形成される。また、第2低インダクタンス部21、第2高インダクタンス部22及び第2先端部23は、図1のY軸方向に配列される。
The grounding portion 20 has a second low inductance portion 21, a second high inductance portion 22, and a second tip portion 23 connected in series from the input terminal 16 side. In the present embodiment, the grounding portion 20 is a conductive member patterned on the main surface 41 of the substrate 40, and is formed of, for example, a metal film such as a copper film. Further, the second low inductance portion 21, the second high inductance portion 22, and the second tip portion 23 are arranged in the Y-axis direction of FIG.
第2低インダクタンス部21、第2高インダクタンス部22及び第2先端部23の電気長の合計は、アンテナ部10から放射される第2周波数の電波の指向性が、アンテナ部10の長手方向(つまり、図1のY軸方向)に垂直な面(つまり、図1のZX平面に平行な面)に沿って広がるように設定されている。当該電気長の合計と第2周波数の電波の指向性との関係は、例えば、シミュレーションなどによって求めることができる。
The total electric length of the second low inductance portion 21, the second high inductance portion 22, and the second tip portion 23 is such that the directivity of the second frequency radio wave radiated from the antenna portion 10 is the longitudinal direction of the antenna portion 10 ( That is, it is set to spread along a plane perpendicular to the Y-axis direction of FIG. 1 (that is, a plane parallel to the ZX plane of FIG. 1). The relationship between the total electric length and the directivity of the radio wave of the second frequency can be obtained by, for example, simulation.
接地部20は、接地端子26と接続される。接地端子26の配置は特に限定されないが、本実施の形態では、接地端子26は、第2低インダクタンス部21のアンテナ部10側(つまり、入力端子16側)の端部に配置される。より詳しくは、二つの接地端子26は、第2低インダクタンス部21のアンテナ部10側の端部のみに配置され、第2高インダクタンス部22及び第2先端部23には配置されない。なお、第2低インダクタンス部21の端部とは、例えば、第2低インダクタンス部21のアンテナ部10側の端から、第2低インダクタンス部21の共振方向(図1のY軸方向)における長さの10%以下の範囲の領域を意味する。
The grounding portion 20 is connected to the grounding terminal 26. The arrangement of the ground terminal 26 is not particularly limited, but in the present embodiment, the ground terminal 26 is arranged at the end of the second low inductance portion 21 on the antenna portion 10 side (that is, the input terminal 16 side). More specifically, the two ground terminals 26 are arranged only at the end of the second low inductance portion 21 on the antenna portion 10 side, and are not arranged at the second high inductance portion 22 and the second tip portion 23. The end of the second low inductance portion 21 is, for example, the length of the second low inductance portion 21 in the resonance direction (Y-axis direction in FIG. 1) from the end of the second low inductance portion 21 on the antenna portion 10 side. It means an area in the range of 10% or less of the inductance.
第2低インダクタンス部21は、接地部20のうち、アンテナ部10に最も近い位置に配置される部分である。第2低インダクタンス部21の一方の端部に接地端子26が接続され、他方の端部に第2高インダクタンス部22が接続される。第2低インダクタンス部21の電気長は、アンテナ部10から放射される第1周波数の電波の指向性が、アンテナ部10の長手方向に垂直な面に沿って広がるように設定されている。第2低インダクタンス部21の電気長と第1周波数の電波の指向性との関係は、例えば、シミュレーションなどによって求めることができる。
The second low inductance portion 21 is a portion of the grounding portion 20 that is arranged at the position closest to the antenna portion 10. The ground terminal 26 is connected to one end of the second low inductance portion 21, and the second high inductance portion 22 is connected to the other end. The electrical length of the second low inductance section 21 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 10. The relationship between the electric length of the second low inductance portion 21 and the directivity of the radio wave of the first frequency can be obtained by, for example, simulation.
第2低インダクタンス部21は、第2高インダクタンス部22より低いインダクタンスを有する。本実施の形態では、図1に示されるように、第2低インダクタンス部21は、矩形状の形状を有するが、第2低インダクタンス部21の形状は、これに限定されない。第2低インダクタンス部21の形状は、第2低インダクタンス部21のインダクタンスが、第1周波数及び第2周波数の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有するように設計されていればよい。
The second low inductance section 21 has a lower inductance than the second high inductance section 22. In the present embodiment, as shown in FIG. 1, the second low inductance portion 21 has a rectangular shape, but the shape of the second low inductance portion 21 is not limited to this. The shape of the second low inductance portion 21 is designed so that the inductance of the second low inductance portion 21 has such a low inductance that it does not function as a choke coil with respect to the signals of the first frequency and the second frequency. Good.
第2高インダクタンス部22は、接地部20のうち、第2低インダクタンス部21と第2先端部23との間に配置される部分であり、メアンダ形状を有する。第2高インダクタンス部22は、第2低インダクタンス部21より高いインダクタンスを有する。第2高インダクタンス部22は、第1周波数帯域の信号に対してチョークコイルとして機能する。つまり、第2低インダクタンス部21に誘起される第1周波数帯域の信号に対する接地部20の実効的な電気長は、第2低インダクタンス部21の電気長となる。また、第2高インダクタンス部22は、第2周波数帯域の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有する。このため、第2高インダクタンス部22は、第2周波数帯域の信号を阻止しない。したがって、第2周波数帯域の信号に対する接地部20の実効的な電気長は、接地部20の第2高インダクタンス部22を含む経路の電気長を含む。
The second high inductance portion 22 is a portion of the grounding portion 20 that is arranged between the second low inductance portion 21 and the second tip portion 23, and has a meander shape. The second high inductance section 22 has a higher inductance than the second low inductance section 21. The second high inductance unit 22 functions as a choke coil for signals in the first frequency band. That is, the effective electrical length of the grounding portion 20 with respect to the signal in the first frequency band induced in the second low inductance portion 21 is the electrical length of the second low inductance portion 21. Further, the second high inductance unit 22 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the second high inductance unit 22 does not block the signal in the second frequency band. Therefore, the effective electrical length of the grounding portion 20 with respect to the signal in the second frequency band includes the electrical length of the path including the second high inductance portion 22 of the grounding portion 20.
第2高インダクタンス部22は、第2低インダクタンス部21の幅方向(図1のX軸方向)の両端にそれぞれ接続される二つの高インダクタンス要素22a及び22bを有する。二つの高インダクタンス要素22a及び22bの間には、開口22cが形成されている。つまり、二つの高インダクタンス要素22a及び22bの間には、導電性部材が配置されない領域が形成される。なお、基板40の開口22cに対応する領域には、開口は設けられなくてもよい。二つの高インダクタンス要素22a及び22bの各々は、メアンダ形状を有する。また、二つの高インダクタンス要素22a及び22bは、互いに左右反転した構造を有する。したがって、二つの高インダクタンス要素22a及び22bの電気長は等しい。なお、本実施の形態では、マルチバンドアンテナ1の第2高インダクタンス部22の電気長を、二つの高インダクタンス要素22a及び22bの一方の電気長と定義する。また、二つの高インダクタンス要素22a及び22bのメアンダ形状部分における線幅及びピッチは、それぞれ、アンテナ部10の第1高インダクタンス部12のメアンダ形状部分における線幅及びピッチと同一であってもよい。これにより、マルチバンドアンテナ1の設計を容易化できる。
The second high inductance section 22 has two high inductance elements 22a and 22b connected to both ends of the second low inductance section 21 in the width direction (X-axis direction in FIG. 1), respectively. An opening 22c is formed between the two high inductance elements 22a and 22b. That is, a region in which the conductive member is not arranged is formed between the two high inductance elements 22a and 22b. The region corresponding to the opening 22c of the substrate 40 may not be provided with an opening. Each of the two high inductance elements 22a and 22b has a meander shape. Further, the two high inductance elements 22a and 22b have a structure that is horizontally inverted from each other. Therefore, the electrical lengths of the two high inductance elements 22a and 22b are equal. In the present embodiment, the electric length of the second high inductance portion 22 of the multi-band antenna 1 is defined as the electric length of one of the two high inductance elements 22a and 22b. Further, the line width and pitch of the two high inductance elements 22a and 22b in the meander-shaped portion may be the same as the line width and pitch of the first high-inductance portion 12 of the antenna portion 10 in the meander-shaped portion, respectively. This makes it possible to facilitate the design of the multi-band antenna 1.
第2低インダクタンス部21においては、図1の破線の矢印で示されるように、主に、第2低インダクタンス部21の端縁に沿って、送受信する電波に対応する電流が流れる。このため、二つの高インダクタンス要素22a及び22bを接地部20の幅方向の端部に配置することにより、図1の破線の矢印で示される電流は、高インダクタンス要素22a及び高インダクタンス要素22bのいずれかを通る。
In the second low-inductance section 21, as shown by the broken line arrow in FIG. 1, a current corresponding to the radio waves transmitted and received mainly flows along the edge of the second low-inductance section 21. Therefore, by arranging the two high inductance elements 22a and 22b at the widthwise ends of the grounding portion 20, the current indicated by the broken line arrow in FIG. 1 is either the high inductance element 22a or the high inductance element 22b. Pass through.
第2先端部23は、接地部20のうち、アンテナ部10から共振方向に最も離れた端部に配置された部分である。第2先端部23の形状は特に限定されないが、本実施の形態では、第2先端部23は、矩形状の形状を有する。また、第2先端部23は、第2高インダクタンス部22の二つの高インダクタンス要素22a及び22bを接続する。これにより、第2先端部23において、二つの高インダクタンス要素22a及び22bから第2先端部23に流れ込む電流成分を相殺できるため、これらの電流成分に起因する共振方向に広がる電波の放射を抑制できる。
The second tip portion 23 is a portion of the grounding portion 20 arranged at the end portion farthest from the antenna portion 10 in the resonance direction. The shape of the second tip portion 23 is not particularly limited, but in the present embodiment, the second tip portion 23 has a rectangular shape. Further, the second tip portion 23 connects the two high inductance elements 22a and 22b of the second high inductance portion 22. As a result, in the second tip portion 23, the current components flowing from the two high inductance elements 22a and 22b into the second tip portion 23 can be canceled out, so that the radiation of radio waves spreading in the resonance direction due to these current components can be suppressed. ..
[1-2.作用及び効果]
次に、本実施の形態に係るマルチバンドアンテナ1の作用及び効果について、比較例に係るマルチバンドアンテナと比較しながら図2~図4を用いて説明する。図2は、比較例に係るマルチバンドアンテナ1001の構成を示す平面図である。図2には、比較例に係るマルチバンドアンテナ1001の基板40の平面視における平面図が示されている。図3及び図4は、それぞれ、本実施の形態及び比較例に係るマルチバンドアンテナの第1周波数における指向性の概要を示す図である。 [1-2. Action and effect]
Next, the operation and effect of themulti-band antenna 1 according to the present embodiment will be described with reference to FIGS. 2 to 4 while comparing with the multi-band antenna according to the comparative example. FIG. 2 is a plan view showing the configuration of the multi-band antenna 1001 according to the comparative example. FIG. 2 shows a plan view of the substrate 40 of the multi-band antenna 1001 according to the comparative example in a plan view. 3 and 4 are diagrams showing an outline of the directivity of the multi-band antenna according to the present embodiment and the comparative example at the first frequency, respectively.
次に、本実施の形態に係るマルチバンドアンテナ1の作用及び効果について、比較例に係るマルチバンドアンテナと比較しながら図2~図4を用いて説明する。図2は、比較例に係るマルチバンドアンテナ1001の構成を示す平面図である。図2には、比較例に係るマルチバンドアンテナ1001の基板40の平面視における平面図が示されている。図3及び図4は、それぞれ、本実施の形態及び比較例に係るマルチバンドアンテナの第1周波数における指向性の概要を示す図である。 [1-2. Action and effect]
Next, the operation and effect of the
図2に示される比較例に係るマルチバンドアンテナ1001は、本実施の形態に係るマルチバンドアンテナ1と同様に、基板40と、入力端子16と、接地端子26と、アンテナ部10と、接地部1020とを備える。比較例に係るマルチバンドアンテナ1001は、接地部1020の構成において、本実施の形態に係るマルチバンドアンテナ1と相違し、その他の点において一致する。比較例に係る接地部1020は、本実施の形態に係る接地部20全体の電気長と同等の電気長を有する。ただし、比較例に係る接地部1020は、平板状の形状を有する。言い換えると、比較例に係る接地部1020は、その全体において、本実施の形態に係る接地部20の第2低インダクタンス部21と同様の構成を有する。
The multi-band antenna 1001 according to the comparative example shown in FIG. 2 has a substrate 40, an input terminal 16, a ground terminal 26, an antenna portion 10, and a ground portion, similarly to the multi-band antenna 1 according to the present embodiment. It is equipped with 1020. The multi-band antenna 1001 according to the comparative example is different from the multi-band antenna 1 according to the present embodiment in the configuration of the grounding portion 1020, and is consistent in other respects. The grounding portion 1020 according to the comparative example has an electric length equivalent to the electric length of the entire grounding portion 20 according to the present embodiment. However, the ground contact portion 1020 according to the comparative example has a flat plate shape. In other words, the grounding portion 1020 according to the comparative example has the same configuration as the second low inductance portion 21 of the grounding portion 20 according to the present embodiment as a whole.
第2周波数の信号に関し、本実施の形態に係るマルチバンドアンテナ1においては、アンテナ部10から放射される第2周波数の電波の指向性が、アンテナ部10の長手方向に垂直な面に沿って広がるように、接地部20全体の電気長が設定されている。比較例に係る接地部1020も本実施の形態に係る接地部20と同等の電気長を有するため、比較例に係るマルチバンドアンテナ1001においても、アンテナ部10から放射される第2周波数の電波の指向性は、アンテナ部10の長手方向に垂直な面に沿って広がる。
Regarding the signal of the second frequency, in the multi-band antenna 1 according to the present embodiment, the directivity of the radio wave of the second frequency radiated from the antenna portion 10 is along the plane perpendicular to the longitudinal direction of the antenna portion 10. The electric length of the entire ground contact portion 20 is set so as to spread. Since the grounding portion 1020 according to the comparative example also has an electric length equivalent to that of the grounding portion 20 according to the present embodiment, the multi-band antenna 1001 according to the comparative example also has a second frequency radio wave radiated from the antenna portion 10. The directivity extends along a plane perpendicular to the longitudinal direction of the antenna portion 10.
一方、第1周波数の信号に関して、本実施の形態に係るマルチバンドアンテナ1は、第1周波数の信号に対してチョークコイルとして機能する第2高インダクタンス部22を備えるため、第2低インダクタンス部21に誘起される第1周波数の信号に対しては、接地部20の実効的な電気長は、第2低インダクタンス部21の電気長と等しくなる。そして、第2低インダクタンス部21の電気長は、アンテナ部10から放射される第1周波数の電波の指向性が、アンテナ部10の長手方向に垂直な面に沿って広がるように設定されている。このため、図3に示されるように、第1周波数の電波の指向性が、アンテナ部10の長手方向に垂直な面に沿って広がる。
On the other hand, regarding the signal of the first frequency, the multi-band antenna 1 according to the present embodiment includes the second high inductance section 22 which functions as a choke coil with respect to the signal of the first frequency, so that the second low inductance section 21 For the first frequency signal induced in, the effective electrical length of the grounding section 20 is equal to the electrical length of the second low inductance section 21. The electrical length of the second low inductance section 21 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 10. .. Therefore, as shown in FIG. 3, the directivity of the radio wave of the first frequency spreads along the plane perpendicular to the longitudinal direction of the antenna portion 10.
