EP2742191B1 - Structural element for heat-insulating purposes - Google Patents
Structural element for heat-insulating purposes Download PDFInfo
- Publication number
- EP2742191B1 EP2742191B1 EP12746343.8A EP12746343A EP2742191B1 EP 2742191 B1 EP2742191 B1 EP 2742191B1 EP 12746343 A EP12746343 A EP 12746343A EP 2742191 B1 EP2742191 B1 EP 2742191B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- pressure
- force distribution
- structural
- compressive force
- elements
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000009826 distribution Methods 0.000 claims description 107
- 238000009413 insulation Methods 0.000 claims description 29
- 239000012791 sliding layer Substances 0.000 claims description 14
- 239000000463 material Substances 0.000 claims description 13
- 239000004567 concrete Substances 0.000 claims description 12
- 239000011372 high-strength concrete Substances 0.000 claims description 8
- 239000012212 insulator Substances 0.000 claims description 8
- 239000000945 filler Substances 0.000 claims description 3
- 239000004570 mortar (masonry) Substances 0.000 claims description 3
- 230000003014 reinforcing effect Effects 0.000 claims description 3
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004566 building material Substances 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 239000000203 mixture Substances 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- -1 polyethylene Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920005989 resin Polymers 0.000 claims description 2
- 239000011347 resin Substances 0.000 claims description 2
- 229920003002 synthetic resin Polymers 0.000 claims description 2
- 239000000057 synthetic resin Substances 0.000 claims description 2
- 230000006835 compression Effects 0.000 claims 14
- 238000007906 compression Methods 0.000 claims 14
- 239000004568 cement Substances 0.000 claims 1
- 238000010276 construction Methods 0.000 claims 1
- 238000007788 roughening Methods 0.000 claims 1
- 230000005540 biological transmission Effects 0.000 description 17
- 238000005266 casting Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- 238000009434 installation Methods 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 239000011150 reinforced concrete Substances 0.000 description 2
- 238000010008 shearing Methods 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001294 Reinforcing steel Inorganic materials 0.000 description 1
- 210000000746 body region Anatomy 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/62—Insulation or other protection; Elements or use of specified material therefor
- E04B1/74—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
- E04B1/76—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
- E04B1/7604—Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only fillings for cavity walls
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04B—GENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
- E04B1/00—Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
- E04B1/003—Balconies; Decks
- E04B1/0038—Anchoring devices specially adapted therefor with means for preventing cold bridging
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/26—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups
- E04C2/284—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials composed of materials covered by two or more of groups E04C2/04, E04C2/08, E04C2/10 or of materials covered by one of these groups with a material not specified in one of the groups at least one of the materials being insulating
Definitions
- the pressure force distribution element extensively transmit compressive forces and initiate an optimized in terms of thermal pressure web with minimum cross-section as well as Druckkraftverottis institute and pressure ridges mutual relative movements through the articulated join almost free of lateral forces, without causing a deterioration of the function in the pressure force transmission ,
- the pressure force transmission through the disturbed or less optimized facing each other bearing surfaces in need of improvement
- the pressure force distribution element consists of a plate-shaped member which is connected by a dovetailed form-fitting connection with the end face of an associated pressure bridge and thus can follow in the horizontal direction relative movements almost without lateral force, while maintaining the pressure force transmission function.
- the said dovetail-shaped design of the positive connection between the pressure force distribution element and pressure bridge while on the one hand ensures a good positional safety in the installation and transport state, but it leads due to the numerous large-scale investment areas between pressure force distribution element and pressure bridge very quickly to constraints, especially if no exactly horizontal relative movement between the pressure element and associated component takes place, but for example, a slight inclination or inclination. The resulting constraints lead to corresponding shear forces up to destruction of the pressure ridge or the pressure force distribution element in the mutual investment area.
- a component for thermal insulation with integrated pressure elements which consist of several firmly interconnected sections in order to adapt the individual sections to various requirements.
- the respective end portions which act as pressure force distribution element, to improve the thermal insulation of a material with low thermal conductivity, eg foam or lightweight concrete and have a thermal conductivity between about 0.2 and 2.0 W / mK.
- the material of the pressure force distribution element has a thermal conductivity ⁇ which is lower than 1.6 W / mK and in particular lower than 1.0 W / mK. It is already known from the prior art, instead of conventional pressure elements made of steel, especially stainless steel, to use high-strength or ultra-high-strength concretes for optimizing the thermal insulation, which not only have a better load capacity and thus require a smaller cross-section to the required pressure force transmission, but also a lower thermal conductivity than steel.
- the load-bearing capacity can be improved not only via the improved pressure force introduction into the adjacent components, but also the thermal insulation in the force introduction area ,
- the pressure element has a position securing element and the pressure force distribution element can be positioned on the pressure ridge via the position securing element.
- the pressure bar and pressure force distribution element can be further optimized with regard to the pressure force transmission function intended for you.
- the pressure element may have the smallest possible cross section, which leads to a correspondingly reduced heat or cold transmission through the component joint or the insulating body arranged therein.
- the pressure bar frontally does not have even the largest possible Druckkrafteinleitüngsfiamba, but can ensure this by using the separate pressure force distribution element, which can be designed correspondingly large area.
- the pressure force distribution elements can be fixed by a respective position securing element in the region of the end face on the pressure ridge, wherein expediently the actual fixing takes place outside the pressure force transmission region, ie in particular outside the end faces.
- the position assurance element consists of a mold for the pressure element, as for example from the EP-A-1 225 282 A2 is known, only that now meet the mold, the further function of the position assurance element and this must be connected to a separate pressure force distribution element.
- the pressure bar and the pressure force distribution element can be connected to one another by interposing the position securing element, wherein the position securing element then forms a sliding layer for can form the pendulum or pivotal movement between the pressure bridge and pressure force distribution element.
- the pressure force distribution element may also be arranged in the area of the component joint, ie in the insulating body region, whereby it would nevertheless be advantageous in this embodiment to connect the pressure force distribution element with the adjacent component so firmly that any relative movement between the adjacent components from the pressure force distribution element the contact area between the pressure bridge and compressive force distribution element is transmitted and thus takes place in the sliding layer area formed by the position assurance element, which is optimized in terms of mobility and accuracy of fit.
- the position assurance element made of plastic, in particular HD polyethylene, which has optimum strength values with correspondingly optimal surface / sliding properties.
- a common position assurance element for two mutually horizontally adjacent, in particular juxtaposed pressure webs, which can be provided by the common position assurance element either for each print web a separate pressure force distribution element or a common pressure force distribution element for the two adjacent pressure bridges.
- FIGS. 2 and 3 is the lower portion of a device 10 according to the invention shown with a parallelepiped-shaped insulating body 16 and extending through the insulating body in the horizontal direction and perpendicular to its longitudinal extension pressure webs 19a, 19b, wherein in the FIGS. 2 and 3 shown dashed lines 19a, 19b are arranged adjacent to each other in the horizontal direction, extending from an adjacent component A, for example, a ceiling plate to an opposing adjacent component B, for example, a balcony plate and for mutual pressure force transmission with arcuately curved end faces 22a, 22b, 22c, 22d projecting slightly in the planes of the components A, B with respect to the insulating body plane.
- an adjacent component A for example, a ceiling plate
- an opposing adjacent component B for example, a balcony plate
- arcuately curved end faces 22a, 22b, 22c, 22d projecting slightly in the planes of the components A, B with respect to the insulating body plane.
- a pressure force distribution element 20a, 20b is now provided in the region of the components A, B in the region of the end faces of the pressure elements 19a, 19b, which serves for the introduction of pressure force or pressure force discharge between the pressure elements 19a, 19b and the adjacent components A, B.
- two pressure webs 19a, 19b and two pressure force distribution elements 20a, 20b together form a pressure element 12.
- pressure elements only one pressure bar and a total of two each having frontally connected to the pressure bridge pressure force distribution elements.
- the compressive force distribution elements consist of a material which has a thermal conductivity A which is lower than 2.0 W / mK.
- a thermal conductivity A which is lower than 2.0 W / mK.
- pressure-force distribution elements which consist of high-strength concrete and thus a thermal conductivity in the order of only 0.8 W / mK.
- the in-situ concrete of the adjacent thereto concrete component A, B has a thermal conductivity ⁇ of about 2.1 W / mK.
