[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2585810A1 - Nichtdispersiver gasanalysator - Google Patents

Nichtdispersiver gasanalysator

Info

Publication number
EP2585810A1
EP2585810A1 EP11741531.5A EP11741531A EP2585810A1 EP 2585810 A1 EP2585810 A1 EP 2585810A1 EP 11741531 A EP11741531 A EP 11741531A EP 2585810 A1 EP2585810 A1 EP 2585810A1
Authority
EP
European Patent Office
Prior art keywords
light
detector
flash
gas analyzer
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP11741531.5A
Other languages
English (en)
French (fr)
Inventor
Ralf Bitter
Camiel Heffels
Thomas Hörner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP2585810A1 publication Critical patent/EP2585810A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • G01N21/61Non-dispersive gas analysers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • G01N21/274Calibration, base line adjustment, drift correction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/3504Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light for analysing gases, e.g. multi-gas analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/35Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light
    • G01N21/37Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infrared light using pneumatic detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/314Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
    • G01N2021/3155Measuring in two spectral ranges, e.g. UV and visible
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/03Cuvette constructions
    • G01N21/05Flow-through cuvettes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/06Illumination; Optics
    • G01N2201/069Supply of sources
    • G01N2201/0696Pulsed

Definitions

  • a non-dispersive gas analyzer comprising a light source, whose light passes through a one to analy ⁇ sierendes measurement gas containing the sample cell to a non ⁇ selective detector with a downstream evaluation unit.
  • absorption spectrometric gas analysis predetermined components of a gas mixture (measuring gas) are quantified on the basis of their wavelength-specific absorption of light.
  • the light from a light source is passed through the measurement gas to be analyzed to a detector with a downstream evaluation device.
  • the sample gas is mastered ⁇ least in a cuvette.
  • the wavelength range of the light used depends on the components of the measurement gas to be determined and can range from the near infrared to the ultraviolet or lie therebetween.
  • no spectral decomposition of the light occurs; instead, selective, possibly tunable, light sources or selective detectors are used.
  • a non-dispersive infrared (NDIR) -Gasanaly ⁇ sator is usually a non-selective infrared radiation source and a ⁇ with the filled or components to be determined selectively optopneumatic detector.
  • a laser spectrometer includes a selective light source in the form of a wavelength tunable laser and a non-selective detector in the wavelength range of interest, e.g. B. a photodiode.
  • the light of the light source is distributed to the measuring cuvette and a reference cuvette filled with a nonabsorbing reference or zero gas is followed by a further detector and the difference signal of both detectors is evaluated in the evaluation device (J. Staab: "Indus- trielle gas analysis "R. Oldenbourg Verlag Kunststoff Vienna, 1994, page 83).
  • the light is modulated to obtain an alternating signal in the detector.
  • the light beam can be interrupted periodically with a vane or aperture wheel or the light source can be pulsed.
  • EP 0 591 758 A1 and EP 0 195 339 B1 each show a dispersive gas analyzer with a xenon flash lamp. The light is spectrally decomposed by irradiation of the measuring cuvette by means of an optical grating and on a Detek ⁇ torzeile of z. B. directed photodiodes.
  • the flash duration of a xenon flash lamp is the shortest in the ultraviolet range and the longest in the infrared range (Newport Corporation, Oriel Xenon Flash Lamps, Technical Information, found on 15.06.2010 on the Internet at:
  • the invention is based on the object with simple means ⁇ a gas analysis, in particular to enable multi-component gas ⁇ analysis.
  • the object is achieved in that in the non-dispersive gas analyzer of the type mentioned, the light source is a flash discharge lamp and that the Evaluation device for evaluating the temporal pulse profile of the light flash incident on the detector is also.
  • the invention makes advantageous use of the abovementioned property of flash discharge lamps, namely that the emitted wavelength components vary over the duration of the flash of light.
  • success light absorptions can then at Various ⁇ NEN wavelengths are determined in the ana- lysing the sample gas on the timing pulse waveform of light incident on the detector light flash.
  • the flash discharge lamp may contain different gas fillings. Flash light spectra of flash discharge lamps with different noble gas fillings can be found on the Internet at: http: // en. wikipedia. org / wiki / flashtube. Preferably, a commercially available xenon flash lamp is used.
  • a detector those in which are sufficiently sensitive to each be ⁇ sought wavelength range and with which not ⁇ manoeuvrable time resolution for the analysis of the temporal pulse course of the incident on the detector light flash in ⁇ - ⁇ ⁇ is ⁇ reached.
  • Preferred detectors are photodiode and photocell. For very wide-band detectors these suitable optical bandpass filter (interference filter) may be set before, hide the disturbing wavelength ranges outside the observed wavelengths ⁇ range.
  • the evaluation device can be designed to analyze the frequency content of the pulse shape.
  • the evaluation of the pulse progression in the time and frequency range can take place.
  • the evaluation can therefore also refer to time components.
  • this includes very simple, partly empirical methods, such as the analysis of the time shift of the time component (Ie Gradi ⁇ ducks analysis, curve discussions) pulse peaks, differentiation of the pulse waveform, integrations (area analysis), etc.
  • the lack of pulse components which are absorbed or scattered by the components of the measuring gas can be determined in the evaluation device by means of multivariate models from the temporal pulse progression of the light flash incident on the detector.
