[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2740943B1 - Vacuum pump - Google Patents

Vacuum pump Download PDF

Info

Publication number
EP2740943B1
EP2740943B1 EP13194311.0A EP13194311A EP2740943B1 EP 2740943 B1 EP2740943 B1 EP 2740943B1 EP 13194311 A EP13194311 A EP 13194311A EP 2740943 B1 EP2740943 B1 EP 2740943B1
Authority
EP
European Patent Office
Prior art keywords
vacuum pump
nanoparticles
metal
accordance
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP13194311.0A
Other languages
German (de)
French (fr)
Other versions
EP2740943A2 (en
EP2740943A3 (en
Inventor
Bernd Koci
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pfeiffer Vacuum GmbH
Original Assignee
Pfeiffer Vacuum GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pfeiffer Vacuum GmbH filed Critical Pfeiffer Vacuum GmbH
Publication of EP2740943A2 publication Critical patent/EP2740943A2/en
Publication of EP2740943A3 publication Critical patent/EP2740943A3/en
Application granted granted Critical
Publication of EP2740943B1 publication Critical patent/EP2740943B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/16Centrifugal pumps for displacing without appreciable compression
    • F04D17/168Pumps specially adapted to produce a vacuum
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/02Selection of particular materials
    • F04D29/023Selection of particular materials especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/26Rotors specially for elastic fluids
    • F04D29/32Rotors specially for elastic fluids for axial flow pumps
    • F04D29/321Rotors specially for elastic fluids for axial flow pumps for axial flow compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2201/00Metals
    • F05C2201/90Alloys not otherwise provided for
    • F05C2201/903Aluminium alloy, e.g. AlCuMgPb F34,37
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/10Metals, alloys or intermetallic compounds
    • F05D2300/12Light metals
    • F05D2300/121Aluminium
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/603Composites; e.g. fibre-reinforced
    • F05D2300/6032Metal matrix composites [MMC]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/60Properties or characteristics given to material by treatment or manufacturing
    • F05D2300/61Syntactic materials, i.e. hollow spheres embedded in a matrix