- the position securing elements form a sliding layer between the between the pressure elements 19a, 19b and the pressure force distribution elements 20a, 20b, by which the static friction in the mutual contact region of the pressure webs and the pressure force distribution elements is significantly reduced, so that a sliding pivoting movement is possible without major adhesion effects and thereby caused transverse forces ,
- the position securing elements 11a, 11b functioning as a casting mold for the compressive force distribution elements can only be seen as outlines of the compressive force distribution elements 20a, 20b, whereby it can be seen that these overall have an approximately cuboid outer contour with the arcuate recesses serving as sliding layers 14a, 14b, 14c, 14d where the corresponding end faces 22a to 22d of the pressure elements 19a, 19b on the one hand and the opposite recesses of the pressure force distribution elements 20a, 20b, namely the local surfaces 23a to 23d bear.
- FIG. 1 is a part of a device according to the invention for thermal insulation shown, namely a position assurance element 1a, 1b, which consists of a mold 13 with a cavity 2a, 2b, in which concrete, in particular high-strength or ultra-high-strength concrete for a not in FIG. 1 not shown pressure force distribution element can be filled, as well as with a cavity 7a, 7b, in which concrete, in particular high-strength or ultra high-strength concrete for a in FIG. 1 not shown, can be filled.
- a position assurance element 1a, 1b which consists of a mold 13 with a cavity 2a, 2b, in which concrete, in particular high-strength or ultra-high-strength concrete for a not in FIG. 1 not shown pressure force distribution element can be filled, as well as with a cavity 7a, 7b, in which concrete, in particular high-strength or ultra high-strength concrete for a in FIG. 1 not shown, can
- FIG. 1 an insulating body portion 6 is shown, the in FIG. 1 not shown in particular bears on its underside and partially by corresponding recesses 7a, 7b can also act as a mold for the pressure bars by the recesses 7a, 7b of the pressure bars intended shape correspond.
- the mold for the above the Isolier stressesteil Schemes 6 extending portions of the pressure bridges are in FIG. 1 also not shown.
- a connecting element which serves to connect the two position securing elements 1a, 1b with each other. This can for example in the horizontal direction rod-shaped extending from a position assurance element 1 a to the other position assurance element 1 b through the insulating body 6.
- the distance between the front-side casting mold surfaces 3a to 3d and thus the length of the associated pressure webs is predetermined, which corresponds approximately to the width of the insulating body 6.
- connecting web corresponds to FIG. 3 a connecting web 18 which is arranged between the two position securing elements 11 a, 11 b and held by the pressure webs 19 a, 19 b between the load distribution elements 11 a, 11 b during manufacture, transport and installation and so in the predetermined orientation and position are arranged opposite the pressure force distribution elements 20a, 20b.
- FIG. 4 further shows parts of another embodiment of a thermal insulation element according to the invention with alternative position assurance elements 31a, 31b, with a pressure element 32 consisting of two parallel pressure webs 39a, 39b and two end pressure distribution elements 30a, 30b and with an insulating body 36 in a sectional top view.
- each position securing element 31a, 31b also serve as molds 33a, 33b with cavities 34a, 34b for the pressure distribution as casting molds 33a, 33b with cavities 343, 34b for the pressure force distribution elements 30a, 30b, but not for the pressure webs 39a, 39b.
- Each position securing element is designed in several parts and consists of a along the Isolier Sciencesau type 36 extending wall 41a, 41b, from the pressure webs 39a, 39b frontally acting sliding layers 42a, 42b, 42c, 42d and from an additional horizontal section U-shaped profile body 43a, 43b.
- the cavities of a in Fig. 4 Limited floor area not shown.
- the pressure bridges consist of without involvement of the mold 33 and the position assurance elements 31 a, 31 b prefabricated concrete elements. They are in the area laterally of their end faces 42a, 42b, 42c, 42d of the position assurance elements 31 a, 31 b embraced and set in the predetermined position relative to the pressure force distribution elements 30a, 30b.
- the pressure elements 58 are formed differently in comparison to the known pressure elements. They consist of extending through the insulating body 56 in the horizontal direction and perpendicular to the longitudinal extent of pressure webs 59 extending in the horizontal direction of an adjacent component A, such as a ceiling plate to an opposing adjacent component B, for example, a balcony slab, and from the front side of the pressure bars 59 arranged pressure force distribution elements 60a, 60b.
- the pressure force distribution element 60b associated with the component B serves to absorb the pressure force of the supported component B and to introduce it into the pressure ridge 59
- the pressure force distribution element 60a assigned to the component A serves to transfer the pressure force from the pressure ridge 59 into the component A and initiate there ,
- the pressure force distribution elements are made of high-strength or ultra high-strength concrete and thus have the inventive favorable thermal conductivity.
- the pressure ridge 59 is also made of the same material as the compressive force distribution elements 60a, 60b.
- transverse force rods 53 have in a conventional manner in their inclined course a Heilfix istsmanschette 54, over which they are fixed relative to the insulating body 56 and / or the pressure bar 59, so as to unintentionally change their mounting position, in particular prevent shifting or twisting.
- FIG. 7 shows a pressure element 78 corresponding to the pressure element 58 from FIG. 5 with the only difference that the pressure element 78 consists of two parallel pressure webs 79a and 79b, which cooperate with terminal common pressure force distribution elements 80a, 80b.
- FIG. 8 a pressure element 88 is shown, in which also a square pressure ridge 89, so a cylindrical pressure ridge with square vertical cross-section with plate-shaped pressure force distribution elements 90a, 90b cooperates.
- the difference with respect to the pressure elements 58, 68 is that the pressure ridge 89 has cross-sectional enlargements at its terminal free ends 94a, 94b so as to form a larger contact profile 93a, 93b for the adjacent pressure-force distributing element 90a, 90b. From the vertical section in FIG.
- the pressure force distribution elements may extend within the component down to almost or almost entirely at the lower edge, without having to comply with the minimum concrete cover otherwise to be considered.
- the pressure element may be arranged far down inside the structural element for thermal insulation with a larger lever arm with respect to the tensile reinforcement than in comparable cases, in particular with pressure elements made of steel.
- the present invention offers the advantage of providing pressure elements with additional separate pressure force distribution elements, which provide optimum pressure transmission and transmission, while optimally improved thermal insulation by being made of a material having a thermal conductivity A. which is lower than 2.0 W / mK, preferably lower than 1.6 W / mK and especially lower than 1.0 W / mK.
Landscapes
- Engineering & Computer Science (AREA)
- Architecture (AREA)
- Physics & Mathematics (AREA)
- Civil Engineering (AREA)
- Structural Engineering (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Building Environments (AREA)
Description
Die vorliegende Erfindung betrifft ein Bauelement zur Wärmedämmung nach dem Oberbegriff des Patentanspruchs 1.The present invention relates to a component for thermal insulation according to the preamble of patent claim 1.
Im Stand der Technik sind bereits verschiedene Ausführungsformen von Bauelementen zur Wärmedämmung mit einem separaten Druckkraftverteilungselement bekannt, das dafür sorgt, dass die Druckkraft über eine möglichst große Oberfläche zwischen Druckelement und angrenzendem Bauteil übertragen werden kann. So wiesen in den Anfängen derartiger Bauelemente zur Wärmedämmung Druckelemente einen die Isolierkörperebene durchquerenden Druckstab auf und endständig an den Druckstab angeschweißte Druckplatten, siehe beispielsweise
In der Folgezeit wurden jedoch auch Bauformen vorgeschlagen, bei denen die Druckstege und die Druckkraftverteilungselemente zueinander beweglich angeordnet waren, wie es beispielsweise in der
Im Stand der Technik ist aus der
Des Weiteren ist festzustellen, dass es inzwischen durch die bekannten Lösungen mit zusätzlichem Druckkraftverteilungselement gelungen ist, die Druckkraftübertragung durch gattungsgemäße Bauelemente zur Wärmedämmung zu optimieren und dennoch temperaturbedingte Relativbewegungen zwischen den angrenzenden Bauteilen nicht bzw. nur kaum zu behindern. Bei aller angestrebter Optimierung der Druckkraftübertragung und gleichzeitiger Aufrechterhaltung der Beweglichkeit ist jedoch in der Vergangenheit eine weitere Optimierung hinsichtlich der Wärmedämmung etwas aus dem Fokus gerückt, welche seit Beginn der Hauptgrund für die Entwicklungen auf dem Gebiet der Bauelemente zur Wärmedämmung war. Die querschnittsreduzierten Druckstege des Standes der Technik gründeten dabei bereits auf der Erkenntnis, dass eine bessere Wärmedämmung mit einer möglichst geringen Querschnittsfläche im Bereich des Drucksteges einhergeht. Mit anderen Worten, je kleiner der Querschnitt bei einem gegebenen Druckstegmaterial ist, desto geringer ist auch der Wärmedurchgang, also die durch den Drucksteg übertragene Wärme.Furthermore, it should be noted that it has now been possible by the known solutions with additional pressure-force distribution element to optimize the pressure transmission by generic components for thermal insulation and yet not or only slightly hinder temperature-related relative movements between the adjacent components. For all aspired Optimization of the compressive force transfer while maintaining mobility has, however, in the past, brought further attention to further optimization in terms of thermal insulation, which has been the main reason for developments in the field of thermal insulation since the beginning. The cross-section reduced pressure ridges of the prior art were already based on the knowledge that better thermal insulation is accompanied by the smallest possible cross-sectional area in the region of the pressure ridge. In other words, the smaller the cross section of a given print web material, the lower the heat transfer, so the transmitted heat through the print bridge.