  • the concentrations of the individual components in the sample gas can be determined. The farther the differing in their position absorption bands of the gases of the components to be measured are spectrally separated and the more they are marked, the greater the gas specific in ⁇ pulse shaping influences and the better is the separation through the methods described herein. In this way, for example, the concentration of SO 2 , O 3 , H 2 S and O 2 could be determined quantitatively.
  • FIG. 1 shows a single-jet gas analyzer
  • FIG. 2 shows different spectral components of a xenon flash of light
  • Figure 3 shows the UV transmission spectra of some selected
  • FIG. 4 shows a double-jet gas analyzer
  • Figure 5 shows a first circuit of two photodetectors for the two-jet gas analyzer
  • FIG. 6 shows a second circuit of two photodetectors for the two-jet gas analyzer.
  • 1 shows a schematic representation of a non-dispersive gas analyzer in a single-jet design with a measuring cuvette 1 through which a measuring gas 2 to be analyzed flows.
  • the measuring gas 2 is a gas mixture of several components, one or more of which components of interest are to be determined quantitatively.
  • a light source 3 in the form of a flash discharge tube 4, in this example, a xenon flash lamp is driven by electrical pulses ⁇ 5 and generates single flashes of light 6 which are passed through the sample cell 1 through to a detector. 7
  • the detector 7 is connected downstream an evaluation device 8, which evaluates the pulse-shaped detector signal 10 generated by the detector 7 in response to the respective received light flash 9 with respect to the pulse shape and an analysis resulting ⁇ nis 11 provides.
  • Figure 2 shows various spectral components of a xenon flash 6 with its normalized output power P over time t (taken from the above-mentioned technical information of the company. Newport Corporation).
  • the wavelength range of the flash of light 6 extends from the infrared to the ultraviolet.
  • the duration of the flash of light 6 is shorter with respect to the short-wave components than with the longer-wave components.
  • a wavelength-dependent absorption of the light flash 6 takes place through the compo ⁇ components of the measurement gas 2, wherein many of interest ⁇ measuring gas components exhibit very different absorption behavior.
  • FIG. 3 shows as an example the absorption behavior ( transmittance T over the wavelength ⁇ ) of the gases H 2 S, NO 2 , SO 2 , NO and O 3 relevant in environmental measurement technology in the ultraviolet range.
  • the detector 7 ( Figure 1) is selected so that it can tektieren the Wel ⁇ lendorfn of the considered wavelength range de-. For the above-mentioned gases, this is z. As the ultraviolet range.
  • the detector 7 produces the detector signal 10 via the sum or the integral of the Wellenlän ⁇ gene; that is, the detector 7 is nonselective. Preferably, it detects the different wavelengths with more or less equal sensitivity.
  • the detector 7 is very broad band, interfering wavelength ranges can be hidden except ⁇ half of the considered wavelength range by means of an op ⁇ tables bandpass filter 12th
  • the wavelength-dependent absorption by the measured gas components also varies, with the result that the temporal pulse profile of the flash of light falling on the detector 7 is different from that of the flash of light 6 generated by the flash-discharge lamp 4.
  • the detected light flash 9 and therefore the detector signal 10 therefore contain information about the absorption in the measuring cuvette 1. If the wavelength-specific absorption bands of the sample gas components are different, ie not overlapping or only partially overlapping, the detected light flash 9 and thus the detector signal 10 also contain Information about the concentrations of the individual measuring gas components in the measuring gas 2.
  • the evaluating device 8 by evaluating the pulse progression of the signal impinging on the detector 7
  • the lightning flash 9 corresponding detector signal 10 determines the concentrations of selected measuring gas components of interest and output as the analysis result 11.
  • chemometric evaluation methods in particular multivariate statistical methods, are considered. From the above it follows that the detector 7 must enable a temporal resolution of the received flash of light 9. From Figure 2, a required time resolution in ⁇ - ⁇ ⁇ ⁇ results. This can be achieved by optopneumatic detectors, photodiodes or photocells.
  • FIG. 4 shows a schematic representation of another embodiment of the gas analyzer according to the invention in two-beam design.
  • a reference cuvette 13 is provided, which is filled with a reference or zero gas.
  • the light 6 emitted by the light source 3 is split by means of a light distributor 14, here in the form of a reflector, onto the measuring cuvette 1 and the reference cuvette 13.
  • the reference cell 13 is followed by a further detector 15 and the evaluation device 8 evaluates the temporal difference-impulse response of the incident on the detectors 7, 15 light flashes 9, 16.
  • the two detectors of two gas-filled receiver chambers are made with an intervening differential pressure or flow sensor 17, which generates a difference pulse shape of the light incident on the detectors 7, 15 flashes 9, 16 entspre ⁇ and fair detector signal 10 '.
  • Figures 5 and 6 show two known from EP 0387483 AI examples known circuit with photodiodes 18 for Realisie ⁇ tion of the detectors 7 and 15 °.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biochemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

Bei einem nichtdispersiven Gasanalysator mit einer Lichtquelle (3), deren Licht (6) durch eine ein zu analysierendes Messgas enthaltende Messküvette (1) auf einen nichtselektiven Detektor (7) mit nachgeschalteter Auswerteeinrichtung (8) fällt, wird mit einfachen Mitteln eine Mehrkomponenten-Gasanalyse dadurch ermöglicht, dass die Lichtquelle (3) eine Blitzentladungslampe (4) ist und dass die Auswerteeinrichtung (8) zur Auswertung des zeitlichen Impulsverlaufes des auf den Detektor (8) fallenden Lichtblitzes (9) ausgebildet ist. Die Erfindung macht sich die Eigenschaft von Blitzentladungslampen zunutze, dass die emittierten Wellenlängenanteile über die Dauer des Lichtblitzes (6) variieren.

