EP2585810A1 - Nichtdispersiver gasanalysator - Google Patents
Nichtdispersiver gasanalysatorInfo
- Publication number
- EP2585810A1 EP2585810A1 EP11741531.5A EP11741531A EP2585810A1 EP 2585810 A1 EP2585810 A1 EP 2585810A1 EP 11741531 A EP11741531 A EP 11741531A EP 2585810 A1 EP2585810 A1 EP 2585810A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- light
- detector
- flash
- gas analyzer
- gas
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 238000011156 evaluation Methods 0.000 claims abstract description 22
- 230000002123 temporal effect Effects 0.000 claims abstract description 10
- 229910052724 xenon Inorganic materials 0.000 claims description 10
- FHNFHKCVQCLJFQ-UHFFFAOYSA-N xenon atom Chemical compound [Xe] FHNFHKCVQCLJFQ-UHFFFAOYSA-N 0.000 claims description 10
- 239000000203 mixture Substances 0.000 claims description 3
- 239000012491 analyte Substances 0.000 claims 1
- 238000004868 gas analysis Methods 0.000 abstract description 6
- 230000003760 hair shine Effects 0.000 abstract 1
- 239000007789 gas Substances 0.000 description 40
- 230000009102 absorption Effects 0.000 description 9
- 238000010521 absorption reaction Methods 0.000 description 9
- 238000004458 analytical method Methods 0.000 description 8
- 238000005259 measurement Methods 0.000 description 6
- 230000003595 spectral effect Effects 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 2
- 230000031700 light absorption Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 241000272517 Anseriformes Species 0.000 description 1
- 241000158147 Sator Species 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- 238000000295 emission spectrum Methods 0.000 description 1
- 238000004836 empirical method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 230000002934 lysing effect Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000000411 transmission spectrum Methods 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/59—Transmissivity
- G01N21/61—Non-dispersive gas analysers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
- G01N21/37—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/01—Arrangements or apparatus for facilitating the optical investigation
- G01N21/03—Cuvette constructions
- G01N21/05—Flow-through cuvettes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/33—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/06—Illumination; Optics
- G01N2201/069—Supply of sources
- G01N2201/0696—Pulsed
Definitions
- a non-dispersive gas analyzer comprising a light source, whose light passes through a one to analy ⁇ sierendes measurement gas containing the sample cell to a non ⁇ selective detector with a downstream evaluation unit.
- absorption spectrometric gas analysis predetermined components of a gas mixture (measuring gas) are quantified on the basis of their wavelength-specific absorption of light.
- the light from a light source is passed through the measurement gas to be analyzed to a detector with a downstream evaluation device.
- the sample gas is mastered ⁇ least in a cuvette.
- the wavelength range of the light used depends on the components of the measurement gas to be determined and can range from the near infrared to the ultraviolet or lie therebetween.
- no spectral decomposition of the light occurs; instead, selective, possibly tunable, light sources or selective detectors are used.
- a non-dispersive infrared (NDIR) -Gasanaly ⁇ sator is usually a non-selective infrared radiation source and a ⁇ with the filled or components to be determined selectively optopneumatic detector.
- a laser spectrometer includes a selective light source in the form of a wavelength tunable laser and a non-selective detector in the wavelength range of interest, e.g. B. a photodiode.
- the light of the light source is distributed to the measuring cuvette and a reference cuvette filled with a nonabsorbing reference or zero gas is followed by a further detector and the difference signal of both detectors is evaluated in the evaluation device (J. Staab: "Indus- trielle gas analysis "R. Oldenbourg Verlag Kunststoff Vienna, 1994, page 83).
- the light is modulated to obtain an alternating signal in the detector.
- the light beam can be interrupted periodically with a vane or aperture wheel or the light source can be pulsed.
- EP 0 591 758 A1 and EP 0 195 339 B1 each show a dispersive gas analyzer with a xenon flash lamp. The light is spectrally decomposed by irradiation of the measuring cuvette by means of an optical grating and on a Detek ⁇ torzeile of z. B. directed photodiodes.