Definitions

  • the present invention relates to a vacuum pump, in particular a turbomolecular pump, and a method for producing a vacuum pump.
  • Vacuum pumps in particular turbomolecular pumps, are suitable for producing a high-purity vacuum in a vacuum chamber and are used, for example, in coating and semiconductor technology in order to produce the vacuum necessary for the process steps to be carried out there.
  • Typical semiconductor processes consist of a multiplicity of successive process steps in which different process gases are respectively introduced into the vacuum chamber, which subsequently have to be pumped off by the vacuum pump.
  • the cycle times that are decisive for the cost-effectiveness of these methods, there is an attempt to increase the delivery rate and delivery rate of the vacuum pumps and, for example, to operate them at increased rotational speeds.
  • the prior art proposes various materials for the rotor disks of a turbomolecular pump which are intended to withstand increased thermal and mechanical stresses.
  • US 6,095,754 A the use of a composite of a metal matrix and a reinforcing additive for the blades of the rotor disk of a turbomolecular pump.
  • WO 2007/125104 A1 describes a rotor or stator of a turbomolecular pump with aluminum alloy blades comprising an Al-Cu-Mg-Mn wrought alloy intended to withstand elevated temperatures.
  • the suitability of the known vacuum pumps for operation with high gas loads and conveying speeds, for example in semiconductor technology, is also limited in the use of the materials mentioned.
  • the short-term amount of the gas to be delivered during the semiconductor production in special process steps leads to a short-term speed drop of the rotor, which results in a high material load and temperature increase of the rotating pump components, especially at high speeds. It thus occurs suddenly a high mechanical and thermal stress, which due to the limited thermal and mechanical load capacity of the pump components can lead to premature failure of the known vacuum pumps and reduces their life.
  • the WO 2007/022332 A2 describes a vacuum pump, to whose rotor a device with field emission tip is arranged, which contains nanoparticles.
  • the DE 10 2010 021 240 A1 describes that elements of a vacuum pump have a surface coating containing nano-zinc oxide.
  • the GB 2 490 127 A describes rotor blades for a turbine made of fiber reinforced material with nanoparticles.
  • Products reinforced with nanofibers are also available in the WO 2008/130739 A1 described.
  • the object of the invention is to provide a vacuum pump which can be reliably operated with a high gas load and conveying speed, which at the same time has a long service life and which is also inexpensive to produce.
  • the vacuum pump should also withstand high mechanical and thermal stresses that occur simultaneously and in particular cyclically recurring, such as in semiconductor manufacturing, without the life of the vacuum pump is thereby reduced.
  • a vacuum pump in particular a turbomolecular pump, with the features of claim 1.
  • at least one component of the vacuum pump comprises a material or consists of a material which contains a metal and nanoparticles, wherein the material contains between 0.5 to 10 wt .-% of nanoparticles.
  • an enhancement of the pump component is achieved, which increases the resistance of the component, for example the rotor disk of a turbomolecular pump, to the mechanical and thermal loads occurring during operation of the vacuum pump with high gas loads and conveying speeds.
  • the pump component retains its favorable metal or metal-like material properties for use in the vacuum pump.
  • the pump component has increased strength, in particular particularly high heat resistance and fatigue strength. It is believed that the nanoparticles are obstacles to the movement of dislocations or lattice defects in the metal and thereby ensure a high dislocation density and a correspondingly high strength of the material. At the same time, the material has a low creep, even at high loads, whereby the risk of damage caused by a creep deformation of the rotor discs is avoided.
  • a vacuum pump is provided which can be operated with high gas loads and flow rates and yet has a long service life. As explained in detail below, can be make the vacuum pump with simple means and in a cost effective manner and is thus also available at low cost.
  • the high load capacity of the vacuum pump also makes it possible to increase the outlet pressure of the vacuum pump, i. to increase the fore-vacuum pressure to which the vacuum pump compresses the pumped gas during its operation, compared to known vacuum pumps. For this reason, it is possible to work with less powerful fore-vacuum pumps connected to the outlet of the vacuum pump in order to compress the gas from the fore-vacuum pressure to atmospheric pressure. In principle, it is even possible to dispense entirely with the use of a backing pump, i. a vacuum pump, and in particular a turbomolecular pump, can be provided which can be reliably operated with such a high pumping capacity that the pump directly compresses the delivered gas to atmospheric pressure.
  • a backing pump i. a vacuum pump, and in particular a turbomolecular pump
  • the nanoparticles may be carbon nanoparticles, in particular carbon nanotubes.
  • the vacuum pump to a stator and at least one rotor member, wherein the rotor member is rotatably mounted relative to the stator.
  • the vacuum pump can in principle be designed as a turbomolecular pump, as a Holweck pump, as a side channel pump, as a Roots pump or as a combination or composite vacuum pump of several of the abovementioned pump types.
  • a metal is understood here to mean both a pure metal, that is to say a one-component metal alloy, and an alloy in the conventional sense, that is to say a multicomponent metal alloy.
  • the metal is a light metal such as aluminum, magnesium, titanium or a metal alloy having one or more of the above elements.
  • the metal may comprise copper or a copper alloy. Due to the low specific weight of aluminum and the concomitant low centrifugal force loading of a rotating component made of aluminum, aluminum or an aluminum alloy or aluminum wrought alloy is particularly suitable as metal. The mechanical and thermal properties are thereby improved by the addition of the nanoparticles compared to the pure metal such that the component produced from the resulting material has a significantly improved resistance to the high mechanical and thermal loads. A particularly high load capacity results when an aluminum alloy of the type 5XXX, in particular of the type 5083, is used.
  • the aluminum alloy in particular of one of the types 5XXX, eg 5083, or 2XXX, eg 2618, preferably corresponds to a corresponding definition in DIN EN 573-1,2,3, ie the aluminum alloy of type 5083 corresponds to the aluminum alloy EN AW defined there -5083 or the aluminum alloy of type 2618 corresponds to the aluminum alloy EN AW-2618A defined therein.
  • a mixed crystal-strengthened metal alloy can be used.
  • the material of the pump component may generally have a Vickers hardness of greater than 160 HV.
  • a particularly high strength of the component is achieved if the material contains between 0.5 and 10% by weight, preferably between 1 and 9% by weight and furthermore preferably between 2 and 4% by weight of nanoparticles.
  • the rest of the material may consist at least approximately completely of the metal or the metal alloy.
  • the metal and the nanoparticles together preferably form a solid structure, wherein the metal can form a matrix in which the nanoparticles are embedded.
  • a particularly high strength is achieved if the nanoparticles are present at least partially isolated in the metal and at least partially isolated embedded in a matrix formed by the metal.
  • the nanoparticles preferably have an at least approximately isotropic and in particular substantially homogeneous distribution in the material. As a result, the same advantageous mechanical and thermal properties can be ensured in all areas of the component and in all spatial directions.
  • the material comprises grains formed by the metal with an average particle size between 1 and 400 nm, preferably between 1 and 200 nm.
  • the grains which are also referred to as crystallites, are preferably at least partially separated from one another by the nanoparticles. This results in a particularly high strength of the material. It is believed that the nanoparticles, preferably along the grain boundaries, inhibit grain growth and the movement of dislocations in the metal, thereby ensuring a particularly high strength of the material.
  • nanoparticles may also be present which extend at least partially within a grain, thereby further increasing strength. It is believed that such nanoparticles the Cohesion of the grain with adjacent grains and thus increase the strength of the material in addition.
  • the solidification effected by the nanoparticles is particularly pronounced when the nanoparticles have an aspect ratio, ie a ratio of length to cross-sectional diameter, of at least 3, preferably at least 10 and particularly preferably at least 30, at least or on average.
  • a nanoparticle is understood in particular to mean a particle which has two or three outer dimensions in the nanoscale range, that is to say in the range from 1 to 1000 nm, preferably in the range from 1 to 100 nm, so that nanofibers are also included in the term.
  • Advantageous results in terms of the strength of the material and its processability are achieved in particular with the use of inorganic nanoparticles, in particular nanoparticles of carbides, nitrides and silicides.
  • Particularly high strengths are achieved with carbon nanoparticles and in particular carbon nanotubes ("CNTs"). Therefore, it is preferred if the nanoparticles are at least partially and in particular substantially completely formed by carbon nanotubes.
  • carbon nanotubes are provided as nanoparticles, which have a rolled-up structure or a scroll structure.
  • the one or more graphene layers of such a nanotube have a helical cross section, that is to say the rolled graphene layers have two longitudinal sides which are separated from one another and rolled into one another.
  • Carbon tubes with this structure and their preparation are, for example, in Iijima, Nature 354, 56 - 58, 1991 and Bacon, Journal of Applied Physics 34, 1960, 283-90 , described.
  • the carbon nanotubes may also have a scroll structure with a plurality of coiled graphite layers, each graphite layer comprising two or more graphene layers arranged on top of each other.
  • the several graphene layers together form the above-described screw structure, wherein the longitudinal edges of all graphene layers are rolled into one another.
  • Such carbon tubes whose structure is also referred to as a multi-scroll structure, as well as their preparation are in DE 10 2007 044 031 A1 described.
  • the disruption formed between the open longitudinal sides of the graphene sheets of these nanotubes allows a particularly intimate connection of the nanotube to the metal, thereby increasing the strength of the material.
  • the carbon nanotubes are also typically not rectilinear due to their open cross-section, but open in the region of the longitudinal sides of the graphene layers, along a curved curved path with relatively short straight sections between two bends and thus preferably form tangles or bundles with several entangled ones carbon nanotubes.
  • Such balls can be compared to isolated carbon nanotubes easier and handle with fewer safety precautions, whereby the manufacturing cost is reduced.
  • the outermost layers of the multi-scroll nanotubes may be at least partially broken by a functionalization, in particular by pressurization, thereby allowing an even more intimate connection with the metal.
  • the mean outer diameter of the carbon nanotubes may be between 5 and 25 nm, in particular about 13 nm.
  • the average length of the nanotubes can be between 0.5 and 20 .mu.m, preferably between 1 and 10 .mu.m, resulting in a very high aspect ratio of the nanotubes.
  • the inner diameter of the nanotubes may be between 2 and 15 nm, preferably between 3 and 8 nm.
  • the nanotubes may have an ashing determined carbon content of greater than 95% and preferably greater than 99%. For example, can be used by the company Bayer Material Science AG, 51368 Leverkusen, sold under the name Baytubes® carbon nanotubes.
  • the material of the component is obtainable by a powder metallurgy process from a powdery composite containing a metal and nanoparticles.
  • a powder metallurgy process from a powdery composite containing a metal and nanoparticles.
  • the powder metallurgical process which preferably converts the powdery starting material to a solid, coherent and preferably at least approximately pore-free or slightly porous main body, may comprise a mechanical forming, in particular with simultaneous heat supply.
  • an example elongated body can be made with a substantially circular cross-section, for example, is substantially cylindrical or bolt-shaped and may have a diameter between 50 and 200 mm, preferably between 60 and 120 mm.
  • the main body may also be formed plate-shaped or sheet-shaped.
  • the powder metallurgical process may be hot isostatic pressing (HIP) or extruding the powdered composite include.
  • the forming may also include rolling. The nanoparticles hinder the movement of dislocations or lattice defects in the metal during the powder metallurgy process, so that the material has a high dislocation density even after the powder metallurgy process and a heat treatment that may be required, and consequently the material produced by powder metallurgy has a correspondingly high strength having.
  • a pump component having particularly favorable properties is achieved when the powdery starting material is obtainable by mechanical alloying of a metal powder with nanoparticles. Such alloying results in a powdery starting material with thorough penetration of the metal with the nanoparticles and a strong bond between the nanoparticles and the metal in the individual powder particles, so that the material produced therefrom by powder metallurgy likewise has a particularly high strength.
  • the powdery raw material may be obtainable by a method which comprises processing a metal powder and nanoparticles by mechanical alloying such that the produced composite metal grains, also referred to as crystallites, having an average size in the range of 1 to 100 nm , preferably 10 to 100 nm or in the range of more than 100 nm to 200 nm, which are at least partially separated by the nanoparticles.
  • a material with such a grain size leads to a particularly high strength of the resulting pump component.
  • the starting material can be produced on an industrial scale and is therefore available at low cost.
  • a method for producing a suitable powdery composite material and a composite material obtainable thereby are, for example, in WO 2010/091790 A1 described by Bayer International SA.
  • the pulverulent composite material may be, in particular, one after the in WO 2010/091790 A1 act as composite material obtainable according to the invention.
  • the powdery starting material can be replaced by a in one of the patent family members of WO 2010/091790 A1 be available as a process according to the invention.
  • WO 2010/102655 A2 describe WO 2010/091789 A1 .
  • WO 2010/091791 A1 and WO 2011/032791 A1 the company Bayer International SA such procedures.
  • a material from which the component of the vacuum pump can be made at least partially is available from Bayer Material Science AG, 51368 Leverkusen under the trade name Bayal-C DP®.
  • the component of the vacuum pump comprising the material described is preferably a component which, during operation of the pump, comes into contact with the conveyed media and in particular has a pump-active structure.
  • Such components are particularly heavily stressed by the mechanical and thermal stresses occurring at high pump powers, so that the formation of such a component with the described material has a particularly significant influence on the life of the vacuum pump.
  • the component is a rotor member of the vacuum pump, which is driven in rotation during the operation of the vacuum pump and preferably has a pump-active structure.
  • the component may comprise or consist of a rotor disk of a turbomolecular pumping stage of the vacuum pump.
  • a particularly significant increase in the possible pump power and the life of the pump is achieved by the material described, since the rotor disks and in particular their blades during operation of the vacuum pump with high gas loads and conveying speeds are mechanically and thermally particularly heavily loaded.
  • the rotor disk can represent an independent component of the vacuum pump or be part of a larger rotating component.
  • the rotor disk may e.g.
  • the component of the vacuum pump can also be formed by a bell-shaped rotor element, for example by a bell-shaped rotor of a turbomolecular pumping stage, which can in particular comprise one or more rotor disks of the turbomolecular pumping stage.
  • the rotor disk preferably comprises as a pump-active structure a plurality of rotor blades, which in each case consist wholly or partly of the described material and e.g. are arranged in a ring around a support ring of the rotor disk or a rotor shaft around.
  • the blades have e.g. a longitudinal extent oriented in the radial direction and surfaces set in relation to the direction of rotation in order to deliver a pulse directed in the conveying direction, that is in particular perpendicular to the plane of the pane, to the gas molecules.
  • the rotor organ can also be part of a Holweck pumping stage, Siegbahnpumpprocess, 9.kanalpumpprocess or Wälzkolbenpumpmeasure and can represent, for example, a rotating Holweck cylinder.
  • a Holweck cylinder preferably has a smooth cylindrical shell-shaped pump-active surface, which rotates with respect to a stator sleeve, which is provided with spiral-shaped thread grooves in which the pumping-driven gas is guided.
  • the rotating Holweck sleeve has a thread with helical thread grooves and, for example, rotates with respect to a smooth surface of the stator sleeve.
  • a rotor sleeve rotates relative to a stator, wherein the opposing, in particular cylinder jacket-shaped surfaces of both the rotor sleeve and the stator each having a thread with helical grooves in which the pump-effective driven gas flows, the direction of rotation the thread of a sleeve is opposite to the direction of rotation of the thread of the other sleeve.
  • the pump component is obtainable by a method which comprises the mechanical processing of a base body formed at least partially from the described material, which can represent a semifinished product.
  • the processing may include a material-removing and in particular machining.
  • this makes it possible to produce a pump component with the desired geometry and optionally pump-active structure, without the need for plastic deformation of the material during production and a concomitant risk of adverse changes in the material.
  • the rotor blades of a rotor disk including its surfaces pointing in the direction of rotation and positioned opposite the direction of rotation, can be machined from the basic body substantially completely by a material removing process become. On a plastic deformation of the body can therefore be completely dispensed with in the preparation of the pump component accordingly.
  • the invention also relates to a component for a vacuum pump, in particular a rotor disk for a turbomolecular pump, which comprises or consists of a material which contains a metal and nanoparticles, in particular carbon nanotubes.
  • Another object of the invention is a method for producing a vacuum pump, in particular a turbomolecular pump, or a component for such a vacuum pump.
  • the method includes that a component of the vacuum pump or the component is at least partially made of a material containing a metal and nanoparticles.
  • the production of the component from a material containing a metal and nanoparticles leads to a vacuum pump which can be operated permanently and reliably with high pumping powers and high gas loads while having a long service life.
  • the method can be carried out in particular for producing a vacuum pump according to the invention as described above.
  • the advantageous embodiments and advantages described herein in relation to the vacuum pump according to the invention as well as their manufacture or manufacturability provide correspondingly Application advantageous embodiments and advantages of the method according to the invention.
  • the method thus provides a vacuum pump with a component having advantageous mechanical and thermal properties, wherein the properties of the component of the vacuum pump and its material can also be adjusted easily and selectively by influencing the process parameters ,
  • the nanoparticles may be carbon nanoparticles, in particular carbon nanotubes.
  • the forming of the component comprises a mechanical processing of a body at least partially formed from the material for the component.
  • the processing preferably comprises a material-removing and in particular machining, such as milling, turning, grinding, sawing, drilling or cutting.
  • At least one rotor disk for a turbomolecular pumping stage of the vacuum pump can be machined out of the main body by material-removing machining, wherein the surfaces of the blades of the rotor disk pointing in the direction of rotation and facing the direction of rotation are preferably machined essentially completely by material-removing machining.
  • the main body may originally have, for example, an elongated and in particular substantially cylindrical shape, wherein For example, a disk-shaped portion of the cylindrical base body can be cut off, from which then the pump-active blade structure of the rotor disk is machined by a material-removing machining.
  • the main body may also be formed plate-shaped or sheet-shaped.
  • a bell rotor, in particular for a turbomolecular pump stage, can also be produced from the base body, in particular by a material-removing machining, wherein the bell rotor can comprise one or more rotor disks of the turbomolecular pump stage.
  • a powdered composite material which contains a metal and nanoparticles and which is processed by a powder metallurgy process to the component or to a base for the component.
  • the processing of the powdered composite material may include mechanical forming, wherein heat is preferably simultaneously supplied to the composite material.
  • the component or its basic body can be produced from the powdered composite material by extrusion or / and hot isostatic pressing.
  • the nanoparticles contained in the powdered composite material hinder movement of the dislocations or lattice defects present in the metal, so that a high dislocation density and correspondingly high strength of the material produced from the powder is ensured even when performing the forming with heat addition.
  • providing the powdered composite comprises mechanically alloying a metal powder with nanoparticles.
  • the powdered composite material used is preferably obtainable according to one of the processes described in the above-cited Bayer International SA publications as a process according to the invention or is prepared by a process described therein.
  • the mechanical alloying is performed such that in the powdery composite material, the metal has a mean grain size or crystallite size between 1 and 200 nm, wherein the grains of the metal are at least partially separated by the nanoparticles.
  • the mechanical alloying preferably comprises milling, in particular high-energy milling, which can be carried out, for example, using a ball mill with a grinding chamber and balls which are freely movable therein as grinding bodies.
  • Mechanical alloying may involve repeated deforming, breaking and welding together of the powder particles involved in the alloy.
  • the mill may be operated at a speed of between 350 and 1000 rpm, preferably between 500 and 800 rpm, and the grinding chamber may have a diameter of between 250 and 1000 mm, preferably approximately 500 mm, in the plane perpendicular to the axis of rotation.
  • the balls may be accelerated to a speed of at least 5 m / s, preferably at least 8 m / s and more preferably at least 11 m / s.
  • the grinding time can be between 45 and 240 minutes, preferably between 90 and 120 minutes.
  • the grinding action can reduce the grain size of the metal and at the same time establish an intimate bond between the metal and the nanoparticles.
  • the nanoparticles can be joined to the metal material in such a way that they at least partially separate grains of the metal from each other, or even partially introduce them into the grains of the metal.
  • the nanoparticles are preferably present in the form of a powder of agglomerates of nanoparticles prior to mechanical alloying, in particular of tufts or bumps of tangled or entangled carbon nanotubes.
  • the manageability of the nanoparticles can be significantly increased and simplify the necessary safety precautions for handling.
  • at least 95% of the agglomerates have a size greater than 100 microns.
  • the nanoparticles intended for mechanical alloying are preferably produced by a catalytic chemical vapor deposition or CCVD.
  • the particles can be produced by a fluidized bed process, for example carried out in a fluidized bed reactor.
  • Exemplary methods for producing corresponding nanoparticles or tufts of nanoparticles are described in the abovementioned publications by Bayer Technologies SA and in US Pat DE 10 2007 044 031 A1 described.
  • Baytubes® can be used.
  • the carbon nanotubes Prior to mechanical alloying, the carbon nanotubes may be functionalized, which may include pressurizing the carbon nanotubes such that at least the outermost graphene layer of at least a portion of the carbon tubes ruptures.
  • the tufts can be subjected to a pressure of at least 5 MPa and preferably at least 7.5 MPa.
  • the metal powder used in the mechanical alloying can be produced by, for example, sputtering a molten metal. Before or after the production of the powder, solid solution hardening of the metal can take place.
  • Another object of the invention is a vacuum pump or a component of a vacuum pump, which is obtainable by the inventive method described herein.
  • the advantageous embodiments and advantages described above in relation to the method, when used appropriately, represent advantageous embodiments and advantages of the vacuum pump or component obtainable by the method.
  • Fig. 1 shows a formed as a turbomolecular pump vacuum pump according to an embodiment of the invention.
  • the multi-part housing 10 of the vacuum pump comprises on its high-vacuum side a flange 12 with which the vacuum pump can be connected to a vacuum chamber to be evacuated.
  • the flange 12 surrounds the suction opening 14, through which the vacuum pump sucks gas.
  • the vacuum pump comprises a rotor with a rotor shaft 18 which is rotatably mounted about a rotation axis 16 of the vacuum pump and which can be driven in rotation by an electric motor drive.
  • the drive comprises a stator-side drive coil 20 and a rotor-side drive magnet 22.
  • the rotor shaft 18 is rotatably supported by two spaced apart in the direction of the axis of rotation 16, designed as a rolling bearing pivot bearing 24, 26.
  • pivot bearing 26 could also be provided a permanent magnet bearing, which may be arranged in the region of the suction port 14 of the pump and may be formed lubricant-free, to avoid contamination of the vacuum chamber.
  • the rotor shaft 18 carries a plurality of radially oriented and provided with rotor blades 28 rotor disks 30 which are arranged between the fixed to the housing 10 and also provided with blades stator disks 32 and alternate with these in the axial direction.
  • the rotor and stator disks 30, 32 form a turbomolecular pump mechanism whose pumping action delivers the gas drawn in through the intake port 14 to the pump outlet 34.
  • molecular pump stages such as, for example, one or more Holweck pump stages, Siegbahn pump stages or side channel pump stages, may be provided in the flow direction between the turbomolecular pumping stage and the outlet 34 in order to ensure a desired performance of the pump.
  • Fig. 2 shows a part of the vacuum pump of Fig. 1 in a partially sectioned perspective view. Shown is a rotor disk 30 with a on the rotor shaft 18 ( Fig. 1 ) to be attached to the support ring 36 and radially projecting from the support ring 36 blades 28 which against the tangent to the rotational axis 16 directed rotational direction employed surfaces 40 to transmit a directional in the conveying direction impulse to the pumped gas molecules.
  • the rotor disk 30 is milled out in one piece from a base body and consists of a material which comprises a carbon nanotube staggered aluminum alloy. This ensures a long operating life of the vacuum pump even with high gas loads and pumping power.
  • Fig. 3 shows a fluidized bed reactor 42 for the production of carbon nanotubes by catalytic chemical vapor deposition, CCVD, as a starting material for the process.
  • the reactor 42 is heated by a heater 44.
  • the reactor 42 has at its lower end an inlet 46 for supplying inert gases and reactant gases, an upper outlet opening 48 for the escape of nitrogen, inert gas and by-products of the reactor 42, a catalyst inlet 50 for supplying a catalyst and a removal opening for removal of the produced carbon nanotubes on.
  • nitrogen is first fed as inert gas via the lower inlet 46 and the reactor 42 is heated by the heating device 44 to a temperature of about 650 ° C.
  • the catalyst is fed in the form of particle agglomerates 54 having a particle size between 30 and 100 microns through the upper inlet 50, which is preferably a transition metal catalyst based on cobalt or manganese and the molar mass ratio of cobalt to manganese, e.g. between 2: 3 and 3: 2.
  • the gaseous reactant 56 is supplied via the lower inlet 46, which comprises a hydrocarbon gas as a carbon donor and an inert gas.
  • the ratio of reactant gas to inert gas may be about 9: 1.
  • carbon is deposited on the catalyst particles in the form of carbon nanotubes having a multi-scroll structure with a curved longitudinal curvature, with a plurality of tubes forming contiguous tufts with an average diameter between 0.05 and 5 mm can be removed as powder via the removal opening 52.
  • Fig. 4 shows a section of a cross-cut carbon nanotube prepared in the manner described above.
  • the carbon nanotube includes several in Fig. 4 only schematically illustrated graphene layers 58, which are rolled into each other to form the tubular cross section. Because of this cross-sectional shape, the tubes assume a curvilinear or curved course, which promotes the formation of balls, and enter into a particularly intimate connection with the metal material during later processing.
  • the removed balls are functionalized by pressurization at about 9.8 MPa.
  • pressurization at about 9.8 MPa.
  • at least the outermost layers 58 of the individual carbon nanotubes partially break open, as a result of which their surface is, as it were, roughened and an even more intimate bond with the metal is made possible.
  • Fig. 5 shows an apparatus for producing a metal powder.
  • the apparatus comprises a melting chamber 60 containing a molten aluminum alloy.
  • the metal is sprayed by the pressure of an argon drive gas 62 through a nozzle 64 into a chamber 66 and thereby atomized.
  • the atomized metal is quenched by an argon gas which is sprayed into the chamber 66 through another nozzle 68, solidifying the atomized metal drops into particles which collect at the bottom of the chamber 66 as metal powder.
  • Fig. 6 shows a ball mill for mechanically alloying the powder of carbon nanotube prepared in the above-described manner with the metal powder.
  • the mill comprises a chamber 70 in which a rotor can be driven in rotation in the direction of an arrow 76 about a rotation axis oriented perpendicular to the plane of the drawing.
  • the rotor includes a plurality of pairs of arms 72 arranged one behind the other in the axial direction, wherein the outer ends of the arms 72 can reach a speed of at least 8 m / s or at least 11 m / s during operation, whereby the hard metal balls 74 provided in the chamber 70 are correspondingly accelerated ,
  • the chamber 70 is filled with the powder of the balls of carbon nanotubes and the metal powder.
  • the bumps between the balls 74 cause the material present between the balls 74, i. the metal particles and the carbon nanotubes are repeatedly deformed, broken and welded together so that the carbon nanotubes are sealed in the metal particles to result in a powdered composite whose particles contain the metal and the carbon nanotubes.
  • the metal and carbon nanotubes are welded together in the particles and form an alloy, resulting in a substantially homogeneous distribution of the carbon nanotubes in the metallic particles.
  • the grain size of the metal is reduced by the milling and the carbon nanotubes are embedded in the metal so that they extend along the grain boundaries of the metal or embedded within metal grains.
  • a powder metallurgy process such as e.g. produced by extrusion a solid body, which serves as a base body for the rotor disks of the vacuum pump.
  • Fig. 7 shows a manufactured in this way, substantially cylindrical body 78.
  • a the disk-shaped basic shape of the rotor disk corresponding disc are cut off from the base body 78, which can then be processed by milling a support ring and the radially adjoining blades to a rotor disk.
  • a bell rotor could be produced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Powder Metallurgy (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Description

Die vorliegende Erfindung betrifft eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe, und ein Verfahren zur Herstellung einer Vakuumpumpe.The present invention relates to a vacuum pump, in particular a turbomolecular pump, and a method for producing a vacuum pump.