Description

Beschreibung
Nichtdispersiver Gasanalysator Die Erfindung betrifft einen nichtdispersiven Gasanalysator mit einer Lichtquelle, deren Licht durch eine ein zu analy¬ sierendes Messgas enthaltende Messküvette auf einen nicht¬ selektiven Detektor mit nachgeschalteter Auswerteeinrichtung fällt.
Bei der absorptions-spektrometrischen Gasanalyse werden vorgegebene Komponenten eines Gasgemischs (Messgases) anhand ihrer wellenlängenspezifischen Absorption von Licht quantitativ bestimmt. Dazu wird das Licht einer Lichtquelle durch das zu analysierende Messgas hindurch auf einen Detektor mit nachgeschalteter Auswerteeinrichtung geführt. Um eine definierte Absorptionsstrecke zu erhalten, ist das Messgas meis¬ tens in einer Messküvette enthalten. Der Wellenlängenbereich des verwendeten Lichts richtet sich nach den zu bestimmenden Komponenten des Messgases und kann vom nahen Infrarot bis zum Ultraviolett reichen bzw. dazwischen liegen. Bei der nichtdispersiven Gasanalyse erfolgt keine spektrale Zerlegung des Lichts; stattdessen werden selektive, ggf. durchstimmbare, Lichtquellen oder selektive Detektoren verwendet. Beispiels- weise enthält ein nichtdispersiver Infrarot (NDIR) -Gasanaly¬ sator in der Regel eine nichtselektive Infrarot-Strahlungs¬ quelle und einen mit der oder den zu bestimmenden Komponenten gefüllten selektiven optopneumatischen Detektor. In einem anderen Beispiel enthält ein Laserspektrometer eine selektive Lichtquelle in Form eines wellenlängenabstimmbaren Lasers und einen im betrachteten Wellenlängenbereich nichtselektiven Detektor, z. B. eine Photodiode. Bei so genannten Zweistrahlgeräten wird das Licht der Lichtquelle auf die Messküvette und eine mit einem nichtabsorbierenden Referenz- oder Nullgas gefüllte Referenzküvette mit einem nachgeordneten weiteren Detektor aufgeteilt und in der Auswerteeinrichtung das Differenzsignal beider Detektoren ausgewertet (J. Staab: "Indus- trielle Gasanalyse" R. Oldenbourg Verlag München Wien, 1994, Seite 83) .
Üblicherweise wird das Licht moduliert, um in dem Detektor ein Wechselsignal zu erhalten. Dazu kann der Lichtstrahl mit einem Flügel- oder Blendenrad periodisch unterbrochen oder die Lichtquelle gepulst angesteuert werden.
Die Verwendung von Blitzentladungslampen in Gasanalysatoren, insbesondere von Xenon-Blitzlampen, die ein breitbandiges Emissionsspektrum vom Ultraviolett bis zum nahen Infrarot aufweisen, ist bekannt (J. Staab: "Industrielle Gasanalyse" R. Oldenbourg Verlag München Wien, 1994, Seite 133) . So zeigen die EP 0 591 758 AI und EP 0 195 339 Bl jeweils einen dispersiven Gasanalysator mit einer Xenon-Blitzlampe. Das Licht wird nach Durchstrahlung der Messküvette mittels eines optischen Gitters spektral zerlegt und auf eine Detek¬ torzeile aus z. B. Photodioden gelenkt.
Es ist bekannt, dass der von einer Blitzentladungslampe er¬ zeugte Lichtblitz in Bezug auf die emittierten Wellenlängen ein unterschiedliches Zeitverhalten aufweist. So ist die Dauer des Lichtblitzes einer Xenon-Blitzlampe im Ultra- violett-Bereich am kürzesten und im Infrarot-Bereich am längsten (Newport Corporation, Oriel Xenon-Blitzlampen, Technische Informationen, gefunden am 15.06.2010 im Internet unter :
http : //support . newport . com/file store/PDFs/tempPDFs/e5457 Qri e1-Xenon-F1ash1amp-Systems . pdf ) .
Der Erfindung liegt die Aufgabe zugrunde, mit einfachen Mit¬ teln eine Gasanalyse, insbesondere auch Mehrkomponenten-Gas¬ analyse, zu ermöglichen.
Gemäß der Erfindung wird die Aufgabe dadurch gelöst, dass bei dem nichtdispersiven Gasanalysator der eingangs genannten Art die Lichtquelle eine Blitzentladungslampe ist und dass die Auswerteeinrichtung zur Auswertung des zeitlichen Impulsverlaufes des auf den Detektor fallenden Lichtblitzes ausgebil¬ det ist. Die Erfindung macht sich in vorteilhafter Weise die oben erwähnte Eigenschaft von Blitzentladungslampen zunutze, dass nämlich die emittierten Wellenlängenanteile über die Dauer des Lichtblitzes variieren. Damit können dann bei verschiede¬ nen Wellenlängen erfolgende Lichtabsorptionen in dem zu ana- lysierenden Messgas über den zeitlichen Impulsverlauf des auf den Detektor fallenden Lichtblitzes bestimmt werden.