- the flash duration of a xenon flash lamp is the shortest in the ultraviolet range and the longest in the infrared range (Newport Corporation, Oriel Xenon Flash Lamps, Technical Information, found on 15.06.2010 on the Internet at:
- the invention is based on the object with simple means ⁇ a gas analysis, in particular to enable multi-component gas ⁇ analysis.
- the object is achieved in that in the non-dispersive gas analyzer of the type mentioned, the light source is a flash discharge lamp and that the Evaluation device for evaluating the temporal pulse profile of the light flash incident on the detector is also.
- the invention makes advantageous use of the abovementioned property of flash discharge lamps, namely that the emitted wavelength components vary over the duration of the flash of light.
- success light absorptions can then at Various ⁇ NEN wavelengths are determined in the ana- lysing the sample gas on the timing pulse waveform of light incident on the detector light flash.
- the flash discharge lamp may contain different gas fillings. Flash light spectra of flash discharge lamps with different noble gas fillings can be found on the Internet at: http: // en. wikipedia. org / wiki / flashtube. Preferably, a commercially available xenon flash lamp is used.
- a detector those in which are sufficiently sensitive to each be ⁇ sought wavelength range and with which not ⁇ manoeuvrable time resolution for the analysis of the temporal pulse course of the incident on the detector light flash in ⁇ - ⁇ ⁇ is ⁇ reached.
- Preferred detectors are photodiode and photocell. For very wide-band detectors these suitable optical bandpass filter (interference filter) may be set before, hide the disturbing wavelength ranges outside the observed wavelengths ⁇ range.
- the evaluation device can be designed to analyze the frequency content of the pulse shape.
- the evaluation of the pulse progression in the time and frequency range can take place.
- the evaluation can therefore also refer to time components.
- this includes very simple, partly empirical methods, such as the analysis of the time shift of the time component (Ie Gradi ⁇ ducks analysis, curve discussions) pulse peaks, differentiation of the pulse waveform, integrations (area analysis), etc.
- the lack of pulse components which are absorbed or scattered by the components of the measuring gas can be determined in the evaluation device by means of multivariate models from the temporal pulse progression of the light flash incident on the detector.
- the concentrations of the individual components in the sample gas can be determined. The farther the differing in their position absorption bands of the gases of the components to be measured are spectrally separated and the more they are marked, the greater the gas specific in ⁇ pulse shaping influences and the better is the separation through the methods described herein. In this way, for example, the concentration of SO 2 , O 3 , H 2 S and O 2 could be determined quantitatively.
- FIG. 1 shows a single-jet gas analyzer
- FIG. 2 shows different spectral components of a xenon flash of light
- Figure 3 shows the UV transmission spectra of some selected
- FIG. 4 shows a double-jet gas analyzer
- Figure 5 shows a first circuit of two photodetectors for the two-jet gas analyzer
- FIG. 6 shows a second circuit of two photodetectors for the two-jet gas analyzer.
- 1 shows a schematic representation of a non-dispersive gas analyzer in a single-jet design with a measuring cuvette 1 through which a measuring gas 2 to be analyzed flows.
- the measuring gas 2 is a gas mixture of several components, one or more of which components of interest are to be determined quantitatively.
- a light source 3 in the form of a flash discharge tube 4, in this example, a xenon flash lamp is driven by electrical pulses ⁇ 5 and generates single flashes of light 6 which are passed through the sample cell 1 through to a detector. 7
- the detector 7 is connected downstream an evaluation device 8, which evaluates the pulse-shaped detector signal 10 generated by the detector 7 in response to the respective received light flash 9 with respect to the pulse shape and an analysis resulting ⁇ nis 11 provides.
- Figure 2 shows various spectral components of a xenon flash 6 with its normalized output power P over time t (taken from the above-mentioned technical information of the company. Newport Corporation).
- the wavelength range of the flash of light 6 extends from the infrared to the ultraviolet.
- the duration of the flash of light 6 is shorter with respect to the short-wave components than with the longer-wave components.