Gleichwohl ist jedoch zur Aufrechterhaltung der erforderlichen Druckkraftübertragung ein gewisses Maß an stirnseitiger Krafteinleitungsfläche erforderlich. Aus diesem Grund sind im Stand der Technik Druckelemente bekannt, bei denen die Druckstege bei reduzierter Querschnittsfläche in einem mittleren Bereich endständig wieder mit einem größeren Querschnitt versehen sind, siehe z.B.
In der
Hiervon ausgehend liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Bauelement der eingangs genannten Art zur Verfügung zu stellen, das hinsichtlich der Druckkraftübertragung, der Wärmedämmung und der Aufnahme von Relativbewegungen im Bereich des Druckelements optimiert ist.On this basis, the present invention has the object to provide a device of the type mentioned above, which is optimized in terms of pressure transmission, thermal insulation and the inclusion of relative movements in the region of the pressure element.
Diese Aufgabe wird erfindungsgemäß gelöst durch ein Bauelement zur Wärmedämmung mit den Merkmalen des Patentanspruchs 1.This object is achieved by a device for thermal insulation with the features of claim 1.
Vorteilhafte Weiterbildungen der Erfindung sind jeweils Gegenstand von Unteransprüchen, deren Wortlaut hiermit durch ausdrückliche Bezugnahme in die Beschreibung aufgenommen wird, um unnötige Textwiederholungen zu vermeiden.Advantageous developments of the invention are the subject of subclaims, the wording of which is hereby included by express reference in the description in order to avoid unnecessary text repetitions.
Erfindungsgemäß ist das Druckkraftverteilungselement aus einem Material hergestellt, das eine Wärmeleitfähigkeit λ aufweist, die niedriger ist als 2,0 W/mK, so dass es eine Wärmeleitfähigkeit aufweist, die niedriger, d.h. besser ist als der üblicherweise verwendete Stahlbeton. Dieser Anforderung liegt die Erkenntnis zugrunde, dass dem angrenzenden Bauteil, welches üblicherweise aus ei nem Stahlbeton, insbesondere aus einem Beton der Festigkeitsklasse C20/25 nach DIN 1045-1 oder höher besteht, ein Druckkrafteinleitungsbereich für das Druckelement vorgeschaltet werden soll, der gleichzeitig eine deutliche verbesserte Wärmedämmeigenschaft aufweist. Das heißt, das erfindungsgemäße Druckelement liefert einen Druckkrafteinleitungsbereich für das angrenzende Bauteil in Form des Druckkraftverteilungselements mit, ersetzt also den entsprechenden Bereich des angrenzenden Bauteils durch einen eigenen Bereich mit optimierten Eigenschaften. Und damit dies nicht nur zu einer verbesserten Druckkrafteinleitung führt, sondern auch zu verbesserten Wärmedämmeigenschaften, ist das Druckkraftverteilungselement erfindungsgemäß mit einer Wärmeleitfähigkeit λ von unter 2,0 W/mK ausgestaltet.According to the invention, the compressive force distribution element is made of a material having a thermal conductivity λ which is lower than 2.0 W / mK, so that it has a thermal conductivity which is lower, that is better than the commonly used reinforced concrete. This requirement is based on the knowledge that the adjacent component, which usually consists of egg nem reinforced concrete, in particular made of a concrete of the strength class C20 / 25 according to DIN 1045-1 or higher, a pressure force introduction area for the pressure element to be connected upstream, which at the same time has a significant improved thermal insulation property. In other words, the pressure element according to the invention provides a pressure force introduction region for the adjacent component in the form of the pressure force distribution element, thus replacing the corresponding region of the adjacent component with its own region having optimized properties. And in order for this not only leads to an improved pressure force introduction, but also to improved thermal insulation properties, the pressure force distribution element according to the invention with a thermal conductivity λ of less than 2.0 W / mK configured.
Besonders bevorzugt ist es, wenn das Material des Druckkraftverteilungselements eine Wärmeleitfähigkeit λ aufweist, die niedriger als 1,6 W/mK und insbesondere niedriger als 1,0 W/mK ist. Dabei ist es bereits aus dem Stand der Technik bekannt, anstelle herkömmlicher Druckelemente aus Stahl, insbesondere Edelstahl, zur Optimierung der Wärmedämmung hochfeste oder ultrahochfeste Betone zu verwenden, die nicht nur eine bessere Tragfähigkeit aufweisen und damit einen geringeren Querschnitt zur geforderten Druckkraftübertragung benötigen, sondern auch eine geringere Wärmeleitfähigkeit als Stahl. Wird also für nicht nur als Material der Druckstege, sondern auch noch für das Material der Druckkraftverteilungselement hochfester oder ultrahochfester Beton oder Mörtel verwendet, so lässt sich nicht nur über die verbesserte Druckkrafteinleitung in die angrenzenden Bauteile die Tragfähigkeit verbessern, sondern gleich auch die Wärmedämmung im Krafteinleitungsbereich.It is particularly preferred if the material of the pressure force distribution element has a thermal conductivity λ which is lower than 1.6 W / mK and in particular lower than 1.0 W / mK. It is already known from the prior art, instead of conventional pressure elements made of steel, especially stainless steel, to use high-strength or ultra-high-strength concretes for optimizing the thermal insulation, which not only have a better load capacity and thus require a smaller cross-section to the required pressure force transmission, but also a lower thermal conductivity than steel. Thus, if high-strength or ultrahigh-strength concrete or mortar is used not only as the material of the pressure bridges, but also for the material of the pressure force distribution element, then the load-bearing capacity can be improved not only via the improved pressure force introduction into the adjacent components, but also the thermal insulation in the force introduction area ,
Besonders vorteilhaft für die Bestückung und die Montage des Bauelements zur Wärmedämmung ist es, dass das Druckelement ein Lagesicherungselement aufweist und das Druckkraftverteilungselement über das Lagesicherungselement am Drucksteg positionierbar ist. Dadurch ist es in besonders vorteilhafter Art und Weise möglich, die durch das separate Druckkraftverteilungselement bereits begonnene Funktionentrennung weiter zu betreiben und ein zusätzliches Lagesicherungselement vorzusehen, so dass also weder der Drucksteg noch das Druckkraftverteilungselement selbst für die Lagesicherung sorgen müssen, sondern dass diese über ein separates Bauteil erfolgt.Particularly advantageous for the assembly and assembly of the component for thermal insulation is that the pressure element has a position securing element and the pressure force distribution element can be positioned on the pressure ridge via the position securing element. As a result, it is possible in a particularly advantageous manner to continue operating the separation of functions already started by the separate pressure force distribution element and to provide an additional position securing element, so that neither the pressure ridge nor the pressure force distribution element itself must provide for securing the position, but that this has a separate function Component takes place.