Vakuumpumpen, wie insbesondere Turbomolekularpumpen, eignen sich zur Herstellung eines hochreinen Vakuums in einer Vakuumkammer und werden beispielsweise in der Beschichtungs- und Halbleitertechnik eingesetzt, um das für die dort durchzuführenden Prozessschritte notwendige Vakuum herzustellen. Typische Halbleiterprozesse bestehen aus einer Vielzahl von aufeinanderfolgenden Prozessschritten, in denen jeweils verschiedene Prozessgase in die Vakuumkammer eingeleitet werden, die anschließend von der Vakuumpumpe abgepumpt werden müssen. Um die für die Wirtschaftlichkeit dieser Verfahren entscheidenden Zykluszeiten möglichst zu verringern, besteht die Bestrebung, die Fördermenge und Förderleistung der Vakuumpumpen zu erhöhen und diese dazu beispielsweise mit erhöhten Rotationsgeschwindigkeiten zu betreiben.Vacuum pumps, in particular turbomolecular pumps, are suitable for producing a high-purity vacuum in a vacuum chamber and are used, for example, in coating and semiconductor technology in order to produce the vacuum necessary for the process steps to be carried out there. Typical semiconductor processes consist of a multiplicity of successive process steps in which different process gases are respectively introduced into the vacuum chamber, which subsequently have to be pumped off by the vacuum pump. In order to reduce as far as possible the cycle times that are decisive for the cost-effectiveness of these methods, there is an attempt to increase the delivery rate and delivery rate of the vacuum pumps and, for example, to operate them at increased rotational speeds.

Die höheren Fördermengen und Rotationsgeschwindigkeiten führen zusätzlich zu einer erhöhten mechanischen Belastung zu einer erheblichen Erwärmung und damit thermischen Belastung der Pumpenkomponenten.The higher flow rates and rotational speeds lead in addition to an increased mechanical load to a considerable heating and thus thermal load on the pump components.

Im Stand der Technik werden verschiedene Materialien für die Rotorscheiben einer Turbomolekularpumpe vorgeschlagen, welche erhöhten thermischen und mechanischen Belastungen standhalten sollen. Beispielsweise beschreibt US 6,095,754 A die Verwendung eines Verbundwerkstoffs aus einer Metallmatrix und einem Verstärkungsadditiv für die Schaufeln der Rotorscheibe einer Turbomolekularpumpe. WO 2007/125104 A1 beschreibt einen Rotor oder Stator einer Turbomolekularpumpe mit Schaufeln aus einer Aluminiumlegierung, die eine Al-Cu-Mg-Mn-Knetlegierung umfasst, welche erhöhten Temperaturen standhalten soll.The prior art proposes various materials for the rotor disks of a turbomolecular pump which are intended to withstand increased thermal and mechanical stresses. For example describes US 6,095,754 A the use of a composite of a metal matrix and a reinforcing additive for the blades of the rotor disk of a turbomolecular pump. WO 2007/125104 A1 describes a rotor or stator of a turbomolecular pump with aluminum alloy blades comprising an Al-Cu-Mg-Mn wrought alloy intended to withstand elevated temperatures.

Die Eignung der bekannten Vakuumpumpen für den Betrieb mit hohen Gaslasten und Fördergeschwindigkeiten, beispielsweise in der Halbleitertechnik, ist auch bei dem Einsatz der genannten Materialien begrenzt. Beispielsweise führt die bei der Halbleiterherstellung in speziellen Prozessschritten kurzzeitig anfallende Menge des zu fördernden Gases zu einem kurzzeitigen Drehzahlabfall des Rotors, was insbesondere bei hohen Drehzahlen eine starke Materialbelastung und Temperaturerhöhung der rotierenden Pumpenkomponenten zur Folge hat. Es tritt somit schlagartig eine hohe mechanische und thermische Belastung auf, welche aufgrund der begrenzten thermischen und mechanischen Belastbarkeit der Pumpenkomponenten zu einem vorzeitigen Ausfall der bekannten Vakuumpumpen führen kann und deren Lebensdauer reduziert.The suitability of the known vacuum pumps for operation with high gas loads and conveying speeds, for example in semiconductor technology, is also limited in the use of the materials mentioned. For example, the short-term amount of the gas to be delivered during the semiconductor production in special process steps leads to a short-term speed drop of the rotor, which results in a high material load and temperature increase of the rotating pump components, especially at high speeds. It thus occurs suddenly a high mechanical and thermal stress, which due to the limited thermal and mechanical load capacity of the pump components can lead to premature failure of the known vacuum pumps and reduces their life.

Die WO 2007/022332 A2 beschreibt eine Vakuumpumpe, an deren Rotor eine Einrichtung mit Feldemissionsspitze angeordnet ist, die Nanopartikel enthält.The WO 2007/022332 A2 describes a vacuum pump, to whose rotor a device with field emission tip is arranged, which contains nanoparticles.

In der DE 600 30 833 T2 ist eine Vakuumpumpe mit einer magnetischen Abschirmung beschrieben, die eine Nanokristalllegierung aufweist.In the DE 600 30 833 T2 For example, a vacuum pump with a magnetic shield having a nanocrystal alloy is described.

Die DE 10 2010 021 240 A1 beschreibt, dass Elemente einer Vakuumpumpe eine Oberflächenbeschichtung aufweisen, die Nano-Zinkoxid enthält.The DE 10 2010 021 240 A1 describes that elements of a vacuum pump have a surface coating containing nano-zinc oxide.

In der DE 100 53 663 A1 ist eine Vakuumpumpe mit einem Rotor beschrieben, der aus pulvermetallurgisch hergestellten Legierungen hergestellt ist.In the DE 100 53 663 A1 there is described a vacuum pump having a rotor made of powder metallurgically produced alloys.

Die GB 2 490 127 A beschreibt Rotorschaufeln für eine Turbine, die aus faserverstärktem Werkstoff mit Nanopartikeln hergestellt sind.The GB 2 490 127 A describes rotor blades for a turbine made of fiber reinforced material with nanoparticles.

Erzeugnisse, die in Bereichen mit Nanofasern verstärkt sind, sind ferner in der WO 2008/130739 A1 beschrieben.Products reinforced with nanofibers are also available in the WO 2008/130739 A1 described.

Schließlich beschreibt die DE 10 2008 025 700 A1 einen Flügel für einen Radiallüfter, der eine Beimischung von Kohlenstoff-Nanoröhrchen enthält.Finally, that describes DE 10 2008 025 700 A1 a radial fan blade containing an admixture of carbon nanotubes.

Aufgabe der Erfindung ist, eine Vakuumpumpe zu schaffen, die zuverlässig mit einer hohen Gaslast und Fördergeschwindigkeit betrieben werden kann, die gleichzeitig eine hohe Betriebslebensdauer aufweist und die zudem kostengünstig herstellbar ist. Insbesondere soll die Vakuumpumpe auch hohen mechanischen und thermischen Belastungen standhalten, die gleichzeitig und insbesondere zyklisch wiederkehrend auftreten, wie beispielsweise bei der Halbleiterherstellung, ohne dass die Lebensdauer der Vakuumpumpe dadurch herabgesetzt wird.The object of the invention is to provide a vacuum pump which can be reliably operated with a high gas load and conveying speed, which at the same time has a long service life and which is also inexpensive to produce. In particular, the vacuum pump should also withstand high mechanical and thermal stresses that occur simultaneously and in particular cyclically recurring, such as in semiconductor manufacturing, without the life of the vacuum pump is thereby reduced.

Die Aufgabe wird durch eine Vakuumpumpe, insbesondere eine Turbomolekularpumpe, mit den Merkmalen des Anspruchs 1 gelöst. Erfindungsgemäß umfasst wenigstens eine Komponente der Vakuumpumpe ein Material oder besteht aus einem Material, welches ein Metall und Nanopartikel enthält, wobei das Material zwischen 0,5 bis 10 Gew.-% Nanopartikel enthält. Durch die Zugabe der Nanopartikel wird eine Verstärkung der Pumpenkomponente erreicht, welche die Beständigkeit der Komponente, beispielsweise der Rotorscheibe einer Turbomolekularpumpe, gegenüber den bei dem Betrieb der Vakuumpumpe mit hohen Gaslasten und Fördergeschwindigkeiten auftretenden mechanischen und thermischen Belastungen erhöht. Gleichzeitig behält die Pumpenkomponente ihre für den Einsatz in der Vakuumpumpe günstigen metallischen bzw. metallähnlichen Materialeigenschaften.
Insbesondere weist die Pumpenkomponente infolge der Verstärkung des metallischen Materials durch die Nanopartikel eine erhöhte Festigkeit auf, und zwar speziell eine besonders hohe Warmfestigkeit und Dauerfestigkeit. Es wird vermutet, dass die Nanopartikel Hindernisse für die Bewegung von Versetzungen bzw. Gitterfehler in dem Metall darstellen und dadurch eine hohe Versetzungsdichte und eine dementsprechend hohe Festigkeit des Materials gewährleisten. Gleichzeitig weist das Material auch bei hohen Belastungen eine geringe Kriechdehnung auf, wodurch die Gefahr einer durch eine Kriechverformung hervorgerufenen Beschädigung der Rotorscheiben vermieden wird.
Somit wird eine Vakuumpumpe geschaffen, die mit hohen Gaslasten und Förderleistungen betrieben werden kann und dennoch eine hohe Betriebslebensdauer aufweist. Wie nachstehend im Einzelnen erläutert, lässt sich die Vakuumpumpe mit einfachen Mitteln und auf kostengünstige Weise herstellen und ist somit zudem kostengünstig erhältlich.
The object is achieved by a vacuum pump, in particular a turbomolecular pump, with the features of claim 1. According to the invention, at least one component of the vacuum pump comprises a material or consists of a material which contains a metal and nanoparticles, wherein the material contains between 0.5 to 10 wt .-% of nanoparticles. By adding the nanoparticles, an enhancement of the pump component is achieved, which increases the resistance of the component, for example the rotor disk of a turbomolecular pump, to the mechanical and thermal loads occurring during operation of the vacuum pump with high gas loads and conveying speeds. At the same time, the pump component retains its favorable metal or metal-like material properties for use in the vacuum pump.
In particular, as a result of the reinforcement of the metallic material by the nanoparticles, the pump component has increased strength, in particular particularly high heat resistance and fatigue strength. It is believed that the nanoparticles are obstacles to the movement of dislocations or lattice defects in the metal and thereby ensure a high dislocation density and a correspondingly high strength of the material. At the same time, the material has a low creep, even at high loads, whereby the risk of damage caused by a creep deformation of the rotor discs is avoided.
Thus, a vacuum pump is provided which can be operated with high gas loads and flow rates and yet has a long service life. As explained in detail below, can be make the vacuum pump with simple means and in a cost effective manner and is thus also available at low cost.

Die hohe Belastbarkeit der Vakuumpumpe ermöglicht es außerdem, den auslassseitigen Druck der Vakuumpumpe, d.h. den Vorvakuumdruck, auf den die Vakuumpumpe das geförderte Gas bei ihrem Betrieb verdichtet, gegenüber bekannten Vakuumpumpen zu erhöhen. Aus diesem Grund kann mit weniger leistungsstarken Vorvakuumpumpen gearbeitet werden, die an den Auslass der Vakuumpumpe angeschlossen sind, um das Gas von dem Vorvakuumdruck auf Atmosphärendruck zu verdichten. Prinzipiell kann sogar ganz auf den Einsatz einer Vorvakuumpumpe verzichtet werden, d.h. es kann eine Vakuumpumpe und insbesondere eine Turbomolekularpumpe geschaffen werden, die zuverlässig mit einer so hohen Pumpleistung betrieben werden kann, dass die Pumpe das geförderte Gas direkt auf Atmosphärendruck verdichtet.The high load capacity of the vacuum pump also makes it possible to increase the outlet pressure of the vacuum pump, i. to increase the fore-vacuum pressure to which the vacuum pump compresses the pumped gas during its operation, compared to known vacuum pumps. For this reason, it is possible to work with less powerful fore-vacuum pumps connected to the outlet of the vacuum pump in order to compress the gas from the fore-vacuum pressure to atmospheric pressure. In principle, it is even possible to dispense entirely with the use of a backing pump, i. a vacuum pump, and in particular a turbomolecular pump, can be provided which can be reliably operated with such a high pumping capacity that the pump directly compresses the delivered gas to atmospheric pressure.

Vorteilhafte Ausführungsformen der Erfindung sind in den Unteransprüchen, der Beschreibung und den Figuren beschrieben.Advantageous embodiments of the invention are described in the subclaims, the description and the figures.

Bei den Nanopartikeln kann es sich um Kohlenstoffnanopartikel, insbesondere um Kohlenstoffnanoröhrchen, handeln.The nanoparticles may be carbon nanoparticles, in particular carbon nanotubes.

Vorzugsweise weist die Vakuumpumpe einen Stator und wenigstens ein Rotororgan auf, wobei das Rotororgan gegenüber dem Stator drehbar gelagert ist. Die Vakuumpumpe kann prinzipiell als Turbomolekularpumpe, als Holweckpumpe, als Seitenkanalpumpe, als Wälzkolbenpumpe oder als eine Kombination bzw. Verbundvakuumpumpe mehrerer der vorstehend genannten Pumpenarten ausgebildet sein.Preferably, the vacuum pump to a stator and at least one rotor member, wherein the rotor member is rotatably mounted relative to the stator. The vacuum pump can in principle be designed as a turbomolecular pump, as a Holweck pump, as a side channel pump, as a Roots pump or as a combination or composite vacuum pump of several of the abovementioned pump types.

Unter einem Metall wird hierin sowohl ein Reinmetall, das heißt eine einkomponentige Metalllegierung, verstanden als auch eine Legierung im herkömmlichen Sinne, das heißt eine mehrkomponentige Metalllegierung.A metal is understood here to mean both a pure metal, that is to say a one-component metal alloy, and an alloy in the conventional sense, that is to say a multicomponent metal alloy.