- a wavelength-dependent absorption of the light flash 6 takes place through the compo ⁇ components of the measurement gas 2, wherein many of interest ⁇ measuring gas components exhibit very different absorption behavior.
- FIG. 3 shows as an example the absorption behavior ( transmittance T over the wavelength ⁇ ) of the gases H 2 S, NO 2 , SO 2 , NO and O 3 relevant in environmental measurement technology in the ultraviolet range.
- the detector 7 ( Figure 1) is selected so that it can tektieren the Wel ⁇ lendorfn of the considered wavelength range de-. For the above-mentioned gases, this is z. As the ultraviolet range.
- the detector 7 produces the detector signal 10 via the sum or the integral of the Wellenlän ⁇ gene; that is, the detector 7 is nonselective. Preferably, it detects the different wavelengths with more or less equal sensitivity.
- the detector 7 is very broad band, interfering wavelength ranges can be hidden except ⁇ half of the considered wavelength range by means of an op ⁇ tables bandpass filter 12th
- the wavelength-dependent absorption by the measured gas components also varies, with the result that the temporal pulse profile of the flash of light falling on the detector 7 is different from that of the flash of light 6 generated by the flash-discharge lamp 4.
- the detected light flash 9 and therefore the detector signal 10 therefore contain information about the absorption in the measuring cuvette 1. If the wavelength-specific absorption bands of the sample gas components are different, ie not overlapping or only partially overlapping, the detected light flash 9 and thus the detector signal 10 also contain Information about the concentrations of the individual measuring gas components in the measuring gas 2.
- the evaluating device 8 by evaluating the pulse progression of the signal impinging on the detector 7
- the lightning flash 9 corresponding detector signal 10 determines the concentrations of selected measuring gas components of interest and output as the analysis result 11.
- chemometric evaluation methods in particular multivariate statistical methods, are considered. From the above it follows that the detector 7 must enable a temporal resolution of the received flash of light 9. From Figure 2, a required time resolution in ⁇ - ⁇ ⁇ ⁇ results. This can be achieved by optopneumatic detectors, photodiodes or photocells.
- FIG. 4 shows a schematic representation of another embodiment of the gas analyzer according to the invention in two-beam design.
- a reference cuvette 13 is provided, which is filled with a reference or zero gas.
- the light 6 emitted by the light source 3 is split by means of a light distributor 14, here in the form of a reflector, onto the measuring cuvette 1 and the reference cuvette 13.
- the reference cell 13 is followed by a further detector 15 and the evaluation device 8 evaluates the temporal difference-impulse response of the incident on the detectors 7, 15 light flashes 9, 16.
- the two detectors of two gas-filled receiver chambers are made with an intervening differential pressure or flow sensor 17, which generates a difference pulse shape of the light incident on the detectors 7, 15 flashes 9, 16 entspre ⁇ and fair detector signal 10 '.
- Figures 5 and 6 show two known from EP 0387483 AI examples known circuit with photodiodes 18 for Realisie ⁇ tion of the detectors 7 and 15 °.