Damit können Drucksteg und Druckkraftverteilungselement weiter hinsichtlich der Ihnen zugedachten Druckkraftübertragungsfunktion optimiert sein. Beispielsweise kann das Druckelement einen möglichst minimalen Querschnitt aufweisen, der zu einer demgemäß reduzierten Wärme- bzw. Kälteübertragung durch die Bauteilfuge bzw. den darin angeordneten Isolierkörper führt. Um aber gleichzeitig die Druckkraftübertragung zu verbessern, muss der Drucksteg stirnseitig nicht selbst eine möglichst große Druckkrafteinleitüngsfiäche aufweisen, sondern kann dies durch das Verwenden des separaten Druckkraftverteilungselements gewährleisten, das entsprechend großflächig ausgebildet sein kann. Damit nun die Druckkraftübertragung zwischen Drucksteg und separatem Druckkraftverteilungselement in optimaler Art und Weise erfolgen kann, sorgt das erfindungsgemäß vorgesehene Lagesicherungselement dafür, dass beide Bauteile in der ihnen zugedachten gegenseitigen Orientierung und Position eingebaut werden, wobei dieses Lagesicherungselement auch für eine etwaige gewünschte Relativbeweglichkeit zwischen Druckkraftverteilungselement und Drucksteg sorgen kann.In this way, the pressure bar and pressure force distribution element can be further optimized with regard to the pressure force transmission function intended for you. For example, the pressure element may have the smallest possible cross section, which leads to a correspondingly reduced heat or cold transmission through the component joint or the insulating body arranged therein. But at the same time to improve the pressure force transmission, the pressure bar frontally does not have even the largest possible Druckkrafteinleitüngsfiäche, but can ensure this by using the separate pressure force distribution element, which can be designed correspondingly large area. So that now the pressure force transmission between the pressure bridge and separate pressure force distribution element can be carried out in an optimal manner, the inventively provided position assurance element ensures that both components are installed in the mutual orientation and position intended for them, this position assurance element also for any desired relative mobility between pressure force distribution element and Drucksteg can provide.
Vorteilhafterweise sind also die Druckkraftverteilungselemente durch jeweils ein Lagesicherungselement im Bereich der Stirnseite am Drucksteg festlegbar, wobei zweckmäßigerweise die eigentliche Festlegung außerhalb des Druckkraftübertragungsbereichs, also insbesondere außerhalb der Stirnseiten erfolgt.Advantageously, therefore, the pressure force distribution elements can be fixed by a respective position securing element in the region of the end face on the pressure ridge, wherein expediently the actual fixing takes place outside the pressure force transmission region, ie in particular outside the end faces.
Ein besonderer Vorteil ergibt sich dann, wenn das Lagesicherungselement aus einer Gießform besteht und das Druckkraftverteilungselement und/oder der Drucksteg aus einem in die Gießform einbringbaren aushärtenden und/oder abbindfähigen Füllstoff besteht, insbesondere aus einem zementhaltigen, faserbewehrten Baustoff wie Beton, wie hochfester oder ultrahochfester Beton oder wie hochfester oder ultrahochfester Mörtel oder aus einem Kunstharzgemisch oder aus einem Reaktionsharz. Dadurch ist sichergestellt, dass das Lagesicherungselement und das Druckkraftverteilungselement einerseits und/oder das Lagesicherungselement und der Drucksteg andererseits passgenau zueinander angeordnet sind. Wird dann die Gießform in einem bevorzugten Ausführungsbeispiel zusammen mit dem Druckkraftverteilungselement und/oder dem Drucksteg eingebaut, bildet also das Lagesicherungselement eine verlorene Gießform, so lässt sich sicherstellen, dass die optimale Anlage des Druckkraftverteilungselements und/oder des Druckstegs am Lagesicherungselement auch nach dem Einbau beibehalten wird und die Gießform eine toleranzfreie an die Oberfläche des Druckkraftverteilungselements und/oder den Drucksteg optimal angepasste Oberfläche zur Verfügung stellt.A particular advantage arises when the position assurance element consists of a casting mold and the pressure force distribution element and / or the pressure ridge consists of an insertable into the mold curing and / or settable filler, in particular of a cementitious, fiber-reinforced building material such as concrete, such as high-strength or ultra-high strength Concrete or as high-strength or ultra-high-strength mortar or from a synthetic resin mixture or from a reaction resin. This ensures that the position securing element and the pressure force distribution element on the one hand and / or the position securing element and the pressure bridge on the other hand are precisely matched to one another. If the mold is then installed in a preferred embodiment together with the pressure force distribution element and / or the pressure bridge, thus forms the position assurance element a lost mold, it can be ensured that the optimal investment of the pressure force distribution element and / or the pressure ridge on the position assurance element also after Installation is maintained and the mold provides a tolerance-free to the surface of the pressure force distribution element and / or the print bridge optimally adapted surface.
Weitere Vorteile ergeben sich dadurch, dass das Lagesicherungselement eine Gleitschicht zwischen dem Drucksteg und dem Druckkraftverteilungselement bildet; wenn also bereits das Lagesicherungselement ohnehin vorhanden ist, kann es in erfindungsgemäßer Art und Weise auch die Funktion einer Gleitschicht übernehmen, die bei beweglich gelagerten Druckelementen ohnehin oft vorhanden ist. Da auch dort bei den üblichen Anwendungsfällen die Gleitschicht lagegesichert am Druckelement festgelegt werden muss, ist es vorliegend besonders vorteilhaft, wenn dies durch das erfindungsgemäße Lagesicherungselement erfolgen kann, die Gleitschicht also selbst aus dem Lagesicherungselement besteht. Als Gleitschicht ist in diesem Zusammenhang nicht eine etwaige dünnschichtige Auftragung einer Beschichtung auf Drucksteg und/oder Druckkraftverteilungselement zu verstehen, sondern eine körperliche Schicht, die erfindungsgemäß aus dem Lagesicherungselement und insbesondere der genannten Gießform bestehen kann. Die Gleitschicht weist dabei üblicherweise eine Schichtdicke in der Größenordnung von wenigen Zehntel Millimeter und bevorzugt 0,5 mm und darüber auf.Further advantages result from the fact that the position securing element forms a sliding layer between the pressure bridge and the pressure force distribution element; Thus, if already the position securing element is already present anyway, it can also assume the function of a sliding layer according to the invention, which is often already present in the case of movably mounted printing elements. Since the sliding layer must be fixed to the pressure element in position there in the usual applications, it is particularly advantageous in the present case if this can be done by the position assurance element according to the invention, the sliding layer itself consists of the position assurance element. In this context, a sliding layer is not to be understood as meaning any thin-layered application of a coating on pressure ridge and / or pressure force distribution element, but rather a physical layer which, according to the invention, may consist of the position-securing element and in particular of the mentioned casting mold. The overlay usually has a layer thickness of the order of a few tenths of a millimeter and preferably 0.5 mm and above.
Es liegt dabei im Rahmen der vorliegenden Erfindung, wenn das Lagesicherungselement aus einer Gießform für das Druckelement besteht, wie es beispielsweise aus der
Dabei ist es möglich und regelmäßig auch sinnvoll, sowohl Drucksteg als auch Druckkraftverteilungselement durch ein und dieselbe Gießform herzustellen. Ebenso ist es aber natürlich auch möglich, nur eines der beiden Elemente durch die Gießform herzustellen und das jeweils andere Element beispielsweise vorzufertigen.It is possible and regularly useful to produce both pressure ridge and pressure force distribution element by one and the same mold. Likewise, it is of course also possible to produce only one of the two elements through the mold and prefabricate the other element, for example.
Wie bereits erwähnt, können der Drucksteg und das Druckkraftverteilungselement miteinander unter Zwischenfügen des Lagesicherungselements gelenkig verbunden sein, wobei dann das Lagesicherungselement eine Gleitschicht für die Pendel- bzw. Schwenkbewegung zwischen Drucksteg und Druckkraftverteilungselement bilden kann.As already mentioned, the pressure bar and the pressure force distribution element can be connected to one another by interposing the position securing element, wherein the position securing element then forms a sliding layer for can form the pendulum or pivotal movement between the pressure bridge and pressure force distribution element.
In diesem Zusammenhang empfiehlt es sich, dass der Drucksteg an seiner Stirnseite ein dem Bauteil zugewandtes im Vertikalschnitt und/oder im Horizontalschnitt konkav oder konvex gewölbtes Kontaktprofil aufweist und dass das Druckkraftverteilungselement eine im Vertikalschnitt und/oder im Horizontalschnitt in der Form an das Kontaktprofil entgegengesetzt angepasste konvex oder konkav gewölbte Krafteinleitungsfläche aufweist, so dass Drucksteg und Druckkraftverteilungselement flächig entlang einer gewölbten Oberfläche aneinander anliegen. Wenn diese Wölbung eine Kreisbogenform aufweist, lässt sich hierdurch eine gelenkige Bewegung des Druckstegs gegenüber dem Druckkraftverteilungselement entlang der kreisbogenförmigen gewölbten Oberfläche zur Verfügung stellen.In this context, it is recommended that the pressure bar on its front side facing the component in a vertical section and / or in horizontal section concave or convex curved contact profile and that the pressure force distribution element adapted in vertical section and / or horizontal section in the form of the contact profile opposite Has convexly or concavely curved force introduction surface, so that pressure ridge and compressive force distribution element abut each other flat along a curved surface. If this curvature has a circular arc shape, an articulated movement of the pressure ridge relative to the pressure force distribution element along the arcuate curved surface can thereby be provided.