これに対して、比較例に係るマルチバンドアンテナ1001は、第2高インダクタンス部22を有さないため、第1周波数の信号に対する電気長は、第2周波数に対する電気長と同様に接地部1020全体の電気長と等しくなる。このような構成を有するマルチバンドアンテナ1001においては、図4に示されるように、第1周波数の電波の指向性が、アンテナ部10の長手方向に垂直な面に対して、接地部20寄りに斜め方向に(つまり、図4において斜め下向きに)広がる。なお、図4では、XY平面に平行な面内の指向性だけが示されているが、マルチバンドアンテナ1001の入力端子16を通り、Y軸に平行なすべての面内において、マルチバンドアンテナ1001の指向性は、図4と同様の指向性となる。これは、比較例に係るマルチバンドアンテナ1001において、本実施の形態に係るマルチバンドアンテナ1より、第1周波数の信号に対する接地部1020の実効的な電気長が長くなることで、接地部1020の先端部へ流れ込む電流により発生する電界成分が、アンテナ部10で発生する電界成分よりも強くなることに起因すると考えられる。
On the other hand, since the multi-band antenna 1001 according to the comparative example does not have the second high inductance portion 22, the electric length for the signal of the first frequency is the same as the electric length for the second frequency, and the entire grounding portion 1020. Is equal to the electrical length of. In the multi-band antenna 1001 having such a configuration, as shown in FIG. 4, the directivity of the radio wave of the first frequency is closer to the grounding portion 20 with respect to the plane perpendicular to the longitudinal direction of the antenna portion 10. It spreads diagonally (that is, diagonally downward in FIG. 4). Although only the directivity in the plane parallel to the XY plane is shown in FIG. 4, the multi-band antenna 1001 passes through the input terminal 16 of the multi-band antenna 1001 and is parallel to the Y axis in all the planes. The directivity of is the same as that of FIG. This is because, in the multi-band antenna 1001 according to the comparative example, the effective electric length of the grounding portion 1020 with respect to the signal of the first frequency is longer than that of the multi-band antenna 1 according to the present embodiment, so that the grounding portion 1020 It is considered that this is because the electric field component generated by the current flowing into the tip portion becomes stronger than the electric field component generated by the antenna portion 10.
以上のように、本実施の形態に係るマルチバンドアンテナ1においては、接地部20が、メアンダ形状を有する第2高インダクタンス部22を有することで、第1周波数に対する接地部20の実効的な電気長を第2周波数の信号に対する実効的な電気長より短くすることができる。したがって、第1周波数及び第2周波数の各信号に対する接地部20の実効的な電気長を適切に設定することで、各周波数が含まれる周波数帯域において共振方向に対して垂直な指向性を実現できる。
As described above, in the multi-band antenna 1 according to the present embodiment, the grounding portion 20 has the second high inductance portion 22 having a meander shape, so that the effective electricity of the grounding portion 20 with respect to the first frequency is obtained. The length can be shorter than the effective electrical length for the second frequency signal. Therefore, by appropriately setting the effective electric length of the grounding portion 20 for each signal of the first frequency and the second frequency, it is possible to realize the directivity perpendicular to the resonance direction in the frequency band including each frequency. ..
このようなマルチバンドアンテナ1は、例えば、アレイアンテナにおいて用いる場合に特に有効である。つまり、マルチバンドアンテナ1は、共振方向に垂直な指向性を有するため、複数のマルチバンドアンテナ1を共振方向に垂直な方向に配列してアレイアンテナを構成する場合に、各マルチバンドアンテナが放射する電波間の相互作用を高めることができる。
Such a multi-band antenna 1 is particularly effective when used in an array antenna, for example. That is, since the multi-band antenna 1 has a directivity perpendicular to the resonance direction, each multi-band antenna radiates when a plurality of multi-band antennas 1 are arranged in a direction perpendicular to the resonance direction to form an array antenna. It is possible to enhance the interaction between the radio waves.
[1-3.シミュレーション結果]
次に、本実施の形態に係るマルチバンドアンテナ1のシミュレーション結果について図5~図7を用いて説明する。図5及び図6は、本実施の形態に係るマルチバンドアンテナ1の指向性のシミュレーション結果例を示すグラフである。図5及び図6には、それぞれ、第2高インダクタンス部22の各高インダクタンス要素のインダクタンスを6nH及び7nHとした場合のシミュレーション結果が示されている。また、本シミュレーションにおいては、接地部20の幅Wg(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)を7mmとしている。各図においては、入力端子16に入力する第1周波数帯域の信号の周波数を、5.0GHz、5.2GHz、5.4GHz、5.6GHz、5.8GHz及び6.0GHzとした各場合の指向性が示されている。なお、各図における角度θyxは、各図中のY軸方向からX軸方向に向かって傾斜する角度を示す。 [1-3. simulation result]
Next, the simulation results of themulti-band antenna 1 according to the present embodiment will be described with reference to FIGS. 5 to 7. 5 and 6 are graphs showing an example of a simulation result of directivity of the multi-band antenna 1 according to the present embodiment. 5 and 6 show simulation results when the inductance of each high inductance element of the second high inductance portion 22 is 6 nH and 7 nH, respectively. Further, in this simulation, the width Wg of the ground contact portion 20 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is set to 7 mm. In each figure, the directivity in each case where the frequency of the signal of the first frequency band input to the input terminal 16 is 5.0 GHz, 5.2 GHz, 5.4 GHz, 5.6 GHz, 5.8 GHz, and 6.0 GHz. The sex is shown. The angle θyx in each figure indicates an angle of inclination from the Y-axis direction to the X-axis direction in each figure.
次に、本実施の形態に係るマルチバンドアンテナ1のシミュレーション結果について図5~図7を用いて説明する。図5及び図6は、本実施の形態に係るマルチバンドアンテナ1の指向性のシミュレーション結果例を示すグラフである。図5及び図6には、それぞれ、第2高インダクタンス部22の各高インダクタンス要素のインダクタンスを6nH及び7nHとした場合のシミュレーション結果が示されている。また、本シミュレーションにおいては、接地部20の幅Wg(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)を7mmとしている。各図においては、入力端子16に入力する第1周波数帯域の信号の周波数を、5.0GHz、5.2GHz、5.4GHz、5.6GHz、5.8GHz及び6.0GHzとした各場合の指向性が示されている。なお、各図における角度θyxは、各図中のY軸方向からX軸方向に向かって傾斜する角度を示す。 [1-3. simulation result]
Next, the simulation results of the
図5に示されるように、各高インダクタンス要素のインダクタンスが6nHの場合、周波数5.2GHz~6GHzの信号に対して、共振方向に対して垂直な指向性を概ね実現できているが、周波数5.0GHzの信号に対して、共振方向に対して垂直な指向性を実現できない。これは、周波数5.0GHzの信号に対しては、各高インダクタンス要素のチョークコイルとしての機能が十分に働かなかったことに起因すると考えられる。また、各高インダクタンス要素のインダクタンスが6nH未満の場合についても同様のシミュレーションを行ったところ、周波数5.0GHz~6GHzの信号の少なくとも一部に対して、共振方向に対して垂直な指向性を実現できなかった。
As shown in FIG. 5, when the inductance of each high inductance element is 6 nH, directivity perpendicular to the resonance direction can be generally realized for a signal having a frequency of 5.2 GHz to 6 GHz, but the frequency 5 Directivity perpendicular to the resonance direction cannot be realized for a 0.0 GHz signal. It is considered that this is because the function of each high inductance element as a choke coil did not work sufficiently for a signal having a frequency of 5.0 GHz. Further, when the same simulation was performed when the inductance of each high inductance element was less than 6 nH, directivity perpendicular to the resonance direction was realized for at least a part of the signal having a frequency of 5.0 GHz to 6 GHz. could not.
一方、図6に示されるように、各高インダクタンス要素のインダクタンスが7nHの場合、5.0GHz以上6GHz以下のすべての信号に対して、共振方向に対して垂直な指向性を実現できる。また、各高インダクタンス要素のインダクタンスが7nHより大きい場合についても同様のシミュレーションを行ったところ、周波数5.0GHz~6GHzのすべての信号に対して、共振方向に対して垂直な指向性を実現できた。以上のことから、第1周波数帯域として、5.0GHz以上6GHz以下の周波数帯域を採用し、接地部20の幅Wgが7mmの場合には、各高インダクタンス要素のインダクタンスは、7nH以上である必要があることがわかる。
On the other hand, as shown in FIG. 6, when the inductance of each high inductance element is 7 nH, directivity perpendicular to the resonance direction can be realized for all signals of 5.0 GHz or more and 6 GHz or less. Further, when the same simulation was performed when the inductance of each high inductance element was larger than 7 nH, directivity perpendicular to the resonance direction could be realized for all signals having a frequency of 5.0 GHz to 6 GHz. .. From the above, when a frequency band of 5.0 GHz or more and 6 GHz or less is adopted as the first frequency band and the width Wg of the grounding portion 20 is 7 mm, the inductance of each high inductance element needs to be 7 nH or more. It turns out that there is.
同様のシミュレーションを接地部20の幅Wgが10mm、12.5mm及び15mmの各場合において行った結果について、図7を用いて説明する。図7は、本実施の形態に係る接地部20の幅Wgと第2高インダクタンス部22の各高インダクタンス要素の最小インダクタンス値Lminとの関係を示すグラフである。なお、最小インダクタンス値Lminは、第1周波数帯域の信号に対して、共振方向に対して概ね垂直な指向性を実現するために必要な各高インダクタンス要素のインダクタンス値を意味する。図7に示されるグラフにおいては、第1周波数帯域が5GHz帯である場合の最小インダクタンス値Lminが示されている。
The results of performing the same simulation when the width Wg of the ground contact portion 20 is 10 mm, 12.5 mm, and 15 mm will be described with reference to FIG. 7. FIG. 7 is a graph showing the relationship between the width Wg of the grounding portion 20 and the minimum inductance value Lmin of each high inductance element of the second high inductance portion 22 according to the present embodiment. The minimum inductance value Lmin means the inductance value of each high inductance element required to realize directivity substantially perpendicular to the resonance direction with respect to the signal in the first frequency band. In the graph shown in FIG. 7, the minimum inductance value Lmin when the first frequency band is the 5 GHz band is shown.
図7に示されるように、接地部20の幅Wgが10mm、12.5mm及び15mmの場合、それぞれ、各高インダクタンス要素の最小インダクタンス値Lminは、5nH、4nH及び2.5nHとなった。このことから、接地部20の幅Wgが7mm以上である場合、各高インダクタンス要素の最小インダクタンス値Lminは、7nH以上であれば十分であることが分かる。
As shown in FIG. 7, when the width Wg of the grounding portion 20 is 10 mm, 12.5 mm and 15 mm, the minimum inductance values Lmin of each high inductance element are 5 nH, 4 nH and 2.5 nH, respectively. From this, it can be seen that when the width Wg of the grounding portion 20 is 7 mm or more, the minimum inductance value Lmin of each high inductance element is 7 nH or more.
(実施の形態2)
実施の形態2に係るアンテナモジュールについて説明する。本実施の形態に係るアンテナモジュールは、実施の形態1に係るマルチバンドアンテナ1の適用例である。 (Embodiment 2)
The antenna module according to the second embodiment will be described. The antenna module according to the present embodiment is an application example of themulti-band antenna 1 according to the first embodiment.
実施の形態2に係るアンテナモジュールについて説明する。本実施の形態に係るアンテナモジュールは、実施の形態1に係るマルチバンドアンテナ1の適用例である。 (Embodiment 2)
The antenna module according to the second embodiment will be described. The antenna module according to the present embodiment is an application example of the
[2-1.構成]
まず、本実施の形態に係るアンテナモジュールの構成について、図8~図10を用いて説明する。図8及び図9は、それぞれ、本実施の形態に係るアンテナモジュール100の構成を示す第1及び第2の平面図である。図8においては、アンテナモジュール100の基板140の一方の主面141の平面視における平面図が示されている。また、図9においては、基板140上の主面141の裏側の主面に配置される各構成要素の平面図が示されており、基板140の輪郭が点線で併せて示されている。 [2-1. Constitution]
First, the configuration of the antenna module according to the present embodiment will be described with reference to FIGS. 8 to 10. 8 and 9 are first and second plan views showing the configuration of theantenna module 100 according to the present embodiment, respectively. In FIG. 8, a plan view of one main surface 141 of the substrate 140 of the antenna module 100 in a plan view is shown. Further, in FIG. 9, a plan view of each component arranged on the main surface on the back side of the main surface 141 on the substrate 140 is shown, and the outline of the substrate 140 is also shown by a dotted line.
まず、本実施の形態に係るアンテナモジュールの構成について、図8~図10を用いて説明する。図8及び図9は、それぞれ、本実施の形態に係るアンテナモジュール100の構成を示す第1及び第2の平面図である。図8においては、アンテナモジュール100の基板140の一方の主面141の平面視における平面図が示されている。また、図9においては、基板140上の主面141の裏側の主面に配置される各構成要素の平面図が示されており、基板140の輪郭が点線で併せて示されている。 [2-1. Constitution]
First, the configuration of the antenna module according to the present embodiment will be described with reference to FIGS. 8 to 10. 8 and 9 are first and second plan views showing the configuration of the
本実施の形態に係るアンテナモジュール100は、アレイアンテナ101と、アレイアンテナ101を構成する各マルチバンドアンテナに信号を分配する分配器とを備えるモジュールである。本実施の形態では、アンテナモジュール100は、無線LAN規格に基づいて無線通信を行うモジュールであり、第1周波数帯域及び第2周波数帯域としてそれぞれ5GHz帯及び2.4GHz帯の信号を送受信する。図9に示されるように、アンテナモジュール100は、分配器として3分配器106を備える。図8及び図9に示されるように、アンテナモジュール100は、接地電極190と、線路61、62、63、71、72及び73と、移相器80と、接地配線71g、72g及び73gと、コネクタCnと、制御端子Tsとをさらに備える。
The antenna module 100 according to the present embodiment is a module including an array antenna 101 and a distributor that distributes signals to each multi-band antenna constituting the array antenna 101. In the present embodiment, the antenna module 100 is a module that performs wireless communication based on the wireless LAN standard, and transmits / receives signals in the 5 GHz band and the 2.4 GHz band as the first frequency band and the second frequency band, respectively. As shown in FIG. 9, the antenna module 100 includes a 3 distributor 106 as a distributor. As shown in FIGS. 8 and 9, the antenna module 100 includes a ground electrode 190, lines 61, 62, 63, 71, 72 and 73, a phase shifter 80, and ground wiring 71 g, 72 g and 73 g. It further includes a connector Cn and a control terminal Ts.
[2-1-1.アレイアンテナ]
アレイアンテナ101は、複数のマルチバンドアンテナを有するアンテナである。本実施の形態では、アレイアンテナ101は、三つのマルチバンドアンテナ1a、1b及び1cを有する。三つのマルチバンドアンテナ1a、1b及び1cは、基板140を共有する。なお、基板140には、アンテナモジュール100の他の構成要素も配置される。三つのマルチバンドアンテナ1a、1b及び1cの各々における基板140以外の構成は、実施の形態1に係るマルチバンドアンテナ1と同様である。三つのマルチバンドアンテナ1a、1b及び1cは、各々の共振方向(つまり、Y軸方向)に垂直な方向(つまり、X軸方向)に配列されている。マルチバンドアンテナ1a、1b及び1cは、実施の形態1において述べたように共振方向に垂直な指向性を有するため、マルチバンドアンテナ1a、1b及び1cを共振方向に垂直な方向に配列してアレイアンテナを構成する場合に、各マルチバンドアンテナが放射する電波間の相互作用を高めることができる。 [2-1-1. Array antenna]
Thearray antenna 101 is an antenna having a plurality of multi-band antennas. In this embodiment, the array antenna 101 has three multi-band antennas 1a, 1b and 1c. The three multi-band antennas 1a, 1b and 1c share a substrate 140. In addition, other components of the antenna module 100 are also arranged on the substrate 140. The configurations of the three multi-band antennas 1a, 1b, and 1c other than the substrate 140 are the same as those of the multi-band antenna 1 according to the first embodiment. The three multi-band antennas 1a, 1b and 1c are arranged in a direction (that is, an X-axis direction) perpendicular to their respective resonance directions (that is, the Y-axis direction). Since the multi-band antennas 1a, 1b and 1c have directivity perpendicular to the resonance direction as described in the first embodiment, the multi-band antennas 1a, 1b and 1c are arranged in a direction perpendicular to the resonance direction and arranged in an array. When the antenna is configured, the interaction between the radio waves radiated by each multi-band antenna can be enhanced.