Landscapes
- Physics & Mathematics (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Engineering & Computer Science (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
Claims
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102010030549.9A DE102010030549B4 (de) | 2010-06-25 | 2010-06-25 | Nichtdispersiver Gasanalysator |
PCT/EP2011/060402 WO2011161137A1 (de) | 2010-06-25 | 2011-06-22 | Nichtdispersiver gasanalysator |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2585810A1 true EP2585810A1 (de) | 2013-05-01 |
Family
ID=44630009
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11741531.5A Withdrawn EP2585810A1 (de) | 2010-06-25 | 2011-06-22 | Nichtdispersiver gasanalysator |
Country Status (4)
Country | Link |
---|---|
US (1) | US9030666B2 (de) |
EP (1) | EP2585810A1 (de) |
DE (1) | DE102010030549B4 (de) |
WO (1) | WO2011161137A1 (de) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102015106373B4 (de) * | 2015-04-24 | 2023-03-02 | Infineon Technologies Ag | Photoakustisches gassensormodul mit lichtemittereinheit und einer detektoreinheit |
DE202021104857U1 (de) | 2021-09-09 | 2022-12-20 | Sick Ag | Analysevorrichtung |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320297A (en) * | 1979-11-29 | 1982-03-16 | Beckman Instruments, Inc. | Split detector |
US5807750A (en) * | 1995-05-02 | 1998-09-15 | Air Instruments And Measurements, Inc. | Optical substance analyzer and data processor |
Family Cites Families (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3810696A (en) | 1973-02-20 | 1974-05-14 | Waters Associates Inc | Improved analytical apparatus for measuring light absorbance of fluids |
DE2808033A1 (de) * | 1978-02-24 | 1979-08-30 | Siemens Ag | Einrichtung zur unterdrueckung der wasserdampf-querempfindlichkeit bei einem nicht dispersiven infrarot-gasanalysator |
US4355233A (en) * | 1979-02-22 | 1982-10-19 | Beckman Instruments, Inc. | Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers |
US4420687A (en) * | 1982-10-28 | 1983-12-13 | Teledyne Ind | Non-dispersive infrared gas analyzer |
EP0195339B1 (de) * | 1985-03-21 | 1992-07-29 | Abbott Laboratories | Spektralfotometer |
US4692621A (en) * | 1985-10-11 | 1987-09-08 | Andros Anlayzers Incorporated | Digital anesthetic agent analyzer |
EP0283047A3 (de) * | 1987-03-19 | 1991-02-06 | Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. | Verfahren und Einrichtung zur berührungsfreien Gewinnung von Daten zur ortsaufgelösten Bestimmung der Dichte und Temperatur in einem Messvolumen |
US4899053A (en) * | 1987-10-21 | 1990-02-06 | Criticare Systems, Inc. | Solid state non-dispersive IR analyzer using electrical current-modulated microsources |
DK576187D0 (da) * | 1987-11-03 | 1987-11-03 | Radiometer As | Fremgangsmaade til bestemmelse af oxygenkoncentration |
DE3902015A1 (de) * | 1989-01-25 | 1990-08-02 | Diehl Gmbh & Co | Verfahren zur bestimmung atmosphaerischer gegebenheiten mittels laserstrahlen und vorrichtung zur durchfuehrung des verfahrens |
CH684971A5 (de) | 1989-03-16 | 1995-02-15 | Landis & Gyr Tech Innovat | Ultraviolettlicht-Sensor. |
EP0391696A3 (de) * | 1989-04-07 | 1991-03-06 | MITSUI TOATSU CHEMICALS, Inc. | Verfahren zur Herstellung von chlorierten Seitenketten enthaltenden Verbindungen und Methode zur Stabilisierung von aromatischen Verbindungen mit monochlorieten Seitenketten |
DE4232371C2 (de) * | 1992-09-26 | 1995-02-02 | Kernforschungsz Karlsruhe | Analysengerät zur Bestimmung von Gasen oder Flüssigkeiten |
US5429805A (en) * | 1993-01-08 | 1995-07-04 | Fuji Electric Co., Ltd. | Non-dispersive infrared gas analyzer including gas-filled radiation source |