Besonders empfehlenswert ist es, wenn das Druckkraftverteilungselement vollständig oder zumindest überwiegend im angrenzenden Bauteil angeordnet ist; dann kann sich der Drucksteg auf den Bereich des Isolierkörpers beschränken und das Druckkraftverteilungselement durch form- bzw. stoffschlüssige Verbindung mit dem angrenzenden Bauteil mitbewegt werden, so dass dann die Relativbewegung vorzugsweise im Randbereich des Isolierkörpers, also in der Trennfläche zwischen Isolierkörper und Bauteil erfolgt. Dazu empfiehlt es sich also, dass der Drucksteg mit seiner dem benachbarten Bauteil zugewandten Stirnfläche zumindest in etwa bündig mit der Isolierkörperseitenfläche abschließt.It is particularly advisable if the pressure force distribution element is arranged completely or at least predominantly in the adjacent component; then the pressure ridge can be limited to the region of the insulating body and the pressure force distribution element be moved by positive or cohesive connection with the adjacent component, so that then the relative movement is preferably carried out in the edge region of the insulating body, ie in the interface between insulator and component. For this purpose, it is therefore recommended that the pressure bar with its adjacent component facing end face terminates at least approximately flush with the Isolierkörperseitenfläche.
Alternativ dazu kann natürlich das Druckkraftverteilungselement auch im Bereich der Bauteilfuge, also im Isolierkörperbereich angeordnet sein, wobei es dennoch auch bei dieser Ausführungsform vorteilhaft wäre, das Druckkraftverteilungselement mit dem angrenzenden Bauteil derart fest zu verbinden, dass eine etwaige Relativbewegung zwischen den angrenzenden Bauteilen vom Druckkraftverteilungselement auf den Anlagebereich zwischen Drucksteg und Druckkraftverteilungselement übertragen wird und so im vom Lagesicherungselement gebildeten Gleitschichtbereich stattfindet, der hinsichtlich der Beweglichkeit und Passgenauigkeit optimiert ist.Alternatively, of course, the pressure force distribution element may also be arranged in the area of the component joint, ie in the insulating body region, whereby it would nevertheless be advantageous in this embodiment to connect the pressure force distribution element with the adjacent component so firmly that any relative movement between the adjacent components from the pressure force distribution element the contact area between the pressure bridge and compressive force distribution element is transmitted and thus takes place in the sliding layer area formed by the position assurance element, which is optimized in terms of mobility and accuracy of fit.
In diesem Zusammenhang empfiehlt es sich, dass das Lagesicherungselement aus Kunststoff, insbesondere aus HD-Polyethylen besteht, welches optimale Festigkeitswerte bei entsprechend optimalen Oberflächen-/Gleiteigenschaften aufweist.In this context, it is recommended that the position assurance element made of plastic, in particular HD polyethylene, which has optimum strength values with correspondingly optimal surface / sliding properties.
Weiterhin liegt es im Rahmen der vorliegenden Erfindung, dass die den beiden einander gegenüberliegenden Stirnseiten eines Drucksteges zugeordneten Lagesicherungselemente miteinander beispielsweise über ein Verbindungselement verbunden sind, so dass hierdurch eine Einheit aus Drucksteg, stirnseitig jeweils angeschlossenen Druckkraftverteilungselementen und zugehörigen Lagesicherungselementen mit Verbindungselement zur Verfügung gestellt und diese Einheit gemeinsam in den Isolierkörperbereich eingesetzt werden kann, der für sie vorgesehen ist. Alternativ dazu ist es natürlich aber auch möglich, die Einzelteile nacheinander im Isolierkörper anzuordnen, beispielsweise wenn das Lagesicherungselement aus einer Gießform besteht und das jeweilige Element erst im eingesetzten Zustand des Lagesicherungselements in den Isolierkörper hergestellt werden soll. Schließlich ist es durch die vorliegende Erfindung auch möglich, ein gemeinsames Lagesicherungselement für zwei zueinander horizontal benachbarte, insbesondere nebeneinander angeordnete Druckstege vorzusehen, wobei durch das gemeinsame Lagesicherungselement entweder für jeden Drucksteg ein separates Druckkraftverteilungselement zur Verfügung gestellt werden kann oder auch ein gemeinsames Druckkraftverteilungselement für die zwei benachbarten Druckstege.Furthermore, it is within the scope of the present invention for the position securing elements assigned to the two mutually opposite end faces of a pressure ridge to be connected to one another, for example via a connecting element, thereby providing a unit of pressure ridge, respectively connected pressure force distribution elements and associated position securing elements with connecting element Unit can be used together in the Isolierkörperbereich which is provided for them. Alternatively, it is of course also possible to arrange the items in succession in the insulating body, for example, if the position assurance element consists of a mold and the respective element is to be made only in the inserted state of the position assurance element in the insulator. Finally, it is also possible by the present invention to provide a common position assurance element for two mutually horizontally adjacent, in particular juxtaposed pressure webs, which can be provided by the common position assurance element either for each print web a separate pressure force distribution element or a common pressure force distribution element for the two adjacent pressure bridges.
Weitere Merkmale und Vorteile der vorliegenden Erfindung ergeben sich aus der nachfolgenden Beschreibung eines Ausführungsbeispiels anhand der Zeichnung; hierbei zeigen
Figur 1a-1e- ein Lagesicherungselement für ein erfindungsgemäßes Bauelement zur Wärmedämmung in
Figur 1d in perspektivischer Draufsicht, in im Vertikalschnitt, inFigur 1b im Horizontalschnitt entlang der EbeneFigur 1aB-B aus Figur 1b , inFigur 1c im Horizontalschnitt entlang der EbeneA-A aus Figur 1b und inFigur 1e in perspektivischer Draufsicht auf einen Schnitt entlang der EbeneA-A aus Figur 1 b; - Figur 2
- ein Druckelement eines erfindungsgemäßen Bauelements zur Wärmedämmung in Seitenansicht mit Drucksteg, stirnseitig angeschlossenen Druckkraftverteilungselementen und Lagesicherungselementen;
- Figur 3
- das Druckelement aus
Figur 2 mit Drucksteg, Lagesicherungselementen und Druckkraftverteilungselementen in Draufsicht; - Figur 4
- eine alternative Ausführungsform eines Druckelements eines erfindungsgemäßen Bauelements zur Wärmedämmung in Draufsicht;
- Figur 5
- eine Ausführungsform eines Bauelements zur Wärmedämmung in Seitenansicht;
- Figuren 6 - 8
- verschiedene Ausführungsformen eines Druckelements eines Bauelements zur Wärmedämmung in perspektivischer Seitenansicht; und
- Figur 9
- das Druckelement aus
Figur 8 in geschnittener Seitenansicht.
- Figure 1a-1e
- a position assurance element for a device according to the invention for thermal insulation in
Figure 1d in a perspective plan view, inFIG. 1b in vertical section, inFIG. 1a in horizontal section along the plane BBFIG. 1b , inFigure 1c in horizontal section along the plane AAFIG. 1b and inFigure 1e in a perspective plan view of a section along the plane AAFIG. 1 b; - FIG. 2
- a pressure element of a device according to the invention for thermal insulation in side view with pressure bar, front side connected pressure force distribution elements and position assurance elements;
- FIG. 3
- the pressure element off
FIG. 2 with print bridge, position assurance elements and pressure force distribution elements in plan view; - FIG. 4
- an alternative embodiment of a pressure element of a device according to the invention for thermal insulation in plan view;
- FIG. 5
- an embodiment of a device for thermal insulation in side view;
- FIGS. 6-8
- various embodiments of a pressure element of a component for thermal insulation in a perspective side view; and
- FIG. 9
- the pressure element off
FIG. 8 in cut side view.