Je nach den zu bestimmenden Komponenten des Messgases kann die Blitzentladungslampe unterschiedliche Gasfüllungen ent- halten. Blitzlichtspektren von Blitzentladungslampen mit unterschiedlichen Edelgasfüllungen finden sich im Internet unter: http : //en . wikipedia . org/wiki/Flashtube . Bevorzugt wird eine handelsübliche Xenon-Blitzlampe verwendet. Als Detektor kommen solche in Frage, die für den jeweils be¬ trachteten Wellenlängenbereich ausreichend empfindlich sind und mit denen die für die Auswertung des zeitlichen Impulsverlaufes des auf den Detektor fallenden Lichtblitzes not¬ wendige Zeitauflösung im με -ΒθΓθ ί οη erreicht wird. Bevorzugte Detektoren sind Photodiode und Photozelle. Bei sehr breitban- digen Detektoren können diesen geeignete optische Bandpassfilter (Interferenzfilter) vorgesetzt werden, die störende Wellenlängenbereiche außerhalb des betrachteten Wellenlängen¬ bereichs ausblenden.
Zur Auswertung des zeitlichen Impulsverlaufes kann die Auswerteeinrichtung dazu ausgebildet sein, den Frequenzgehalt der Impulsform zu analysieren. Prinzipiell kann die Auswertung des Pulsverlaufes im Zeit- und Frequenz-Bereich erfol- gen. Die Auswertung kann sich also auch auf Zeitkomponenten beziehen. Dies beinhaltet neben der komplexen multivariaten Auswertung von Zeitkomponenten auch sehr einfache, teils empirische Methoden, wie die Analyse der Zeitverschiebung des Impulspeaks, Differenzierung des Impulsverlaufs (also Gradi¬ entenanalyse, Kurvendiskussionen) , Integrationen (Flächenanalysen) , usw . Bei einem mehrkomponentigen Messgas können in der Auswerteeinrichtung mittels multivariater Modelle aus dem zeitlichen Impulsverlauf des auf den Detektor fallenden Lichtblitzes die fehlenden, weil von den Komponenten des Messgases absorbierten bzw. gestreuten, Impulsanteile bestimmt werden. Ver- gleichbar mit der chemometrischen Auswertung von Spektren können die Konzentrationen der einzelnen Komponenten in dem Messgas bestimmt werden. Je weiter die sich in ihrer Lage unterscheidenden Absorptionsbanden der Gase der zu messenden Komponenten spektral auseinander liegen und je stärker diese ausgeprägt sind, desto größer sind die gasspezifischen Im¬ pulsformungseinflüsse und desto besser ist die Trennung über die hier beschriebenen Verfahren. Auf diese Art und Weise könnte beispielsweise die Konzentration von SO2, O3, H2S und O2 quantitativ bestimmt werden.
Um die Messung zu referenzieren und von Reproduzierbarkeits- schwankungen der Lichtblitze sowie längeren Drifterscheinungen, z. B. Alterung der Lichtquelle und des Detektors, unab¬ hängig zu machen, ist vorzugsweise eine mit einem Referenz- oder Nullgas gefüllte Referenzküvette mit einem nachgeordne¬ ten weiteren Detektor vorhanden, wobei ein Lichtverteiler das von der Lichtquelle ausgehende Licht auf die Messküvette und die Referenzküvette aufteilt und die Auswerteeinrichtung zur Auswertung des Differenz-Impulsverlaufes der auf die Detekto- ren fallenden Lichtblitze ausgebildet ist.
Zur weiteren Erläuterung der Erfindung wird im Folgenden auf die Figuren der Zeichnung Bezug genommen; im Einzelnen zeigen jeweils in Form eines Ausführungsbeispiels:
Figur 1 einen Einstrahl-Gasanalysator, Figur 2 verschiedene spektrale Komponenten eines Xenon- Lichtblitzes,
Figur 3 die UV-Transmissionsspektren einiger ausgewählter
Gase,
Figur 4 einen Zweistrahl-Gasanalysator,
Figur 5 eine erste Schaltung von zwei Photodetektoren für den Zweistrahl-Gasanalysator und
Figur 6 eine zweite Schaltung von zwei Photodetektoren für den Zweistrahl-Gasanalysator. Figur 1 zeigt in schematischer Darstellung einen nichtdisper- siven Gasanalysator in Einstrahlausführung mit einer Mess- küvette 1, die von einem zu analysierenden Messgas 2 durchströmt wird. Das Messgas 2 ist ein Gasgemisch aus mehreren Komponenten, von denen eine oder mehrere interessierende Kom- ponenten quantitativ bestimmt werden sollen. Eine Lichtquelle 3 in Form einer Blitzentladungslampe 4, hier beispielsweise eine Xenon-Blitzlampe, wird durch elektrische Impulse 5 ange¬ steuert und erzeugt einzelne Lichtblitze 6, die durch die Messküvette 1 hindurch auf einen Detektor 7 geleitet werden. Dem Detektor 7 ist eine Auswerteeinrichtung 8 nachgeschaltet, die das von dem Detektor 7 als Reaktion auf den jeweils empfangenen Lichtblitz 9 erzeugte impulsförmige Detektorsignal 10 bezüglich der Impulsform auswertet und ein Analysenergeb¬ nis 11 liefert.