DE4403763A1 (de) * | 1994-02-07 | 1995-08-10 | Siemens Ag | NDIR-Analysator |
DE4440968A1 (de) * | 1994-11-17 | 1996-05-30 | Heinrich Spiecker | Meßanordnung zur Erfassung der Orts- und Zeitstruktur von Lichtpulsen mit hoher Zeitauflösung |
DE19528919A1 (de) * | 1995-08-07 | 1997-02-20 | Microparts Gmbh | Mikrostrukturiertes Infrarot-Absorptionsphotometer |
DE19608907C1 (de) * | 1996-03-07 | 1997-04-03 | Siemens Ag | Nichtdispersiver Gasanalysator |
US5863460A (en) * | 1996-04-01 | 1999-01-26 | Chiron Diagnostics Corporation | Oxygen sensing membranes and methods of making same |
US5886348A (en) * | 1997-02-14 | 1999-03-23 | American Intell-Sensors Corporation | Non-dispersive infrared gas analyzer with interfering gas correction |
IL121793A (en) | 1997-09-17 | 2008-06-05 | Lewis Coleman | Isotopic gas analyzer |
DE19732470C2 (de) * | 1997-07-28 | 1999-11-18 | Siemens Ag | Nichtdispersiver Infrarot-Gasanalysator |
SE9903423D0 (sv) * | 1999-09-22 | 1999-09-22 | Astra Ab | New measuring technique |
GB2358245A (en) * | 1999-10-21 | 2001-07-18 | Pittway Corp | Photo-acoustic gas sensor |
JP3671805B2 (ja) * | 2000-03-13 | 2005-07-13 | スズキ株式会社 | 振動計測装置及び方法 |
US6768548B2 (en) * | 2001-02-01 | 2004-07-27 | The Board Of Trustees Of The Leland Stanford Junior University | Pulse-by-pulse cavity ring-down spectroscopy |
GB0208100D0 (en) * | 2002-04-09 | 2002-05-22 | Univ Strathclyde | Semiconductor diode laser spectrometer arrangement |
DE10255022A1 (de) | 2002-11-25 | 2004-06-17 | Fiedler, Sven E. | Resonatorverstärktes Absorptions-Spektrometer |
WO2005026705A1 (en) * | 2003-09-12 | 2005-03-24 | Ir Microsystems S.A. | Gas detection method and gas detector device |
JP4218954B2 (ja) * | 2003-10-10 | 2009-02-04 | 株式会社堀場製作所 | 吸光式分析計 |
US7259856B2 (en) * | 2005-02-16 | 2007-08-21 | Picarro, Inc. | Method for the precise measurement of the wavelength of light |
DE102005036410A1 (de) * | 2005-07-29 | 2007-02-01 | Biocam Gmbh | Verfahren zur Ermittlung der Sauerstoffpartialdruckverteilung in zumindest einem Gewebeflächenabschnitt, insbesondere Hautgewebeflächenabschnitt |
US7369242B2 (en) * | 2006-03-17 | 2008-05-06 | Honeywell International Inc. | Cavity ring-down spectrometer for semiconductor processing |
DE102006018862A1 (de) * | 2006-03-17 | 2007-09-20 | Charité - Universitätsmedizin Berlin | Vorrichtung zur spektroskopischen Analyse eines Gases |
DE102008009189B4 (de) | 2008-02-15 | 2016-05-25 | Siemens Aktiengesellschaft | Nichtdispersiver Infrarot-Gasanalysator |
DE102008044317B4 (de) * | 2008-12-03 | 2011-02-10 | Universität Potsdam | Vorrichtung und Verfahren zur Konzentrationsbestimmung von Sauerstoff |
US8981314B2 (en) * | 2011-02-10 | 2015-03-17 | Zaps Technologies, Inc | Method and apparatus for the optical determination of total organic carbon in aqueous streams |
-
2010
- 2010-06-25 DE DE102010030549.9A patent/DE102010030549B4/de not_active Expired - Fee Related
-
2011
- 2011-06-22 EP EP11741531.5A patent/EP2585810A1/de not_active Withdrawn
- 2011-06-22 US US13/805,225 patent/US9030666B2/en not_active Expired - Fee Related
- 2011-06-22 WO PCT/EP2011/060402 patent/WO2011161137A1/de active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4320297A (en) * | 1979-11-29 | 1982-03-16 | Beckman Instruments, Inc. | Split detector |
US5807750A (en) * | 1995-05-02 | 1998-09-15 | Air Instruments And Measurements, Inc. | Optical substance analyzer and data processor |
Non-Patent Citations (1)
Title |
---|
See also references of WO2011161137A1 * |
Also Published As
Publication number | Publication date |
---|---|
DE102010030549B4 (de) | 2016-04-28 |