アレイアンテナ101は、複数のマルチバンドアンテナを有するアンテナである。本実施の形態では、アレイアンテナ101は、三つのマルチバンドアンテナ1a、1b及び1cを有する。三つのマルチバンドアンテナ1a、1b及び1cは、基板140を共有する。なお、基板140には、アンテナモジュール100の他の構成要素も配置される。三つのマルチバンドアンテナ1a、1b及び1cの各々における基板140以外の構成は、実施の形態1に係るマルチバンドアンテナ1と同様である。三つのマルチバンドアンテナ1a、1b及び1cは、各々の共振方向(つまり、Y軸方向)に垂直な方向(つまり、X軸方向)に配列されている。マルチバンドアンテナ1a、1b及び1cは、実施の形態1において述べたように共振方向に垂直な指向性を有するため、マルチバンドアンテナ1a、1b及び1cを共振方向に垂直な方向に配列してアレイアンテナを構成する場合に、各マルチバンドアンテナが放射する電波間の相互作用を高めることができる。 [2-1-1. Array antenna]
The
基板140は、実施の形態1に係る基板40と同様の構成を有する。基板140の一方の主面141に、各マルチバンドアンテナのアンテナ部10及び接地部20が配置される。
The substrate 140 has the same configuration as the substrate 40 according to the first embodiment. The antenna portion 10 and the ground portion 20 of each multi-band antenna are arranged on one main surface 141 of the substrate 140.
[2-1-2.接地電極190]
接地電極190は、グランドに接続される電極である。接地電極190は、基板140の主面141に配置される。本実施の形態では、接地電極190は、アレイアンテナ101の各マルチバンドアンテナの接地部20と隣り合う位置に配置される。接地電極190は、基板140の主面141の裏側の主面に配置される各線路のシールド配線としても機能する。接地電極190は、例えば、基板140の主面141上にパターニングされた導電性部材であり、例えば、銅膜などの金属膜で形成される。接地電極190は、端子196a~196c、197、198及び199において、基板140を貫通するビア配線を介して基板140の主面141の裏側の主面に配置された各導電性部材と接続される。 [2-1-2. Ground electrode 190]
Theground electrode 190 is an electrode connected to the ground. The ground electrode 190 is arranged on the main surface 141 of the substrate 140. In the present embodiment, the ground electrode 190 is arranged at a position adjacent to the ground portion 20 of each multi-band antenna of the array antenna 101. The ground electrode 190 also functions as a shield wiring for each line arranged on the main surface on the back side of the main surface 141 of the substrate 140. The ground electrode 190 is, for example, a conductive member patterned on the main surface 141 of the substrate 140, and is formed of, for example, a metal film such as a copper film. The ground electrode 190 is connected to each of the conductive members arranged on the main surface on the back side of the main surface 141 of the substrate 140 via the via wiring penetrating the substrate 140 at the terminals 196a to 196c, 197, 198 and 199. ..
接地電極190は、グランドに接続される電極である。接地電極190は、基板140の主面141に配置される。本実施の形態では、接地電極190は、アレイアンテナ101の各マルチバンドアンテナの接地部20と隣り合う位置に配置される。接地電極190は、基板140の主面141の裏側の主面に配置される各線路のシールド配線としても機能する。接地電極190は、例えば、基板140の主面141上にパターニングされた導電性部材であり、例えば、銅膜などの金属膜で形成される。接地電極190は、端子196a~196c、197、198及び199において、基板140を貫通するビア配線を介して基板140の主面141の裏側の主面に配置された各導電性部材と接続される。 [2-1-2. Ground electrode 190]
The
[2-1-3.3分配器]
3分配器106は、第1周波数帯域及び第2周波数帯域の信号を3分配する分配器である。以下、本実施の形態に係る3分配器106について、図10を用いて説明する。図10は、本実施の形態に係る3分配器106の構成を示す平面図である。図10においては、図9に示される破線枠内が拡大されて示されている。 [2-1-3.3 Distributor]
The 3-distributor 106 is a distributor that distributes signals in the first frequency band and the second frequency band into three. Hereinafter, the three distributor 106 according to the present embodiment will be described with reference to FIG. FIG. 10 is a plan view showing the configuration of the three distributor 106 according to the present embodiment. In FIG. 10, the inside of the broken line frame shown in FIG. 9 is enlarged and shown.
3分配器106は、第1周波数帯域及び第2周波数帯域の信号を3分配する分配器である。以下、本実施の形態に係る3分配器106について、図10を用いて説明する。図10は、本実施の形態に係る3分配器106の構成を示す平面図である。図10においては、図9に示される破線枠内が拡大されて示されている。 [2-1-3.3 Distributor]
The 3-
図10に示されるように、3分配器106は、入力端子T0と、第1出力端子T1と、第2出力端子T2と、第3出力端子T3と、第1伝送線路L1と、第2伝送線路L2と、第3伝送線路L3と、第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4とを備える。
As shown in FIG. 10, the 3 distributor 106 includes an input terminal T0, a first output terminal T1, a second output terminal T2, a third output terminal T3, a first transmission line L1, and a second transmission. It includes a line L2, a third transmission line L3, a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4.
入力端子T0は、信号が入力される端子である。本実施の形態では、入力端子T0には、第1周波数を含む第1周波数帯域、及び、第1周波数より低い第2周波数を含む第2周波数帯域の信号が入力される。
Input terminal T0 is a terminal to which a signal is input. In the present embodiment, signals in the first frequency band including the first frequency and the second frequency band including the second frequency lower than the first frequency are input to the input terminal T0.
第1出力端子T1、第2出力端子T2及び第3出力端子T3は、それぞれ、入力端子T0から入力された信号が3分配された三つの分配信号を出力する端子である。本実施の形態では、同位相の三つの分配信号が、それぞれ、第1出力端子T1、第2出力端子T2及び第3出力端子T3から出力される。
The first output terminal T1, the second output terminal T2, and the third output terminal T3 are terminals that output three distributed signals in which the signal input from the input terminal T0 is divided into three, respectively. In the present embodiment, the three distributed signals having the same phase are output from the first output terminal T1, the second output terminal T2, and the third output terminal T3, respectively.
第1伝送線路L1、第2伝送線路L2及び第3伝送線路L3は、入力端子T0と第1出力端子T1、第2出力端子T2及び第3出力端子T3との間をそれぞれ接続する線路である。
The first transmission line L1, the second transmission line L2, and the third transmission line L3 are lines connecting the input terminal T0 and the first output terminal T1, the second output terminal T2, and the third output terminal T3, respectively. ..
第1伝送線路L1は、入力端子T0側から順に、第1接続点CP1で直列に接続された第1入力側線路L11及び第1出力側線路L12を含む。第2伝送線路L2は、入力端子T0側から順に、第2接続点CP2で直列に接続された第2入力側線路L21及び第2出力側線路L22を含む。第3伝送線路L3は、入力端子T0側から順に、第3接続点CP3で直列に接続された第3入力側線路L31及び第3出力側線路L32を含む。
The first transmission line L1 includes a first input side line L11 and a first output side line L12 connected in series at the first connection point CP1 in order from the input terminal T0 side. The second transmission line L2 includes a second input side line L21 and a second output side line L22 connected in series at the second connection point CP2 in order from the input terminal T0 side. The third transmission line L3 includes a third input side line L31 and a third output side line L32 connected in series at the third connection point CP3 in order from the input terminal T0 side.
図10に示されるように、第2入力側線路L21の幅は、第1入力側線路L11及び第3入力側線路L31の幅より狭い。このように、第2入力側線路L21の幅を狭くすることにより、第2入力側線路L21を湾曲させることで電気長を確保しつつ、第1入力側線路L11及び第3入力側線路L31で挟まれた領域内に第2入力側線路L21を収めることが容易となる。
As shown in FIG. 10, the width of the second input side line L21 is narrower than the width of the first input side line L11 and the third input side line L31. In this way, by narrowing the width of the second input side line L21, the second input side line L21 is curved to secure the electric length, and the first input side line L11 and the third input side line L31 It becomes easy to fit the second input side line L21 in the sandwiched area.
また、第2出力側線路L22の幅は、第1出力側線路L12及び第3出力側線路L32の幅より狭い。このように、第2出力側線路L22の幅を狭くすることにより、第2出力側線路L22を湾曲させることで電気長を確保しつつ、第1出力側線路L12及び第3出力側線路L32で挟まれた領域内に第2出力側線路L22を収めることが容易となる。
Further, the width of the second output side line L22 is narrower than the width of the first output side line L12 and the third output side line L32. In this way, by narrowing the width of the second output side line L22, the second output side line L22 is curved to secure the electric length, and the first output side line L12 and the third output side line L32 It becomes easy to fit the second output side line L22 in the sandwiched region.
第1入力側線路L11、第2入力側線路L21及び第3入力側線路L31の各々の電気長は、第1周波数の1/4波長である。第1伝送線路L1、第2伝送線路L2及び第3伝送線路L3の各々の電気長は、第1周波数より低い第2周波数の1/4波長である。
The electrical length of each of the first input side line L11, the second input side line L21, and the third input side line L31 is 1/4 wavelength of the first frequency. The electrical length of each of the first transmission line L1, the second transmission line L2, and the third transmission line L3 is 1/4 wavelength of the second frequency lower than the first frequency.
第1接続点CP1と第2接続点CP2との間、第3接続点CP3と第2接続点CP2との間、第1出力端子T1と第2出力端子T2との間、及び、第3出力端子T3と第2出力端子T2との間は、それぞれ、第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4を介して接続される。第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4は、吸収抵抗である。例えば、3分配器106の出力側のインピーダンスが50Ωである場合、第3抵抗R3及び第4抵抗R4の抵抗値は、出力側のインピーダンスの2倍の100Ωであり、第1抵抗R1及び第2抵抗R2の抵抗値は、出力側のインピーダンスの2倍以上4倍以下、つまり、100Ω以上200Ω以下である。本実施の形態では、また、第1抵抗R1、第2抵抗R2、第3抵抗R3及び第4抵抗R4の抵抗値は同一であり、いずれも100Ωである。
Between the first connection point CP1 and the second connection point CP2, between the third connection point CP3 and the second connection point CP2, between the first output terminal T1 and the second output terminal T2, and the third output. The terminal T3 and the second output terminal T2 are connected via a first resistor R1, a second resistor R2, a third resistor R3, and a fourth resistor R4, respectively. The first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are absorption resistors. For example, when the impedance on the output side of the 3 distributor 106 is 50Ω, the resistance values of the 3rd resistor R3 and the 4th resistor R4 are 100Ω, which is twice the impedance on the output side, and the 1st resistor R1 and the 2nd resistor are The resistance value of the resistor R2 is twice or more and four times or less the impedance on the output side, that is, 100Ω or more and 200Ω or less. In the present embodiment, the resistance values of the first resistor R1, the second resistor R2, the third resistor R3, and the fourth resistor R4 are the same, and all of them are 100Ω.
本実施の形態に係る3分配器106は、以上のような構成を備えることにより、一般的なウィルキンソン型の分配器より小型化できるという効果が奏される。例えば、ウィルキンソン型の分配器では、本実施の形態に係る3分配器106の第1出力側線路L12、第2出力側線路L22及び第3出力側線路L32に対応する線路の電気長を、第2周波数の1/4波長とする必要がある。これに対して、本実施の形態に係る3分配器106では、第1接続点CP1と第2接続点CP2の間、及び、第3接続点CP3と第2接続点CP2の間に吸収抵抗を接続することで、第1伝送線路L1、第2伝送線路L2及び第3伝送線路L3の電気長を第2周波数の1/4波長とすることができる。したがって、本実施の形態に係る3分配器106では、第1伝送線路L1、第2伝送線路L2及び第3伝送線路L3の電気長を、第1周波数の1/4波長だけ、ウィルキンソン型の分配器より小型化できる。これにより、アンテナモジュール100を小型化できる。
The three distributor 106 according to the present embodiment has the effect of being smaller than a general Wilkinson type distributor by having the above configuration. For example, in the Wilkinson type distributor, the electrical lengths of the lines corresponding to the first output side line L12, the second output side line L22, and the third output side line L32 of the three distributor 106 according to the present embodiment are set to the second. It needs to be 1/4 wavelength of 2 frequencies. On the other hand, in the 3 distributor 106 according to the present embodiment, an absorption resistor is provided between the first connection point CP1 and the second connection point CP2 and between the third connection point CP3 and the second connection point CP2. By connecting, the electrical length of the first transmission line L1, the second transmission line L2, and the third transmission line L3 can be set to 1/4 wavelength of the second frequency. Therefore, in the three-distributor 106 according to the present embodiment, the electrical lengths of the first transmission line L1, the second transmission line L2, and the third transmission line L3 are distributed by the Wilkinson type by only 1/4 wavelength of the first frequency. It can be made smaller than a vessel. As a result, the antenna module 100 can be miniaturized.
[2-1-4.コネクタ]
コネクタCnは、外部からアンテナモジュール100に信号を入力するための接続部材である。コネクタCnの構成は特に限定されないが、本実施の形態では、同軸コネクタである。コネクタCnの信号配線は、3分配器106の入力端子T0に接続される。これにより、コネクタCnを介して外部から3分配器106に信号を入力できる。コネクタCnは、グランドに接続されるコネクタグランドCgを有する。コネクタCnのシールド配線は、にコネクタグランドCgに接続される。コネクタグランドCgは、基板140を貫通するビア配線を介して接地電極190の端子198に接続される。 [2-1-4. connector]
The connector Cn is a connecting member for inputting a signal to theantenna module 100 from the outside. The configuration of the connector Cn is not particularly limited, but in the present embodiment, it is a coaxial connector. The signal wiring of the connector Cn is connected to the input terminal T0 of the 3 distributor 106. As a result, a signal can be input to the 3 distributor 106 from the outside via the connector Cn. The connector Cn has a connector ground Cg connected to the ground. The shield wiring of the connector Cn is connected to the connector ground Cg. The connector ground Cg is connected to the terminal 198 of the ground electrode 190 via the via wiring penetrating the substrate 140.
コネクタCnは、外部からアンテナモジュール100に信号を入力するための接続部材である。コネクタCnの構成は特に限定されないが、本実施の形態では、同軸コネクタである。コネクタCnの信号配線は、3分配器106の入力端子T0に接続される。これにより、コネクタCnを介して外部から3分配器106に信号を入力できる。コネクタCnは、グランドに接続されるコネクタグランドCgを有する。コネクタCnのシールド配線は、にコネクタグランドCgに接続される。コネクタグランドCgは、基板140を貫通するビア配線を介して接地電極190の端子198に接続される。 [2-1-4. connector]
The connector Cn is a connecting member for inputting a signal to the
[2-1-5.線路61~63]
線路61は、線路71と3分配器106の第1出力端子T1とを接続する導電性部材である。線路61の電気長は、線路71~73に分配される分配信号の間に与える位相差と、線路62及び63の電気長とに基づいて設定される。なお、線路61には、移相器80が接続されており、移相器80の状態に応じて線路61における位相の遅延量が変化する。 [2-1-5. Railroad tracks 61-63]
Theline 61 is a conductive member that connects the line 71 and the first output terminal T1 of the 3 distributor 106. The electric length of the line 61 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric lengths of the lines 62 and 63. A phase shifter 80 is connected to the line 61, and the amount of phase delay in the line 61 changes according to the state of the phase shifter 80.