Vorzugsweise ist das Metall ein Leichtmetall wie zum Beispiel Aluminium, Magnesium, Titan oder eine Metalllegierung mit einem oder mehreren der vorstehenden Elemente. Ebenso kann das Metall Kupfer oder eine Kupferlegierung umfassen. Aufgrund des geringen spezifischen Gewichts von Aluminium und der damit einhergehenden geringen Fliehkraftbelastung einer aus Aluminium bestehenden rotierenden Komponente ist insbesondere Aluminium oder eine Aluminiumlegierung bzw. Aluminiumknetlegierung als Metall geeignet. Die mechanischen und thermischen Eigenschaften werden dabei durch die Zugabe der Nanopartikel gegenüber dem reinen Metall derart verbessert, dass die aus dem resultierenden Material hergestellte Komponente eine deutlich verbesserte Beständigkeit gegenüber den hohen mechanischen und thermischen Belastungen aufweist. Eine besonders hohe Belastbarkeit ergibt sich, wenn eine Aluminiumlegierung vom Typ 5XXX, insbesondere vom Typ 5083, eingesetzt wird. Auch bei Verwendung einer Aluminiumlegierung vom Typ 2XXX, insbesondere vom Typ 2618, lässt sich eine hohe mechanische und thermische Beständigkeit erreichen. Die Aluminiumlegierung, insbesondere von einem der Typen 5XXX, z.B. 5083, oder 2XXX, z.B. 2618, entspricht dabei vorzugsweise einer entsprechenden Definition in der DIN EN 573-1,2,3, d.h. die Aluminiumlegierung vom Typ 5083 entspricht der dort definierten Aluminiumlegierung EN AW-5083 bzw. die Aluminiumlegierung vom Typ 2618 entspricht der dort definierten Aluminiumlegierung EN AW-2618A. Zur Erzielung einer hohen Festigkeit kann eine mischkristallverfestigte Metalllegierung verwendet werden. Das Material der Pumpenkomponente kann generell eine Vickers-Härte von mehr als 160 HV aufweisen.Preferably, the metal is a light metal such as aluminum, magnesium, titanium or a metal alloy having one or more of the above elements. Likewise, the metal may comprise copper or a copper alloy. Due to the low specific weight of aluminum and the concomitant low centrifugal force loading of a rotating component made of aluminum, aluminum or an aluminum alloy or aluminum wrought alloy is particularly suitable as metal. The mechanical and thermal properties are thereby improved by the addition of the nanoparticles compared to the pure metal such that the component produced from the resulting material has a significantly improved resistance to the high mechanical and thermal loads. A particularly high load capacity results when an aluminum alloy of the type 5XXX, in particular of the type 5083, is used. Even when using an aluminum alloy of the type 2XXX, in particular of the type 2618, a high mechanical and thermal resistance can be achieved. The aluminum alloy, in particular of one of the types 5XXX, eg 5083, or 2XXX, eg 2618, preferably corresponds to a corresponding definition in DIN EN 573-1,2,3, ie the aluminum alloy of type 5083 corresponds to the aluminum alloy EN AW defined there -5083 or the aluminum alloy of type 2618 corresponds to the aluminum alloy EN AW-2618A defined therein. To obtain a high strength, a mixed crystal-strengthened metal alloy can be used. The material of the pump component may generally have a Vickers hardness of greater than 160 HV.

Eine besonders hohe Festigkeit der Komponente wird erreicht, wenn das Material zwischen 0,5 bis 10 Gew.-%, bevorzugt zwischen 1 und 9 Gew.-% und ferner bevorzugt zwischen 2 und 4 Gew.-% Nanopartikel enthält. Der Rest des Materials kann zumindest annähernd vollständig aus dem Metall bzw. der Metalllegierung bestehen.A particularly high strength of the component is achieved if the material contains between 0.5 and 10% by weight, preferably between 1 and 9% by weight and furthermore preferably between 2 and 4% by weight of nanoparticles. The rest of the material may consist at least approximately completely of the metal or the metal alloy.

Das Metall und die Nanopartikel bilden gemeinsam vorzugsweise ein festes Gefüge, wobei das Metall eine Matrix bilden kann, in der die Nanopartikel eingebettet sind. Eine besonders hohe Festigkeit wird erzielt, wenn die Nanopartikel zumindest teilweise vereinzelt in dem Metall vorliegen und zumindest teilweise vereinzelt in eine durch das Metall gebildete Matrix eingebettet sind. Die Nanopartikel weisen vorzugsweise eine zumindest näherungsweise isotrope und insbesondere im Wesentlichen homogene Verteilung in dem Material auf. Dadurch können in allen Bereichen der Komponente und in alle Raumrichtungen die gleichen vorteilhaften mechanischen und thermischen Eigenschaften gewährleistet werden.The metal and the nanoparticles together preferably form a solid structure, wherein the metal can form a matrix in which the nanoparticles are embedded. A particularly high strength is achieved if the nanoparticles are present at least partially isolated in the metal and at least partially isolated embedded in a matrix formed by the metal. The nanoparticles preferably have an at least approximately isotropic and in particular substantially homogeneous distribution in the material. As a result, the same advantageous mechanical and thermal properties can be ensured in all areas of the component and in all spatial directions.

Gemäß einer vorteilhaften Ausführungsform umfasst das Material durch das Metall gebildete Körner mit einer mittleren Korngröße zwischen 1 und 400 nm, bevorzugt zwischen 1 und 200 nm. Die Körner, welche auch als Kristallite bezeichnet werden, sind vorzugsweise durch die Nanopartikel zumindest teilweise voneinander getrennt. Dadurch ergibt sich eine besonders hohe Festigkeit des Materials. Es wird angenommen, dass die vorzugsweise entlang der Korngrenzen verlaufenden Nanopartikel das Kornwachstum und die Bewegung von Versetzungen in dem Metall behindern, wodurch eine besonders hohe Festigkeit des Materials gewährleistet wird. Neben Nanopartikeln, die sich entlang der Korngrenzen des Metalls erstrecken, können auch Nanopartikel vorhanden sein, welche sich zumindest teilweise innerhalb eines Korns erstrecken, wodurch die Festigkeit weiter erhöht wird. Es wird vermutet, dass derartige Nanopartikel den Zusammenhalt des Korns mit benachbarten Körnern und somit die Festigkeit des Materials zusätzlich erhöhen.According to an advantageous embodiment, the material comprises grains formed by the metal with an average particle size between 1 and 400 nm, preferably between 1 and 200 nm. The grains, which are also referred to as crystallites, are preferably at least partially separated from one another by the nanoparticles. This results in a particularly high strength of the material. It is believed that the nanoparticles, preferably along the grain boundaries, inhibit grain growth and the movement of dislocations in the metal, thereby ensuring a particularly high strength of the material. In addition to nanoparticles extending along the grain boundaries of the metal, nanoparticles may also be present which extend at least partially within a grain, thereby further increasing strength. It is believed that such nanoparticles the Cohesion of the grain with adjacent grains and thus increase the strength of the material in addition.

Die durch die Nanopartikel bewirkte Verfestigung ist besonders ausgeprägt, wenn die Nanopartikel zumindest zum Teil oder im Durchschnitt ein Aspektverhältnis, das heißt ein Verhältnis von Länge zu Querschnittsdurchmesser, von wenigstens 3, bevorzugt wenigstens 10 und besonders bevorzugt wenigstens 30 aufweisen.The solidification effected by the nanoparticles is particularly pronounced when the nanoparticles have an aspect ratio, ie a ratio of length to cross-sectional diameter, of at least 3, preferably at least 10 and particularly preferably at least 30, at least or on average.

Unter einem Nanopartikel wird insbesondere ein Partikel verstanden, welches zwei oder drei äußere Dimensionen im nanoskaligen Bereich aufweist, das heißt im Bereich von 1 bis 1.000 nm, bevorzugt im Bereich von 1 bis 100 nm, so dass von dem Begriff auch Nanofasern umfasst sind. Vorteilhafte Ergebnisse in Bezug auf die Festigkeit des Materials und dessen Verarbeitbarkeit werden insbesondere bei der Verwendung von anorganischen Nanopartikeln wie insbesondere Nanopartikeln aus Carbiden, Nitriden und Siliziden erzielt. Besonders hohe Festigkeiten werden mit Kohlenstoffnanopartikeln und insbesondere Kohlenstoffnanoröhrchen bzw. "carbon nanotubes" (CNT) erreicht. Daher ist es bevorzugt, wenn die Nanopartikel zumindest teilweise und insbesondere im Wesentlichen vollständig durch Kohlenstoffnanoröhrchen gebildet sind.A nanoparticle is understood in particular to mean a particle which has two or three outer dimensions in the nanoscale range, that is to say in the range from 1 to 1000 nm, preferably in the range from 1 to 100 nm, so that nanofibers are also included in the term. Advantageous results in terms of the strength of the material and its processability are achieved in particular with the use of inorganic nanoparticles, in particular nanoparticles of carbides, nitrides and silicides. Particularly high strengths are achieved with carbon nanoparticles and in particular carbon nanotubes ("CNTs"). Therefore, it is preferred if the nanoparticles are at least partially and in particular substantially completely formed by carbon nanotubes.

Gemäß einer vorteilhaften Ausführungsform sind als Nanopartikel Kohlenstoffnanoröhrchen vorgesehen, die eine eingerollte Struktur bzw. eine Scrollstruktur aufweisen. Anstelle einer nahtlosen geschlossenen Zylinderstruktur weisen die eine oder mehreren Graphenlagen eines solchen Nanoröhrchens einen schneckenförmigen Querschnitt auf, das heißt die aufgerollten Graphenlagen weisen zwei voneinander getrennte Längsseiten auf, die ineinander gerollt sind. Kohlenstoffröhrchen mit dieser Struktur und deren Herstellung sind beispielsweise in Iijima, Nature 354, 56 - 58, 1991 und Bacon, Journal of Applied Physics 34, 1960, 283 - 90 , beschrieben.According to an advantageous embodiment, carbon nanotubes are provided as nanoparticles, which have a rolled-up structure or a scroll structure. Instead of a seamless closed cylinder structure, the one or more graphene layers of such a nanotube have a helical cross section, that is to say the rolled graphene layers have two longitudinal sides which are separated from one another and rolled into one another. Carbon tubes with this structure and their preparation are, for example, in Iijima, Nature 354, 56 - 58, 1991 and Bacon, Journal of Applied Physics 34, 1960, 283-90 , described.

Die Kohlenstoffnanoröhrchen können auch eine Scrollstruktur mit mehreren aufgerollten Graphitschichten aufweisen, wobei jede Graphitschicht zwei oder mehr aufeinander angeordnete Graphenlagen umfasst. Die mehreren Graphenlagen bilden gemeinsam die vorstehend beschriebene Schneckenstruktur, wobei die Längskanten aller Graphenlagen ineinander gerollt sind. Derartige Kohlenstoffröhrchen, deren Struktur auch als Multi-Scroll-Struktur bezeichnet wird, sowie deren Herstellung sind in DE 10 2007 044 031 A1 beschrieben. Die zwischen den offenen Längsseiten der Graphenlagen dieser Nanoröhrchen ausgebildete Unterbrechung ermöglicht das Eingehen einer besonders innigen Verbindung des Nanoröhrchens mit dem Metall, wodurch die Festigkeit des Materials erhöht wird. Die Kohlenstoffnanoröhrchen verlaufen ferner aufgrund ihres nicht geschlossenen, sondern im Bereich der Längsseiten der Graphenlagen offenen Querschnitts typischerweise nicht geradlinig, sondern entlang einer gekrümmten, kurvigen Bahn mit relativ kurzen, zwischen zwei Krümmungen angeordneten geraden Abschnitten und bilden somit bevorzugt Knäuel oder Bündel mit mehreren miteinander verworrenen Kohlenstoffnanoröhrchen. Derartige Knäuel lassen sich gegenüber vereinzelten Kohlenstoffnanoröhrchen einfacher und mit geringeren Sicherheitsvorkehrungen handhaben, wodurch der Herstellungsaufwand reduziert wird.The carbon nanotubes may also have a scroll structure with a plurality of coiled graphite layers, each graphite layer comprising two or more graphene layers arranged on top of each other. The several graphene layers together form the above-described screw structure, wherein the longitudinal edges of all graphene layers are rolled into one another. Such carbon tubes, whose structure is also referred to as a multi-scroll structure, as well as their preparation are in DE 10 2007 044 031 A1 described. The disruption formed between the open longitudinal sides of the graphene sheets of these nanotubes allows a particularly intimate connection of the nanotube to the metal, thereby increasing the strength of the material. The carbon nanotubes are also typically not rectilinear due to their open cross-section, but open in the region of the longitudinal sides of the graphene layers, along a curved curved path with relatively short straight sections between two bends and thus preferably form tangles or bundles with several entangled ones carbon nanotubes. Such balls can be compared to isolated carbon nanotubes easier and handle with fewer safety precautions, whereby the manufacturing cost is reduced.

Die äußersten Lagen der Multi-Scroll-Nanoröhrchen können durch eine insbesondere durch eine Druckbeaufschlagung durchgeführte Funktionalisierung zumindest teilweise aufgebrochen sein, wodurch eine noch innigere Verbindung mit dem Metall ermöglicht wird.The outermost layers of the multi-scroll nanotubes may be at least partially broken by a functionalization, in particular by pressurization, thereby allowing an even more intimate connection with the metal.

Der mittlere äußere Durchmesser der Kohlenstoffnanoröhrchen kann zwischen 5 und 25 nm, insbesondere etwa 13 nm betragen. Die mittlere Länge der Nanoröhrchen kann zwischen 0,5 und 20 µm, bevorzugt zwischen 1 und 10 µm betragen, so dass sich ein sehr hohes Aspektverhältnis der Nanoröhrchen ergibt. Der innere Durchmesser der Nanoröhrchen kann zwischen 2 und 15 nm, bevorzugt zwischen 3 und 8 nm betragen. Die Nanoröhrchen können einen durch Veraschung ermittelten Kohlenstoffanteil von mehr als 95 % und bevorzugt mehr als 99 % aufweisen. Z.B. können die von der Firma Bayer Material Science AG, 51368 Leverkusen, unter der Bezeichnung Baytubes® vertriebenen Kohlenstoffnanoröhrchen eingesetzt werden.The mean outer diameter of the carbon nanotubes may be between 5 and 25 nm, in particular about 13 nm. The average length of the nanotubes can be between 0.5 and 20 .mu.m, preferably between 1 and 10 .mu.m, resulting in a very high aspect ratio of the nanotubes. The inner diameter of the nanotubes may be between 2 and 15 nm, preferably between 3 and 8 nm. The nanotubes may have an ashing determined carbon content of greater than 95% and preferably greater than 99%. For example, can be used by the company Bayer Material Science AG, 51368 Leverkusen, sold under the name Baytubes® carbon nanotubes.

Gemäß einer vorteilhaften Ausführungsform ist das Material der Komponente durch ein pulvermetallurgisches Verfahren aus einem ein Metall und Nanopartikel enthaltenden pulverförmigen Verbundwerkstoff erhältlich. Mit einem solchen Verfahren lassen sich ein besonders festes Gefüge aus dem Metall und den Nanopartikeln, insbesondere mit einer gleichmäßigen Verteilung der Nanopartikel in dem Metall, gewährleisten. Das pulvermetallurgische Verfahren, welches das pulverförmige Ausgangsmaterial bevorzugt zu einem festen zusammenhängenden und vorzugsweise zumindest annähernd porenfreien oder gering porösen Grundkörper umwandelt, kann ein mechanisches Umformen, insbesondere bei gleichzeitiger Wärmezuführung, umfassen. Durch das Umformen kann ein z.B. länglicher Grundkörper mit im Wesentlichen rundem Querschnitt hergestellt werden, der beispielsweise im Wesentlichen zylinder- oder bolzenförmig ist und einen Durchmesser zwischen 50 und 200 mm, bevorzugt zwischen 60 und 120 mm aufweisen kann. Der Grundkörper kann auch platten- oder blechförmig ausgebildet sein. Beispielsweise kann das pulvermetallurgische Verfahren ein heißisostatisches Pressen (HIP) oder ein Strangpressen bzw. Extrudieren des pulverförmigen Verbundwerkstoffs umfassen. Prinzipiell kann das Umformen auch ein Walzen umfassen. Durch die Nanopartikel wird die Bewegung von Versetzungen bzw. Gitterfehlplätzen in dem Metall während des pulvermetallurgischen Verfahrens behindert, so dass das Material auch nach dem pulvermetallurgischen Verfahren und einer dabei ggf. erfolgenden Wärmebehandlung eine hohe Versetzungsdichte aufweist und das pulvermetallurgisch hergestellte Material folglich eine entsprechend hohe Festigkeit aufweist.According to an advantageous embodiment, the material of the component is obtainable by a powder metallurgy process from a powdery composite containing a metal and nanoparticles. With such a method, a particularly firm structure of the metal and the nanoparticles, in particular with a uniform distribution of the nanoparticles in the metal, ensure. The powder metallurgical process, which preferably converts the powdery starting material to a solid, coherent and preferably at least approximately pore-free or slightly porous main body, may comprise a mechanical forming, in particular with simultaneous heat supply. By forming an example elongated body can be made with a substantially circular cross-section, for example, is substantially cylindrical or bolt-shaped and may have a diameter between 50 and 200 mm, preferably between 60 and 120 mm. The main body may also be formed plate-shaped or sheet-shaped. For example, the powder metallurgical process may be hot isostatic pressing (HIP) or extruding the powdered composite include. In principle, the forming may also include rolling. The nanoparticles hinder the movement of dislocations or lattice defects in the metal during the powder metallurgy process, so that the material has a high dislocation density even after the powder metallurgy process and a heat treatment that may be required, and consequently the material produced by powder metallurgy has a correspondingly high strength having.