Figur 2 zeigt verschiedene spektrale Komponenten eines Xenon- Lichtblitzes 6 mit ihrer normierten Ausgangsleistung P über die Zeit t (entnommen aus den oben genannten technischen Informationen der Fa. Newport Corporation). Der Wellenlängen- bereich des Lichtblitzes 6 erstreckt sich vom Infrarot bis hin zum Ultraviolett. Dabei ist die Dauer des Lichtblitzes 6 in Bezug auf die kurzwelligen Komponenten kürzer als bei den längerwelligen Komponenten. Beim Durchstrahlen der Messküvette 1 findet durch die Kompo¬ nenten des Messgases 2 eine wellenlängenabhängige Absorption des Lichtblitzes 6 statt, wobei viele interessierende Mess¬ gaskomponenten sehr unterschiedliche Absorptionsverhalten zeigen.
Figur 3 zeigt als Beispiel das Absorptionsverhalten (Trans¬ mission T über die Wellenlänge λ) der in der Umweltmesstechnik relevanten Gase H2S, NO2, SO2, NO und O3 im Ultraviolett- Bereich.
Der Detektor 7 (Figur 1) wird so ausgewählt, dass er die Wel¬ lenlängen des jeweils betrachteten Wellenlängenbereichs de- tektieren kann. Für die oben genannten Gase ist dies z. B. der Ultraviolett-Bereich . Der Detektor 7 erzeugt das Detektorsignal 10 über die Summe bzw. das Integral der Wellenlän¬ gen; d. h., der Detektor 7 ist nichtselektiv. Vorzugsweise detektiert er die verschiedenen Wellenlängen mit mehr oder weniger gleicher Empfindlichkeit. Wenn der Detektor 7 sehr breitbandig ist, können störende Wellenlängenbereiche außer¬ halb des betrachteten Wellenlängenbereichs mittels eines op¬ tischen Bandpassfilters 12 ausgeblendet werden.
Da die emittierten Wellenlängenanteile über die Dauer des Lichtblitzes 6 variieren, variiert auch die wellenlängenabhängige Absorption durch die Messgaskomponenten, so dass der zeitliche Impulsverlauf des auf den Detektor 7 fallenden Lichtblitzes 9 von der des von der Blitzentladungslampe 4 erzeugten Lichtblitzes 6 verschieden ist. Der detektierte Lichtblitz 9 und damit das Detektorsignal 10 enthalten daher Informationen über die Absorption in der Messküvette 1. Soweit die wellenlängenspezifischen Absorptionsbanden der Messgaskomponenten unterschiedlich sind, d. h. sich nicht oder nur teilweise überlappen, enthalten der detektierte Licht- blitz 9 und damit das Detektorsignal 10 auch Informationen über die Konzentrationen der einzelnen Messgaskomponenten in dem Messgas 2. In der Auswerteeinrichtung 8 werden durch Auswertung des Impulsverlaufes des dem auf den Detektor 7 fal- lenden Lichtblitz 9 entsprechenden Detektorsignals 10 die Konzentrationen ausgewählter interessierender Messgaskomponenten bestimmt und als Analysenergebnis 11 ausgegeben. Bei mehreren quantitativ zu bestimmenden Messgaskomponenten kom- men chemometrische Auswerteverfahren, insbesondere multivari- ate statistische Methoden in Betracht. Aus dem Vorstehenden ergibt sich, dass der Detektor 7 eine zeitliche Auflösung des empfangenen Lichtblitzes 9 ermöglichen muss. Aus Figur 2 ergibt sich eine erforderliche Zeitauflösung im με -ΒθΓθ ί οη . Dies kann durch optopneumatische Detektoren, Photodioden oder Photozellen erreicht werden.
Figur 4 zeigt in schematischer Darstellung ein weiteres Ausführungsbeispiel des erfindungsgemäßen Gasanalysators in Zweistrahlausführung. Dabei ist zusätzlich zu der Messküvette 1 mit dem zu analysierenden Messgas 2 eine Referenzküvette 13 vorgesehen, die mit einem Referenz- oder Nullgas gefüllt ist. Das von der Lichtquelle 3 ausgehende Licht 6 wird mittels eines Lichtverteilers 14, hier in Form eines Reflektors, auf die Messküvette 1 und die Referenzküvette 13 aufgeteilt. Der Referenzküvette 13 ist ein weiterer Detektor 15 nachgeordnet und die Auswerteeinrichtung 8 wertet den zeitlichen Diffe- renz-Impulsverlauf der auf die Detektoren 7, 15 fallenden Lichtblitze 9, 16 aus. Bei dem gezeigten Ausführungsbeispiel bestehen die beiden Detektoren aus zwei gasgefüllten Empfängerkammern mit einem dazwischen liegenden Differenzdruckoder Strömungsfühler 17, der ein der Differenz-Impulsform der auf die Detektoren 7, 15 fallenden Lichtblitze 9, 16 entspre¬ chendes Detektorsignal 10' erzeugt.
Die Figuren 5 und 6 zeigen zwei aus der EP 0 387 483 AI bekannte Schaltungsbeispiele mit Photodioden 18 zur Realisie¬ rung der Detektoren 7 und 15.