線路61は、線路71と3分配器106の第1出力端子T1とを接続する導電性部材である。線路61の電気長は、線路71~73に分配される分配信号の間に与える位相差と、線路62及び63の電気長とに基づいて設定される。なお、線路61には、移相器80が接続されており、移相器80の状態に応じて線路61における位相の遅延量が変化する。 [2-1-5. Railroad tracks 61-63]
The
線路62は、線路72と3分配器106の第2出力端子T2とを接続する導電性部材である。線路62の電気長は、線路71~73に分配される分配信号の間に与える位相差と、線路61及び63の電気長とに基づいて設定される。
The line 62 is a conductive member that connects the line 72 and the second output terminal T2 of the 3 distributor 106. The electric length of the line 62 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric length of the lines 61 and 63.
線路63は、線路73と3分配器106の第3出力端子T3とを接続する導電性部材である。線路63の電気長は、線路71~73に分配される分配信号の間に与える位相差と、線路61及び62の電気長とに基づいて設定される。
The line 63 is a conductive member that connects the line 73 and the third output terminal T3 of the 3 distributor 106. The electric length of the line 63 is set based on the phase difference given between the distributed signals distributed to the lines 71 to 73 and the electric lengths of the lines 61 and 62.
[2-1-6.移相器]
移相器80は、線路61に接続され、線路61における分配信号の位相の遅延量を変化させる機器である。移相器80は、ロードライン(loaded line)型移相器である。移相器80は、線路81及び82と、コンデンサ83及び84と、PINダイオード86及び87と、接地電極85とを有する。 [2-1-6. Phaser]
Thephase shifter 80 is a device connected to the line 61 and changing the amount of phase delay of the distributed signal on the line 61. The phase shifter 80 is a loaded line type phase shifter. The phase shifter 80 has lines 81 and 82, capacitors 83 and 84, PIN diodes 86 and 87, and a ground electrode 85.
移相器80は、線路61に接続され、線路61における分配信号の位相の遅延量を変化させる機器である。移相器80は、ロードライン(loaded line)型移相器である。移相器80は、線路81及び82と、コンデンサ83及び84と、PINダイオード86及び87と、接地電極85とを有する。 [2-1-6. Phaser]
The
線路81は、線路61にコンデンサ83を介して結合される線路である。線路81の一端は、コンデンサ83に接続され、他端は、PINダイオード86に接続される。
The line 81 is a line coupled to the line 61 via a capacitor 83. One end of the line 81 is connected to the capacitor 83 and the other end is connected to the PIN diode 86.
線路82は、線路61にコンデンサ84を介して結合される線路である。線路82は、線路81が結合される位置とは異なる位置において、線路61に結合される。線路82の一端は、コンデンサ84に接続され、他端は、PINダイオード87に接続される。
The line 82 is a line coupled to the line 61 via a capacitor 84. The line 82 is coupled to the line 61 at a position different from the position where the line 81 is connected. One end of the line 82 is connected to the capacitor 84 and the other end is connected to the PIN diode 87.
コンデンサ83及び84は、それぞれ、線路61と線路81及び82とを結合するための素子である。言い換えると、移相器80と線路61とは、コンデンサ83及び84によって結合される。線路81及び82が、それぞれ、コンデンサ83及び84を介して線路61に結合されることで、線路81及び82と線路61との間に直流電流が流れることを抑制できる。
The capacitors 83 and 84 are elements for connecting the line 61 and the lines 81 and 82, respectively. In other words, the phase shifter 80 and the line 61 are coupled by capacitors 83 and 84. By coupling the lines 81 and 82 to the line 61 via the capacitors 83 and 84, respectively, it is possible to suppress the flow of direct current between the lines 81 and 82 and the line 61.
接地電極85は、グランドに接続される電極である。本実施の形態では、基板140を貫通するビア配線を介して接地電極190の端子197に接続される。
The ground electrode 85 is an electrode connected to the ground. In the present embodiment, the ground electrode 190 is connected to the terminal 197 via a via wiring penetrating the substrate 140.
PINダイオード86及び87は、それぞれ、線路81及び82と接地電極85との間の接続状態を開状態又は閉状態に切り替えるスイッチである。PINダイオード86及び87は、制御端子Tsに入力される制御信号によって制御される。移相器80において、PINダイオード86及び87の状態を共に開状態、又は、共に閉状態とすることで、線路61における分配信号の位相の遅延量を切り替えられる。
The PIN diodes 86 and 87 are switches that switch the connection state between the lines 81 and 82 and the ground electrode 85, respectively, between the open state and the closed state. The PIN diodes 86 and 87 are controlled by a control signal input to the control terminals Ts. In the phase shifter 80, the phase delay amount of the distributed signal on the line 61 can be switched by setting the states of the PIN diodes 86 and 87 in the open state or the closed state together.
[2-1-7.制御端子]
制御端子Tsは、移相器80のPINダイオード86及び87の状態を制御するための制御信号が入力される端子である。制御端子Tsは、接地端子を有し、当該接地端子は、基板140上の端子191、及び、基板140を貫通するビア配線を介して接地電極190の端子199に接続される。 [2-1-7. Control terminal]
The control terminal Ts is a terminal to which a control signal for controlling the states of the PIN diodes 86 and 87 of the phase shifter 80 is input. The control terminal Ts has a ground terminal, and the ground terminal is connected to the terminal 191 on the substrate 140 and the terminal 199 of the ground electrode 190 via the via wiring penetrating the substrate 140.
制御端子Tsは、移相器80のPINダイオード86及び87の状態を制御するための制御信号が入力される端子である。制御端子Tsは、接地端子を有し、当該接地端子は、基板140上の端子191、及び、基板140を貫通するビア配線を介して接地電極190の端子199に接続される。 [2-1-7. Control terminal]
The control terminal Ts is a terminal to which a control signal for controlling the states of the
[2-1-8.線路71~73]
線路71、72及び73の各々は、3分配器106によって分配された分配信号が入力される長尺状の導電性部材であり、図9のY軸方向(つまり、各マルチバンドアンテナの共振方向)に延びる。 [2-1-8. Railroad tracks 71-73]
Each of the lines 71, 72, and 73 is a long conductive member to which the distribution signal distributed by the three distributor 106 is input, and is in the Y-axis direction of FIG. 9 (that is, the resonance direction of each multi-band antenna). ).
線路71、72及び73の各々は、3分配器106によって分配された分配信号が入力される長尺状の導電性部材であり、図9のY軸方向(つまり、各マルチバンドアンテナの共振方向)に延びる。 [2-1-8. Railroad tracks 71-73]
Each of the
本実施の形態では、線路71の一方の端部は、線路61に接続される。線路71の他方の端部には、端子74が配置されている。端子74は、基板140を貫通するビア配線を介してマルチバンドアンテナ1aの入力端子16に接続される。これにより、線路71は、線路61を介して3分配器106の第1出力端子T1から分配信号が入力され、マルチバンドアンテナ1aに分配信号を出力する。
In the present embodiment, one end of the line 71 is connected to the line 61. A terminal 74 is arranged at the other end of the line 71. The terminal 74 is connected to the input terminal 16 of the multi-band antenna 1a via a via wiring penetrating the substrate 140. As a result, the line 71 receives the distribution signal from the first output terminal T1 of the 3 distributor 106 via the line 61, and outputs the distribution signal to the multi-band antenna 1a.
線路72の一方の端部は、線路62に接続される。線路72の他方の端部には、端子76が配置されている。端子76は、基板140を貫通するビア配線を介してマルチバンドアンテナ1bの入力端子16に接続される。これにより、線路72は、線路62を介して3分配器106の第2出力端子T2から分配信号が入力され、マルチバンドアンテナ1bに分配信号を出力する。
One end of the line 72 is connected to the line 62. A terminal 76 is arranged at the other end of the line 72. The terminal 76 is connected to the input terminal 16 of the multi-band antenna 1b via a via wiring penetrating the substrate 140. As a result, the line 72 receives the distribution signal from the second output terminal T2 of the 3 distributor 106 via the line 62, and outputs the distribution signal to the multi-band antenna 1b.
線路73の一方の端部は、線路63に接続される。線路73の他方の端部には、端子78が配置されている。端子78は、基板140を貫通するビア配線を介してマルチバンドアンテナ1cの入力端子16に接続される。これにより、線路73は、線路63を介して3分配器106の第3出力端子T3から分配信号が入力され、マルチバンドアンテナ1cに分配信号を出力する。
One end of the line 73 is connected to the line 63. A terminal 78 is arranged at the other end of the line 73. The terminal 78 is connected to the input terminal 16 of the multi-band antenna 1c via a via wiring penetrating the substrate 140. As a result, the line 73 receives the distribution signal from the third output terminal T3 of the 3 distributor 106 via the line 63, and outputs the distribution signal to the multi-band antenna 1c.
[2-1-9.接地配線71g~73g]
二つの接地配線71gの各々は、グランドに接続され、線路71に沿って配置される長尺状の導電性部材であり、図9のY軸方向に延びる。二つの接地配線71gは、図9のX軸方向に配列され、二つの接地配線71gの間に線路71が配置される。二つの接地配線71g及び線路71は、互いに離隔して配置される。二つの接地配線71gの各々の一方の端部には、端子75gが配置され、他方の端部には、端子74gが配置される。端子75gは、基板140を貫通するビア配線を介して接地電極190の端子196aに接続される。端子74gは、基板140を貫通するビア配線を介してマルチバンドアンテナ1aの接地部20の接地端子26に接続される。 [2-1-9.Ground wiring 71g-73g]
Each of the twoground wires 71g is a long conductive member connected to the ground and arranged along the line 71, and extends in the Y-axis direction of FIG. The two ground wires 71 g are arranged in the X-axis direction of FIG. 9, and the line 71 is arranged between the two ground wires 71 g. The two ground wires 71g and the line 71 are arranged apart from each other. A terminal 75g is arranged at one end of each of the two ground wires 71g, and a terminal 74g is arranged at the other end. The terminal 75g is connected to the terminal 196a of the ground electrode 190 via a via wiring penetrating the substrate 140. The terminal 74g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1a via a via wiring penetrating the substrate 140.
二つの接地配線71gの各々は、グランドに接続され、線路71に沿って配置される長尺状の導電性部材であり、図9のY軸方向に延びる。二つの接地配線71gは、図9のX軸方向に配列され、二つの接地配線71gの間に線路71が配置される。二つの接地配線71g及び線路71は、互いに離隔して配置される。二つの接地配線71gの各々の一方の端部には、端子75gが配置され、他方の端部には、端子74gが配置される。端子75gは、基板140を貫通するビア配線を介して接地電極190の端子196aに接続される。端子74gは、基板140を貫通するビア配線を介してマルチバンドアンテナ1aの接地部20の接地端子26に接続される。 [2-1-9.
Each of the two
二つの接地配線72gの各々は、グランドに接続され、線路72に沿って配置される長尺状の導電性部材であり、図9のY軸方向に延びる。二つの接地配線72gは、図9のX軸方向に配列され、二つの接地配線72gの間に線路72が配置される。二つの接地配線72g及び線路72は、互いに離隔して配置される。二つの接地配線72gの各々の一方の端部には、端子77gが配置され、他方の端部には、端子76gが配置される。端子77gは、基板140を貫通するビア配線を介して接地電極190の端子196bに接続される。端子76gは、基板140を貫通するビア配線を介してマルチバンドアンテナ1bの接地部20の接地端子26に接続される。
Each of the two grounding wires 72g is a long conductive member connected to the ground and arranged along the line 72, and extends in the Y-axis direction of FIG. The two ground wires 72 g are arranged in the X-axis direction of FIG. 9, and the line 72 is arranged between the two ground wires 72 g. The two ground wires 72 g and the line 72 are arranged apart from each other. A terminal 77g is arranged at one end of each of the two ground wires 72g, and a terminal 76g is arranged at the other end. The terminal 77g is connected to the terminal 196b of the ground electrode 190 via the via wiring penetrating the substrate 140. The terminal 76g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1b via a via wiring penetrating the substrate 140.
二つの接地配線73gの各々は、グランドに接続され、線路73に沿って配置される長尺状の導電性部材であり、図9のY軸方向に延びる。二つの接地配線73gは、図9のX軸方向に配列され、二つの接地配線73gの間に線路73が配置される。二つの接地配線73g及び線路73は、互いに離隔して配置される。二つの接地配線73gの各々の一方の端部には、端子79gが配置され、他方の端部には、端子78gが配置される。端子79gは、基板140を貫通するビア配線を介して接地電極190の端子196cに接続される。端子78gは、基板140を貫通するビア配線を介してマルチバンドアンテナ1cの接地部20の接地端子26に接続される。
Each of the two ground wires 73g is a long conductive member connected to the ground and arranged along the line 73, and extends in the Y-axis direction of FIG. The two ground wires 73g are arranged in the X-axis direction of FIG. 9, and the line 73 is arranged between the two ground wires 73g. The two ground wires 73g and the line 73 are arranged apart from each other. A terminal 79g is arranged at one end of each of the two ground wires 73g, and a terminal 78g is arranged at the other end. The terminal 79g is connected to the terminal 196c of the ground electrode 190 via the via wiring penetrating the substrate 140. The terminal 78g is connected to the ground terminal 26 of the ground portion 20 of the multi-band antenna 1c via a via wiring penetrating the substrate 140.
本実施の形態に係る3分配器106の各伝送線路、線路61、62、63、71~73、81及び82、並びに、接地配線71g、72g及び73gは、例えば、基板140の主面141の裏側の主面上にパターニングされた導電性部材であり、例えば、銅膜などの金属膜で形成される。
The transmission lines, lines 61, 62, 63, 71 to 73, 81 and 82 of the three distributor 106 according to the present embodiment, and the ground wirings 71g, 72g and 73g are, for example, the main surface 141 of the substrate 140. It is a conductive member patterned on the main surface on the back side, and is formed of, for example, a metal film such as a copper film.
線路71、72及び73は、それぞれ、接地配線71g、72g及び73gとともにコプレーナ線路を形成する。
The lines 71, 72 and 73 form a coplanar line together with the ground wires 71 g, 72 g and 73 g, respectively.
本実施の形態に係る3分配器106の各伝送線路、線路61、62及び63、移相器80の線路81及び82の各線路は、基板140を介して接地電極190に対向する位置に配置されている。これにより、各線路と接地電極190とがマイクロストリップ線路を形成する。
The transmission lines of the three distributor 106 and the lines 61, 62 and 63 of the phase shifter 80 and the lines 81 and 82 of the phase shifter 80 according to the present embodiment are arranged at positions facing the ground electrode 190 via the substrate 140. Has been done. As a result, each line and the ground electrode 190 form a microstrip line.