In den
Erfindungsgemäß ist nun im Bereich der Bauteile A, B im Bereich der Stirnseiten der Druckelemente 19a, 19b jeweils ein Druckkraftverteilungselement 20a, 20b vorgesehen, welches zur Druckkrafteinleitung bzw. Druckkraftausleitung zwischen den Druckelementen 19a, 19b und den angrenzenden Bauteilen A, B, dient. Im gezeigten Ausführungsbeispiel bilden zwei Druckstege 19a, 19b und zwei Druckkraftverteilungselemente 20a, 20b zusammen ein Druckelement 12. Der Vollständigkeit halber sei hierzu angemerkt, dass es ebenso im Rahmen der Erfindung liegt, dass Druckelemente nur einen Drucksteg und insgesamt zwei jeweils stirnseitig an den Drucksteg angeschlossene Druckkraftverteilungselemente aufweisen.According to the invention, a pressure
Die Druckkraftverteilungselemente 20a, 20b schließen im Wesentlichen bündig mit den Seitenflächen der Bauteile A, B ab und verlaufen somit im eingebauten Zustand entlang der Seitenflächen 21a, 21b des Isolierkörpers 16. Lediglich im Bereich der Druckelemente springen sie etwas aus dieser bündigen Erstreckung zurück und sind dort angepasst an die kreisbogenförmig gewölbten Stirnseiten 22a, 22b, 22c, 22d der Druckelemente 19a, 19b und weisen somit hieran angepasste komplementäre kreisbogenförmig Rücksprünge 23a bis 23d auf.The pressure
Wie insbesondere aus der Draufsicht in
Erfindungswesentlich ist nun, dass die Druckkraftverteilungselemente aus einem Material bestehen, das eine Wärmeleitfähigkeit A aufweist, die niedriger ist als 2,0 W/mK. Beim in der Zeichnung dargestellten Ausführungsbeispiel ist eine Ausführungsform gezeigt mit Druckkraftverteilungselementen, die aus hochfestem Beton bestehen und somit eine Wärmeleitfähigkeit in der Größenordnung von nur 0,8 W/mK. Der Ortbeton des hieran angrenzenden Betonbauteils A, B hat demgegenüber eine Wärmeleitfähigkeit λ von etwa 2,1 W/mK. Hieraus ist schnell und unschwer erkennbar, dass das erfindungsgemäße Druckkraftverteilungselement eine Isolierschicht für das angrenzende Bauteil darstellt, es also die im Bereich des Druckstegs bereits deutlich reduzierte Wärmeleitfähigkeit (im vorliegenden Ausführungsbeispiel bestehen auch die Druckstege aus hochfestem Beton mit einer Wärmeleitfähigkeit in der Größenordnung von nur 0,8 W/mK) bis in den Bereich des angrenzenden Bauteils aufrechterhält.It is essential to the invention that the compressive force distribution elements consist of a material which has a thermal conductivity A which is lower than 2.0 W / mK. In the embodiment shown in the drawing, an embodiment is shown with pressure-force distribution elements, which consist of high-strength concrete and thus a thermal conductivity in the order of only 0.8 W / mK. In contrast, the in-situ concrete of the adjacent thereto concrete component A, B has a thermal conductivity λ of about 2.1 W / mK. From this it is quickly and easily recognizable that the pressure force distribution element according to the invention represents an insulating layer for the adjacent component, so it already in the pressure web already significantly reduced thermal conductivity (in the present embodiment, the pressure bridges made of high-strength concrete with a thermal conductivity in the order of only 0 , 8 W / mK) up to the area of the adjacent component.
Erfindungswesentlich ist außerdem, dass zwischen den Druckelementen 19a, 19b und den Druckkraftverteilungselementen 20a, 20b Lagesicherungselemente 11a, 11b angeordnet sind, die die Druckstege 19a, 19b und die Druckkraftverteilungselemente 20a, 20b gegenseitig positionieren und vorzugsweise auch festlegen. Diese Lagesicherungselemente 11a, 11b bestehen im gezeigten Ausführungsbeispiel aus einer Gießform für die Druckstege 19a, 19b und für die Druckkraftverteilungselemente 20a, 20b und sie entsprechen den Lagesicherungselementen 1 a, 1 b aus
Im Ausführungsbeispiel aus den
In den
In
Die Gießform 13 weist nicht nur die Hohlräume 2a, 2b, 7a, 7b des Lagesicherungselements auf, sondern auch gekrümmte Oberflächen 3a, 3b, 3c, 3d, die als Gießform-Teil zweier in
Weiter ist in
Dem in
Die Druckstege hingegen bestehen aus ohne Beteiligung der Gießform 33 bzw. der Lagesicherungselemente 31 a, 31 b vorgefertigten Betonelementen. Sie werden im Bereich seitlich ihrer Stirnseiten 42a, 42b, 42c, 42d von den Lagesicherungselementen 31 a, 31 b umgriffen und so in der vorgegebenen Position gegenüber den Druckkraftverteilungselementen 30a, 30b festgelegt.The pressure bridges, however, consist of without involvement of the mold 33 and the
In
Im Gegensatz dazu sind die Druckelemente 58 unterschiedlich im Vergleich zu den bekannten Druckelementen ausgebildet. Sie bestehen aus durch den Isolierkörper 56 in Horizontalrichtung und senkrecht zu dessen Längserstreckung verlaufenden Druckstegen 59, die sich in Horizontalrichtung von einem angrenzenden Bauteil A, beispielsweise einer Deckenplatte zu einem gegenüberliegenden angrenzenden Bauteil B, beispielsweise einer Balkonplatte, erstrecken, sowie aus stirnseitig an den Druckstegen 59 angeordneten Druckkraftverteilungselementen 60a, 60b. Das dem Bauteil B zugeordnete Druckkraftverteilungselement 60b dient dazu, die Druckkraft des getragenen Bauteils B aufzunehmen und in den Drucksteg 59 einzuleiten, wohingegen das dem Bauteil A zugeordnete Druckkraftverteilungselement 60a dazu dient, die Druckkraft aus dem Drucksteg 59 in das Bauteil A zu übertragen und dort einzuleiten.In contrast, the
Die Druckkraftverteilungselemente sind aus hochfestem oder ultrahochfestem Beton ausgebildet und weisen somit die erfindungsgemäße günstige Wärmeleitfähigkeit auf. Im Ausführungsbeispiel aus
Der Vollständigkeit halber sei noch erwähnt, dass die Querkraftstäbe 53 in an sich bekannter Weise in ihrem geneigten Verlauf eine Lagefixierungsmanschette 54 aufweisen, über welches sie gegenüber dem Isolierkörper 56 und/oder dem Drucksteg 59 festgelegt sind, um so ein unbeabsichtigtes Ändern ihrer Einbauposition, insbesondere ein Verschieben oder Verdrehen zu verhindern.For the sake of completeness it should be mentioned that the
Die
In
Aus dem Vertikalschnitt kann man darüber hinaus auch Profilierungen 91 an den dem jeweiligen Bauteil zugewandten Stirnseiten der Druckkraftverteilungselement erkennen, die für einen verbesserten Verbund zwischen Druckkraftverteilungselement und zugehörigem Bauteil sorgen. Dadurch ergibt sich der wesentliche Vorteil, dass sich die Druckkraftverteilungselemente innerhalb des Bauteils bis weit nach unten bis fast oder ganz an dessen Unterkante erstrecken dürfen, ohne die sonst zu berücksichtigende Mindestbetonüberdeckung einhalten zu müssen. Dadurch ergibt sich der Vorteil, dass das Druckelement weit nach unten innerhalb des Bauelements zur Wärmedämmung angeordnet werden darf mit einem größeren Hebelarm gegenüber der Zugbewehrung als in vergleichbaren Fällen, insbesondere mit Druckelementen aus Stahl.From the vertical section one can also recognize profilings 91 on the end faces of the pressure force distribution element facing the respective component, which provide an improved bond between pressure force distribution element and associated component. This results in the significant advantage that the pressure force distribution elements may extend within the component down to almost or almost entirely at the lower edge, without having to comply with the minimum concrete cover otherwise to be considered. This results in the advantage that the pressure element may be arranged far down inside the structural element for thermal insulation with a larger lever arm with respect to the tensile reinforcement than in comparable cases, in particular with pressure elements made of steel.