Eine Pumpenkomponente mit besonders günstigen Eigenschaften wird erreicht, wenn das pulverförmige Ausgangsmaterial durch ein mechanisches Legieren eines Metallpulvers mit Nanopartikeln erhältlich ist. Ein solches Legieren führt zu einem pulverförmigen Ausgangsmaterial mit einer gründlichen Durchsetzung des Metalls mit den Nanopartikeln und einer festen Verbindung zwischen den Nanopartikeln und dem Metall in den einzelnen Pulverpartikeln, so dass das daraus pulvermetallurgisch hergestellte Material ebenfalls eine besonders hohe Festigkeit aufweist.A pump component having particularly favorable properties is achieved when the powdery starting material is obtainable by mechanical alloying of a metal powder with nanoparticles. Such alloying results in a powdery starting material with thorough penetration of the metal with the nanoparticles and a strong bond between the nanoparticles and the metal in the individual powder particles, so that the material produced therefrom by powder metallurgy likewise has a particularly high strength.

Das pulverförmige Ausgangsmaterial kann insbesondere durch ein Verfahren erhältlich sein, welches umfasst, dass ein Metallpulver und Nanopartikel durch mechanisches Legieren derart verarbeitet werden, dass der hergestellte Verbundwerkstoff Metallkörner, die auch als Kristallite bezeichnet werden, mit einer durchschnittlichen Größe im Bereich von 1 bis 100 nm, vorzugsweise 10 bis 100 nm oder im Bereich von mehr als 100 nm bis 200 nm aufweist, die zumindest teilweise durch die Nanopartikel voneinander getrennt sind. Ein Material mit einer solchen Korngröße führt zu einer besonders hohen Festigkeit der resultierenden Pumpenkomponente. Ferner lässt sich das Ausgangsmaterial in industriellem Maßstab herstellen und ist dementsprechend kostengünstig erhältlich.Specifically, the powdery raw material may be obtainable by a method which comprises processing a metal powder and nanoparticles by mechanical alloying such that the produced composite metal grains, also referred to as crystallites, having an average size in the range of 1 to 100 nm , preferably 10 to 100 nm or in the range of more than 100 nm to 200 nm, which are at least partially separated by the nanoparticles. A material with such a grain size leads to a particularly high strength of the resulting pump component. Furthermore, the starting material can be produced on an industrial scale and is therefore available at low cost.

Ein Verfahren zur Herstellung eines geeigneten pulverförmigen Verbundwerkstoffs und ein dadurch erhältlicher Verbundwerkstoff sind beispielsweise in WO 2010/091790 A1 der Firma Bayer International SA beschrieben. Bei dem pulverförmigen Verbundwerkstoff kann es sich insbesondere um einen nach dem in WO 2010/091790 A1 als erfindungsgemäß beschriebenen Verfahren erhältlichen Verbundwerkstoff handeln. Ebenso kann das pulverförmige Ausgangsmaterial durch ein in einem der Patentfamilienmitglieder der WO 2010/091790 A1 als erfindungsgemäß beschriebenes Verfahren erhältlich sein. Insbesondere beschreiben WO 2010/091704 A1 , WO 2010/102655 A2 , WO 2010/091789 A1 , WO 2010/091791 A1 und WO 2011/032791 A1 der Firma Bayer International SA derartige Verfahren.A method for producing a suitable powdery composite material and a composite material obtainable thereby are, for example, in WO 2010/091790 A1 described by Bayer International SA. The pulverulent composite material may be, in particular, one after the in WO 2010/091790 A1 act as composite material obtainable according to the invention. Likewise, the powdery starting material can be replaced by a in one of the patent family members of WO 2010/091790 A1 be available as a process according to the invention. In particular, describe WO 2010/091704 A1 . WO 2010/102655 A2 . WO 2010/091789 A1 . WO 2010/091791 A1 and WO 2011/032791 A1 the company Bayer International SA such procedures.

Ein Material, aus dem die Komponente der Vakuumpumpe zumindest teilweise hergestellt sein kann, ist von der Firma Bayer Material Science AG, 51368 Leverkusen unter dem Handelsnamen Bayal-C DP® erhältlich.A material from which the component of the vacuum pump can be made at least partially is available from Bayer Material Science AG, 51368 Leverkusen under the trade name Bayal-C DP®.

Die das beschriebene Material umfassende Komponente der Vakuumpumpe ist vorzugsweise eine Komponente, die während des Betriebs der Pumpe mit den geförderten Medien in Kontakt kommt und insbesondere eine pumpaktive Struktur aufweist. Derartige Komponenten werden durch die bei hohen Pumpleistungen auftretenden mechanischen und thermischen Belastungen besonders stark beansprucht, so dass die Ausbildung einer solchen Komponente mit dem beschriebenen Material einen besonders wesentlichen Einfluss auf die Lebensdauer der Vakuumpumpe hat.The component of the vacuum pump comprising the material described is preferably a component which, during operation of the pump, comes into contact with the conveyed media and in particular has a pump-active structure. Such components are particularly heavily stressed by the mechanical and thermal stresses occurring at high pump powers, so that the formation of such a component with the described material has a particularly significant influence on the life of the vacuum pump.

Gemäß einer vorteilhaften Ausführungsform ist die Komponente ein Rotororgan der Vakuumpumpe, welches bei dem Betrieb der Vakuumpumpe rotierend angetrieben wird und vorzugsweise eine pumpaktive Struktur aufweist. Beispielsweise kann die Komponente eine Rotorscheibe einer turbomolekularen Pumpstufe der Vakuumpumpe umfassen oder daraus bestehen. Dabei wird durch das beschriebene Material eine besonders signifikante Erhöhung der möglichen Pumpleistung und der Lebensdauer der Pumpe erreicht, da die Rotorscheiben und insbesondere deren Schaufeln bei dem Betrieb der Vakuumpumpe mit hohen Gaslasten und Fördergeschwindigkeiten mechanisch und thermisch besonders stark belastet werden. Die Rotorscheibe kann dabei ein eigenständiges Bauteil der Vakuumpumpe darstellen oder Teil einer größeren rotierenden Komponente sein. Die Rotorscheibe kann z.B. einteilig mit einer Rotorwelle ausgebildet sein oder einen mit der Rotorwelle verbundenen Tragring umfassen. Die Komponente der Vakuumpumpe kann auch durch ein glockenförmiges Rotororgan gebildet sein, beispielsweise durch einen Glockenrotor einer turbomolekularen Pumpstufe, welcher insbesondere eine oder mehrere Rotorscheiben der turbomolekularen Pumpstufe umfassen kann.According to an advantageous embodiment, the component is a rotor member of the vacuum pump, which is driven in rotation during the operation of the vacuum pump and preferably has a pump-active structure. For example, the component may comprise or consist of a rotor disk of a turbomolecular pumping stage of the vacuum pump. In this case, a particularly significant increase in the possible pump power and the life of the pump is achieved by the material described, since the rotor disks and in particular their blades during operation of the vacuum pump with high gas loads and conveying speeds are mechanically and thermally particularly heavily loaded. The rotor disk can represent an independent component of the vacuum pump or be part of a larger rotating component. The rotor disk may e.g. be integrally formed with a rotor shaft or comprise a support ring connected to the rotor shaft. The component of the vacuum pump can also be formed by a bell-shaped rotor element, for example by a bell-shaped rotor of a turbomolecular pumping stage, which can in particular comprise one or more rotor disks of the turbomolecular pumping stage.

Die Rotorscheibe umfasst als pumpaktive Struktur vorzugsweise mehrere Rotorschaufeln, die jeweils ganz oder teilweise aus dem beschriebenen Material bestehen und z.B. kranzförmig um einen Tragring der Rotorscheibe oder eine Rotorwelle herum angeordnet sind. Die Schaufeln weisen z.B. eine in radialer Richtung orientierte Längserstreckung und gegenüber der Drehrichtung angestellte Oberflächen auf, um einen in Förderrichtung, das heißt insbesondere senkrecht zur Scheibenebene, gerichteten Impuls an die Gasmoleküle abzugeben.The rotor disk preferably comprises as a pump-active structure a plurality of rotor blades, which in each case consist wholly or partly of the described material and e.g. are arranged in a ring around a support ring of the rotor disk or a rotor shaft around. The blades have e.g. a longitudinal extent oriented in the radial direction and surfaces set in relation to the direction of rotation in order to deliver a pulse directed in the conveying direction, that is in particular perpendicular to the plane of the pane, to the gas molecules.

Anstatt einer turbomolekularen Pumpstufe kann das Rotororgan auch Teil einer Holweck-Pumpstufe, Siegbahnpumpstufe, Seitenkanalpumpstufe oder Wälzkolbenpumpstufe sein und kann beispielsweise einen rotierenden Holweck-Zylinder darstellen. Ein Holweck-Zylinder weist vorzugsweise eine glatte zylindermantelförmige pumpaktive Fläche auf, die gegenüber einer Statorhülse rotiert, welche mit spiralförmigen Gewindenuten versehen ist, in denen das pumpend angetriebene Gas geführt wird. Ebenso ist es möglich, dass anstelle der Statorhülse die rotierende Holweck-Hülse ein Gewinde mit spiralförmigen Gewindenuten aufweist und z.B. gegenüber einer glatten Oberfläche der Statorhülse rotiert. Es ist auch eine Ausgestaltung möglich, bei der eine Rotorhülse gegenüber einer Statorhülse rotiert, wobei die einander gegenüberliegenden, insbesondere zylindermantelförmigen Oberflächen sowohl der Rotorhülse als auch der Statorhülse jeweils ein Gewinde mit spiralförmigen Nuten aufweisen, in denen das pumpwirksam angetriebene Gas strömt, wobei der Drehsinn des Gewindes der einen Hülse dem Drehsinn des Gewindes der anderen Hülse entgegengesetzt ist.Instead of a turbomolecular pumping stage, the rotor organ can also be part of a Holweck pumping stage, Siegbahnpumpstufe, Seitenkanalpumpstufe or Wälzkolbenpumpstufe and can represent, for example, a rotating Holweck cylinder. A Holweck cylinder preferably has a smooth cylindrical shell-shaped pump-active surface, which rotates with respect to a stator sleeve, which is provided with spiral-shaped thread grooves in which the pumping-driven gas is guided. It is also possible that, instead of the stator sleeve, the rotating Holweck sleeve has a thread with helical thread grooves and, for example, rotates with respect to a smooth surface of the stator sleeve. It is also an embodiment possible in which a rotor sleeve rotates relative to a stator, wherein the opposing, in particular cylinder jacket-shaped surfaces of both the rotor sleeve and the stator each having a thread with helical grooves in which the pump-effective driven gas flows, the direction of rotation the thread of a sleeve is opposite to the direction of rotation of the thread of the other sleeve.

Vorzugsweise ist die Pumpenkomponente durch ein Verfahren erhältlich, welches das mechanische Bearbeiten eines zumindest teilweise aus dem beschriebenen Material gebildeten Grundkörpers umfasst, welcher ein Halbzeug darstellen kann. Beispielsweise kann die Bearbeitung eine materialentfernende und insbesondere spanabhebende Bearbeitung umfassen. Trotz der hohen mechanischen Festigkeit des Materials kann dadurch eine Pumpenkomponente mit der gewünschten Geometrie und ggf. pumpaktiven Struktur hergestellt werden, ohne dass bei der Herstellung die Notwendigkeit einer plastischen Verformung des Materials und eine damit einhergehende Gefahr einer nachteiligen Veränderung des Materials besteht. Beispielsweise können die Rotorschaufeln einer Rotorscheibe einschließlich ihrer in Drehrichtung weisenden und gegenüber der Drehrichtung angestellten Oberflächen im Wesentlichen vollständig durch ein Material entfernendes Verfahren aus dem Grundkörper herausgearbeitet werden. Auf eine plastische Verformung des Grundkörpers kann bei der Herstellung der Pumpenkomponente dementsprechend sogar vollständig verzichtet werden.Preferably, the pump component is obtainable by a method which comprises the mechanical processing of a base body formed at least partially from the described material, which can represent a semifinished product. For example, the processing may include a material-removing and in particular machining. Despite the high mechanical strength of the material, this makes it possible to produce a pump component with the desired geometry and optionally pump-active structure, without the need for plastic deformation of the material during production and a concomitant risk of adverse changes in the material. For example, the rotor blades of a rotor disk, including its surfaces pointing in the direction of rotation and positioned opposite the direction of rotation, can be machined from the basic body substantially completely by a material removing process become. On a plastic deformation of the body can therefore be completely dispensed with in the preparation of the pump component accordingly.

Gegenstand der Erfindung ist auch eine Komponente für eine Vakuumpumpe, insbesondere eine Rotorscheibe für eine Turbomolekularpumpe, welche ein Material umfasst oder daraus besteht, welches ein Metall und Nanopartikel, insbesondere Kohlenstoffnanoröhrchen, enthält. Die vorstehend in Zusammenhang mit der erfindungsgemäßen Vakuumpumpe in Bezug auf die Komponente der Vakuumpumpe beschriebenen vorteilhaften Ausführungsformen und Vorteile stellen bei entsprechender Anwendung vorteilhafte Ausführungsformen und Vorteile der erfindungsgemä-ßen Komponente dar.The invention also relates to a component for a vacuum pump, in particular a rotor disk for a turbomolecular pump, which comprises or consists of a material which contains a metal and nanoparticles, in particular carbon nanotubes. The advantageous embodiments and advantages described above in connection with the vacuum pump according to the invention with respect to the component of the vacuum pump, when used appropriately, represent advantageous embodiments and advantages of the component according to the invention.

Weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung einer Vakuumpumpe, insbesondere einer Turbomolekularpumpe, oder einer Komponente für eine solche Vakuumpumpe. Das Verfahren umfasst, dass eine Komponente der Vakuumpumpe bzw. die Komponente zumindest teilweise aus einem Material hergestellt wird, welches ein Metall und Nanopartikel enthält.Another object of the invention is a method for producing a vacuum pump, in particular a turbomolecular pump, or a component for such a vacuum pump. The method includes that a component of the vacuum pump or the component is at least partially made of a material containing a metal and nanoparticles.