図9に示される線路71及び接地配線71gは、図8に示されるマルチバンドアンテナ1aの接地部20に対向する位置に配置される。接地部20の幅(X軸方向の寸法)は、二つの接地配線71gのうち、線路71に沿って配置される部分(つまり、図9に示される例では、接地配線71gのうち、端子75gの周辺を除く部分)のX軸方向における外側の端縁間の距離より大きい。つまり、接地部20は、X軸方向において、二つの接地配線71gより外側に突出している。本実施の形態では、接地部20の幅は7mmであり、二つの接地配線71gのうち、線路71に沿って配置される部分のX軸方向における外側の端縁間の距離は、3mmである。これにより、接地部20のX軸方向の端部に流れる電流(図1の破線矢印参照)に起因する電波が二つの接地配線71gによって遮蔽されることを抑制できる。したがって、マルチバンドアンテナ1aのZ軸方向における指向性の劣化を抑制できる。マルチバンドアンテナ1b及び1cの接地部20の幅も、マルチバンドアンテナ1aの接地部20の幅と同様に、対向する二つの接地配線のうち、線路72及び73に沿って配置される部分のX軸方向における外側の端縁間の距離より大きい。
The line 71 and the ground wiring 71g shown in FIG. 9 are arranged at positions facing the ground portion 20 of the multi-band antenna 1a shown in FIG. The width (dimension in the X-axis direction) of the grounding portion 20 is the portion of the two grounding wires 71g that is arranged along the line 71 (that is, in the example shown in FIG. 9, the terminal 75g of the grounding wiring 71g. It is larger than the distance between the outer edges in the X-axis direction (the portion excluding the periphery of). That is, the grounding portion 20 projects outward from the two grounding wires 71g in the X-axis direction. In the present embodiment, the width of the grounding portion 20 is 7 mm, and the distance between the outer edges of the two grounding wires 71g arranged along the line 71 in the X-axis direction is 3 mm. .. As a result, it is possible to prevent the radio waves caused by the current flowing through the end of the grounding portion 20 in the X-axis direction (see the broken arrow in FIG. 1) from being shielded by the two grounding wires 71g. Therefore, deterioration of the directivity of the multi-band antenna 1a in the Z-axis direction can be suppressed. The width of the grounding portion 20 of the multi-band antennas 1b and 1c is also the same as the width of the grounding portion 20 of the multi-band antenna 1a, which is the X of the portion of the two opposing grounding wires arranged along the lines 72 and 73. Greater than the distance between the outer edges in the axial direction.
[2-2.作用及び効果]
次に、本実施の形態に係るアンテナモジュール100の作用及び効果について説明する。上述したように、本実施の形態に係るアンテナモジュール100においては、線路61、62及び63の電気長を適切に設定することで、アレイアンテナ101を構成する各マルチバンドアンテナに入力される信号の位相を調整することができる。これにより、アレイアンテナ101の指向性を調整することができる。例えば、アンテナモジュール100の近くにアンテナモジュール100が扱う周波数帯域と近い周波数帯域の信号を送受信するアンテナが存在する場合には、アンテナモジュール100のアレイアンテナ101から当該他のアンテナへ向かう向きにおけるアレイアンテナ101の指向性を低減することで、アンテナモジュール100と当該他のアンテナとの間の電波の干渉を低減できる。このようなアレイアンテナ101の指向性について、図11を用いて説明する。図11は、本実施の形態に係るアレイアンテナ101の指向性を示すグラフである。なお、図11には、アンテナモジュール100の移相器80のPINダイオード86及び87をいずれもOFFにした場合の指向性が示されている。なお、図11における角度θzxは、各図中のZ軸方向からX軸方向に向かって傾斜する角度を示す。 [2-2. Action and effect]
Next, the operation and effect of theantenna module 100 according to the present embodiment will be described. As described above, in the antenna module 100 according to the present embodiment, by appropriately setting the electric lengths of the lines 61, 62, and 63, the signal input to each multi-band antenna constituting the array antenna 101 can be obtained. The phase can be adjusted. Thereby, the directivity of the array antenna 101 can be adjusted. For example, when there is an antenna near the antenna module 100 that transmits / receives signals in a frequency band close to the frequency band handled by the antenna module 100, the array antenna in the direction from the array antenna 101 of the antenna module 100 toward the other antenna. By reducing the directivity of 101, it is possible to reduce the interference of radio waves between the antenna module 100 and the other antenna. The directivity of such an array antenna 101 will be described with reference to FIG. FIG. 11 is a graph showing the directivity of the array antenna 101 according to the present embodiment. Note that FIG. 11 shows the directivity when both the PIN diodes 86 and 87 of the phase shifter 80 of the antenna module 100 are turned off. The angle θzx in FIG. 11 indicates an angle that is inclined from the Z-axis direction to the X-axis direction in each figure.
次に、本実施の形態に係るアンテナモジュール100の作用及び効果について説明する。上述したように、本実施の形態に係るアンテナモジュール100においては、線路61、62及び63の電気長を適切に設定することで、アレイアンテナ101を構成する各マルチバンドアンテナに入力される信号の位相を調整することができる。これにより、アレイアンテナ101の指向性を調整することができる。例えば、アンテナモジュール100の近くにアンテナモジュール100が扱う周波数帯域と近い周波数帯域の信号を送受信するアンテナが存在する場合には、アンテナモジュール100のアレイアンテナ101から当該他のアンテナへ向かう向きにおけるアレイアンテナ101の指向性を低減することで、アンテナモジュール100と当該他のアンテナとの間の電波の干渉を低減できる。このようなアレイアンテナ101の指向性について、図11を用いて説明する。図11は、本実施の形態に係るアレイアンテナ101の指向性を示すグラフである。なお、図11には、アンテナモジュール100の移相器80のPINダイオード86及び87をいずれもOFFにした場合の指向性が示されている。なお、図11における角度θzxは、各図中のZ軸方向からX軸方向に向かって傾斜する角度を示す。 [2-2. Action and effect]
Next, the operation and effect of the
図11に示される例では、X軸方向の正側の方向における指向性が低減されている。このため、このような指向性を有するアレイアンテナ101のX軸方向の正側に他のアンテナがある場合に、アレイアンテナ101と当該他のアンテナとの干渉を低減できる。
In the example shown in FIG. 11, the directivity in the positive direction in the X-axis direction is reduced. Therefore, when there is another antenna on the positive side of the array antenna 101 having such directivity in the X-axis direction, the interference between the array antenna 101 and the other antenna can be reduced.
また、本実施の形態に係るアンテナモジュール100においては、移相器80によって、マルチバンドアンテナ1aに入力する信号の位相を切り替えることができる。本実施の形態に係る移相器80によっては、PINダイオード86及びb87をいずれもOFFとする場合と、いずれもONとする場合とで、マルチバンドアンテナ1aに入力される信号の位相を約50°変化させることができる。ここで、移相器80による効果について、図12を用いて説明する。
Further, in the antenna module 100 according to the present embodiment, the phase shifter 80 can switch the phase of the signal input to the multi-band antenna 1a. Depending on the phase shifter 80 according to the present embodiment, the phase of the signal input to the multi-band antenna 1a is about 50 depending on whether the PIN diodes 86 and b87 are both OFF and both are ON. ° Can be changed. Here, the effect of the phase shifter 80 will be described with reference to FIG.
図12は、本実施の形態に係るアレイアンテナ101の移相器80の状態を変化させた場合の指向性を示すグラフである。図12には、移相器80のPINダイオード86及び87をいずれもONにした場合の指向性が示されている。なお、図12における角度θzxは、各図中のZ軸方向からX軸方向に向かって傾斜する角度を示す。図11及び図12に示される各指向性からわかるように、移相器80によってアレイアンテナ101の指向性を大きく変化させることができる。このような移相器80の効果は、アンテナモジュール100の周辺における電波環境が変化する場合に有効である。例えば、アンテナモジュール100及び他のアンテナの配置を変更した場合には、アンテナモジュール100と他のアンテナとの相対位置が変わり得る。また、アンテナモジュール100と他のアンテナとの相対位置が変化しないとしても、アンテナモジュール100及び他のアンテナを移動させる場合には、周辺の構造物とアンテナモジュール100との相対位置が変化し得る。この場合、周辺の構造物によって、他のアンテナから放射された電波が反射されるため、アンテナモジュール100のアレイアンテナ101において、当該反射された電波の干渉が問題となり得る。このように電波環境が変化する場合に、移相器80を用いてアレイアンテナ101の指向性を変化させることで、他の電波との干渉を抑制し得る。
FIG. 12 is a graph showing the directivity when the state of the phase shifter 80 of the array antenna 101 according to the present embodiment is changed. FIG. 12 shows the directivity when both the PIN diodes 86 and 87 of the phase shifter 80 are turned on. The angle θzx in FIG. 12 indicates an angle inclined from the Z-axis direction to the X-axis direction in each figure. As can be seen from the directivity shown in FIGS. 11 and 12, the directivity of the array antenna 101 can be significantly changed by the phase shifter 80. The effect of the phase shifter 80 is effective when the radio wave environment around the antenna module 100 changes. For example, when the arrangement of the antenna module 100 and other antennas is changed, the relative positions of the antenna module 100 and the other antennas may change. Further, even if the relative positions of the antenna module 100 and the other antennas do not change, when the antenna module 100 and the other antennas are moved, the relative positions of the surrounding structures and the antenna module 100 may change. In this case, since the radio waves radiated from other antennas are reflected by the surrounding structures, the interference of the reflected radio waves may become a problem in the array antenna 101 of the antenna module 100. When the radio wave environment changes in this way, interference with other radio waves can be suppressed by changing the directivity of the array antenna 101 using the phase shifter 80.
[2-3.適用例]
次に、本実施の形態に係るアンテナモジュール100の適用例について図13を用いて説明する。図13は、本実施の形態に係るアンテナモジュール100を備える音響装置103の構成を示す斜視図である。 [2-3. Application example]
Next, an application example of theantenna module 100 according to the present embodiment will be described with reference to FIG. FIG. 13 is a perspective view showing the configuration of an audio device 103 including the antenna module 100 according to the present embodiment.
次に、本実施の形態に係るアンテナモジュール100の適用例について図13を用いて説明する。図13は、本実施の形態に係るアンテナモジュール100を備える音響装置103の構成を示す斜視図である。 [2-3. Application example]
Next, an application example of the
図13に示される音響装置103は、主に、筐体103cと、アンテナモジュール100、100a及び104と、スピーカSp0~Sp4とを備える。なお、図13においては、各構成要素の配置を示すために、筐体103cは輪郭のみが点線で示されている。
The audio device 103 shown in FIG. 13 mainly includes a housing 103c, antenna modules 100, 100a and 104, and speakers Sp0 to Sp4. In FIG. 13, only the outline of the housing 103c is shown by a dotted line in order to show the arrangement of each component.
アンテナモジュール100aは、アンテナモジュール100と同様に無線LAN規格に基づいて無線通信を行うモジュールであり、5GHz帯及び2.4GHz帯の信号を送受信する。アンテナモジュール100aは、アンテナモジュール100と同様のモジュールであり、各構成要素の構造及び配置が、アンテナモジュール100に対して左右反転されている。これに伴い、アンテナモジュール100aが備えるアレイアンテナの指向性は、アンテナモジュール100のアレイアンテナ101の指向性を左右反転させたもの(つまり、図11及び図12に示されるグラフを左右反転させたもの)となる。
The antenna module 100a is a module that performs wireless communication based on the wireless LAN standard like the antenna module 100, and transmits / receives signals in the 5 GHz band and the 2.4 GHz band. The antenna module 100a is a module similar to the antenna module 100, and the structure and arrangement of each component are reversed left and right with respect to the antenna module 100. Along with this, the directivity of the array antenna included in the antenna module 100a is the one in which the directivity of the array antenna 101 of the antenna module 100 is inverted left and right (that is, the graphs shown in FIGS. 11 and 12 are inverted left and right). ).
アンテナモジュール104は、他の機器との間で無線通信を行うモジュールである。本実施の形態では、無線LAN規格とは異なる規格に基づいて、2.4GHz帯の信号を他の音響機器に送信するモジュールである。ここで他の音響機器は、例えば、サブウーハなどである。
The antenna module 104 is a module that performs wireless communication with other devices. In the present embodiment, it is a module that transmits a 2.4 GHz band signal to another audio device based on a standard different from the wireless LAN standard. Here, other audio equipment is, for example, a subwoofer.
音響装置103は、上述したように、2.4GHz帯の信号を扱う三つのアンテナモジュール100、100a及び104を備えるため、これらのモジュール間で電波の干渉が発生し得る。しかしながら、本実施の形態に係るアンテナモジュール100のアレイアンテナ101は、図11に示されるようにX軸方向正側において指向性が低いため、他のモジュールとの間における電波の干渉を低減できる。
As described above, since the sound device 103 includes three antenna modules 100, 100a and 104 that handle signals in the 2.4 GHz band, radio wave interference may occur between these modules. However, since the array antenna 101 of the antenna module 100 according to the present embodiment has low directivity on the positive side in the X-axis direction as shown in FIG. 11, it is possible to reduce radio wave interference with other modules.
また、アンテナモジュール100aは、アンテナモジュール100を左右反転した構造を有するため、アンテナモジュール100aのアレイアンテナは、X軸方向負側において指向性が低い。したがって、アンテナモジュール100aのX軸方向負側に配置された他のアンテナモジュールとの間における電波の干渉を低減できる。
Further, since the antenna module 100a has a structure in which the antenna module 100 is flipped horizontally, the array antenna of the antenna module 100a has low directivity on the negative side in the X-axis direction. Therefore, it is possible to reduce the interference of radio waves with other antenna modules arranged on the negative side in the X-axis direction of the antenna module 100a.
また、音響装置103と、その周辺の構造物との位置関係によっては、アンテナモジュール104から放射された電波が構造物によって反射されて、アンテナモジュール100及び100aに到達し得る。このような状況で、アンテナモジュール100及び100aにおいて、当該反射された電波との干渉が問題となる場合には、アンテナモジュール100及び100aの各移相器の設定を変えて各アレイアンテナの指向性を変化させることで、当該反射された電波との干渉を低減し得る。
Further, depending on the positional relationship between the acoustic device 103 and the surrounding structure, the radio wave radiated from the antenna module 104 may be reflected by the structure and reach the antenna modules 100 and 100a. In such a situation, if interference with the reflected radio wave becomes a problem in the antenna modules 100 and 100a, the directivity of each array antenna is changed by changing the setting of each phase shifter of the antenna modules 100 and 100a. By changing, the interference with the reflected radio wave can be reduced.
(実施の形態3)
実施の形態3に係るマルチバンドアンテナについて説明する。本実施の形態に係るマルチバンドアンテナは、共振する周波数帯域において、実施の形態1に係るマルチバンドアンテナ1と相違する。以下、本実施の形態に係るマルチバンドアンテナについて、実施の形態1に係るマルチバンドアンテナ1との相違点を中心に説明する。 (Embodiment 3)
The multi-band antenna according to the third embodiment will be described. The multi-band antenna according to the present embodiment is different from themulti-band antenna 1 according to the first embodiment in the resonating frequency band. Hereinafter, the multi-band antenna according to the present embodiment will be described focusing on the differences from the multi-band antenna 1 according to the first embodiment.
実施の形態3に係るマルチバンドアンテナについて説明する。本実施の形態に係るマルチバンドアンテナは、共振する周波数帯域において、実施の形態1に係るマルチバンドアンテナ1と相違する。以下、本実施の形態に係るマルチバンドアンテナについて、実施の形態1に係るマルチバンドアンテナ1との相違点を中心に説明する。 (Embodiment 3)
The multi-band antenna according to the third embodiment will be described. The multi-band antenna according to the present embodiment is different from the
[3-1.構成]
まず、本実施の形態に係るマルチバンドアンテナの構成について、図14を用いて説明する。図14は、本実施の形態に係るマルチバンドアンテナ201の構成を示す平面図である。図14には、マルチバンドアンテナ201の基板240の平面視における平面図が示されている。なお、図14において、図1と同様に、マルチバンドアンテナ201の基板240の主面241に垂直な方向をZ軸方向とし、Z軸方向に垂直であって、互いに垂直な二つの方向をX軸方向及びY軸方向としている。 [3-1. Constitution]
First, the configuration of the multi-band antenna according to the present embodiment will be described with reference to FIG. FIG. 14 is a plan view showing the configuration of themulti-band antenna 201 according to the present embodiment. FIG. 14 shows a plan view of the substrate 240 of the multi-band antenna 201 in a plan view. In FIG. 14, as in FIG. 1, the direction perpendicular to the main surface 241 of the substrate 240 of the multi-band antenna 201 is the Z-axis direction, and the two directions perpendicular to the Z-axis direction and perpendicular to each other are X. Axial direction and Y-axis direction.