DE102010030549A1 (de) | 2011-12-29 |
US9030666B2 (en) | 2015-05-12 |
WO2011161137A1 (de) | 2011-12-29 |
US20130208280A1 (en) | 2013-08-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60133002T2 (de) | Spektrophotometer mit mehreren weglängen | |
DE102009025147B3 (de) | Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst | |
DE2202969A1 (de) | Vorrichtung fuer die Fernanalyse von Gasen | |
DE102012223874B3 (de) | Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas | |
EP3455612A1 (de) | Messeinrichtung und verfahren zur erfassung unterschiedlicher gase und gaskonzentrationen | |
DE102016111747B4 (de) | Verfahren und Vorrichtung zur Raman-Spektroskopie | |
DE10392663T5 (de) | Foto-akustisches Erfassungsverfahren zum Messen der Konzentration von Nicht-Kolenwasserstoff-Komponenten einer methanhaltigen Gasmischung | |
AT510631B1 (de) | Spektrometer | |
DE19900129A1 (de) | Gasqualitätsbestimmung | |
DE112017008060T5 (de) | Zubehörteil für ein Infrarot-Spektrometer | |
DE102010056137A1 (de) | Optische Gasanalysatoreinrichtung mit Mitteln zum Kalibrieren des Frequenzspektrums | |
DE102004031643A1 (de) | Nichtdispersiver Infrarot-Gasanalysator | |
EP2132551B1 (de) | Photoakustischer detektor mit zwei strahlengängen für das anregungslicht | |
DE102010030549B4 (de) | Nichtdispersiver Gasanalysator | |
DE4312915A1 (de) | Verfahren und Anordnung zur IR-spektroskopischen Trennung von Kunststoffen | |
DE19509822A1 (de) | Ölkonzentrations-Meßgerät | |
EP2551662B1 (de) | Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen | |
DE2948590A1 (de) | Verfahren und vorrichtung zur gasanalyse | |
DE102016108544A1 (de) | Messeinrichtung und Verfahren zur Erfassung unterschiedlicher Gase und Gaskonzentrationen | |
DE202021104857U1 (de) | Analysevorrichtung | |
EP3770585B1 (de) | Vorrichtung und verfahren zur bestimmung einer stoffkonzentration in einem fluid | |
WO2004008113A1 (de) | Absorptionsspektrometer und entsprechendes messverfahren | |
DE60126600T2 (de) | Analyseverfahren für stoffmischungen | |
WO2004008112A1 (de) | Hochauflösendes absorptionsspektrometer und entsprechendes messverfahren | |
AT518576B1 (de) | Spektrometer |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20121130 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20160809 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 21/31 20060101AFI20170419BHEP Ipc: G01N 21/61 20060101ALI20170419BHEP Ipc: G01N 21/37 20060101ALI20170419BHEP Ipc: G01N 21/3504 20140101ALI20170419BHEP Ipc: G01N 21/05 20060101ALI20170419BHEP Ipc: G01N 21/33 20060101ALI20170419BHEP Ipc: G01N 21/35 20140101ALI20170419BHEP Ipc: G01N 21/27 20060101ALI20170419BHEP |
|
INTG | Intention to grant announced |
Effective date: 20170519 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SIEMENS AKTIENGESELLSCHAFT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20170930 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 21/3504 20140101ALI20170419BHEP Ipc: G01N 21/27 20060101ALI20170419BHEP Ipc: G01N 21/61 20060101ALI20170419BHEP Ipc: G01N 21/37 20060101ALI20170419BHEP Ipc: G01N 21/05 20060101ALI20170419BHEP Ipc: G01N 21/31 20060101AFI20170419BHEP Ipc: G01N 21/33 20060101ALI20170419BHEP Ipc: G01N 21/35 20140101ALI20170419BHEP |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01N 21/3504 20140101ALI20170419BHEP Ipc: G01N 21/27 20060101ALI20170419BHEP Ipc: G01N 21/37 20060101ALI20170419BHEP Ipc: G01N 21/05 20060101ALI20170419BHEP Ipc: G01N 21/35 20140101ALI20170419BHEP Ipc: G01N 21/31 20060101AFI20170419BHEP Ipc: G01N 21/33 20060101ALI20170419BHEP Ipc: G01N 21/61 20060101ALI20170419BHEP |