Claims

Patentansprüche
1. Nichtdispersiver Gasanalysator mit einer Lichtquelle (3), deren Licht (6) durch eine ein zu analysierendes Messgas ent- haltende Messküvette (1) auf einen nichtselektiven Detektor (7) mit nachgeschalteter Auswerteeinrichtung (8) fällt, dadurch gekennzeichnet, dass die Lichtquelle (3) eine Blitz¬ entladungslampe (4) ist und dass die Auswerteeinrichtung (8) zur Auswertung des zeitlichen Impulsverlaufes des auf den Detektor (8) fallenden Lichtblitzes (9) ausgebildet ist.
2. Nichtdispersiver Gasanalysator nach Anspruch 1, dadurch gekennzeichnet, dass die Blitzentladungslampe (4) eine Xenon- Blitzlampe ist.
3. Nichtdispersiver Gasanalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Detektor (7) eine Photodiode (18) ist.
4. Nichtdispersiver Gasanalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Detektor (7) eine Photozelle ist .
5. Nichtdispersiver Gasanalysator nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der Detektor (7) ein optopneuma- tischer Empfänger ist, der mit einem Gasgemisch der zu messenden Komponenten gefüllt ist.
6. Nichtdispersiver Gasanalysator nach einem der vorangehen- den Ansprüche, dadurch gekennzeichnet, dass die Auswerte¬ einrichtung (8) dazu ausgebildet ist, zur Auswertung des zeitlichen Impulsverlaufes dessen Frequenzgehalt zu analy¬ sieren .
7. Nichtdispersiver Gasanalysator nach einem der vorangehenden Ansprüche, dadurch gekennzeichnet, dass die Auswerte¬ einrichtung (8) dazu ausgebildet ist, durch multivariate Aus- wertung des zeitlichen Impulsverlaufes mindestens zwei ver¬ schiedene Komponenten des Messgases (2) zu bestimmen.
8. Nichtdispersiver Gasanalysator nach einem der vorangehen- den Ansprüche, dadurch gekennzeichnet, dass eine mit einem Referenz- oder Nullgas gefüllte Referenzküvette (13) mit einem nachgeordneten weiteren Detektor (15) vorhanden ist, dass ein Lichtverteiler (14) vorhanden ist, der das von der Lichtquelle (3) ausgehende Licht (6) auf die Messküvette (1) und die Referenzküvette (13) aufteilt, und dass die Auswerte¬ einrichtung (8) zur Auswertung des Differenz-Impulsverlaufes der auf die Detektoren (7, 15) fallenden Lichtblitze (9, 16) ausgebildet ist.
EP11741531.5A 2010-06-25 2011-06-22 Nichtdispersiver gasanalysator Withdrawn EP2585810A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010030549.9A DE102010030549B4 (de) 2010-06-25 2010-06-25 Nichtdispersiver Gasanalysator
PCT/EP2011/060402 WO2011161137A1 (de) 2010-06-25 2011-06-22 Nichtdispersiver gasanalysator

Publications (1)

Publication Number Publication Date
EP2585810A1 true EP2585810A1 (de) 2013-05-01

Family

ID=44630009

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11741531.5A Withdrawn EP2585810A1 (de) 2010-06-25 2011-06-22 Nichtdispersiver gasanalysator

Country Status (4)

Country Link
US (1) US9030666B2 (de)
EP (1) EP2585810A1 (de)
DE (1) DE102010030549B4 (de)
WO (1) WO2011161137A1 (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015106373B4 (de) * 2015-04-24 2023-03-02 Infineon Technologies Ag Photoakustisches gassensormodul mit lichtemittereinheit und einer detektoreinheit
DE202021104857U1 (de) 2021-09-09 2022-12-20 Sick Ag Analysevorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320297A (en) * 1979-11-29 1982-03-16 Beckman Instruments, Inc. Split detector
US5807750A (en) * 1995-05-02 1998-09-15 Air Instruments And Measurements, Inc. Optical substance analyzer and data processor