Die Herstellung der Komponente aus einem Material, welches ein Metall und Nanopartikel enthält, führt zu einer Vakuumpumpe, welche dauerhaft und zuverlässig mit hohen Pumpleistungen und hohen Gaslasten betrieben werden kann und gleichzeitig eine hohe Betriebslebensdauer aufweist. Das Verfahren kann insbesondere zur Herstellung einer wie vorstehend beschriebenen erfindungsgemäßen Vakuumpumpe durchgeführt werden. Die hierin in Bezug auf die erfindungsgemäße Vakuumpumpe sowie deren Herstellung bzw. Herstellbarkeit beschriebenen vorteilhaften Ausführungsformen und Vorteile stellen bei entsprechender Anwendung vorteilhafte Ausführungsformen und Vorteile des erfindungsgemäßen Verfahrens dar. Durch das Verfahren wird folglich eine Vakuumpumpe mit einer Komponente mit vorteilhaften mechanischen und thermischen Eigenschaften geschaffen, wobei sich die Eigenschaften der Komponente der Vakuumpumpe sowie von dessen Material außerdem durch Beeinflussung der Verfahrensparameter einfach und gezielt einstellen lassen.The production of the component from a material containing a metal and nanoparticles leads to a vacuum pump which can be operated permanently and reliably with high pumping powers and high gas loads while having a long service life. The method can be carried out in particular for producing a vacuum pump according to the invention as described above. The advantageous embodiments and advantages described herein in relation to the vacuum pump according to the invention as well as their manufacture or manufacturability provide correspondingly Application advantageous embodiments and advantages of the method according to the invention. The method thus provides a vacuum pump with a component having advantageous mechanical and thermal properties, wherein the properties of the component of the vacuum pump and its material can also be adjusted easily and selectively by influencing the process parameters ,

Bei den Nanopartikeln kann es sich um Kohlenstoffnanopartikel, insbesondere um Kohlenstoffnanoröhrchen, handeln.The nanoparticles may be carbon nanoparticles, in particular carbon nanotubes.

Gemäß einer vorteilhaften Ausführungsform umfasst das Bilden der Komponente eine mechanische Bearbeitung eines zumindest teilweise aus dem Material gebildeten Grundkörpers für die Komponente. Die Bearbeitung umfasst vorzugsweise eine materialentfernende und insbesondere spanabhebende Bearbeitung, wie beispielsweise Fräsen, Drehen, Schleifen, Sägen, Bohren oder Schneiden. Dadurch kann eine Pumpenkomponente mit der gewünschten Form hergestellt werden, ohne dass eine plastische Verformung des Materials erforderlich ist, so dass die vorteilhaften Eigenschaften des Materials nicht beeinträchtigt werden, wobei prinzipiell aber nicht ausgeschlossen ist, dass eine solche plastische Verformung erfolgt.According to an advantageous embodiment, the forming of the component comprises a mechanical processing of a body at least partially formed from the material for the component. The processing preferably comprises a material-removing and in particular machining, such as milling, turning, grinding, sawing, drilling or cutting. Thereby, a pump component can be produced with the desired shape, without plastic deformation of the material is required, so that the advantageous properties of the material are not impaired, but in principle is not excluded that such a plastic deformation takes place.

Beispielsweise kann aus dem Grundkörper mindestens eine Rotorscheibe für eine turbomolekulare Pumpstufe der Vakuumpumpe durch eine materialentfernende Bearbeitung herausgearbeitet werden, wobei bevorzugt die in Umlaufrichtung weisenden und gegenüber der Umlaufrichtung angestellten Oberflächen der Schaufeln der Rotorscheibe im Wesentlichen vollständig durch eine materialentfernende Bearbeitung herausgearbeitet werden. Der Grundkörper kann ursprünglich zum Beispiel eine längliche und insbesondere im Wesentlichen zylindrische Form aufweisen, wobei z.B. ein scheibenförmiger Abschnitt des zylinderförmigen Grundkörpers abgeschnitten werden kann, aus dem dann die pumpaktive Schaufelstruktur der Rotorscheibe durch eine materialentfernende Bearbeitung herausgearbeitet wird. Der Grundkörper kann auch platten- oder blechförmig ausgebildet sein.For example, at least one rotor disk for a turbomolecular pumping stage of the vacuum pump can be machined out of the main body by material-removing machining, wherein the surfaces of the blades of the rotor disk pointing in the direction of rotation and facing the direction of rotation are preferably machined essentially completely by material-removing machining. The main body may originally have, for example, an elongated and in particular substantially cylindrical shape, wherein For example, a disk-shaped portion of the cylindrical base body can be cut off, from which then the pump-active blade structure of the rotor disk is machined by a material-removing machining. The main body may also be formed plate-shaped or sheet-shaped.

Aus dem Grundkörper kann auch ein Glockenrotor, insbesondere für eine turbomolekulare Pumpstufe, hergestellt werden, insbesondere durch eine materialentfernende Bearbeitung, wobei der Glockenrotor eine oder mehrere Rotorscheiben der turbomolekularen Pumpstufe umfassen kann.A bell rotor, in particular for a turbomolecular pump stage, can also be produced from the base body, in particular by a material-removing machining, wherein the bell rotor can comprise one or more rotor disks of the turbomolecular pump stage.

Gemäß einer Ausführungsform wird ein pulverförmiger Verbundwerkstoff bereitgestellt, der ein Metall und Nanopartikel enthält und der durch ein pulvermetallurgisches Verfahren zu der Komponente oder zu einem Grundkörper für die Komponente verarbeitet wird.According to one embodiment, a powdered composite material is provided which contains a metal and nanoparticles and which is processed by a powder metallurgy process to the component or to a base for the component.

Die Verarbeitung des pulverförmigen Verbundwerkstoffs kann ein mechanisches Umformen umfassen, wobei dem Verbundwerkstoff vorzugsweise gleichzeitig Wärme zugeführt wird. Beispielsweise kann die Komponente bzw. deren Grundkörper aus dem pulverförmigen Verbundwerkstoff durch Strangpressen bzw. Extrudieren und/oder heißisostatisches Pressen hergestellt werden. Die in dem pulverförmigen Verbundwerkstoff enthaltenen Nanopartikel behindern dabei eine Bewegung der in dem Metall vorhandenen Versetzungen bzw. Gitterfehlern, so dass selbst bei Durchführung des Umformens unter Wärmzugabe eine hohe Versetzungsdichte und entsprechend hohe Festigkeit des aus dem Pulver erzeugten Materials sichergestellt wird.The processing of the powdered composite material may include mechanical forming, wherein heat is preferably simultaneously supplied to the composite material. For example, the component or its basic body can be produced from the powdered composite material by extrusion or / and hot isostatic pressing. The nanoparticles contained in the powdered composite material hinder movement of the dislocations or lattice defects present in the metal, so that a high dislocation density and correspondingly high strength of the material produced from the powder is ensured even when performing the forming with heat addition.

Vorzugsweise umfasst das Bereitstellen des pulverförmigen Verbundwerkstoffs ein mechanisches Legieren eines Metallpulvers mit Nanopartikeln.Preferably, providing the powdered composite comprises mechanically alloying a metal powder with nanoparticles.

Bevorzugt ist der verwendete pulverförmige Verbundwerkstoff nach einem der in den vorstehend zitierten Offenlegungsschriften der Firma Bayer International SA als erfindungsgemäß beschriebenen Verfahren erhältlich bzw. wird nach einem dort beschriebenen Verfahren hergestellt.The powdered composite material used is preferably obtainable according to one of the processes described in the above-cited Bayer International SA publications as a process according to the invention or is prepared by a process described therein.

Insbesondere wird das mechanische Legieren derart durchgeführt, dass in dem pulverförmigen Verbundwerkstoff das Metall eine mittlere Korngröße bzw. Kristallitgröße zwischen 1 und 200 nm aufweist, wobei die Körner bzw. Kristallite des Metalls durch die Nanopartikel zumindest teilweise voneinander getrennt sind.In particular, the mechanical alloying is performed such that in the powdery composite material, the metal has a mean grain size or crystallite size between 1 and 200 nm, wherein the grains of the metal are at least partially separated by the nanoparticles.

Das mechanische Legieren umfasst vorzugsweise ein Mahlen, insbesondere ein hochenergetisches Mahlen, welches z.B. unter Verwendung einer Kugelmühle mit einer Mahlkammer und darin frei beweglichen Kugeln als Mahlkörpern durchgeführt werden kann. Das mechanische Legieren kann ein wiederholtes Deformieren, Brechen und Zusammenschweißen der an der Legierung beteiligten Pulverpartikel umfassen. Die Mühle kann mit einer Drehzahl zwischen 350 und 1000 U/min, bevorzugt zwischen 500 und 800 U/min betrieben werden und die Mahlkammer kann in der Ebene senkrecht zur Rotationsachse einen Durchmesser von zwischen 250 und 1000 mm, bevorzugt etwa 500 mm aufweisen. Die Kugeln können auf eine Geschwindigkeit von wenigstens 5 m/s, bevorzugt wenigstens 8 m/s und ferner bevorzugt wenigstens 11 m/s beschleunigt werden. Die Mahldauer kann zwischen 45 und 240 Minuten, bevorzugt zwischen 90 und 120 Minuten betragen. Durch die Mahlwirkung lässt sich die Korngröße des Metalls verringern und gleichzeitig eine innige Verbindung zwischen dem Metall und den Nanopartikeln in herstellen. Die Nanopartikel können dabei so mit dem Metallmaterial verbunden werden, dass sie Körner des Metalls zumindest teilweise voneinander trennen oder teilweise sogar in die Körner des Metalls eingebracht werden.The mechanical alloying preferably comprises milling, in particular high-energy milling, which can be carried out, for example, using a ball mill with a grinding chamber and balls which are freely movable therein as grinding bodies. Mechanical alloying may involve repeated deforming, breaking and welding together of the powder particles involved in the alloy. The mill may be operated at a speed of between 350 and 1000 rpm, preferably between 500 and 800 rpm, and the grinding chamber may have a diameter of between 250 and 1000 mm, preferably approximately 500 mm, in the plane perpendicular to the axis of rotation. The balls may be accelerated to a speed of at least 5 m / s, preferably at least 8 m / s and more preferably at least 11 m / s. The grinding time can be between 45 and 240 minutes, preferably between 90 and 120 minutes. The grinding action can reduce the grain size of the metal and at the same time establish an intimate bond between the metal and the nanoparticles. In this case, the nanoparticles can be joined to the metal material in such a way that they at least partially separate grains of the metal from each other, or even partially introduce them into the grains of the metal.

Die Nanopartikel liegen vor dem mechanischen Legieren vorzugsweise in der Form eines Pulvers aus Agglomeraten von Nanopartikeln vor, insbesondere aus Büscheln oder Knäulen von miteinander verworrenen bzw. verhedderten Kohlenstoffnanoröhrchen. Dadurch lässt sich die Handhabbarkeit der Nanopartikel deutlich erhöhen und die für die Handhabung notwendigen Sicherheitsvorkehrungen vereinfachen. Vorzugsweise haben wenigstens 95 % der Agglomerate eine Größe von mehr als 100 µm.The nanoparticles are preferably present in the form of a powder of agglomerates of nanoparticles prior to mechanical alloying, in particular of tufts or bumps of tangled or entangled carbon nanotubes. As a result, the manageability of the nanoparticles can be significantly increased and simplify the necessary safety precautions for handling. Preferably, at least 95% of the agglomerates have a size greater than 100 microns.

Vorzugsweise werden die für das mechanische Legieren vorgesehenen Nanopartikel durch eine katalytische chemische Gasphasenabscheidung bzw. Catalytic Chemical Vapor Deposition, CCVD, hergestellt. Insbesondere können die Partikel durch ein z.B. in einem Wirbelschichtreaktor durchgeführtes Wirbelschichtverfahren erzeugt werden. Beispielhafte Verfahren zur Herstellung entsprechender Nanopartikel bzw. von Büscheln von Nanopartikeln sind in den vorstehend genannten Veröffentlichungen der Firma Bayer Technologies SA sowie in DE 10 2007 044 031 A1 beschrieben. Die dort beschriebenen Verfahren führen zu Kohlenstoffnanoröhrchen vom Multi-Scroll-Typ, welche aufgrund ihrer gekrümmten und kurvigen Längsform in besonders günstiger Weise die vorstehend beschriebenen zusammenhängenden Büschel bzw. Knäuel bilden. Beispielsweise können Baytubes® verwendet werden.The nanoparticles intended for mechanical alloying are preferably produced by a catalytic chemical vapor deposition or CCVD. In particular, the particles can be produced by a fluidized bed process, for example carried out in a fluidized bed reactor. Exemplary methods for producing corresponding nanoparticles or tufts of nanoparticles are described in the abovementioned publications by Bayer Technologies SA and in US Pat DE 10 2007 044 031 A1 described. The methods described there lead to carbon nanotubes of multi-scroll type, which form due to their curved and curvilinear longitudinal shape in a particularly favorable manner, the contiguous tufts or balls described above. For example, Baytubes® can be used.

Vor dem mechanischen Legieren können die Kohlenstoffnanoröhrchen funktionalisiert werden, was eine Druckbeaufschlagung der Kohlenstoffnanoröhrchen derart umfassen kann, dass zumindest die äußerste Graphenlage wenigstens eines Teils der Kohlenstoffröhrchen aufbricht. Die Büschel können dabei mit einem Druck von wenigstens 5 MPa und bevorzugt wenigstens 7,5 MPa beaufschlagt werden.Prior to mechanical alloying, the carbon nanotubes may be functionalized, which may include pressurizing the carbon nanotubes such that at least the outermost graphene layer of at least a portion of the carbon tubes ruptures. The tufts can be subjected to a pressure of at least 5 MPa and preferably at least 7.5 MPa.

Das bei dem mechanischen Legieren verwendete Metallpulver kann beispielsweise durch Zerstäuben einer Metallschmelze hergestellt werden. Vor oder nach der Herstellung des Pulvers kann eine Mischkristallverfestigung des Metalls erfolgen.The metal powder used in the mechanical alloying can be produced by, for example, sputtering a molten metal. Before or after the production of the powder, solid solution hardening of the metal can take place.

Weiterer Gegenstand der Erfindung ist eine Vakuumpumpe oder eine Komponente einer Vakuumpumpe, die nach dem hierin beschriebenen erfindungsgemäßen Verfahren erhältlich ist. Die vorstehend in Bezug auf das Verfahren beschriebenen vorteilhaften Ausführungsformen und Vorteile stellen bei entsprechender Anwendung vorteilhafte Ausführungsformen und Vorteile der nach dem Verfahren erhältlichen Vakuumpumpe bzw. Komponente dar.Another object of the invention is a vacuum pump or a component of a vacuum pump, which is obtainable by the inventive method described herein. The advantageous embodiments and advantages described above in relation to the method, when used appropriately, represent advantageous embodiments and advantages of the vacuum pump or component obtainable by the method.