Zusammengefasst bietet die vorliegende Erfindung den Vorteil, Druckelemente mit zusätzlichen separaten Druckkraftverteilungselementen zur Verfügung zu stellen, die für eine optimale Druckkrafteinleitung bzw. -übertragung sorgen bei gleichzeitig optimaler bzw. deutlich verbesserter Wärmedämmung, indem sie aus einem Material hergestellt sind, das eine Wärmeleitfähigkeit A aufweist, die niedriger ist als 2,0 W/mK, bevorzugt niedriger als 1,6 W/mK und insbesondere niedriger als 1,0 W/mK.In summary, the present invention offers the advantage of providing pressure elements with additional separate pressure force distribution elements, which provide optimum pressure transmission and transmission, while optimally improved thermal insulation by being made of a material having a thermal conductivity A. which is lower than 2.0 W / mK, preferably lower than 1.6 W / mK and especially lower than 1.0 W / mK.
Claims (12)
- Structural element for thermal insulation between two structural components, especially between a building (A) and a projecting exterior part (B), the structural element consisting of an insulator body (16), which is to be arranged between the two structural components, and reinforcing elements in the form of at least one compression element (19a, 19b) which in the installed state of the structural element (10) passes through the insulator body substantially horizontally and transversely with respect to the substantially horizontal longitudinal extent of the insulator body and which is at least indirectly joinable to both structural components, wherein the compression element (12, 32, 58, 68, 78, 88) is of multipart construction and has at least one compression web (19a, 19b, 39a, 39b, 59, 69, 79a, 79b, 89) and, on at least one of its end faces (22a, 22b, 22c, 22d, 93a, 93b) facing towards one of the two structural components, a separate compressive force distribution element (20a, 20b, 30a, 30b, 60a, 60b, 70a, 70b, 80a, 80b, 90a, 90b), the compressive force distribution element (20a, 20b, 30a, 30b, 60a, 60b, 70a, 70b, 80a, 80b, 90a, 90b) being made from a material having a thermal conductivity A that is lower than 2.0 W/mK,
characterised in that
the compression element has a position-securing element (1 a, 1 b, 11 a, 11 b, 31 a, 31 b); the compressive force distribution element (20a, 20b, 30a, 30b) is positionable on the compression web (19a, 19b, 39a, 39b) by means of the position-securing element; and the position-securing element forms a sliding layer (4a, 4b, 4c, 4d, 11 a, 11 b, 42a, 42b, 42c, 42d) between the compression web (19a, 19b, 39a, 39b) and the compressive force distribution element (20a, 20b, 30a, 30b). - Structural element for thermal insulation according to at least claim 1,
characterised in that
the material of the compressive force distribution element (20a, 20b, 30a, 30b, 60a, 60b, 70a, 70b, 80a, 80b, 90a, 90b) has a thermal conductivity λ that is lower than 1.6 W/mK and especially lower than 1.0 W/mK. - Structural element according to at least claim 1,
characterised in that
the compressive force distribution element (20a, 20b, 30a, 30b, 60a, 60b, 70a, 70b, 80a, 80b, 90a, 90b) and/or the compression web (19a, 19b, 39a, 39b, 59, 69, 79a, 79b, 89) consist(s) of a curing and/or settable filler, especially a cement-containing, fibre-reinforced building material, such as concrete, such as high-strength or ultra-high-strength concrete or such as high-strength or ultra-high-strength mortar, or a synthetic resin mixture or a reaction resin. - Structural element according to claim 3,
characterised in that
the position-securing element (1a, 1b, 11a, 11b) consists, at least in part, of a mould (13, 13), and the filler for making the compression web (19a, 19b) and/or the compressive force distribution element (20a, 20b, 30a, 30b) is introducible into the mould. - Structural element according to at least claim 1,
characterised in that
the compression web (19a, 19b, 39a, 39b) and the compressive force distribution element (20a, 20b, 30a, 30b) are articulatedly connected to one another, with the position-securing element (11 a, 11 b, 31 a, 31 b) being inserted therebetween. - Structural element according to at least claim 1,
characterised in that
the compression web (19a, 19b, 89) has a contact profile on its end face (22a, 22b, 22c, 22d, 93a, 93b), which contact profile faces towards the structural component (A, B) and is concavely or convexly curved in vertical section and/or in horizontal section, and the compressive force distribution element (20a, 20b, 90a, 90b) has a convexly or concavely curved force-introduction face (23a, 23b, 23c, 23d, 92a, 92b) which in vertical section and/or in horizontal section is oppositely matched in shape to the contact profile. - Structural element according to at least claim 1,
characterised in that
the compressive force distribution element (20a, 20b, 90a, 90b) projects by means of at least its end face that is remote from the compression web (19a, 19b, 89) into the adjoining structural component (A, B) and, especially, has on that remote end face a surface having a coefficient of friction that has been increased by profiling (91) or roughening. - Structural element according to at least claim 1,
characterised in that
the compressive force distribution element (20a, 20b, 60a, 60b) projects at least partly, preferably predominantly or completely, relative to the insulator body (16, 56) in the direction of an adjoining structural component (A, B) and accordingly is adapted to project at least partly, preferably predominantly or completely, into the adjoining structural component (A, B). - Structural element according to at least claim 1,
characterised in that
the compression web (19a, 19b, 59) terminates with its end face (22a, 22b, 22c, 22d) at least approximately flush with the insulator body side face (21 a, 21 b). - Structural element according to at least claim 1,
characterised in that
the position-securing element (11a, 11b, 31a, 31b) consists of plastics material, especially of HD polyethylene. - Structural element according to at least claim 1,
characterised in that
the position-securing elements (11 a, 11 b) associated with the two mutually opposing end faces (22a, 22b, 22c, 22d) of a compression web (19a, 19b) are joined to one another especially by means of a connecting element (18). - Structural element according to at least claim 1,
characterised in that
two horizontally adjacent compression webs (19a, 19b) have a common compressive force distribution element (20a, 20b) and/or position-securing element (11 a, 11 b).
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16180796.1A EP3118382A1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat insulation |
PL12746343T PL2742191T3 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat-insulating purposes |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102011109962A DE102011109962A1 (en) | 2011-08-11 | 2011-08-11 | Heat insulation element for heat insulation between cantilevered outer structure and building, has position securing elements that are positioned between compression force distributing elements and reinforcing elements |
DE102011109958A DE102011109958A1 (en) | 2011-08-11 | 2011-08-11 | Element for thermal insulation between building and preassembled outer part, has press elements made using two-part or multi-part mold, which is arranged in combination with press elements in element for thermal insulation |
PCT/EP2012/065833 WO2013021070A1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat-insulating purposes |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16180796.1A Division EP3118382A1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat insulation |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2742191A1 EP2742191A1 (en) | 2014-06-18 |
EP2742191B1 true EP2742191B1 (en) | 2016-07-27 |
Family
ID=46651510
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12746343.8A Active EP2742191B1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat-insulating purposes |
EP12746340.4A Active EP2742190B1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat-insulating purposes |
EP16180796.1A Withdrawn EP3118382A1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat insulation |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12746340.4A Active EP2742190B1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat-insulating purposes |
EP16180796.1A Withdrawn EP3118382A1 (en) | 2011-08-11 | 2012-08-13 | Structural element for heat insulation |
Country Status (8)
Country | Link |
---|---|
US (2) | US9382705B2 (en) |
EP (3) | EP2742191B1 (en) |
JP (2) | JP2014527129A (en) |
KR (2) | KR20140064855A (en) |
CA (2) | CA2844955A1 (en) |
PL (2) | PL2742191T3 (en) |
RU (2) | RU2014108884A (en) |
WO (2) | WO2013021069A1 (en) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202013006229U1 (en) * | 2013-07-11 | 2014-10-13 | H-Bau Technik Gmbh | Thermally insulating component |
EP3272958B1 (en) * | 2016-07-22 | 2020-04-01 | SCHÖCK BAUTEILE GmbH | Structural element for heat insulation |
DE102016124736A1 (en) * | 2016-12-19 | 2018-06-21 | Schöck Bauteile GmbH | Component for thermal insulation |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10102930A1 (en) | 2001-01-23 | 2002-07-25 | Schoeck Entwicklungsgmbh | Component for thermal insulation |