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3810696A (en) 1973-02-20 1974-05-14 Waters Associates Inc Improved analytical apparatus for measuring light absorbance of fluids
DE2808033A1 (de) * 1978-02-24 1979-08-30 Siemens Ag Einrichtung zur unterdrueckung der wasserdampf-querempfindlichkeit bei einem nicht dispersiven infrarot-gasanalysator
US4355233A (en) * 1979-02-22 1982-10-19 Beckman Instruments, Inc. Method and apparatus for negating measurement effects of interferent gases in non-dispersive infrared analyzers
US4420687A (en) * 1982-10-28 1983-12-13 Teledyne Ind Non-dispersive infrared gas analyzer
EP0195339B1 (de) * 1985-03-21 1992-07-29 Abbott Laboratories Spektralfotometer
US4692621A (en) * 1985-10-11 1987-09-08 Andros Anlayzers Incorporated Digital anesthetic agent analyzer
EP0283047A3 (de) * 1987-03-19 1991-02-06 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Verfahren und Einrichtung zur berührungsfreien Gewinnung von Daten zur ortsaufgelösten Bestimmung der Dichte und Temperatur in einem Messvolumen
US4899053A (en) * 1987-10-21 1990-02-06 Criticare Systems, Inc. Solid state non-dispersive IR analyzer using electrical current-modulated microsources
DK576187D0 (da) * 1987-11-03 1987-11-03 Radiometer As Fremgangsmaade til bestemmelse af oxygenkoncentration
DE3902015A1 (de) * 1989-01-25 1990-08-02 Diehl Gmbh & Co Verfahren zur bestimmung atmosphaerischer gegebenheiten mittels laserstrahlen und vorrichtung zur durchfuehrung des verfahrens
CH684971A5 (de) 1989-03-16 1995-02-15 Landis & Gyr Tech Innovat Ultraviolettlicht-Sensor.
EP0391696A3 (de) * 1989-04-07 1991-03-06 MITSUI TOATSU CHEMICALS, Inc. Verfahren zur Herstellung von chlorierten Seitenketten enthaltenden Verbindungen und Methode zur Stabilisierung von aromatischen Verbindungen mit monochlorieten Seitenketten
DE4232371C2 (de) * 1992-09-26 1995-02-02 Kernforschungsz Karlsruhe Analysengerät zur Bestimmung von Gasen oder Flüssigkeiten
US5429805A (en) * 1993-01-08 1995-07-04 Fuji Electric Co., Ltd. Non-dispersive infrared gas analyzer including gas-filled radiation source
DE4403763A1 (de) * 1994-02-07 1995-08-10 Siemens Ag NDIR-Analysator
DE4440968A1 (de) * 1994-11-17 1996-05-30 Heinrich Spiecker Meßanordnung zur Erfassung der Orts- und Zeitstruktur von Lichtpulsen mit hoher Zeitauflösung
DE19528919A1 (de) * 1995-08-07 1997-02-20 Microparts Gmbh Mikrostrukturiertes Infrarot-Absorptionsphotometer
DE19608907C1 (de) * 1996-03-07 1997-04-03 Siemens Ag Nichtdispersiver Gasanalysator
US5863460A (en) * 1996-04-01 1999-01-26 Chiron Diagnostics Corporation Oxygen sensing membranes and methods of making same
US5886348A (en) * 1997-02-14 1999-03-23 American Intell-Sensors Corporation Non-dispersive infrared gas analyzer with interfering gas correction
IL121793A (en) 1997-09-17 2008-06-05 Lewis Coleman Isotopic gas analyzer
DE19732470C2 (de) * 1997-07-28 1999-11-18 Siemens Ag Nichtdispersiver Infrarot-Gasanalysator
SE9903423D0 (sv) * 1999-09-22 1999-09-22 Astra Ab New measuring technique
GB2358245A (en) * 1999-10-21 2001-07-18 Pittway Corp Photo-acoustic gas sensor
JP3671805B2 (ja) * 2000-03-13 2005-07-13 スズキ株式会社 振動計測装置及び方法
US6768548B2 (en) * 2001-02-01 2004-07-27 The Board Of Trustees Of The Leland Stanford Junior University Pulse-by-pulse cavity ring-down spectroscopy
GB0208100D0 (en) * 2002-04-09 2002-05-22 Univ Strathclyde Semiconductor diode laser spectrometer arrangement
DE10255022A1 (de) 2002-11-25 2004-06-17 Fiedler, Sven E. Resonatorverstärktes Absorptions-Spektrometer
WO2005026705A1 (en) * 2003-09-12 2005-03-24 Ir Microsystems S.A. Gas detection method and gas detector device
JP4218954B2 (ja) * 2003-10-10 2009-02-04 株式会社堀場製作所 吸光式分析計
US7259856B2 (en) * 2005-02-16 2007-08-21 Picarro, Inc. Method for the precise measurement of the wavelength of light
DE102005036410A1 (de) * 2005-07-29 2007-02-01 Biocam Gmbh Verfahren zur Ermittlung der Sauerstoffpartialdruckverteilung in zumindest einem Gewebeflächenabschnitt, insbesondere Hautgewebeflächenabschnitt
US7369242B2 (en) * 2006-03-17 2008-05-06 Honeywell International Inc. Cavity ring-down spectrometer for semiconductor processing
DE102006018862A1 (de) * 2006-03-17 2007-09-20 Charité - Universitätsmedizin Berlin Vorrichtung zur spektroskopischen Analyse eines Gases
DE102008009189B4 (de) 2008-02-15 2016-05-25 Siemens Aktiengesellschaft Nichtdispersiver Infrarot-Gasanalysator
DE102008044317B4 (de) * 2008-12-03 2011-02-10 Universität Potsdam Vorrichtung und Verfahren zur Konzentrationsbestimmung von Sauerstoff
US8981314B2 (en) * 2011-02-10 2015-03-17 Zaps Technologies, Inc Method and apparatus for the optical determination of total organic carbon in aqueous streams