Nachfolgend wird die vorliegende Erfindung beispielhaft anhand einer vorteilhaften Ausführungsform unter Bezugnahme auf die beigefügten Figuren beschrieben. Es zeigen:

Fig. 1
eine Vakuumpumpe gemäß einer Ausführungsform der Erfindung im Längsschnitt,
Fig. 2
einen Teil der in Fig. 1 gezeigten Vakuumpumpe in einer teilweise geschnittenen perspektivischen Ansicht,
Fig. 3
einen Wirbelschichtreaktor zu Verwendung in einem Verfahren gemäß einer Ausführungsform der Erfindung,
Fig. 4
eine geschnittene, perspektivische Ansicht eines mit dem Reaktor von Fig. 3 hergestellten Kohlenstoffnanoröhrchens,
Fig. 5
eine Vorrichtung zur Herstellung eines Metallpulvers zur Verwendung in dem Verfahren,
Fig. 6
eine Kugelmühle zur Verwendung in dem Verfahren, und
Fig. 7
einen Grundkörper zur Herstellung einer Komponente einer Vakuumpumpe gemäß einer Ausführungsform der Erfindung.
Hereinafter, the present invention will be described by way of example with reference to an advantageous embodiment with reference to the accompanying drawings. Show it:
Fig. 1
a vacuum pump according to an embodiment of the invention in longitudinal section,
Fig. 2
a part of in Fig. 1 shown vacuum pump in a partially sectioned perspective view,
Fig. 3
a fluidized bed reactor for use in a method according to an embodiment of the invention,
Fig. 4
a cut, perspective view of one with the reactor of Fig. 3 manufactured carbon nanotube,
Fig. 5
an apparatus for producing a metal powder for use in the method,
Fig. 6
a ball mill for use in the method, and
Fig. 7
a main body for producing a component of a vacuum pump according to an embodiment of the invention.

Fig. 1 zeigt eine als Turbomolekularpumpe ausgebildete Vakuumpumpe gemäß einer Ausführungsform der Erfindung. Das mehrteilige Gehäuse 10 der Vakuumpumpe umfasst an seiner Hochvakuumseite einen Flansch 12, mit dem die Vakuumpumpe an eine zu evakuierende Vakuumkammer anschließbar ist. Der Flansch 12 umgibt die Ansaugöffnung 14, durch welche die Vakuumpumpe Gas ansaugt. Fig. 1 shows a formed as a turbomolecular pump vacuum pump according to an embodiment of the invention. The multi-part housing 10 of the vacuum pump comprises on its high-vacuum side a flange 12 with which the vacuum pump can be connected to a vacuum chamber to be evacuated. The flange 12 surrounds the suction opening 14, through which the vacuum pump sucks gas.

Die Vakuumpumpe umfasst einen Rotor mit einer um eine Rotationsachse 16 der Vakuumpumpe drehbar gelagerten Rotorwelle 18, welche durch einen elektromotorischen Antrieb drehend antreibbar ist. Der Antrieb umfasst eine statorseitige Antriebsspule 20 und einen rotorseitigen Antriebsmagneten 22. Die Rotorwelle 18 ist durch zwei in Richtung der Rotationsachse 16 voneinander beabstandete, als Wälzlager ausgebildete Drehlager 24, 26 drehbar gelagert. Anstelle oder zusätzlich zu dem näher an der Ansaugöffnung 14 gelegenen Drehlager 26 könnte auch ein Permanentmagnetlager vorgesehen sein, welches im Bereich der Ansaugöffnung 14 der Pumpe angeordnet sein kann und schmiermittelfrei ausgebildet sein kann, um eine Verschmutzung der Vakuumkammer zu vermeiden.The vacuum pump comprises a rotor with a rotor shaft 18 which is rotatably mounted about a rotation axis 16 of the vacuum pump and which can be driven in rotation by an electric motor drive. The drive comprises a stator-side drive coil 20 and a rotor-side drive magnet 22. The rotor shaft 18 is rotatably supported by two spaced apart in the direction of the axis of rotation 16, designed as a rolling bearing pivot bearing 24, 26. Instead of or in addition to the closer to the suction port 14 located pivot bearing 26 could also be provided a permanent magnet bearing, which may be arranged in the region of the suction port 14 of the pump and may be formed lubricant-free, to avoid contamination of the vacuum chamber.

Die Rotorwelle 18 trägt mehrere in radialer Richtung orientierte und mit Rotorschaufeln 28 versehene Rotorscheiben 30, die zwischen den an dem Gehäuse 10 festgelegten und ebenfalls mit Schaufeln versehenen Statorscheiben 32 angeordnet sind und sich mit diesen in axialer Richtung abwechseln. Die Rotor- und Statorscheiben 30, 32 bilden einen turbomolekularen Pumpenmechanismus, dessen Pumpwirkung das durch die Ansaugöffnung 14 angesaugte Gas zu dem Pumpenauslass 34 fördert. In Strömungsrichtung zwischen der Turbomolekularpumpstufe und dem Auslass 34 können prinzipiell noch weitere, insbesondere molekulare Pumpstufen, wie beispielsweise eine oder mehrere Holweck-Pumpstufen, Siegbahnpumpstufen oder Seitenkanalpumpstufen, vorgesehen sein, um ein gewünschtes Leistungsverhalten der Pumpe zu gewährleisten.The rotor shaft 18 carries a plurality of radially oriented and provided with rotor blades 28 rotor disks 30 which are arranged between the fixed to the housing 10 and also provided with blades stator disks 32 and alternate with these in the axial direction. The rotor and stator disks 30, 32 form a turbomolecular pump mechanism whose pumping action delivers the gas drawn in through the intake port 14 to the pump outlet 34. In principle, further, in particular molecular pump stages, such as, for example, one or more Holweck pump stages, Siegbahn pump stages or side channel pump stages, may be provided in the flow direction between the turbomolecular pumping stage and the outlet 34 in order to ensure a desired performance of the pump.

Fig. 2 zeigt einen Teil der Vakuumpumpe von Fig. 1 in einer teilweise geschnittenen perspektivischen Darstellung. Dargestellt ist eine Rotorscheibe 30 mit einem an der Rotorwelle 18 (Fig. 1) anzubringenden Tragring 36 und radial von dem Tragring 36 abstehenden Schaufeln 28, welche gegenüber der tangential zu der Rotationsachse 16 gerichteten Drehrichtung angestellte Oberflächen 40 umfassen, um einen in Förderrichtung gerichteten Impuls an die geförderten Gasmoleküle zu übertragen. Fig. 2 shows a part of the vacuum pump of Fig. 1 in a partially sectioned perspective view. Shown is a rotor disk 30 with a on the rotor shaft 18 ( Fig. 1 ) to be attached to the support ring 36 and radially projecting from the support ring 36 blades 28 which against the tangent to the rotational axis 16 directed rotational direction employed surfaces 40 to transmit a directional in the conveying direction impulse to the pumped gas molecules.

Die Rotorscheibe 30 ist in einem Stück aus einem Grundkörper herausgefräst und besteht aus einem Material, welches eine mit Kohlenstoffnanoröhrchen versetzte Aluminiumlegierung umfasst. Dadurch wird eine hohe Betriebslebensdauer der Vakuumpumpe auch bei hohen Gaslasten und Pumpleistungen gewährleistet.The rotor disk 30 is milled out in one piece from a base body and consists of a material which comprises a carbon nanotube staggered aluminum alloy. This ensures a long operating life of the vacuum pump even with high gas loads and pumping power.

Nachfolgend wird ein Verfahren zur Herstellung einer Vakuumpumpe gemäß einer Ausführungsform der Erfindung unter Bezugnahme auf Fig. 3 bis 7 beschrieben.Hereinafter, a method of manufacturing a vacuum pump according to an embodiment of the invention will be described with reference to FIG Fig. 3 to 7 described.

Fig. 3 zeigt einen Wirbelschichtreaktor 42 zur Herstellung von Kohlenstoffnanoröhrchen durch katalytische chemische Gasphasenabscheidung, CCVD, als Ausgangsmaterial für das Verfahren. Der Reaktor 42 wird durch eine Heizvorrichtung 44 beheizt. Der Reaktor 42 weist an seinem unteren Ende einen Einlass 46 zur Zuführung von Inertgasen und Reaktandengasen, eine obere Auslassöffnung 48 für das Entweichen von Stickstoff, Inertgas und Nebenprodukten des Reaktors 42, einen Katalysatoreinlass 50 zur Zuführung eines Katalysators und eine Entnahmeöffnung zur Entnahme der hergestellten Kohlenstoffnanoröhrchen auf. Fig. 3 shows a fluidized bed reactor 42 for the production of carbon nanotubes by catalytic chemical vapor deposition, CCVD, as a starting material for the process. The reactor 42 is heated by a heater 44. The reactor 42 has at its lower end an inlet 46 for supplying inert gases and reactant gases, an upper outlet opening 48 for the escape of nitrogen, inert gas and by-products of the reactor 42, a catalyst inlet 50 for supplying a catalyst and a removal opening for removal of the produced carbon nanotubes on.

Zur Herstellung der Nanoröhrchen wird zunächst Stickstoff als Inertgas über den unteren Einlass 46 zugeführt und der Reaktor 42 durch die Heizvorrichtung 44 auf eine Temperatur von etwa 650 °C aufgeheizt. Danach wird der Katalysator in Form von Partikel-Agglomeraten 54 mit einer Partikelgröße zwischen 30 und 100 µm durch den oberen Einlass 50 zugeführt, wobei es sich vorzugsweise um einen Übergangsmetallkatalysator auf der Basis von Cobalt oder Mangan handelt und das molare Massenverhältnis von Cobalt zu Mangan z.B. zwischen 2:3 und 3:2 liegt. Als nächstes wird der gasförmige Reaktand 56 über den unteren Einlass 46 zugeführt, welcher ein Kohlenwasserstoffgas als Kohlenstoffspender und ein Inertgas umfasst. Das Verhältnis von Reaktandengas zu Inertgas kann etwa 9:1 betragen.To produce the nanotubes, nitrogen is first fed as inert gas via the lower inlet 46 and the reactor 42 is heated by the heating device 44 to a temperature of about 650 ° C. Thereafter, the catalyst is fed in the form of particle agglomerates 54 having a particle size between 30 and 100 microns through the upper inlet 50, which is preferably a transition metal catalyst based on cobalt or manganese and the molar mass ratio of cobalt to manganese, e.g. between 2: 3 and 3: 2. Next, the gaseous reactant 56 is supplied via the lower inlet 46, which comprises a hydrocarbon gas as a carbon donor and an inert gas. The ratio of reactant gas to inert gas may be about 9: 1.

Bei dem Wirbelschichtverfahren wird an den Katalysatorpartikeln Kohlenstoff in Form von Kohlenstoffnanoröhrchen mit einer Multi-Scroll-Struktur mit einer gekrümmten kurvigen Längsform abgeschieden, wobei eine Vielzahl der Röhrchen zusammenhängende Büschel bzw. Knäuel mit einem durchschnittlichen Durchmesser zwischen 0,05 und 5 mm bilden, die als Pulver über die Entnahmeöffnung 52 entnommen werden können.In the fluidized bed process, carbon is deposited on the catalyst particles in the form of carbon nanotubes having a multi-scroll structure with a curved longitudinal curvature, with a plurality of tubes forming contiguous tufts with an average diameter between 0.05 and 5 mm can be removed as powder via the removal opening 52.

Fig. 4 zeigt einen Ausschnitt eines in der vorstehend beschriebenen Weise hergestellten, quergeschnittenen Kohlenstoffnanoröhrchens. Das Kohlenstoffnanoröhrchen umfasst mehrere in Fig. 4 nur schematisch dargestellte Graphenlagen 58, die zur Bildung des röhrenförmigen Querschnitts ineinander gerollt sind. Aufgrund dieser Querschnittsform nehmen die Röhrchen einen die Bildung von Knäueln begünstigenden kurvigen bzw. gekrümmten Verlauf an und gehen bei der späteren Verarbeitung eine besonders innige Verbindung mit dem Metallmaterial ein. Fig. 4 shows a section of a cross-cut carbon nanotube prepared in the manner described above. The carbon nanotube includes several in Fig. 4 only schematically illustrated graphene layers 58, which are rolled into each other to form the tubular cross section. Because of this cross-sectional shape, the tubes assume a curvilinear or curved course, which promotes the formation of balls, and enter into a particularly intimate connection with the metal material during later processing.

Die entnommenen Knäuel werden durch eine Druckbeaufschlagung mit etwa 9,8 MPa funktionalisiert. Durch die Druckbeaufschlagung brechen zumindest die äußersten Lagen 58 der einzelnen Kohlenstoffnanoröhrchen teilweise auf, wodurch deren Oberfläche gewissermaßen aufgerauht wird und eine noch innigere Verbindung mit dem Metall ermöglicht wird.The removed balls are functionalized by pressurization at about 9.8 MPa. As a result of the application of pressure, at least the outermost layers 58 of the individual carbon nanotubes partially break open, as a result of which their surface is, as it were, roughened and an even more intimate bond with the metal is made possible.

Fig. 5 zeigt eine Vorrichtung zur Herstellung eines Metallpulvers. Die Vorrichtung umfasst eine Schmelzkammer 60, die eine geschmolzene Aluminiumlegierung enthält. Das Metall wird durch den Druck eines Argon-Antriebsgases 62 durch eine Düse 64 in eine Kammer 66 gesprüht und dabei zerstäubt. In der Kammer 66 wird das zerstäubte Metall durch ein Argongas abgeschreckt, das durch eine weitere Düse 68 in die Kammer 66 gesprüht wird, wobei die zerstäubten Metalltropfen zu Partikeln verfestigt werden, die sich an dem Boden der Kammer 66 als Metallpulver sammeln. Fig. 5 shows an apparatus for producing a metal powder. The apparatus comprises a melting chamber 60 containing a molten aluminum alloy. The metal is sprayed by the pressure of an argon drive gas 62 through a nozzle 64 into a chamber 66 and thereby atomized. In the chamber 66, the atomized metal is quenched by an argon gas which is sprayed into the chamber 66 through another nozzle 68, solidifying the atomized metal drops into particles which collect at the bottom of the chamber 66 as metal powder.