US4120066A (en) * | 1977-06-01 | 1978-10-17 | Yves Gerald Leroux | Expansion joint for roadway sections |
DE2829309B2 (en) * | 1978-07-04 | 1980-08-07 | Glacier Gmbh Deva Werke | Method for lining the concave upper side of the lower plate of a tilting movement of a bridge superstructure or the like. enabling warehouse and lined with this method |
NZ229154A (en) * | 1989-05-17 | 1994-01-26 | Ernest Patrick Sansom | Dividing plate and settable filler for concrete joints. |
DE4009987C2 (en) | 1990-03-28 | 1995-08-24 | Schoeck Bauteile Gmbh | Thermal insulation component |
DE4103278A1 (en) | 1991-02-04 | 1992-08-13 | Schoeck Bauteile Gmbh | Thermal insulation element between balcony and main building - has sealing rings to prevent corrosion of reinforcing rods |
DE19627342B4 (en) | 1996-06-29 | 2006-06-22 | Schöck Bauteile GmbH | Component for thermal insulation |
DE19640652A1 (en) | 1996-10-02 | 1998-04-09 | Schoeck Bauteile Gmbh | Component for thermal insulation |
DE19741027A1 (en) | 1997-09-18 | 1999-03-25 | Schoeck Bauteile Gmbh | Heat-insulating building component |
US6878782B2 (en) * | 1999-12-01 | 2005-04-12 | General Electric | Thermoset composition, method, and article |
DE10102931A1 (en) | 2001-01-23 | 2002-07-25 | Schoeck Entwicklungsgmbh | Component for thermal insulation |
US7596922B2 (en) * | 2002-10-11 | 2009-10-06 | Englekirk Partners Consulting Structural Engineers, Inc. | Structural wall coupling system |
DE502004005013D1 (en) | 2004-02-11 | 2007-10-31 | Halfen Gmbh | Thermally insulating component |
DE102006032444A1 (en) | 2006-07-13 | 2008-01-17 | Schöck Bauteile GmbH | Construction element used as heat insulation between two components to be covered with concrete comprises a connecting element traversing and fixing an insulating body relative to a compression and/or transverse force element and tie rods |
EP1892344B1 (en) | 2006-08-22 | 2008-10-08 | HALFEN GmbH | Thermally insulating construction element |
DE102007014922A1 (en) | 2007-03-22 | 2008-09-25 | Bert Kolpatzik | Pressure element of a component for thermal insulation |
CH700251B1 (en) * | 2007-10-08 | 2010-07-30 | Pakon Ag | Precast for connecting a cantilevered concrete slab on a concrete structure. |
DE102008029701A1 (en) | 2008-06-24 | 2009-12-31 | Schöck Bauteile GmbH | Component for thermal insulation and insulation material for construction applications |
US8991124B2 (en) | 2008-10-17 | 2015-03-31 | Schöck Bauteile GmbH | Concrete material, construction element for a thermal insulation, and brick-shaped thermally insulating element, each using the concrete material |
PL2354343T3 (en) * | 2010-02-10 | 2014-12-31 | Ruwa Drahtschweisswerk Ag | Cantilever plate connecting element / pressure elements |
-
2012
- 2012-08-13 EP EP12746343.8A patent/EP2742191B1/en active Active
- 2012-08-13 RU RU2014108884/03A patent/RU2014108884A/en not_active Application Discontinuation
- 2012-08-13 KR KR1020147006403A patent/KR20140064855A/en not_active Application Discontinuation
- 2012-08-13 CA CA2844955A patent/CA2844955A1/en not_active Abandoned
- 2012-08-13 CA CA2844952A patent/CA2844952A1/en not_active Abandoned
- 2012-08-13 EP EP12746340.4A patent/EP2742190B1/en active Active
- 2012-08-13 US US14/238,302 patent/US9382705B2/en not_active Expired - Fee Related
- 2012-08-13 WO PCT/EP2012/065818 patent/WO2013021069A1/en active Application Filing
- 2012-08-13 EP EP16180796.1A patent/EP3118382A1/en not_active Withdrawn
- 2012-08-13 WO PCT/EP2012/065833 patent/WO2013021070A1/en active Application Filing
- 2012-08-13 RU RU2014108886/03A patent/RU2014108886A/en not_active Application Discontinuation
- 2012-08-13 US US14/238,286 patent/US9435115B2/en not_active Expired - Fee Related
- 2012-08-13 JP JP2014524420A patent/JP2014527129A/en active Pending
- 2012-08-13 PL PL12746343T patent/PL2742191T3/en unknown
- 2012-08-13 JP JP2014524417A patent/JP2014525523A/en active Pending
- 2012-08-13 PL PL12746340T patent/PL2742190T3/en unknown
- 2012-08-13 KR KR1020147006404A patent/KR20140068958A/en not_active Application Discontinuation
Also Published As
Publication number | Publication date |
---|---|
CA2844955A1 (en) | 2013-02-14 |
JP2014527129A (en) | 2014-10-09 |
KR20140068958A (en) | 2014-06-09 |
RU2014108886A (en) | 2015-09-20 |
US20140190108A1 (en) | 2014-07-10 |
RU2014108884A (en) | 2015-09-20 |
EP2742190B1 (en) | 2017-12-20 |
CA2844952A1 (en) | 2013-02-14 |
PL2742191T3 (en) | 2017-08-31 |
PL2742190T3 (en) | 2018-06-29 |
EP2742191A1 (en) | 2014-06-18 |
EP2742190A1 (en) | 2014-06-18 |
US9382705B2 (en) | 2016-07-05 |
US9435115B2 (en) | 2016-09-06 |
JP2014525523A (en) | 2014-09-29 |
EP3118382A1 (en) | 2017-01-18 |
US20140202102A1 (en) | 2014-07-24 |
KR20140064855A (en) | 2014-05-28 |
WO2013021070A1 (en) | 2013-02-14 |
WO2013021069A1 (en) | 2013-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3191657B1 (en) | Lost formwork in high strength or ultra high strength concrete | |
EP1225282A2 (en) | Heat insulation building element | |
DE19711813C2 (en) | Thermally insulating component | |
EP2742191B1 (en) | Structural element for heat-insulating purposes | |
EP2610410A2 (en) | Construction element for heat insulation | |
AT396151B (en) | CONNECTING ELEMENT FOR CANTILEVER PLATES AND CONNECTING ELEMENT COMPOSED FROM MULTIPLE CONNECTING ELEMENTS | |
DE19543768A1 (en) | Attachment for balcony on building | |
WO2005106144A1 (en) | Cantilever plate connection arrangement | |
EP2055845A2 (en) | Cantilever plate connecting element | |
EP0933482B1 (en) | Prefabricated element for cantilevered balcony slab | |
EP1887155B1 (en) | Thermal insulation element | |
EP1548196A1 (en) | Connection element for a high flexural stiffness joint between construction elements | |
CH700251B1 (en) | Precast for connecting a cantilevered concrete slab on a concrete structure. | |
EP1889980B1 (en) | Thermally insulating construction element | |
EP1229176A2 (en) | Cantilever plate element | |
EP0745733A1 (en) | Cantilever plate element and/or seal element for reinforced building constructions | |
DE102011109962A1 (en) | Heat insulation element for heat insulation between cantilevered outer structure and building, has position securing elements that are positioned between compression force distributing elements and reinforcing elements | |
DE19627342A1 (en) | Component for thermal insulation | |
WO2008113348A2 (en) | Constructional element for thermal insulation | |
EP3663475B1 (en) | Device for decoupling heat between a concrete wall of a building and a ceiling and production method | |
WO2008144790A2 (en) | Connecting element and cavity wall element comprising connecting elements of this type | |
EP3514296A1 (en) | Reinforcement cage | |
EP1676684B1 (en) | Method for manufacturing a building block | |
AT392665B (en) | SURFACE | |
EP2679737B1 (en) | Construction element for heat insulation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20140127 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160303 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 815919 Country of ref document: AT Kind code of ref document: T Effective date: 20160815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502012007792 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FI Payment date: 20160909 Year of fee payment: 5 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161027 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161127 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20160922 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161128 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161028 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20161117 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502012007792 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161027 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170502 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160813 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20160813 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20160926 Year of fee payment: 5 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20170823 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20170824 Year of fee payment: 6 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20170821 Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170813 Ref country code: FI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20120813 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170813 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20180901 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 815919 Country of ref document: AT Kind code of ref document: T Effective date: 20180813 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20180813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180813 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20180813 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20220822 Year of fee payment: 11 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230513 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20230902 Year of fee payment: 12 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20230821 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20230831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230831 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240705 Year of fee payment: 13 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20240901 Year of fee payment: 13 |