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4320297A (en) * 1979-11-29 1982-03-16 Beckman Instruments, Inc. Split detector
US5807750A (en) * 1995-05-02 1998-09-15 Air Instruments And Measurements, Inc. Optical substance analyzer and data processor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2011161137A1 *

Also Published As

Publication number Publication date
DE102010030549B4 (de) 2016-04-28
DE102010030549A1 (de) 2011-12-29
US9030666B2 (en) 2015-05-12
WO2011161137A1 (de) 2011-12-29
US20130208280A1 (en) 2013-08-15

Similar Documents

Publication Publication Date Title
DE60133002T2 (de) Spektrophotometer mit mehreren weglängen
DE102009025147B3 (de) Verfahren zum Betrieb eines Spektrometers zur Gasanalyse, sowie Spektrometer selbst
DE2202969A1 (de) Vorrichtung fuer die Fernanalyse von Gasen
DE102012223874B3 (de) Verfahren zur Messung der Konzentration einer Gaskomponente in einem Messgas
EP3455612A1 (de) Messeinrichtung und verfahren zur erfassung unterschiedlicher gase und gaskonzentrationen
DE102016111747B4 (de) Verfahren und Vorrichtung zur Raman-Spektroskopie
DE10392663T5 (de) Foto-akustisches Erfassungsverfahren zum Messen der Konzentration von Nicht-Kolenwasserstoff-Komponenten einer methanhaltigen Gasmischung
AT510631B1 (de) Spektrometer
DE19900129A1 (de) Gasqualitätsbestimmung
DE112017008060T5 (de) Zubehörteil für ein Infrarot-Spektrometer
DE102010056137A1 (de) Optische Gasanalysatoreinrichtung mit Mitteln zum Kalibrieren des Frequenzspektrums
DE102004031643A1 (de) Nichtdispersiver Infrarot-Gasanalysator
EP2132551B1 (de) Photoakustischer detektor mit zwei strahlengängen für das anregungslicht
DE102010030549B4 (de) Nichtdispersiver Gasanalysator
DE4312915A1 (de) Verfahren und Anordnung zur IR-spektroskopischen Trennung von Kunststoffen
DE19509822A1 (de) Ölkonzentrations-Meßgerät
EP2551662B1 (de) Optische Gasanalysatoreinrichtung mit Mitteln zum Verbessern der Selektivität bei Gasgemischanalysen
DE2948590A1 (de) Verfahren und vorrichtung zur gasanalyse
DE102016108544A1 (de) Messeinrichtung und Verfahren zur Erfassung unterschiedlicher Gase und Gaskonzentrationen
DE202021104857U1 (de) Analysevorrichtung
EP3770585B1 (de) Vorrichtung und verfahren zur bestimmung einer stoffkonzentration in einem fluid
WO2004008113A1 (de) Absorptionsspektrometer und entsprechendes messverfahren
DE60126600T2 (de) Analyseverfahren für stoffmischungen
WO2004008112A1 (de) Hochauflösendes absorptionsspektrometer und entsprechendes messverfahren
AT518576B1 (de) Spektrometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20121130

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20160809

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/31 20060101AFI20170419BHEP

Ipc: G01N 21/61 20060101ALI20170419BHEP

Ipc: G01N 21/37 20060101ALI20170419BHEP

Ipc: G01N 21/3504 20140101ALI20170419BHEP

Ipc: G01N 21/05 20060101ALI20170419BHEP

Ipc: G01N 21/33 20060101ALI20170419BHEP

Ipc: G01N 21/35 20140101ALI20170419BHEP

Ipc: G01N 21/27 20060101ALI20170419BHEP

INTG Intention to grant announced

Effective date: 20170519

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170930

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/3504 20140101ALI20170419BHEP

Ipc: G01N 21/27 20060101ALI20170419BHEP

Ipc: G01N 21/61 20060101ALI20170419BHEP

Ipc: G01N 21/37 20060101ALI20170419BHEP

Ipc: G01N 21/05 20060101ALI20170419BHEP

Ipc: G01N 21/31 20060101AFI20170419BHEP

Ipc: G01N 21/33 20060101ALI20170419BHEP

Ipc: G01N 21/35 20140101ALI20170419BHEP

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 21/3504 20140101ALI20170419BHEP

Ipc: G01N 21/27 20060101ALI20170419BHEP

Ipc: G01N 21/37 20060101ALI20170419BHEP

Ipc: G01N 21/05 20060101ALI20170419BHEP

Ipc: G01N 21/35 20140101ALI20170419BHEP

Ipc: G01N 21/31 20060101AFI20170419BHEP

Ipc: G01N 21/33 20060101ALI20170419BHEP

Ipc: G01N 21/61 20060101ALI20170419BHEP