Fig. 6 zeigt eine Kugelmühle zum mechanischen Legieren des in der vorstehend beschriebenen Weise hergestellten Pulvers aus Kohlenstoffnanoröhrchen mit dem Metallpulver. Die Mühle umfasst eine Kammer 70, in der ein Rotor um eine senkrecht zur Zeichenebene orientierte Rotationsachse in Richtung eines Pfeils 76 drehend antreibbar ist. Der Rotor umfasst mehrere in Achsenrichtung hintereinander angeordnete Paare von Armen 72, wobei die äußeren Enden der Arme 72 während des Betriebs eine Geschwindigkeit von wenigstens 8 m/s oder wenigstens 11 m/s erreichen können, wodurch die in der Kammer 70 vorgesehenen harten Metallkugeln 74 entsprechend beschleunigt werden. Fig. 6 shows a ball mill for mechanically alloying the powder of carbon nanotube prepared in the above-described manner with the metal powder. The mill comprises a chamber 70 in which a rotor can be driven in rotation in the direction of an arrow 76 about a rotation axis oriented perpendicular to the plane of the drawing. The rotor includes a plurality of pairs of arms 72 arranged one behind the other in the axial direction, wherein the outer ends of the arms 72 can reach a speed of at least 8 m / s or at least 11 m / s during operation, whereby the hard metal balls 74 provided in the chamber 70 are correspondingly accelerated ,

Zur Herstellung der mechanischen Legierung wird die Kammer 70 mit dem Pulver aus den Knäueln von Kohlenstoffnanoröhrchen und dem Metallpulver gefüllt. Während des Mahlens führen die Stöße zwischen den Kugeln 74 dazu, dass das zwischen den Kugeln 74 vorhandene Material, d.h. die Metallpartikel und die Kohlenstoffnanoröhrchen, wiederholt verformt, gebrochen und miteinander verschweißt werden, so dass die Kohlenstoffnanoröhrchen in den Metallpartikeln eingeschweißt werden und ein pulverförmiger Verbundwerkstoff resultiert, dessen Partikel das Metall und die Kohlenstoffnanoröhrchen enthalten. Das Metall und die Kohlenstoffnanoröhrchen sind in den Partikeln miteinander verschweißt und bilden eine Legierung, wobei sich eine im Wesentlichen homogene Verteilung der Kohlenstoffnanoröhrchen in den metallischen Partikeln ergibt. Die Korngröße des Metalls wird durch das Mahlen verringert und die Kohlenstoffnanoröhrchen werden so in das Metall eingebettet, dass sich diese entlang der Korngrenzen des Metalls erstrecken oder auch innerhalb von Metallkörnern eingebettet sind.To prepare the mechanical alloy, the chamber 70 is filled with the powder of the balls of carbon nanotubes and the metal powder. During grinding, the bumps between the balls 74 cause the material present between the balls 74, i. the metal particles and the carbon nanotubes are repeatedly deformed, broken and welded together so that the carbon nanotubes are sealed in the metal particles to result in a powdered composite whose particles contain the metal and the carbon nanotubes. The metal and carbon nanotubes are welded together in the particles and form an alloy, resulting in a substantially homogeneous distribution of the carbon nanotubes in the metallic particles. The grain size of the metal is reduced by the milling and the carbon nanotubes are embedded in the metal so that they extend along the grain boundaries of the metal or embedded within metal grains.

Aus dem resultierenden pulverförmigen Verbundwerkstoff wird durch ein pulvermetallurgisches Verfahren wie z.B. durch Strangpressen ein fester Körper erzeugt, welcher als Grundkörper für die Rotorscheiben der Vakuumpumpe dient.From the resulting powdery composite material is removed by a powder metallurgy process such as e.g. produced by extrusion a solid body, which serves as a base body for the rotor disks of the vacuum pump.

Fig. 7 zeigt einen auf diese Weise hergestellten, im Wesentlichen zylinderförmigen Grundkörper 78. Zur Herstellung einer Rotorscheibe kann eine der scheibenförmigen Grundform der Rotorscheibe entsprechende Scheibe von dem Grundkörper 78 abgeschnitten werden, die dann durch Ausfräsen eines Tragrings und der sich daran radial anschließenden Schaufeln zu einer Rotorscheibe verarbeitet werden kann. Anstatt einer einzelnen Rotorscheibe könnte z.B. auch ein Glockenrotor hergestellt werden. Fig. 7 shows a manufactured in this way, substantially cylindrical body 78. For producing a rotor disk, a the disk-shaped basic shape of the rotor disk corresponding disc are cut off from the base body 78, which can then be processed by milling a support ring and the radially adjoining blades to a rotor disk. Instead of a single rotor disk, for example, a bell rotor could be produced.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

1010
Gehäusecasing
1212
Flanschflange
1414
Ansaugöffnungsuction
1616
Rotationsachseaxis of rotation
1818
Rotorwellerotor shaft
2020
Antriebsspuledrive coil
2222
AntriebsmagnetImpeller
24, 2624, 26
Drehlagerpivot bearing
2828
Rotorschaufelrotor blade
3030
Rotorscheiberotor disc
3232
Statorscheibestator
3434
Pumpenauslasspump outlet
3636
Tragringsupport ring
4040
angestellte Oberflächehired surface
4242
WirbelschichtreaktorFluidized bed reactor
4444
Heizvorrichtungheater
4646
Einlassinlet
4848
Auslassöffnungoutlet
5050
Katalysatoreinlasscatalyst inlet
5252
Entnahmeöffnungremoval opening
5454
Katalysator-PartikelagglomeratCatalyst Partikelagglomerat
5656
Reaktandreactant
5858
Graphenlagegraphene layer
6060
Schmelzkammermelting chamber
6262
Antriebsgasdrive gas
6464
Düsejet
6666
Kammerchamber
6868
Düsejet
7070
Kammerchamber
7272
Armpoor
7474
KugelBullet
7676
Pfeilarrow
7878
Grundkörperbody

Claims (15)

  1. A vacuum pump,
    wherein at least one component (30) of the vacuum pump comprises or consists of a material which includes a metal and nanoparticles,
    characterized in that
    the material includes between 0.5 to 10% by weight of nanoparticles.
  2. A vacuum pump in accordance with claim 1,
    characterized in that
    a stator and at least one rotor member (30) are provided, with the rotor member (30) being rotatably supported with respect to the stator.
  3. A vacuum pump in accordance with claim 1 or claim 2,
    characterized in that
    the metal comprises a light metal such as aluminum and in particular an aluminum alloy of the type 5083 or 2618.
  4. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    the material includes between 1 and 9% by weight, and preferably between 2 and 4% by weight, of nanoparticles.
  5. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    the metal forms grains having a mean grain size between 1 and 400 nm, in particular between 1 and 200 nm, with the grains preferably being at least partly separated from one another by the nanoparticles.
  6. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    the nanoparticles have an aspect ratio of at least 3, preferably of at least 10, and particular preferably of at least 30.
  7. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    carbon nanotubes are provided as nanoparticles and have a scroll structure comprising a plurality of rolled-up graphite layers, with each graphite layer comprising two or more graphene layers (58) arranged above one another.
  8. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    the material can be obtained from a powdery composite material including a metal and nanoparticles by a powder-metallurgical process, with the powdery composite material preferably being able to be obtained by a mechanical alloying of a metal powder with nanoparticles.
  9. A vacuum pump in accordance with any one of the preceding claims,
    characterized in that
    the component is a rotor member of the vacuum pump and in particular comprises or consists of a rotor disk (30) of a turbomolecular pump stage of the vacuum pump.
  10. A vacuum pump in accordance with claim 9,
    characterized in that
    the rotor disk (30) comprises a plurality of rotor vanes (28) which each completely or partly comprise the material.
  11. A method of manufacturing a vacuum pump, in particular in accordance with any one of the preceding claims, which comprises at least one component (30) of the vacuum pump at least partly being manufactured from a material which includes a metal and nanoparticles, characterized in that
    the material includes between 0.5 to 10% by weight of nanoparticles.
  12. A method in accordance with claim 11,
    characterized in that
    the formation of the component (30) comprises a mechanical machining of a base body (78), at least partly formed from the material, for the component, with the machining in particular comprising a material-removing machining.
  13. A method in accordance with claim 11 or claim 12,
    characterized in that
    a powdery composite material is provided which includes a metal and nanoparticles; and
    in that the powdery composite material is processed into the component or into a base body for the component (30) by a powder-metallurgical process.
  14. A method in accordance with claim 13,
    characterized in that
    the provision of the powdery composite material comprises a mechanical alloying of a metal powder with nanoparticles, with the alloying in particular being carried out such that the metal has a mean grain size between 1 and 200 nm in the powdery composite material, with the grains of the metal being at least partly separated from one another by the nanoparticles.
  15. A vacuum pump which is obtained or can be obtained in accordance with a method in accordance with any one of the claims 11 to 14.
EP13194311.0A 2012-12-04 2013-11-25 Vacuum pump Active EP2740943B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102012222230.8A DE102012222230A1 (en) 2012-12-04 2012-12-04 vacuum pump

Publications (3)

Publication Number Publication Date
EP2740943A2 EP2740943A2 (en) 2014-06-11
EP2740943A3 EP2740943A3 (en) 2015-12-02
EP2740943B1 true EP2740943B1 (en) 2018-01-10

Family

ID=49674192

Family Applications (1)

Application Number Title Priority Date Filing Date
EP13194311.0A Active EP2740943B1 (en) 2012-12-04 2013-11-25 Vacuum pump

Country Status (4)

Country Link
EP (1) EP2740943B1 (en)
JP (1) JP2014111939A (en)
CN (1) CN103850949A (en)
DE (1) DE102012222230A1 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014109004A1 (en) * 2014-06-26 2015-12-31 Pfeiffer Vacuum Gmbh Siegbahn stage
WO2016071348A1 (en) * 2014-11-05 2016-05-12 Magna powertrain gmbh & co kg Compressor, and method for producing a compressor
EP3085964B1 (en) * 2015-04-21 2019-12-11 Pfeiffer Vacuum Gmbh Production of a vacuum pump part by metallic additive manufacturing
CN110382877B (en) * 2017-03-23 2022-01-14 埃地沃兹日本有限公司 Vacuum pump and vane part and rotor for the vacuum pump and fixed vane
JP7342574B2 (en) * 2019-09-27 2023-09-12 株式会社島津製作所 Vacuum pump

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03107598A (en) * 1989-09-20 1991-05-07 Ntn Corp Surface treatment of axial-flow vacuum pump
US6095754A (en) 1998-05-06 2000-08-01 Applied Materials, Inc. Turbo-Molecular pump with metal matrix composite rotor and stator
JP2001241393A (en) * 1999-12-21 2001-09-07 Seiko Seiki Co Ltd Vacuum pump
JP2001221186A (en) * 2000-02-04 2001-08-17 Tokyo Electron Ltd Axial flow vacuum pump and processor
DE10053663A1 (en) * 2000-10-28 2002-05-08 Leybold Vakuum Gmbh Mechanical kinetic vacuum pump with rotor and shaft
ITTO20020770A1 (en) * 2002-09-06 2004-03-07 Varian Spa METHOD FOR MANUFACTURING VACUUM PUMPS ROTORS AND PRODUCTS
DE102005027097A1 (en) * 2005-06-11 2006-12-14 Pfeiffer Vacuum Gmbh Stator disk for turbomolecular pump
US7404698B2 (en) * 2005-08-16 2008-07-29 Edwards Vacuum, Inc. Turbomolecular pump with static charge control
EP2013483B1 (en) 2006-04-29 2010-03-03 Oerlikon Leybold Vacuum GmbH Method for producing rotors or stators of a turbomolecular pump
US7914256B2 (en) * 2007-04-17 2011-03-29 General Electric Company Articles made from composite materials having toughened and untoughened regions
DE102007044031A1 (en) * 2007-09-14 2009-03-19 Bayer Materialscience Ag Carbon nanotube powder, carbon nanotubes and methods of making same
DE102008025700A1 (en) * 2008-05-29 2009-12-03 Siemens Aktiengesellschaft Radial fan i.e. disk fan, for e.g. self ventilation of e.g. compressor, has fan disk with radially running blades arranged on fan disk, where part of blades comprises flexible material e.g. polypropylene
WO2010102655A2 (en) 2009-02-16 2010-09-16 Bayer International Sa A compound material comprising a metal and nano particles and a method for producing the same
WO2011032791A1 (en) 2009-09-17 2011-03-24 Bayer International Sa, Ftb A compound material comprising a metal and nanoparticles
DE102010021240A1 (en) * 2010-05-21 2011-11-24 Oerlikon Leybold Vacuum Gmbh Method for surface treatment of pumping elements or pump chamber inner walls of vacuum pump, involves flushing pump chamber with dispersion medium which is deposited on pump chamber inner walls or surfaces of pump elements
US20120045318A1 (en) * 2010-08-19 2012-02-23 General Electric Company Method and apparatus for air flow control
GB2490127A (en) * 2011-04-19 2012-10-24 Rolls Royce Plc Aerofoil assembly

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
DE102012222230A1 (en) 2014-06-05
EP2740943A2 (en) 2014-06-11
EP2740943A3 (en) 2015-12-02
JP2014111939A (en) 2014-06-19
CN103850949A (en) 2014-06-11

Similar Documents

Publication Publication Date Title
EP2740943B1 (en) Vacuum pump
WO2010091791A1 (en) A connection means, a method of manufacturing the same and a material connection
DE602004005976T2 (en) PRODUCTION METHOD FOR RIVETS FROM CRYOGEN CRUSHED ALUMINUM ALLOYS AND RIVETS MADE THEREFOR
EP1568486B1 (en) Method for manufacturing of workpieces or semifinished products containing titanium aluminide alloys and products made thereby
KR102303704B1 (en) Lead free solder compositions and manufacturing method of the same
EP2396442B1 (en) An engine or engine part and a method of manufacturing the same
JP2013505353A (en) Composite materials containing metals and nanoparticles
WO2009141100A1 (en) Method for producing a component from a composite material
US20120175547A1 (en) Compound material comprising a metal and nanoparticles
WO2011032791A1 (en) A compound material comprising a metal and nanoparticles
US20070151639A1 (en) Nanostructured superalloy structural components and methods of making
DE102009039344B4 (en) Composite material and method of manufacture
WO2017037015A1 (en) Additive production of a shaped body
EP1952915A1 (en) Nanostructured superalloy structural components and methods of making
EP3109333B1 (en) Iron-based sintered alloy and method for producing the same
EP2396441A1 (en) A connection means, a method of manufacturing the same and a material connection
DE3637930C1 (en) Mfg. composite material for armour piercing ammunition - using alloy powder contg. tungsten@, nickel@, iron@, copper@, titanium@, aluminium@ and/or molybdenum@
WO2010052052A1 (en) Rotor for a turbomachine
DE602005000580T2 (en) A method of manufacturing a body having a cellular structure by densifying coated metal powder
EP3625475A1 (en) Friction ring for a brake disc, brake disc, and corresponding manufacturing method
EP2396443A1 (en) A compound material comprising a metal and nanoparticles and a method for producing the same
DE102009015156A1 (en) Method for the production of copper-based dispersion materials, comprises introducing base materials and particles of chemically inert materials in a container, and subjecting the material powder and the particle with mechanical impulses
WO2022170374A1 (en) Brake disc for a disc brake
CA2574799A1 (en) Nanostructured superalloy structural components and methods of making
JPH0138858B2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20131125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 19/04 20060101ALI20151029BHEP

Ipc: F04D 29/02 20060101ALI20151029BHEP

Ipc: F04D 17/16 20060101AFI20151029BHEP

Ipc: F04D 29/32 20060101ALI20151029BHEP

R17P Request for examination filed (corrected)

Effective date: 20160602

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

RIC1 Information provided on ipc code assigned before grant

Ipc: F04D 29/02 20060101ALI20170519BHEP

Ipc: F04D 29/32 20060101ALI20170519BHEP

Ipc: F04D 19/04 20060101ALI20170519BHEP

Ipc: F04D 17/16 20060101AFI20170519BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170630

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 962724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20180115

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502013009242

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180410

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180411

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180510

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502013009242

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

26N No opposition filed

Effective date: 20181011

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 962724

Country of ref document: AT

Kind code of ref document: T

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181125

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20180110

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180110

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20131125

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231123

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231124

Year of fee payment: 11

Ref country code: FR

Payment date: 20231120

Year of fee payment: 11

Ref country code: CZ

Payment date: 20231116

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240129

Year of fee payment: 11