まず、本実施の形態に係るマルチバンドアンテナの構成について、図14を用いて説明する。図14は、本実施の形態に係るマルチバンドアンテナ201の構成を示す平面図である。図14には、マルチバンドアンテナ201の基板240の平面視における平面図が示されている。なお、図14において、図1と同様に、マルチバンドアンテナ201の基板240の主面241に垂直な方向をZ軸方向とし、Z軸方向に垂直であって、互いに垂直な二つの方向をX軸方向及びY軸方向としている。 [3-1. Constitution]
First, the configuration of the multi-band antenna according to the present embodiment will be described with reference to FIG. FIG. 14 is a plan view showing the configuration of the
マルチバンドアンテナ201は、第1周波数を含む第1周波数帯域の信号と、第1周波数より低い第2周波数を含む第2周波数帯域の信号とを送受信する。本実施の形態では、第1周波数帯域及び第2周波数帯域として、それぞれ、2.4GHz帯及び920MHz帯を用いる。図14に示されるように、マルチバンドアンテナ201は、基板240と、入力端子216と、アンテナ部210と、接地部220とを備える。本実施の形態では、マルチバンドアンテナ201は、さらに接地端子226を備える。
The multi-band antenna 201 transmits and receives a signal in the first frequency band including the first frequency and a signal in the second frequency band including the second frequency lower than the first frequency. In the present embodiment, the 2.4 GHz band and the 920 MHz band are used as the first frequency band and the second frequency band, respectively. As shown in FIG. 14, the multi-band antenna 201 includes a substrate 240, an input terminal 216, an antenna portion 210, and a ground portion 220. In this embodiment, the multi-band antenna 201 further includes a ground terminal 226.
基板240は、マルチバンドアンテナ201の基台となる部材である。基板240は、回路基板であり、基板240の一方の主面241に、アンテナ部210及び接地部220が配置される。
The board 240 is a member that serves as a base for the multi-band antenna 201. The board 240 is a circuit board, and an antenna portion 210 and a grounding portion 220 are arranged on one main surface 241 of the board 240.
入力端子216は、基板240上に配置され、信号が入力される端子である。本実施の形態では、入力端子216には、マルチバンドアンテナ201が送信する高周波信号が入力される。また、入力端子216は、マルチバンドアンテナ201が受信した高周波信号を出力する出力端子としても機能する。また、入力端子216は、アンテナ部210に接続される。
The input terminal 216 is a terminal arranged on the board 240 to input a signal. In the present embodiment, the high frequency signal transmitted by the multi-band antenna 201 is input to the input terminal 216. The input terminal 216 also functions as an output terminal that outputs a high-frequency signal received by the multi-band antenna 201. Further, the input terminal 216 is connected to the antenna unit 210.
接地端子226は、基板240上に配置され、グランドに接続される端子である。本実施の形態では、接地端子226は、基板240の主面241に配置され、接地部220に接続される。接地端子226の個数は特に限定されないが、本実施の形態では、2個である。
The ground terminal 226 is a terminal arranged on the board 240 and connected to the ground. In the present embodiment, the ground terminal 226 is arranged on the main surface 241 of the substrate 240 and is connected to the ground portion 220. The number of ground terminals 226 is not particularly limited, but is two in the present embodiment.
アンテナ部210は、基板240上に配置され、入力端子216に接続される導電性部材である。本実施の形態では、アンテナ部210において第1周波数帯域の信号及び第2周波数帯域の信号が共振する。これにより、アンテナ部210から電波が放射される。アンテナ部210は、入力端子216側から順に、直列に接続された第1低インダクタンス部211、第1高インダクタンス部212及び第1先端部213を有する。第1低インダクタンス部211、第1高インダクタンス部212及び第1先端部213の電気長の和は、第2周波数の1/4波長である。これにより、アンテナ部210において第2周波数を含む第2周波数帯域の信号が共振する。
The antenna portion 210 is a conductive member arranged on the substrate 240 and connected to the input terminal 216. In the present embodiment, the signal in the first frequency band and the signal in the second frequency band resonate in the antenna unit 210. As a result, radio waves are radiated from the antenna unit 210. The antenna portion 210 has a first low inductance portion 211, a first high inductance portion 212, and a first tip portion 213 connected in series from the input terminal 216 side. The sum of the electrical lengths of the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 is 1/4 wavelength of the second frequency. As a result, the signal in the second frequency band including the second frequency resonates in the antenna unit 210.
アンテナ部210が入力端子216に接続される位置は特に限定されないが、本実施の形態では、入力端子216は、第1低インダクタンス部211の接地部220側の端部に配置される。より詳しくは、入力端子216は、第1低インダクタンス部211の接地部220側の端部のみに配置され、第1高インダクタンス部212及び第1先端部213には配置されない。なお、第1低インダクタンス部211の端部とは、例えば、第1低インダクタンス部211の接地部20側の端から、第1低インダクタンス部211のY軸方向における長さの10%以下の範囲の領域を意味する。
The position where the antenna portion 210 is connected to the input terminal 216 is not particularly limited, but in the present embodiment, the input terminal 216 is arranged at the end of the first low inductance portion 211 on the grounding portion 220 side. More specifically, the input terminal 216 is arranged only at the end of the first low inductance portion 211 on the grounding portion 220 side, and is not arranged at the first high inductance portion 212 and the first tip portion 213. The end of the first low inductance portion 211 is, for example, a range of 10% or less of the length of the first low inductance portion 211 in the Y-axis direction from the end of the first low inductance portion 211 on the grounding portion 20 side. Means the area of.
本実施の形態では、第1低インダクタンス部211、第1高インダクタンス部212及び第1先端部213は、図14のY軸方向に配列される。これにより、図14のY軸方向が、アンテナ部210の長手方向、及び、アンテナ部210における信号の共振方向となる。図14に示されるように、第1低インダクタンス部211、第1高インダクタンス部212及び第1先端部213の幅(つまり、共振方向に垂直な方向であって、基板240の主面241に平行な方向の寸法)は、同一である。
In the present embodiment, the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 are arranged in the Y-axis direction of FIG. As a result, the Y-axis direction in FIG. 14 becomes the longitudinal direction of the antenna portion 210 and the resonance direction of the signal in the antenna portion 210. As shown in FIG. 14, the widths of the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 (that is, the direction perpendicular to the resonance direction and parallel to the main surface 241 of the substrate 240). Dimensions) are the same.
第1低インダクタンス部211は、アンテナ部210のうち、入力端子216に接続される部分である。第1低インダクタンス部211の一方の端部に入力端子216が接続され、他方の端部に第1高インダクタンス部212が接続される。第1低インダクタンス部211の電気長は、第1周波数の1/4波長である。第1低インダクタンス部211は、第1高インダクタンス部212より低いインダクタンスを有する。本実施の形態では、図14に示されるように、第1低インダクタンス部211は、第1低インダクタンス部211は、線幅2.0mm、間隔2.0mm、長さ(図14におけるY軸方向の寸法)22mm、幅(図14におけるX軸方向の寸法)7.5mmのメアンダ形状を有する。このように、第1低インダクタンス部211はメアンダ形状を有するが、第1周波数帯域及び第2周波数帯域の信号に対してチョークコイルとして機能しない(つまり、信号を阻止しない)程度に低いインダクタンスを有する。なお、第1低インダクタンス部211は、メアンダ形状の部分の両端(つまり、Y軸方向の両端)にメアンダ形状でない部分を有する。このメアンダ形状でない両端の二つの部分の合計の長さは、7mmである。したがって、第1低インダクタンス部211のY軸方向における全長は、29mmとなる。
The first low inductance portion 211 is a portion of the antenna portion 210 connected to the input terminal 216. The input terminal 216 is connected to one end of the first low inductance portion 211, and the first high inductance portion 212 is connected to the other end. The electrical length of the first low inductance portion 211 is 1/4 wavelength of the first frequency. The first low inductance section 211 has a lower inductance than the first high inductance section 212. In the present embodiment, as shown in FIG. 14, the first low inductance portion 211 has a line width of 2.0 mm, an interval of 2.0 mm, and a length (Y-axis direction in FIG. 14). Dimension) 22 mm, width (dimension in the X-axis direction in FIG. 14) 7.5 mm, has a meander shape. As described above, the first low inductance portion 211 has a meander shape, but has a low inductance such that it does not function as a choke coil (that is, does not block the signal) with respect to the signals in the first frequency band and the second frequency band. .. The first low inductance portion 211 has portions that are not meander-shaped at both ends of the meander-shaped portion (that is, both ends in the Y-axis direction). The total length of the two portions at both ends that are not in the shape of a meander is 7 mm. Therefore, the total length of the first low inductance portion 211 in the Y-axis direction is 29 mm.
第1高インダクタンス部212は、アンテナ部210のうち、第1低インダクタンス部211と第1先端部213との間に配置される部分であり、メアンダ形状を有する。第1高インダクタンス部212は、第1低インダクタンス部211より高いインダクタンスを有する。本実施の形態では、第1高インダクタンス部212のメアンダ形状は、第1低インダクタンス部211のメアンダ形状より、線幅及び間隔が小さい。これにより、第1高インダクタンス部212のインダクタンスが第1低インダクタンス部211より高くなる。本実施の形態では、第1高インダクタンス部212は、線幅0.1mm、間隔0.1mm、長さ(図14におけるY軸方向の寸法)7.1mm、幅(図14におけるX軸方向の寸法)7.5mmのメアンダ形状を有する。第1高インダクタンス部212は、第1周波数帯域の信号に対してチョークコイルとして機能する。つまり、第1低インダクタンス部211に接続される入力端子216から入力された第1周波数帯域の信号に対するアンテナ部210の実効的な電気長は、第1低インダクタンス部211の電気長(第1周波数の1/4波長)となる。したがって、アンテナ部210において、第1周波数帯域の信号が共振する。なお、第1高インダクタンス部212は、第2周波数帯域の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有する。このため、第1高インダクタンス部212は、第2周波数帯域の信号を阻止しない。したがって、第2周波数帯域の信号は、アンテナ部210の第1低インダクタンス部211、第1高インダクタンス部212及び第1先端部213からなる経路において共振する。
The first high inductance portion 212 is a portion of the antenna portion 210 that is arranged between the first low inductance portion 211 and the first tip portion 213, and has a meander shape. The first high inductance section 212 has a higher inductance than the first low inductance section 211. In the present embodiment, the meander shape of the first high inductance portion 212 has a smaller line width and spacing than the meander shape of the first low inductance portion 211. As a result, the inductance of the first high inductance section 212 becomes higher than that of the first low inductance section 211. In the present embodiment, the first high inductance portion 212 has a line width of 0.1 mm, an interval of 0.1 mm, a length (dimensions in the Y-axis direction in FIG. 14) of 7.1 mm, and a width (in the X-axis direction in FIG. 14). Dimensions) It has a meander shape of 7.5 mm. The first high inductance portion 212 functions as a choke coil for signals in the first frequency band. That is, the effective electric length of the antenna unit 210 with respect to the signal of the first frequency band input from the input terminal 216 connected to the first low inductance unit 211 is the electric length of the first low inductance unit 211 (first frequency). 1/4 wavelength). Therefore, in the antenna unit 210, the signal in the first frequency band resonates. The first high inductance portion 212 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the first high inductance portion 212 does not block the signal in the second frequency band. Therefore, the signal in the second frequency band resonates in the path including the first low inductance portion 211, the first high inductance portion 212, and the first tip portion 213 of the antenna portion 210.
第1先端部213は、アンテナ部210のうち、入力端子216から共振方向に最も離れた端部に配置された部分である。第1先端部213の形状は特に限定されないが、本実施の形態では矩形状である。
The first tip portion 213 is a portion of the antenna portion 210 arranged at the end farthest from the input terminal 216 in the resonance direction. The shape of the first tip portion 213 is not particularly limited, but is rectangular in the present embodiment.
接地部220は、基板240上に配置され、入力端子216と絶縁される導電性部材である。接地部220は、アンテナ部210に対して、共振方向に所定の距離だけ離隔して配置されている。アンテナ部210と接地部220との間隔は、例えば、0より大きく、3mm程度以下である。本実施の形態では、アンテナ部210と接地部220との間隔は、2.0mmである。また、接地部220の幅(つまり、共振方向に垂直な方向であって、基板240の主面241に平行な方向の寸法)は、アンテナ部210の幅より広い。
The grounding portion 220 is a conductive member arranged on the substrate 240 and insulated from the input terminal 216. The grounding portion 220 is arranged at a distance from the antenna portion 210 by a predetermined distance in the resonance direction. The distance between the antenna portion 210 and the grounding portion 220 is, for example, greater than 0 and less than or equal to about 3 mm. In the present embodiment, the distance between the antenna portion 210 and the grounding portion 220 is 2.0 mm. Further, the width of the grounding portion 220 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 241 of the substrate 240) is wider than the width of the antenna portion 210.
接地部220は、入力端子216側から順に、直列に接続された第2低インダクタンス部221、第2高インダクタンス部222及び第2先端部223を有する。また、第2低インダクタンス部221、第2高インダクタンス部222及び第2先端部223は、図14のY軸方向に配列される。
The grounding portion 220 has a second low inductance portion 221, a second high inductance portion 222, and a second tip portion 223 connected in series from the input terminal 216 side. Further, the second low inductance portion 221 and the second high inductance portion 222 and the second tip portion 223 are arranged in the Y-axis direction of FIG.
第2低インダクタンス部221、第2高インダクタンス部222及び第2先端部223の電気長の合計は、アンテナ部210から放射される第2周波数の電波の指向性が、アンテナ部210の長手方向(つまり、図14のY軸方向)に垂直な面(つまり、図14のZX平面に平行な面)に沿って広がるように設定されている。
The total electrical lengths of the second low inductance section 221 and the second high inductance section 222 and the second tip section 223 are such that the directivity of the second frequency radio wave radiated from the antenna section 210 is the longitudinal direction of the antenna section 210. That is, it is set to spread along a plane perpendicular to the Y-axis direction of FIG. 14 (that is, a plane parallel to the ZX plane of FIG. 14).
接地部220は、接地端子226と接続される。接地端子226の配置は特に限定されないが、本実施の形態では、接地端子226は、第2低インダクタンス部221のアンテナ部210側(つまり、入力端子216側)の端部に配置される。より詳しくは、二つの接地端子226は、第2低インダクタンス部221のアンテナ部210側の端部のみに配置され、第2高インダクタンス部222及び第2先端部223には配置されない。なお、第2低インダクタンス部221の端部とは、例えば、第2低インダクタンス部221のアンテナ部210側の端から、第2低インダクタンス部221の共振方向(図14のY軸方向)における長さの10%以下の範囲の領域を意味する。
The grounding portion 220 is connected to the grounding terminal 226. The arrangement of the ground terminal 226 is not particularly limited, but in the present embodiment, the ground terminal 226 is arranged at the end of the second low inductance portion 221 on the antenna portion 210 side (that is, the input terminal 216 side). More specifically, the two ground terminals 226 are arranged only at the end of the second low inductance portion 221 on the antenna portion 210 side, and are not arranged at the second high inductance portion 222 and the second tip portion 223. The end of the second low inductance portion 221 is, for example, the length of the second low inductance portion 221 in the resonance direction (Y-axis direction in FIG. 14) from the end of the second low inductance portion 221 on the antenna portion 210 side. It means an area in the range of 10% or less of the inductance.
第2低インダクタンス部221は、接地部220のうち、アンテナ部210に最も近い位置に配置される部分である。第2低インダクタンス部221の一方の端部に接地端子226が接続され、他方の端部に第2高インダクタンス部222が接続される。第2低インダクタンス部221の電気長は、アンテナ部10から放射される第1周波数の電波の指向性が、アンテナ部210の長手方向に垂直な面に沿って広がるように設定されている。
The second low inductance portion 221 is a portion of the grounding portion 220 that is arranged at the position closest to the antenna portion 210. The ground terminal 226 is connected to one end of the second low inductance portion 221 and the second high inductance portion 222 is connected to the other end. The electrical length of the second low inductance section 221 is set so that the directivity of the first frequency radio wave radiated from the antenna section 10 spreads along a plane perpendicular to the longitudinal direction of the antenna section 210.
第2低インダクタンス部221は、第2高インダクタンス部222より低いインダクタンスを有する。本実施の形態では、図14に示されるように、第2低インダクタンス部221は、矩形状の形状を有するが、第2低インダクタンス部221の形状は、これに限定されない。第2低インダクタンス部221の形状は、第2低インダクタンス部221のインダクタンスが、第1周波数及び第2周波数の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有するように設計されていればよい。
The second low inductance section 221 has a lower inductance than the second high inductance section 222. In the present embodiment, as shown in FIG. 14, the second low inductance portion 221 has a rectangular shape, but the shape of the second low inductance portion 221 is not limited to this. The shape of the second low inductance portion 221 is designed so that the inductance of the second low inductance portion 221 has such a low inductance that it does not function as a choke coil with respect to the signals of the first frequency and the second frequency. Good.
第2高インダクタンス部222は、接地部220のうち、第2低インダクタンス部221と第2先端部223との間に配置される部分であり、メアンダ形状を有する。第2高インダクタンス部222は、第2低インダクタンス部221より高いインダクタンスを有する。第2高インダクタンス部222は、第1周波数帯域の信号に対してチョークコイルとして機能する。つまり、第2低インダクタンス部221に誘起される第1周波数帯域の信号に対する接地部220の実効的な電気長は、第2低インダクタンス部221の電気長となる。また、第2高インダクタンス部222は、第2周波数帯域の信号に対してチョークコイルとして機能しない程度に低いインダクタンスを有する。このため、第2高インダクタンス部222は、第2周波数帯域の信号を阻止しない。したがって、第2周波数帯域の信号に対する接地部220の実効的な電気長は、接地部220の第2高インダクタンス部222を含む経路の電気長を含む。
The second high inductance portion 222 is a portion of the grounding portion 220 that is arranged between the second low inductance portion 221 and the second tip portion 223, and has a meander shape. The second high inductance section 222 has a higher inductance than the second low inductance section 221. The second high inductance section 222 functions as a choke coil for signals in the first frequency band. That is, the effective electrical length of the grounding portion 220 with respect to the signal in the first frequency band induced in the second low inductance portion 221 is the electrical length of the second low inductance portion 221. Further, the second high inductance portion 222 has a low inductance that does not function as a choke coil with respect to a signal in the second frequency band. Therefore, the second high inductance section 222 does not block the signal in the second frequency band. Therefore, the effective electrical length of the grounding portion 220 with respect to the signal in the second frequency band includes the electrical length of the path including the second high inductance portion 222 of the grounding portion 220.
第2高インダクタンス部222は、第2低インダクタンス部221の幅方向(図14のX軸方向)の両端にそれぞれ接続される二つの高インダクタンス要素222a及び222bを有する。二つの高インダクタンス要素222a及び222bの間には、開口222cが形成されている。つまり、二つの高インダクタンス要素222a及び222bの間には、導電性部材が配置されない領域が形成される。なお、基板240の開口222cに対応する領域には、開口は設けられなくてもよい。二つの高インダクタンス要素222a及び222bの各々は、メアンダ形状を有する。また、二つの高インダクタンス要素222a及び222bは、互いに左右反転した構造を有する。したがって、二つの高インダクタンス要素222a及び222bの電気長は等しい。なお、本実施の形態では、マルチバンドアンテナ201の第2高インダクタンス部222の電気長を、二つの高インダクタンス要素222a及び222bの一方の電気長と定義する。また、二つの高インダクタンス要素222a及び222bのメアンダ形状部分における線幅及びピッチは、それぞれ、アンテナ部210の第1高インダクタンス部212のメアンダ形状部分における線幅及びピッチと同一であってもよい。
The second high inductance portion 222 has two high inductance elements 222a and 222b connected to both ends of the second low inductance portion 221 in the width direction (X-axis direction in FIG. 14), respectively. An opening 222c is formed between the two high inductance elements 222a and 222b. That is, a region in which the conductive member is not arranged is formed between the two high inductance elements 222a and 222b. An opening may not be provided in the region corresponding to the opening 222c of the substrate 240. Each of the two high inductance elements 222a and 222b has a meander shape. Further, the two high inductance elements 222a and 222b have a structure that is horizontally inverted from each other. Therefore, the electrical lengths of the two high inductance elements 222a and 222b are equal. In the present embodiment, the electric length of the second high inductance portion 222 of the multi-band antenna 201 is defined as the electric length of one of the two high inductance elements 222a and 222b. Further, the line width and pitch of the two high inductance elements 222a and 222b in the meander-shaped portion may be the same as the line width and pitch of the first high-inductance portion 212 of the antenna portion 210 in the meander-shaped portion, respectively.
第2低インダクタンス部221においては、実施の形態1に係る第2低インダクタンス部21と同様に、主に端縁に沿って、送受信する電波に対応する電流が流れる。このため、二つの高インダクタンス要素222a及び222bを接地部220の幅方向の端部に配置することにより、当該電流は、高インダクタンス要素222a及び高インダクタンス要素222bのいずれかを通る。
In the second low inductance section 221 as in the second low inductance section 21 according to the first embodiment, a current corresponding to radio waves transmitted and received flows mainly along the edge edge. Therefore, by arranging the two high inductance elements 222a and 222b at the widthwise ends of the grounding portion 220, the current passes through either the high inductance element 222a and the high inductance element 222b.
第2先端部223は、接地部220のうち、アンテナ部210から共振方向に最も離れた端部に配置された部分である。本実施の形態では、第2先端部223は、矩形状の形状を有する。また、第2先端部223は、第2高インダクタンス部222の二つの高インダクタンス要素222a及び222bを接続する。
The second tip portion 223 is a portion of the grounding portion 220 arranged at the end portion farthest from the antenna portion 210 in the resonance direction. In the present embodiment, the second tip portion 223 has a rectangular shape. Further, the second tip portion 223 connects the two high inductance elements 222a and 222b of the second high inductance portion 222.
[3-2.シミュレーション結果]
次に、本実施の形態に係るマルチバンドアンテナ201のシミュレーション結果について図15~図17を用いて説明する。図15及び図16は、本実施の形態に係るマルチバンドアンテナ201の指向性のシミュレーション結果例を示すグラフである。図15及び図16には、それぞれ、第2高インダクタンス部222の各高インダクタンス要素のインダクタンスを37.5nH及び45nHとした場合のシミュレーション結果が示されている。また、本シミュレーションにおいては、接地部220の幅Wg(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)を20mmとしている。各図においては、入力端子216に入力する第1周波数帯域及び第2周波数帯域の信号の周波数を、それぞれ、2.45GHz及び920MHzとした各場合の指向性が示されている。 [3-2. simulation result]
Next, the simulation results of themulti-band antenna 201 according to the present embodiment will be described with reference to FIGS. 15 to 17. 15 and 16 are graphs showing an example of a simulation result of directivity of the multi-band antenna 201 according to the present embodiment. 15 and 16 show simulation results when the inductance of each high inductance element of the second high inductance portion 222 is 37.5 nH and 45 nH, respectively. Further, in this simulation, the width Wg of the ground contact portion 220 (that is, the dimension in the direction perpendicular to the resonance direction and parallel to the main surface 41 of the substrate 40) is set to 20 mm. In each figure, the directivity in each case where the frequencies of the signals of the first frequency band and the second frequency band input to the input terminal 216 are 2.45 GHz and 920 MHz, respectively, is shown.
次に、本実施の形態に係るマルチバンドアンテナ201のシミュレーション結果について図15~図17を用いて説明する。図15及び図16は、本実施の形態に係るマルチバンドアンテナ201の指向性のシミュレーション結果例を示すグラフである。図15及び図16には、それぞれ、第2高インダクタンス部222の各高インダクタンス要素のインダクタンスを37.5nH及び45nHとした場合のシミュレーション結果が示されている。また、本シミュレーションにおいては、接地部220の幅Wg(つまり、共振方向に垂直な方向であって、基板40の主面41に平行な方向の寸法)を20mmとしている。各図においては、入力端子216に入力する第1周波数帯域及び第2周波数帯域の信号の周波数を、それぞれ、2.45GHz及び920MHzとした各場合の指向性が示されている。 [3-2. simulation result]
Next, the simulation results of the
図15に示されるように、各高インダクタンス要素のインダクタンスが37.5nHの場合、周波数920MHzの信号に対して、共振方向に対して垂直な指向性を概ね実現できているが、周波数2.45GHzの信号に対して、共振方向に対して垂直な指向性を実現できない。一方、図16に示されるように、各高インダクタンス要素のインダクタンスが45nHの場合、周波数2.45GHz及び920MHzの両方の信号に対して、共振方向に対して垂直な指向性を概ね実現できている。同様のシミュレーションを行ったところ、各高インダクタンス要素のインダクタンスが45nH以上の場合、周波数2.45GHz及び920MHzの両方の信号に対して、共振方向に対して垂直な指向性を概ね実現できることが分かった。
As shown in FIG. 15, when the inductance of each high inductance element is 37.5 nH, directivity perpendicular to the resonance direction can be generally realized for a signal having a frequency of 920 MHz, but the frequency is 2.45 GHz. The directivity perpendicular to the resonance direction cannot be realized for the signal of. On the other hand, as shown in FIG. 16, when the inductance of each high inductance element is 45 nH, directivity perpendicular to the resonance direction can be substantially realized for both signals having frequencies of 2.45 GHz and 920 MHz. .. When the same simulation was performed, it was found that when the inductance of each high inductance element is 45 nH or more, directivity perpendicular to the resonance direction can be generally realized for both signals having frequencies of 2.45 GHz and 920 MHz. ..
以上のように、各高インダクタンス要素のインダクタンスが45nH未満の場合、共振方向に対して垂直な指向性を実現できない。これは周波数2.45GHzの信号に対しては、各高インダクタンス要素のチョークコイルとしての機能が十分に働かなかったことに起因すると考えられる。
As described above, when the inductance of each high inductance element is less than 45 nH, directivity perpendicular to the resonance direction cannot be realized. It is considered that this is because the function of each high inductance element as a choke coil did not work sufficiently for a signal having a frequency of 2.45 GHz.
同様のシミュレーションを接地部220の幅Wgが15mm、17.5mm、22.5mm、25mm及び27.5mmの各場合において行った結果について、図17を用いて説明する。図17は、本実施の形態に係る接地部220の幅Wgと第2高インダクタンス部222の各高インダクタンス要素の最小インダクタンス値Lminとの関係を示すグラフである。なお、最小インダクタンス値Lminは、第1周波数帯域の信号に対して、共振方向に対して概ね垂直な指向性を実現するために必要な各高インダクタンス要素のインダクタンス値を意味する。図17に示されるグラフにおいては、第1周波数帯域が2.45GHz帯である場合の最小インダクタンス値Lminが示されている。
The results of performing the same simulation when the width Wg of the ground contact portion 220 is 15 mm, 17.5 mm, 22.5 mm, 25 mm, and 27.5 mm will be described with reference to FIG. FIG. 17 is a graph showing the relationship between the width Wg of the grounding portion 220 and the minimum inductance value Lmin of each high inductance element of the second high inductance portion 222 according to the present embodiment. The minimum inductance value Lmin means the inductance value of each high inductance element required to realize directivity substantially perpendicular to the resonance direction with respect to the signal in the first frequency band. In the graph shown in FIG. 17, the minimum inductance value Lmin when the first frequency band is the 2.45 GHz band is shown.
図17に示されるように、接地部220の幅Wgが15mm、17.5mm、20mm、22.5mm、25mm及び27.5mmの場合、それぞれ、各高インダクタンス要素の最小インダクタンス値Lminは、55nH、50nH、45nH、45nH、45nH及び35nHとなった。このことから、接地部220の幅Wgが15mm以上である場合、各高インダクタンス要素の最小インダクタンス値Lminは、55nH以上であれば十分であることが分かる。
As shown in FIG. 17, when the width Wg of the grounding portion 220 is 15 mm, 17.5 mm, 20 mm, 22.5 mm, 25 mm and 27.5 mm, the minimum inductance value Lmin of each high inductance element is 55 nH, respectively. It was 50 nH, 45 nH, 45 nH, 45 nH and 35 nH. From this, it can be seen that when the width Wg of the grounding portion 220 is 15 mm or more, the minimum inductance value Lmin of each high inductance element is 55 nH or more.
(変形例など)
以上、本開示のマルチバンドアンテナについて、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、本開示の範囲内に含まれてもよい。 (Modification example, etc.)
The multi-band antenna of the present disclosure has been described above based on the embodiment, but the present disclosure is not limited to the above-described embodiment. As long as it does not deviate from the purpose of the present disclosure, various modifications that can be thought of by those skilled in the art may be included in the scope of the present disclosure.
以上、本開示のマルチバンドアンテナについて、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を上記実施の形態に施したものも、本開示の範囲内に含まれてもよい。 (Modification example, etc.)
The multi-band antenna of the present disclosure has been described above based on the embodiment, but the present disclosure is not limited to the above-described embodiment. As long as it does not deviate from the purpose of the present disclosure, various modifications that can be thought of by those skilled in the art may be included in the scope of the present disclosure.
例えば、マルチバンドアンテナ1として、二つの周波数帯域の信号を送受信するデュアルバンドの例を示したが、本開示のマルチバンドアンテナが送受信する周波数帯域は三つ以上であってもよい。例えば、第1周波数帯域及び第2周波数帯域に加えて、第1周波数より低く、第2周波数より高い第3周波数を含む第3周波数帯域を送受信するマルチバンドアンテナも実現できる。例えば、実施の形態1に係るマルチバンドアンテナ1において、第1低インダクタンス部11と第1高インダクタンス部12との間に、第1中インダクタンス部を挿入し、第2低インダクタンス部21と第2高インダクタンス部22との間に、第2中インダクタンス部を挿入することで、第1周波数帯域~第3周波数帯域の三つの周波数帯域の信号を送受信できるマルチバンドアンテナを実現できる。
For example, as the multi-band antenna 1, a dual band example of transmitting and receiving signals of two frequency bands has been shown, but the multi-band antenna of the present disclosure may transmit and receive three or more frequency bands. For example, a multi-band antenna that transmits and receives a third frequency band including a third frequency lower than the first frequency and higher than the second frequency in addition to the first frequency band and the second frequency band can be realized. For example, in the multi-band antenna 1 according to the first embodiment, the first middle inductance section is inserted between the first low inductance section 11 and the first high inductance section 12, and the second low inductance section 21 and the second By inserting the second middle inductance section between the high inductance section 22 and the high inductance section 22, it is possible to realize a multi-band antenna capable of transmitting and receiving signals in three frequency bands from the first frequency band to the third frequency band.
ここで、第1中インダクタンス部は、第1低インダクタンス部11よりインダクタンスが高く、第1高インダクタンス部12よりインダクタンスが低い。また、第2中インダクタンス部は、第2低インダクタンス部21よりインダクタンスが高く、第2高インダクタンス部22よりインダクタンスが低い。第1低インダクタンス部11及び第2低インダクタンス部21は、第3周波数の信号に対してチョークコイルとして機能しない。第1中インダクタンス部及び第2中インダクタンス部は、第1周波数の信号に対してチョークコイルとして機能し、第2周波数及び第3周波数の信号に対してチョークコイルとして機能しない。第1高インダクタンス部12及び第2高インダクタンス部22は、第3周波数の信号に対してチョークコイルとして機能する。また、第1低インダクタンス部11と第1中インダクタンス部との電気長の合計は、第3周波数の1/4波長である。
Here, the first middle inductance portion has a higher inductance than the first low inductance portion 11 and a lower inductance than the first high inductance portion 12. Further, the second middle inductance section has a higher inductance than the second low inductance section 21 and a lower inductance than the second high inductance section 22. The first low inductance section 11 and the second low inductance section 21 do not function as choke coils for signals of the third frequency. The first middle inductance portion and the second middle inductance portion function as choke coils for signals of the first frequency and do not function as choke coils for signals of the second frequency and the third frequency. The first high inductance section 12 and the second high inductance section 22 function as choke coils for signals of the third frequency. Further, the total electric length of the first low inductance portion 11 and the first middle inductance portion is 1/4 wavelength of the third frequency.
また、上記実施の形態2では、アンテナモジュール100を音響装置103において用いる例を示したが、他の装置において用いることも可能である。例えば、アンテナモジュール100は、テレビジョン受像機などで用いられてもよい。
Further, in the second embodiment, the example in which the antenna module 100 is used in the audio device 103 is shown, but it can also be used in other devices. For example, the antenna module 100 may be used in a television receiver or the like.
その他、本開示の趣旨を逸脱しない範囲で各実施の形態における構成要素及び機能を任意に組み合わせることで実現される形態なども本開示に含まれる。
In addition, the present disclosure also includes a form realized by arbitrarily combining the components and functions in each embodiment without departing from the purpose of the present disclosure.
本開示のマルチバンドアンテナは、例えば、音響装置などにおいて用いられるアンテナモジュール用のアレイアンテナの一部として利用可能である。
The multi-band antenna of the present disclosure can be used as a part of an array antenna for an antenna module used in, for example, an audio device.
1、1a、1b、1c、201、1001 マルチバンドアンテナ
10、210 アンテナ部
11、211 第1低インダクタンス部
12、212 第1高インダクタンス部
13、213 第1先端部
16、216、T0 入力端子
20、220、1020 接地部
21、221 第2低インダクタンス部
22、222 第2高インダクタンス部
22a、22b、222a、222b 高インダクタンス要素
22c、222c 開口
23、223 第2先端部
26、226 接地端子
40、140、240 基板
41、141、241 主面
61、62、63、71、72、73、81、82 線路
71g、72g、73g 接地配線
74、74g、75g、76、76g、77g、78、78g、79g、191、196a、196b、196c、197、198、199 端子
80 移相器
83、84 コンデンサ
85、190 接地電極
86、87 PINダイオード
100、100a、104 アンテナモジュール
101 アレイアンテナ
103 音響装置
103c 筐体
106 3分配器
Cg コネクタグランド
Cn コネクタ
CP1 第1接続点
CP2 第2接続点
CP3 第3接続点
L1 第1伝送線路
L11 第1入力側線路
L12 第1出力側線路
L2 第2伝送線路
L21 第2入力側線路
L22 第2出力側線路
L3 第3伝送線路
L31 第3入力側線路
L32 第3出力側線路
R1 第1抵抗
R2 第2抵抗
R3 第3抵抗
R4 第4抵抗
Sp0、Sp1、Sp2、Sp3、Sp4 スピーカ
T1 第1出力端子
T2 第2出力端子
T3 第3出力端子
Ts 制御端子 1, 1a, 1b, 1c, 201, 1001 Multi-band antenna 10, 210 Antenna part 11, 211 First low inductance part 12, 212 First high inductance part 13, 213 First tip part 16, 216, T0 Input terminal 20 , 220, 1020 Grounding part 21, 221 Second low inductance part 22, 222 Second high inductance part 22a, 22b, 222a, 222b High inductance element 22c, 222c Opening 23, 223 Second tip part 26, 226 Ground terminal 40, 140, 240 Substrates 41, 141, 241 Main surfaces 61, 62, 63, 71, 72, 73, 81, 82 Lines 71g, 72g, 73g Grounding wiring 74, 74g, 75g, 76, 76g, 77g, 78, 78g, 79g, 191, 196a, 196b, 196c, 197, 198, 199 terminals 80 Phase shifter 83, 84 Condenser 85, 190 Ground electrode 86, 87 PIN inductor 100, 100a, 104 Antenna module 101 Array inductance 103 Sound device 103c Housing 106 3 Distributor Cg Connector Ground Cn Connector CP1 1st Connection Point CP2 2nd Connection Point CP3 3rd Connection Point L1 1st Transmission Line L11 1st Input Side Line L12 1st Output Side Line L2 2nd Transmission Line L21 2nd Input Side line L22 2nd output side line L3 3rd transmission line L31 3rd input side line L32 3rd output side line R1 1st resistance R2 2nd resistance R3 3rd resistance R4 4th resistance Sp0, Sp1, Sp2, Sp3, Sp4 Speaker T1 1st output terminal T2 2nd output terminal T3 3rd output terminal Ts control terminal
10、210 アンテナ部
11、211 第1低インダクタンス部
12、212 第1高インダクタンス部
13、213 第1先端部
16、216、T0 入力端子
20、220、1020 接地部
21、221 第2低インダクタンス部
22、222 第2高インダクタンス部
22a、22b、222a、222b 高インダクタンス要素
22c、222c 開口
23、223 第2先端部
26、226 接地端子
40、140、240 基板
41、141、241 主面
61、62、63、71、72、73、81、82 線路
71g、72g、73g 接地配線
74、74g、75g、76、76g、77g、78、78g、79g、191、196a、196b、196c、197、198、199 端子
80 移相器
83、84 コンデンサ
85、190 接地電極
86、87 PINダイオード
100、100a、104 アンテナモジュール
101 アレイアンテナ
103 音響装置
103c 筐体
106 3分配器
Cg コネクタグランド
Cn コネクタ
CP1 第1接続点
CP2 第2接続点
CP3 第3接続点
L1 第1伝送線路
L11 第1入力側線路
L12 第1出力側線路
L2 第2伝送線路
L21 第2入力側線路
L22 第2出力側線路
L3 第3伝送線路
L31 第3入力側線路
L32 第3出力側線路
R1 第1抵抗
R2 第2抵抗
R3 第3抵抗
R4 第4抵抗
Sp0、Sp1、Sp2、Sp3、Sp4 スピーカ
T1 第1出力端子
T2 第2出力端子
T3 第3出力端子
Ts 制御端子 1, 1a, 1b, 1c, 201, 1001 Multi-band antenna 10, 210 Antenna part 11, 211 First low inductance part 12, 212 First high inductance part 13, 213 First tip part 16, 216, T0 Input terminal 20 , 220, 1020 Grounding part 21, 221 Second low inductance part 22, 222 Second high inductance part 22a, 22b, 222a, 222b High inductance element 22c, 222c Opening 23, 223 Second tip part 26, 226 Ground terminal 40, 140, 240 Substrates 41, 141, 241 Main surfaces 61, 62, 63, 71, 72, 73, 81, 82 Lines 71g, 72g, 73g Grounding wiring 74, 74g, 75g, 76, 76g, 77g, 78, 78g, 79g, 191, 196a, 196b, 196c, 197, 198, 199 terminals 80 Phase shifter 83, 84 Condenser 85, 190 Ground electrode 86, 87 PIN inductor 100, 100a, 104 Antenna module 101 Array inductance 103 Sound device 103c Housing 106 3 Distributor Cg Connector Ground Cn Connector CP1 1st Connection Point CP2 2nd Connection Point CP3 3rd Connection Point L1 1st Transmission Line L11 1st Input Side Line L12 1st Output Side Line L2 2nd Transmission Line L21 2nd Input Side line L22 2nd output side line L3 3rd transmission line L31 3rd input side line L32 3rd output side line R1 1st resistance R2 2nd resistance R3 3rd resistance R4 4th resistance Sp0, Sp1, Sp2, Sp3, Sp4 Speaker T1 1st output terminal T2 2nd output terminal T3 3rd output terminal Ts control terminal
Claims (7)
- 基板と、
前記基板上に配置され、信号が入力される入力端子と、
前記基板上に配置され、かつ、前記入力端子に接続されるアンテナ部であって、前記入力端子側から順に、直列に接続された第1低インダクタンス部、メアンダ形状を有する第1高インダクタンス部及び第1先端部を有する導電性のアンテナ部と、
前記基板上に配置され、かつ、前記入力端子と絶縁される接地部であって、前記入力端子側から順に、直列に接続された第2低インダクタンス部、メアンダ形状を有する第2高インダクタンス部及び第2先端部を有する導電性の接地部とを備え、
前記第1低インダクタンス部は、前記第1高インダクタンス部よりインダクタンスが低く、
前記第2低インダクタンス部は、前記第2高インダクタンス部よりインダクタンスが低く、
前記第1低インダクタンス部の電気長は、第1周波数の1/4波長であり、
前記第1低インダクタンス部、前記第1高インダクタンス部及び前記第1先端部の電気長の和は、前記第1周波数より低い第2周波数の1/4波長である
マルチバンドアンテナ。 With the board
An input terminal arranged on the board and into which a signal is input,
An antenna portion arranged on the substrate and connected to the input terminal, the first low inductance portion connected in series from the input terminal side, the first high inductance portion having a meander shape, and the antenna portion. A conductive antenna portion having a first tip portion and
A grounding portion arranged on the substrate and insulated from the input terminal, the second low inductance portion connected in series from the input terminal side, the second high inductance portion having a meander shape, and the second high inductance portion having a meander shape. With a conductive grounding part having a second tip,
The first low inductance section has a lower inductance than the first high inductance section.
The second low inductance section has a lower inductance than the second high inductance section.
The electrical length of the first low inductance portion is 1/4 wavelength of the first frequency.
A multi-band antenna in which the sum of the electrical lengths of the first low inductance portion, the first high inductance portion, and the first tip portion is 1/4 wavelength of the second frequency lower than the first frequency. - 前記第2低インダクタンス部の電気長は、前記アンテナ部から放射される前記第1周波数の電波の指向性が、前記アンテナ部の長手方向に垂直な面に沿って広がるように設定されている
請求項1に記載のマルチバンドアンテナ。 The electric length of the second low inductance portion is set so that the directivity of the first frequency radio wave radiated from the antenna portion spreads along a plane perpendicular to the longitudinal direction of the antenna portion. Item 1. The multi-band antenna according to Item 1. - 前記第2低インダクタンス部、前記第2高インダクタンス部及び前記第2先端部の電気長の合計は、前記アンテナ部から放射される前記第2周波数の電波の指向性が、前記アンテナ部の長手方向に垂直な面に沿って広がるように設定されている
請求項1又は2に記載のマルチバンドアンテナ。 The total of the electric lengths of the second low inductance portion, the second high inductance portion, and the second tip portion is such that the directivity of the second frequency radio wave radiated from the antenna portion is the longitudinal direction of the antenna portion. The multi-band antenna according to claim 1 or 2, which is set to spread along a plane perpendicular to. - 前記第2高インダクタンス部は、前記第2低インダクタンス部の幅方向の両端にそれぞれ接続される二つの高インダクタンス要素を有する
請求項1~3のいずれか1項に記載のマルチバンドアンテナ。 The multi-band antenna according to any one of claims 1 to 3, wherein the second high inductance portion has two high inductance elements connected to both ends in the width direction of the second low inductance portion. - 前記第2先端部は、前記二つの高インダクタンス要素を接続する
請求項4に記載のマルチバンドアンテナ。 The multi-band antenna according to claim 4, wherein the second tip portion connects the two high inductance elements. - 前記第1低インダクタンス部は、メアンダ形状を有し、前記第1高インダクタンス部よりインダクタンスが低い
請求項1~5のいずれか1項に記載のマルチバンドアンテナ。 The multi-band antenna according to any one of claims 1 to 5, wherein the first low inductance portion has a meander shape and has a lower inductance than the first high inductance portion. - 前記基板上に配置され、グランドに接続される接地端子をさらに備え、
前記接地端子は、前記第2低インダクタンス部の前記アンテナ部側の端部に接続される
請求項1~6のいずれか1項に記載のマルチバンドアンテナ。 Further provided with a ground terminal located on the board and connected to the ground
The multi-band antenna according to any one of claims 1 to 6, wherein the ground terminal is connected to an end portion of the second low inductance portion on the antenna portion side.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019-100275 | 2019-05-29 | ||
JP2019100275 | 2019-05-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020240916A1 true WO2020240916A1 (en) | 2020-12-03 |
Family
ID=73553718
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2020/002036 WO2020240916A1 (en) | 2019-05-29 | 2020-01-22 | Multiband antenna |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2020240916A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001185938A (en) * | 1999-12-27 | 2001-07-06 | Mitsubishi Electric Corp | Two-frequency common antenna, multifrequency common antenna, and two-frequency and multifrequency common array antenna |
JP2006033068A (en) * | 2004-07-12 | 2006-02-02 | Toshiba Corp | Antenna and mobile wireless apparatus for mounting the antenna |
WO2011080902A1 (en) * | 2009-12-28 | 2011-07-07 | パナソニック株式会社 | Variable directional antenna device |
US20140285387A1 (en) * | 2013-03-24 | 2014-09-25 | Delphi Deutschland Gmbh | Broadband monopole antenna for vehicles for two frequency bands in the decimeter wavelength spectrum separated by a frequency gap |
JP2015211425A (en) * | 2014-04-30 | 2015-11-24 | 大井電気株式会社 | Multiband antenna |
-
2020
- 2020-01-22 WO PCT/JP2020/002036 patent/WO2020240916A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001185938A (en) * | 1999-12-27 | 2001-07-06 | Mitsubishi Electric Corp | Two-frequency common antenna, multifrequency common antenna, and two-frequency and multifrequency common array antenna |
JP2006033068A (en) * | 2004-07-12 | 2006-02-02 | Toshiba Corp | Antenna and mobile wireless apparatus for mounting the antenna |
WO2011080902A1 (en) * | 2009-12-28 | 2011-07-07 | パナソニック株式会社 | Variable directional antenna device |
US20140285387A1 (en) * | 2013-03-24 | 2014-09-25 | Delphi Deutschland Gmbh | Broadband monopole antenna for vehicles for two frequency bands in the decimeter wavelength spectrum separated by a frequency gap |
JP2015211425A (en) * | 2014-04-30 | 2015-11-24 | 大井電気株式会社 | Multiband antenna |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI630753B (en) | Antenna structure and wireless communication device with same | |
JP4305282B2 (en) | Antenna device | |
US20150311589A1 (en) | Multiband antenna | |
TWI662741B (en) | Antenna structure and wireless communication device having the same | |
TWI671951B (en) | Smart antenna device | |
WO2018164255A1 (en) | Wireless communication device | |
JP2010524302A (en) | Phased array antenna capable of high gain operation | |
US7170456B2 (en) | Dielectric chip antenna structure | |
US12119570B2 (en) | Antenna, antenna module, and wireless network device | |
JP2020537416A (en) | Antenna device and terminal | |
US8648762B2 (en) | Loop array antenna system and electronic apparatus having the same | |
WO2019159899A1 (en) | Multiband antenna, wireless communication module, and wireless communication device | |
US6946994B2 (en) | Dielectric antenna | |
JP2002100915A (en) | Dielectric antenna | |
JP6917588B2 (en) | 3 distributor | |
JP2005312062A (en) | Small antenna | |
JP2011155479A (en) | Wideband antenna | |
JP2005175846A (en) | Antenna apparatus and communication equipment equipped with it | |
US20120274530A1 (en) | Coupler | |
WO2020240916A1 (en) | Multiband antenna | |
US20180049313A1 (en) | Coupler for proximity wireless communication | |
JP2003051705A (en) | Surface mount antenna and communication equipment employing the same | |
JP2004215061A (en) | Folded loop antenna | |
TW201916466A (en) | Antenna structure and wireless communication device with same | |
JP2024063632A (en) | Antenna Device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 20813591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 20813591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |