[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2580458B1 - Heat-exchanging cylinder head - Google Patents

Heat-exchanging cylinder head Download PDF

Info

Publication number
EP2580458B1
EP2580458B1 EP11744027.1A EP11744027A EP2580458B1 EP 2580458 B1 EP2580458 B1 EP 2580458B1 EP 11744027 A EP11744027 A EP 11744027A EP 2580458 B1 EP2580458 B1 EP 2580458B1
Authority
EP
European Patent Office
Prior art keywords
heat
engine
walls
fluid
cylinder head
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11744027.1A
Other languages
German (de)
French (fr)
Other versions
EP2580458A1 (en
Inventor
Bernard Macarez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP2580458A1 publication Critical patent/EP2580458A1/en
Application granted granted Critical
Publication of EP2580458B1 publication Critical patent/EP2580458B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/04Hot gas positive-displacement engine plants of closed-cycle type
    • F02G1/043Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
    • F02G1/053Component parts or details
    • F02G1/055Heaters or coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G1/00Hot gas positive-displacement engine plants
    • F02G1/02Hot gas positive-displacement engine plants of open-cycle type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G2254/00Heat inputs

Definitions

  • This invention relates to a heat engine (piston, or rotary type Wankel) whose heat energy input is made from an external heat source which can be a hot fluid or radiation. This is the application of cycles similar to the Stirling or Ericsson cycles.
  • the engine fluid is compressible under the operating conditions of the engine and rejects the heat of the exhaust to a cold source of any nature whatsoever (fluid or solid ) with or without the aid of an external cooling exchanger depending on whether it is an open or closed cycle.
  • the working fluid used may be a refrigerant or a gas such as air, or any fluid that may be able to exchange heat under the operating conditions of the engine.
  • Cycle studies and the diagram of the figure 1 show that the influence of the volumetric compression ratio of the engine on the cycle efficiency or on the extractable mechanical energy is even lower than the temperature ratio T4 / TB (hot source / cold source) is low. There is therefore an optimum compressive compression ratio for each hot source. In other words, if the supply of heat from the hot source is free, it is possible to extract useful work from a cycle by modifying the design of the engine in order to be able to capture and transfer heat from this source. hot to the engine fluid through a cylinder head exchanger.
  • This invention proposes to reduce the compression ratio of the engine to a sufficiently low level to allow on the one hand to produce useful work and on the other hand to allow to place a cylinder head 2 with an exchanger internal 9 directly placed in the dead volume released in the cylinder when the piston is dead center up.
  • the motor cycle is conventional 2-stroke or 4- stroke.
  • the supply of heat to the working fluid is done continuously through the exchanger head 2 during compression and relaxation.
  • the initial supply of heat being free, we first seek to increase the exchange surface of the exchanger head 2 as shown on the part 9 of figures 4 and 5 while dimensioning a dead volume that is consistent with the volumetric compression ratio of the engine chosen.
  • the internal heat exchanger 9 situated inside the "dead volume" of the cylinder may consist of fins integrally or integrally attached to the exchanger head 2 of the engine 1.
  • Other types of exchangers may be used, such as the microporous exchangers.
  • the external heat exchanger 11 bathed by the fluid of the hot source (by exchange with a fluid or by radiation) is located outside "dead volume" of the cylinder.
  • the exchange of heat between the two exchangers can be done by conduction through the material of the part 10 or with the aid of an exchange fluid between the two exchangers. It has a profile of fins or any other form to exchange heat with this hot source. Profiles and form interior exchange fins 9 and 11 external of the cylinder head exchanger 2 will be adapted to the type of compressible working fluid and the type of fluid to the hot source (liquid or steam or the exhaust gas or radiation)
  • the 1 to 2 or 4 stroke heat engine may have conventional valves or lights commonly found in current engines to allow the intake 5 and exhaust 6 of the engine fluid.
  • This engine 1 can use conventional lubrication by bubbling or under hydraulic pressure.
  • an insulating heat seal 7 is disposed between the exchanger head and the liner body of the cylinder or engine block 4 according to the type of engine to reduce the heat transfer from the cylinder head to this body.
  • the installation of this seal 7 will be adapted to the type of use depending on whether or not it is necessary to avoid a transfer of calories to the engine block 4, for example to avoid too high wall temperatures incompatible with the characteristics of the engine.
  • lubricating fluid used eg oil
  • refrigerant one may want on the contrary maintain a heat input to the walls to prevent too rapid condensation of the fluid at the end of relaxation. In this case, the seal 7 will not be installed and a raised wall exchanger head 2 will be used as shown. figure 5 .
  • the engine block 4 can be cooled by air or by fluid or not be cooled if the temperature level of the inner wall is compatible with the level of temperature. acceptable temperature of the lubricating fluid (which may be oil) .
  • a partition wall 8 may be installed to separate the hot source from the cold source or an intermediate cooling zone. of the engine if the driving fluid is distinct from the coolant as shown on the figure 11 in the context of application of a refrigerant fluid. In this case it is possible, for example, to bury in the soil 20 or to place in a cold fluid (river 20 ) a cooler 19 which is immersed in the cold source 20.
  • a hydraulic or diphasic pump 21 vapor liquid
  • may be used to feed the evaporator 18 which may be radiation also from which will be transferred the steam from the engine fluid to the engine 1 as indicated on the figure 11 .
  • the present invention proposes to install a deflection or obstruction to the passage of fluid from the hot source.
  • This deflection can be done using a movable wall 14 installed as shown on the Figures 8 - 9 and 10 which can be moved by a cylinder or an electric or hydraulic motor.
  • the hot fluids 17 from the hot source are totally or partially deflected towards the exchanger head 2 in order to control the power of the engine 1.
  • On these Figures 8 - 9 and 10 only the deflected fluid 16 exchanges with the exchanger cylinder head 2.
  • This system uses the fixed walls 12, 13 and 8 to distinguish the flow rates 16 and 17.
  • the engine power is thus controlled by controlling the flow rate of the fluid from the hot source.
  • Another way is to install a valve for venting the cylinder. The engine stopping for lack of compression.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Cylinder Crankcases Of Internal Combustion Engines (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)

Description

Cette invention concerne un moteur thermique (à piston, ou rotatif type Wankel) dont l'apport d'énergie calorifique s'effectue à partir d'une source chaude externe qui peut être un fluide chaud ou un rayonnement. Il s'agit de l'application des cycles similaires aux cycles de Stirling ou d'Ericsson.This invention relates to a heat engine (piston, or rotary type Wankel) whose heat energy input is made from an external heat source which can be a hot fluid or radiation. This is the application of cycles similar to the Stirling or Ericsson cycles.

Pour produire de l'énergie mécanique ce moteur utilise un cycle ouvert ou fermé.Le fluide moteur est compressible dans les conditions de fonctionnement du moteur et rejette la chaleur de l'échappement à une source froide de quelque nature que ce soit (fluide ou solide) avec ou sans l'aide d'un échangeur de refroidissement externe selon qu'il s'agit d'un cycle ouvert ou fermé. Le fluide moteur utilisé peut être un fluide frigorigène ou un gaz comme l'air, ou tout fluide susceptible de pouvoir échanger de la chaleur dans les conditions de fonctionnement du moteur.To produce mechanical energy this engine uses an open or closed cycle. The engine fluid is compressible under the operating conditions of the engine and rejects the heat of the exhaust to a cold source of any nature whatsoever (fluid or solid ) with or without the aid of an external cooling exchanger depending on whether it is an open or closed cycle. The working fluid used may be a refrigerant or a gas such as air, or any fluid that may be able to exchange heat under the operating conditions of the engine.

Ce moteur se caractérise en ce qu'il inclut une culasse échangeur qui, transfère au fluide interne du moteur par conduction au travers du matériau de la culasse elle-même l'énergie calorifique prélevée à la source chaude d'un fluide externe au moteur (liquide ou gazeux) ou encore par apport extérieur de chaleur par rayonnement. N'importe quelle forme de récupération de chaleur d'une source chaude peut être utilisée:

  • À partir d'un concentrateur de rayons solaires,
  • De la récupération de chaleur des gaz d'échappement de moteur à piston ou d'un cycle de turbine à gaz
  • À partir d'une source chaude thermale
  • De la récupération de chaleur à la sortie d'une turbine à vapeur.
  • Toute source chaude capable d'échanger de la chaleur avec la culasse échangeur. Le fonctionnement de ce moteur n'est pas limité au domaine aérobie, mais il peut utiliser des fluides frigorigènes comme fluide moteur en particulier lorsque la température de la source chaude est faible.
This engine is characterized in that it includes an exchanger head which transfers to the internal fluid of the engine by conduction through the material of the cylinder head itself the heat energy taken from the hot source of a fluid external to the engine ( liquid or gas) or by external heat input radiation. Any form of heat recovery from a hot source can be used:
  • From a solar concentrator,
  • Heat recovery from piston engine exhaust or a gas turbine cycle
  • From a hot spring
  • From heat recovery to the output of a steam turbine.
  • Any hot source capable of exchanging heat with the exchanger breech. The operation of this engine is not limited to the aerobic domain, but it can use refrigerants as the driving fluid especially when the temperature of the hot source is low.

Les applications possibles concernent les domaines terrestres, maritimes, aériens ou spatiaux.Possible applications are in the terrestrial, maritime, air or space domains.

L'application des cycles de Stirling, Rankine ou Hirn à un moteur thermique n'est pas nouvelle et de nombreux brevets ( US 3 180 078 , US 4 121 423 , DE 101 43 342 , GB1 081 499 et plus récemment WO 2008/031939 ) ont proposé d'utiliser une source de chaleur extérieure comme apport énergétique à partir d'une source chaude. D'autres brevets ( US 4 514 979 A (MOHR ERNST ), DE 22 00 842 A1 (ILG FRITZ ), WO 2009/066178 A2 (CAO YDING US ) proposent également des systèmes de récupération de chaleur.The application of the Stirling, Rankine or Hirn cycles to a heat engine is not new and many patents ( US 3,180,078 , US 4,121,423 , DE 101 43 342 , GB1 081 499 and more recently WO 2008/031939 ) proposed using an outdoor heat source as an energy source from a hot source. Other patents ( US 4,514,979 A (MOHR ERNST ) DE 22 00 842 A1 (ILG FRITZ ) WO 2009/066178 A2 (US CAO YDING ) also offer heat recovery systems.

Cependant la plupart de ces brevets posaient les problèmes suivants :

  • Soit ils utilisaient un échangeur de chaleur indépendant situé à l'extérieur et non solidaire de la chambre du moteur DE 22 00 842 A1 (ILG FRITZ) 12 Juillet 1973 pour récupérer les calories de la source chaude.
    • ∘ Et le volume important de cet échangeur (équivalent à 500 ou 1000 fois le volume mort du cylindre) nécessitait d'abord une première mise en pression de cet échangeur d'où la nécessité de dépenser une énergie mécanique initiale importante incompatible avec les systèmes de démarrage conventionnel (capacité des démarreurs et taille des batteries).
    • ∘ De plus, un débit important d'air était transvasé au travers de cet échangeur extérieur alors que seule une petite quantité de cet air était utile pour produire de l'énergie mécanique dans le cylindre. Il était donc nécessaire de prélever une énergie non négligeable sur le cycle moteur uniquement pour compenser le travail de transvasement de cet air non producteur d'énergie mécanique.
    • ∘ Le transfert d'énergie calorifique prélevée s'effectuait le piston au point mort haut au cours de durées extrêmement faibles (quelques millisecondes selon le régime moteur). Ce transfert s'effectuait en transvasant cet air chaud de l'échangeur extérieur vers le volume mort du cylindre. Ceci nécessitait d'une part l'ajout de soupapes spécifiques supplémentaires (en plus de celles d'admission et d'échappement) de large dimension pour permettre le transvasement de la masse d'air chauffée mais d'autre part les ouvertures et les fermetures de ces soupapes devaient s'effectuer à une pression élevée car proche du point mort haut du piston. Ces hautes pressions et les tubes utilisés pour le transfert de masse de gaz généraient de nombreuses fuites.
    • ∘ Enfin la taille de l'échangeur était incompatible avec des moteurs à forte pression du fait des contraintes engendrées par le différentiel de pression intérieur extérieur de cet échangeur.Les niveaux de contraintes thermique et mécanique étaient proches de celles rencontrées dans les culasses de moteur mais avec des volumes et surfaces d'échangeur bien plus importantes.
  • Soit ils utilisaient un échangeur de chaleur situé à l'intérieur du moteur (brevets GB1081499 , US 4 514 979 A (MOHR ERNST) 7 Mai 1985 . WO 2009/066178 A2 (CAO YDING US) 28 Mai 2009 ). Cependant les canaux ou tubes d'apport de calorie et d'extraction de calorie sont tous deux situés à l'intérieur de la chambre du cylindre du moteur à air. Les dimensions nécessaires aux 2 types de tubes (apport de calorie au fluide et extraction de calorie de la source chaude) n'étaient pas compatibles avec les dimensions du volume mort de la chambre lorsque le piston est point mort haut. Ce système conduit :
    • ∘ Soit à des dimensions de tubes trop petites créant ainsi une perte de charge et une contre-pression à l'échappement des autres cylindres qui obèrent le taux de détente de ces cylindres moteurs conventionnels.
    • ∘ Soit à des tubes convenablement dimensionnés et le volume mort de la chambre devenait alors trop petit pour placer ces tubes ou conduisait un rapport volumétrique de compression trop élevé avec le niveau de température de la source chaude.
However, most of these patents had the following problems:
  • Either they used an independent heat exchanger located outside and not integral with the engine room DE 22 00 842 A1 (ILG FRITZ) July 12, 1973 to recover calories from the hot spring.
    • ∘ And the large volume of this exchanger (equivalent to 500 or 1000 times the dead volume of the cylinder) first required a first pressurization of this exchanger, hence the need to spend a significant initial mechanical energy incompatible with the systems of conventional start (starter capacity and battery size).
    • ∘ In addition, a large flow of air was transferred through this external exchanger while only a small amount of this air was useful to produce mechanical energy in the cylinder. It was therefore necessary to take a significant amount of energy from the engine cycle only to compensate for the transfer work of this non-mechanical energy producing air.
    • ∘ The transfer of heat energy taken was carried out at high dead center during extremely short periods of time (a few milliseconds depending on the engine speed). This transfer was carried out by transferring this hot air from the external exchanger to the dead volume of the cylinder. This required on the one hand the addition of additional specific valves (in addition to those of admission and exhaust) of large size to allow the transfer of the heated air mass but on the other hand the openings and closures these valves had to be carried out at a high pressure because close to the top dead center of the piston. These high pressures and the tubes used for gas mass transfer generated many leaks.
    • ∘ Finally, the size of the exchanger was incompatible with high pressure engines because of the constraints generated by the external pressure differential of this exchanger. The thermal and mechanical stress levels were close to those found in the engine cylinder heads but with much larger volumes and exchanger surfaces.
  • Either they used a heat exchanger located inside the engine (patents GB1081499 , US 4,514,979 A (MOHR ERNST) May 7, 1985 . WO 2009/066178 A2 (US CAO YDING) May 28, 2009 ). However, the calorie supply and calorie extraction channels or tubes are both located inside the cylinder chamber of the air motor. The dimensions required for the two types of tubes (calorie supply to the fluid and calorie extraction from the hot source) were not compatible with the dimensions of the dead volume of the chamber when the piston is top dead center. This system leads:
    • ∘ That is to say, the dimensions of the tubes are too small, thus creating a pressure drop and a counter-pressure at the exhaust of the other cylinders which obey the expansion ratio of these conventional engine cylinders.
    • ∘ Either properly sized tubes and the dead volume of the chamber then became too small to place these tubes or led a volumetric compression ratio too high with the temperature level of the hot source.

C'est le lieu précis où s'effectue l'échange de chaleur entre le fluide de la source chaude et le fluide moteur qui caractérise l'invention. Le mot « échange » étant ici exprimé comme le lieu précis ou le flux de chaleur passe par conduction à travers le matériau d'un côté d'une paroi (baigné par la source chaude) vers l'autre côté de cette même paroi (baigné par le fluide moteur). Comme le montre la Figure 12 on note trois types de conception A,B,C. Le caractère innovant de cette invention (type C) est d'utiliser le matériau du corps de la culasse même pour transférer par conduction la chaleur de la source chaude vers le fluide moteur.Cette conception évite le transvasement du fluide de la source chaude vers le « volume mort » du cylindre où se trouve le fluide moteur ou encore évite d'ajouter des valves additionnelles si le transvasement se fait du fluide moteur vers la source chaude.On gagne ainsi un espace dans le « volume mort » du cylindre moteur qui permet d'accroître la surface d'échange avec le fluide moteur d'une part et d'autre part de garder un rapport de compression ε cohérent avec le faible niveau de la température de la source chaude.This is the precise place where heat exchange takes place between the fluid of the hot source and the engine fluid which characterizes the invention. The word "exchange" is here expressed as the precise place where the flow of heat passes by conduction through the material of one side of a wall (bathed by the hot spring) towards the other side of this same wall (bathed by the working fluid). As shown in Figure 12 there are three types of design A, B, C. The innovative nature of this invention (type C) is to use the material of the body of the cylinder head itself to transfer the heat from the hot source to the engine fluid by conduction. This design avoids the transfer of the fluid from the hot source to the engine. "Dead volume" of the cylinder where the driving fluid is located or avoids adding additional valves if the transfer is from the engine fluid to the hot source.We thus gains a space in the "dead volume" of the engine cylinder that allows to increase the exchange surface with the driving fluid on the one hand and on the other hand to keep a compression ratio ε consistent with the low temperature of the hot source temperature.

L'invention proposée ici permet de résoudre ces problèmes

  • Grâce d'une part à la culasse échangeur 2 qui distingue l'échangeur externe 11 en contact avec la source chaude située à l'extérieur du « volume mort mais solidaire de la culasse 2 et de la chambre du moteur et l'échangeur interne 9 en contact avec le fluide moteur situé à l'intérieur du « volume mort » de cette chambre. Les 2 échangeurs de chaleur 11 et 9 peuvent être l'assemblage de plusieurs pièces telles que montré sur la Figure 8. La pièce 10 est utilisée comme conducteur de chaleur entre la pièce 11 et la pièce 9. Les 2 échangeurs 9 et 11 peuvent également être une même pièce (les pièces 9,10 et 11 forment alors une seule pièce la culasse échangeur 2). Dans la suite du texte, nous appellerons cet ensemble de pièces 9,10 et 11 la culasse échangeur 2 tel que montré sur la figure 7.Cette conformation permet d'obtenir des contraintes thermiques et mécaniques dans la culasse échangeur 2 similaire à celles rencontrées dans les culasses conventionnelles des autres moteurs. Elle permet également de limiter la masse d'air transvasée au cours de l'échange de chaleur au strict minimum.
  • Et d'autre part, en optimisant le rapport volumétrique de compression du moteur avec le niveau de température de la source chaude. L'énergie récupérée ou échangée à la source chaude étant gratuite, on réduit ce rapport volumétrique de compression à un niveau suffisamment bas pour libérer un volume mort assez grand lorsque le piston est point mort haut pour y placer l'échangeur de chaleur interne 9. Le rapport volumétrique de compression du moteur, qui ne sera pas au point du meilleur rendement, sera quand même suffisamment élevé pour extraire une énergie mécanique significative. Il s'agit d'accroître la faisabilité technologique au détriment d'une perte de rendement acceptable compte tenu de la gratuité de l'apport de la source chaude.
The invention proposed here solves these problems
  • Thanks firstly to the exchanger head 2 which distinguishes the external exchanger 11 in contact with the hot source located outside the "dead volume but integral with the cylinder head 2 and the engine chamber and the internal exchanger 9 in contact with the working fluid located inside the "dead volume" of this chamber. The two heat exchangers 11 and 9 can be the assembly of several pieces as shown on the Figure 8 . The part 10 is used as a heat conductor between the part 11 and the part 9. The 2 exchangers 9 and 11 can also be a single piece (the parts 9,10 and 11 then form a single piece the exchanger head 2 ). In what follows, we will call this set of 9.10 parts and 11 the head exchanger 2 as shown in figure 7 This conformation makes it possible to obtain thermal and mechanical stresses in the exchanger head 2 similar to those encountered in the conventional heads of the other engines. It also limits the amount of air transferred during the heat exchange to a minimum.
  • And secondly, by optimizing the volumetric compression ratio of the engine with the temperature level of the hot source. As the energy recovered or exchanged at the hot source is free, this volumetric compression ratio is reduced to a level low enough to release a large dead volume when the piston is top dead center to place the internal heat exchanger 9. The volumetric compression ratio of the engine, which will not be point of the best yield, will still be high enough to extract significant mechanical energy. This is to increase the technological feasibility to the detriment of an acceptable yield loss given the free supply of the hot spring.

Étude de cyclesCycle study

Les études de cycles et le diagramme de la figure 1 montrent que l'influence du rapport volumétrique de compression du moteur sur le rendement de cycle ou sur l'énergie mécanique extractible est d'autant moins importante que le rapport de température T4/To (source chaude/source froide)est faible. Il existe donc un rapport volumétrique de compression optimum pour chaque source chaude. En d'autres termes si l'apport de chaleur de la source chaude est gratuit il est possible d'extraire du travail utile d'un cycle en modifiant le dessin du moteur afin de pouvoir permettre la captation et le transfert de chaleur de cette source chaude au fluide du moteur au travers d'une culasse échangeur. Cette invention propose de réduire le rapport volumétrique de compression du moteur à un niveau suffisamment bas pour permettre d'une part de produire du travail utile et d'autre part pour permettre de placer une culasse échangeur 2 avec un échangeur interne 9 directement placé dans le volume mort libéré dans le cylindre lorsque le piston est point mort haut.Cycle studies and the diagram of the figure 1 show that the influence of the volumetric compression ratio of the engine on the cycle efficiency or on the extractable mechanical energy is even lower than the temperature ratio T4 / TB (hot source / cold source) is low. There is therefore an optimum compressive compression ratio for each hot source. In other words, if the supply of heat from the hot source is free, it is possible to extract useful work from a cycle by modifying the design of the engine in order to be able to capture and transfer heat from this source. hot to the engine fluid through a cylinder head exchanger. This invention proposes to reduce the compression ratio of the engine to a sufficiently low level to allow on the one hand to produce useful work and on the other hand to allow to place a cylinder head 2 with an exchanger internal 9 directly placed in the dead volume released in the cylinder when the piston is dead center up.

Des premiers calculs d'échange, paroi air côté cylindre (loi de Woschni) montrent qu'il est possible de dimensionner un échangeur de chaleur 9 interne au cylindre dont la surface et le volume d'échange aux parois sont cohérents avec d'une part le volume mort disponible (piston point mort haut) et d'autre part le taux de compression du cycle moteur.First exchange calculations, cylinder side air wall (Woschni law) show that it is possible to size a heat exchanger 9 internal to the cylinder whose surface and wall exchange volume are consistent with the one hand the dead volume available (top dead center piston) and secondly the compression ratio of the engine cycle.

Le cycle moteur est conventionnel à 2 temps ou 4 temps. L'apport de chaleur au fluide moteur se fait continûment au travers de la culasse échangeur 2 au cours de la compression et de la détente.L'apport initial de chaleur étant gratuit, nous recherchons d'abord à augmenter la surface d'échange de la culasse échangeur 2 tel que montré sur la pièce 9 des figures 4 et 5 tout en dimensionnant un volume mort qui soit cohérent avec le rapport volumétrique de compression du moteur choisi.The motor cycle is conventional 2-stroke or 4- stroke. The supply of heat to the working fluid is done continuously through the exchanger head 2 during compression and relaxation. The initial supply of heat being free, we first seek to increase the exchange surface of the exchanger head 2 as shown on the part 9 of figures 4 and 5 while dimensioning a dead volume that is consistent with the volumetric compression ratio of the engine chosen.

Bien que cette invention puisse s'appliquer à tout type de moteur à piston, ou rotatif type Wankel et qu'elle puisse trouver diverses type d'application selon la nature de la source chaude disponible (rayonnement ou échanges gazeux) nous nous limiterons dans ce qui suit à la description de moteur à piston conventionnel afin de faciliter la compréhension.Although this invention can be applied to any type of piston engine, or Wankel-type rotary and that it can find various types of application depending on the nature of the available hot source (radiation or gas exchange) we will limit ourselves in this which follows the conventional piston engine description to facilitate understanding.

Description de l'inventionDescription of the invention

  • La figure 1 est un diagramme illustrant l'énergie maximale extractible fonction du rapport volumétrique de compression du moteur pour 3 valeurs de rapport T4/To de température source chaude (T4) sur température source froide (To) données comme exemple.The figure 1 is a diagram illustrating the maximum extractable energy according to the volumetric compression ratio of the engine for 3 T4 / To ratio values of hot source temperature (T4) on cold source temperature (To) given as an example.
  • La figure 2 est une vue de ¾ d'un exemple de moteur à piston conventionnel 1 équipé d'une culasse échangeur 2. The figure 2 is a view of ¾ of an example of a conventional piston engine 1 equipped with a cylinder head exchanger 2.
  • La figure 3 est une vue de coupe d'un moteur 2 temps équipé d'une culasse échangeur 2. The figure 3 is a sectional view of a 2-stroke engine equipped with an exchanger head 2.
  • La figure 4 est une vue de coupe d'un moteur 4 temps équipé d'une culasse échangeur 2 et de soupapes latérales 5 et 6. The figure 4 is a sectional view of a 4-stroke engine equipped with an exchanger head 2 and side valves 5 and 6.
  • La figure 5 est une vue de coupe d'un moteur 2 temps équipé d'une culasse échangeur 2 dont la surface d'échange a été augmentée.The figure 5 is a sectional view of a 2-stroke engine equipped with an exchanger head 2 whose exchange surface has been increased.
  • La figure 6 est une vue de coupe d'un moteur rotatif (type Wankel) équipé d'une culasse échangeur 2 adaptée à ce type de moteur.The figure 6 is a sectional view of a rotary engine (Wankel type) equipped with an exchanger head 2 adapted to this type of engine.
  • La figure 7 est une vue de coupe d'une culasse échangeur 2 qui peut - être monobloc mais ici représenté composé de 3 éléments 9 -10 et 11 The figure 7 is a sectional view of a cylinder head exchanger 2 which may be monoblock but here represented composed of 3 elements 9 -10 and 11
  • La figure 8 est une vue de coupe selon BB du système de régulation du moteur 1 effectué par obstruction dans cet exemple du passage des fluides chauds en provenance de la source chaudeThe figure 8 is a sectional view along BB of the control system of the engine 1 made by obstruction in this example of the passage of hot fluids from the hot source
  • La figure 9 est une vue de dessus selon DD du système présenté à la figure 8.The figure 9 is a top view according to DD of the system presented to the figure 8 .
  • La figure 10 est une vue de coupe transversale selon AA ou CC du système présenté à la figure 8.The figure 10 is a cross-sectional view along AA or CC of the system presented at figure 8 .
  • La figure 11 est une vue schématique d'une installation utilisant le rayonnement solaire 22 comme source chaude et la position du refroidisseur 19 situé dans l'écoulement d'une rivière 20 ou enterré dans le sol 20 comme source froide à titre d'exemple.The figure 11 is a schematic view of an installation using the solar radiation 22 as a hot source and the position of the cooler 19 located in the flow of a river 20 or buried in the ground 20 as a cold source by way of example.
  • La figure 12 montre les différents type A,B,C de conception échangeur possible.The figure 12 shows the different type A, B, C possible exchanger design.

L'échangeur interne 9 situé à l'intérieur du « volume mort » du cylindre peut être constitué d'ailettes faisant partie intégrante ou solidairement attachée à la culasse échangeur 2 du moteur 1. D'autres types d'échangeurs peuvent être utilisés comme les échangeurs microporeux.The internal heat exchanger 9 situated inside the "dead volume" of the cylinder may consist of fins integrally or integrally attached to the exchanger head 2 of the engine 1. Other types of exchangers may be used, such as the microporous exchangers.

L'échangeur de chaleur externe 11 baigné par le fluide de la source chaude (par échange avec un fluide ou par rayonnement) est situé à l'extérieur « volume mort » du cylindre. L'échange de chaleur entre les 2 échangeurs (externe 11 et interne 9) peut se faire par conduction à travers le matériau de la pièce 10 ou à l'aide d'un fluide d'échange entre les 2 échangeurs. Elle présente un profil d'ailettes ou tout autre forme pour échanger la chaleur avec cette source chaude. Les profils et forme d'ailettes d'échanges intérieurs 9 et extérieurs 11 de la culasse échangeur 2 seront adaptés au type de fluide moteur compressible et au type de fluide de la source chaude (liquide ou vapeur d'eau ou gaz d'échappement ou rayonnement)The external heat exchanger 11 bathed by the fluid of the hot source (by exchange with a fluid or by radiation) is located outside "dead volume" of the cylinder. The exchange of heat between the two exchangers (external 11 and internal 9 ) can be done by conduction through the material of the part 10 or with the aid of an exchange fluid between the two exchangers. It has a profile of fins or any other form to exchange heat with this hot source. Profiles and form interior exchange fins 9 and 11 external of the cylinder head exchanger 2 will be adapted to the type of compressible working fluid and the type of fluid to the hot source (liquid or steam or the exhaust gas or radiation)

Le moteur thermique 1 à 2 ou 4 temps peut disposer de soupapes conventionnelles ou des lumières couramment rencontrées dans les moteurs actuels pour permettre l'admission 5 et l'échappement 6 du fluide moteur. Ce moteur 1 peut utiliser une lubrification conventionnelles par barbotage ou sous pression hydraulique.The 1 to 2 or 4 stroke heat engine may have conventional valves or lights commonly found in current engines to allow the intake 5 and exhaust 6 of the engine fluid. This engine 1 can use conventional lubrication by bubbling or under hydraulic pressure.

Pour séparer la zone de la source chaude de la source froide un joint thermique isolant 7 est disposé entre la culasse échangeur et le corps chemise du cylindre ou bloc-moteur 4 selon le type de moteur afin de réduire le transfert de chaleur de la culasse vers ce corps. L'installation de ce joint 7 sera adaptée au type d'utilisation selon qu'il est nécessaire ou non d'éviter un transfert de calorie vers le bloc-moteur 4 par exemple pour éviter des températures de paroi trop élevées incompatibles avec les caractéristiques du fluide lubrifiant utilisé (exemple huile). Dans certaines conditions d'utilisation de fluide frigorigène, on peut vouloir au contraire conserver un apport de chaleur aux parois pour prévenir une condensation trop rapide du fluide en fin de détente. Dans ce cas, le joint 7 ne sera pas installé et une culasse échangeur 2 à paroi augmentée sera utilisée telle que montré figure 5.To separate the zone from the hot source of the cold source an insulating heat seal 7 is disposed between the exchanger head and the liner body of the cylinder or engine block 4 according to the type of engine to reduce the heat transfer from the cylinder head to this body. The installation of this seal 7 will be adapted to the type of use depending on whether or not it is necessary to avoid a transfer of calories to the engine block 4, for example to avoid too high wall temperatures incompatible with the characteristics of the engine. lubricating fluid used (eg oil). In certain conditions of use of refrigerant, one may want on the contrary maintain a heat input to the walls to prevent too rapid condensation of the fluid at the end of relaxation. In this case, the seal 7 will not be installed and a raised wall exchanger head 2 will be used as shown. figure 5 .

Pour améliorer le remplissage et la vidange du cylindre d'un moteur 2 temps équipé de lumières d'admission 5 et d'échappement 6 conventionnelles il est possible d'ajouter 1 ou 2 soupapes latérales ou monté en tête et intégré dans le dessin de la culasse échangeur 2 comme montré figure 4 . Ces soupapes additionnelles amélioreront le remplissage en air frais du cylindre moteur 1. To improve the filling and emptying of the barrel of a 2-stroke engine equipped with the intake ports 5 and exhaust conventional 6 it is possible to add 1 or 2 side valves or head mounted and integrated into the design of the cylinder head exchanger 2 as shown figure 4 . These additional valves will improve the fresh air filling of the engine cylinder 1.

Selon le niveau de température de la source chaude et en fonction du niveau thermique, le bloc-moteur 4 pourra être refroidi par air ou par fluide ou ne pas être refroidi si le niveau de la température de la paroi interne est compatible avec le niveau de température acceptable du fluide lubrifiant (qui peut être de l'huile).Selon le niveau de température de la source chaude une paroi de séparation 8 pourra être installée afin de séparer la source chaude de la source froide ou d'une zone intermédiaire de refroidissement du moteur si le fluide moteur est distinct du fluide de refroidissement comme montré sur la figure 11 dans le cadre d'une application d'un fluide moteur frigorigène. Dans ce cas il est possible par exemple d'enterrer dans le sol 20 ou de placer dans un fluide froid (rivière 20) un refroidisseur 19 qui baigne dans la source froide 20. Une pompe 21 hydraulique ou diphasique (liquide vapeur) pourra être utilisée pour alimenter l'évaporateur 18 qui peut-être à rayonnement également d'où sera transférer la vapeur du fluide moteur vers le moteur 1 comme indiqué sur la figure 11.Depending on the temperature level of the hot source and depending on the thermal level, the engine block 4 can be cooled by air or by fluid or not be cooled if the temperature level of the inner wall is compatible with the level of temperature. acceptable temperature of the lubricating fluid (which may be oil) .According to the temperature level of the hot source a partition wall 8 may be installed to separate the hot source from the cold source or an intermediate cooling zone. of the engine if the driving fluid is distinct from the coolant as shown on the figure 11 in the context of application of a refrigerant fluid. In this case it is possible, for example, to bury in the soil 20 or to place in a cold fluid (river 20 ) a cooler 19 which is immersed in the cold source 20. A hydraulic or diphasic pump 21 (vapor liquid) may be used to feed the evaporator 18 which may be radiation also from which will be transferred the steam from the engine fluid to the engine 1 as indicated on the figure 11 .

Enfin pour contrôler de manière simple la puissance du moteur 1 la présente invention propose d'installer une déviation ou obstruction au passage du fluide de la source chaude. Cette déviation pouvant se faire à l'aide d'une paroi mobile 14 installée comme montré sur les figures 8 - 9 et 10 qui peut être déplacée par un vérin ou un moteur électrique ou hydraulique. Les fluides chauds 17 en provenance de la source chaude sont totalement ou partiellement déviés vers la culasse échangeur 2 afin de contrôler la puissance du moteur 1. Sur ces figures 8 - 9 et 10 seul le fluide dévié 16 échange avec la culasse échangeur 2. Ce système utilise les parois fixes 12 ,13 et 8 pour distinguer les débits 16 et 17. On contrôle ainsi la puissance du moteur en contrôlant le débit du fluide de la source chaude. Un autre moyen est d'installer une soupape de mise à l'air libre du cylindre. Le moteur s'arrêtant faute de compression.Finally to control in a simple way the power of the engine 1 the present invention proposes to install a deflection or obstruction to the passage of fluid from the hot source. This deflection can be done using a movable wall 14 installed as shown on the Figures 8 - 9 and 10 which can be moved by a cylinder or an electric or hydraulic motor. The hot fluids 17 from the hot source are totally or partially deflected towards the exchanger head 2 in order to control the power of the engine 1. On these Figures 8 - 9 and 10 only the deflected fluid 16 exchanges with the exchanger cylinder head 2. This system uses the fixed walls 12, 13 and 8 to distinguish the flow rates 16 and 17. The engine power is thus controlled by controlling the flow rate of the fluid from the hot source. Another way is to install a valve for venting the cylinder. The engine stopping for lack of compression.

Claims (10)

  1. Thermal engine (1) operating according to a open or closed cycle, 2 or 4 strokes, using a gaseous working fluid, air or refrigerant or any fluid capable to exchange heat in the operating conditions of the engine, that can reject exhaust heat, by using an external cooling exchanger (19) if it is a closed cycle, to a cold source which may be a fluid or a solid, and, comprising at least one conventional piston (3) or a rotary piston Wankel, at least one inlet valve or at least an inlet port (5) and at least one exhaust valve or at least an exhaust port (6), at least an engine block or cylinder liner body (4) conventional or not, in which moves the piston (3), and at least one heat exchanging cylinder head (2), whose supply of heat from a radiation which may be solar or an heat coming from a hot fluid source located outside of the engine (1) is characterized in that said heat-exchanging cylinder head (2) transfers heat by conduction through a heat exchanger (11) external to the cylinder, whose walls at fin profile are in contact with the hot heat source and through a heat exchanger (9) located in the cylinder, whose walls are in contact with the engine working fluid, heat exchangers (9) and (11) which have walls which are an integral part and are integral with the body of the heat-exchanging cylinder head (2) itself, and that said engine (1) comprises at least one heat insulating gasket (7) installed between the heat-exchanging cylinder head (2) and engine block or cylinder liner body (4), and that can include fixed separating walls (8, 12) and (13) which one of the wall (8) is installed at the level of the heat insulating gasket (7) and it may comprise a further wall deflection of the heat carrier fluid by means of a movable wall (14).
  2. Thermal engine (1) according to claim 1 characterized in that the internal walls (9) of the heat-exchanging cylinder head (2) are fins which shape is adapted to the working fluid (split fin) or exchanger walls micro porous and fully integrated or integrally formed in the heat-exchanging cylinder head (2) itself, and which can form the same piece part, the heat-exchanging cylinder head (2), thereby allowing direct transfer of heat by conduction from the external heat source to the internal engine working fluid located inside the dead volume or located inside the engine block or cylinder liner body (4) while decreasing the levels of mechanical and thermal stresses in the walls (9) and (11), which stresses, near or similar to those encountered in conventional piston engine heads, are a consequence of the pressure and temperature differential between the external heat source fluid and the internal engine working fluid, it is the body of the heat-exchanging cylinder head (2) itself, which is used to conduct heat by conduction and to separate the engine working fluid and the hot heat fluid source.
  3. Thermal engine (1) according to claims 1 and 2 characterized in that the heat insulating gasket 7 installed between the heat-exchanging cylinder head (2) and the engine block or cylinder liner body (4) reduces the heat transfer through the material of engine block or cylinder liner body (4) and thus limits the temperature of inner wall of the engine block or cylinder liner body (4) at a temperature compatible with the lubricant used.
  4. Thermal engine (1) according to claims 1,2 and 3, characterized in that fixed partition walls (8, 12) and (13) separates heat source and cold source so that radiation heat or fluid heat from the heat source does not heat the external walls of the engine block or cylinder liner body (4).
  5. Thermal engine (1) according to claims 1,2, 3.4 and 5, characterized in that the position of the wall (8) installed at the level of the heat insulating gasket (7) may be at a lower level than the level of the piston rings (3) when at top dead center, in order to increase the height of the heat-exchanging engine head (2) and thus increase the heat exchange surfaces of the walls (9) and the exchange surfaces of the walls (11) depending on the level of the temperature of the heat source, in order to increase the supply of heat during the compression and expansion , without increasing the stress in the exchange walls (9) and (11).
  6. Thermal engine (1) according to claims 1,2, 3.4 and 5, characterized in that the compression ratio of the engine (1) is decreased to increase the dead volume in the engine block or cylinder liner body (4) in order to use this dead volume released to increase the heat exchange surfaces of the walls (9) integral part with the body of the heat-exchanging cylinder head (2), thereby increasing technological feasibility.
  7. Thermal engine according to claims 1,2, 3,4,5 and 6, characterized in that the fixed separation walls (8, 12) and (13) and at least the movable wall (14) are installed to control the flow of the external heat source in contact with the walls of the exchanger (11) to regulate the power or the rotation speed of the engine (1).
  8. Thermal engine (1) according to claims 1,2, 3,4,5,6 and 7 with a heat-exchanging cylinder head (2) characterized in that when the fluid is a refrigerant, a cooler (19) is used to exchange with the cold source (20) which is a fluid or a solid.
  9. Thermal engine (1) according to claims 1,2, 3,4,5,6,7 and 8, characterized in that the refrigerant of the engine (1) uses a hydraulic or diphasic pump (21) for circulating refrigerant to the engine (1).
  10. Thermal engine (1) according to claims 1,2, 3, 4, 5, 7, 8 and 9 characterized in that the refrigerant of the heat engine 1 is vaporized in the evaporator 18, which the supply of heat can also be radiation.
EP11744027.1A 2010-06-11 2011-05-30 Heat-exchanging cylinder head Active EP2580458B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1002471A FR2961266B1 (en) 2010-06-11 2010-06-11 ENGINE THERMAL HEAD EXCHANGER
PCT/FR2011/000320 WO2011154622A1 (en) 2010-06-11 2011-05-30 Heat-exchanging cylinder head

Publications (2)

Publication Number Publication Date
EP2580458A1 EP2580458A1 (en) 2013-04-17
EP2580458B1 true EP2580458B1 (en) 2014-10-08

Family

ID=43495046

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11744027.1A Active EP2580458B1 (en) 2010-06-11 2011-05-30 Heat-exchanging cylinder head

Country Status (4)

Country Link
US (1) US20130067906A1 (en)
EP (1) EP2580458B1 (en)
FR (1) FR2961266B1 (en)
WO (1) WO2011154622A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314784A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Internal combustion engine

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO334747B1 (en) * 2012-01-20 2014-05-19 Viking Heat Engines As External heater, method of operation of an external heater, a thermodynamic process for operating an external heater, and the use of an external heater and / or a thermodynamic process in the operation of a cogeneration plant.
ITTO20120732A1 (en) * 2012-08-16 2014-02-17 Aldo Placidi HEAT EXCHANGER FOR AN ENERGY CONVERSION GROUP, AND ENERGY CONVERSION GROUP PROVIDED WITH THIS HEAT EXCHANGER
US11181072B2 (en) * 2019-05-21 2021-11-23 General Electric Company Monolithic combustor bodies
RU2749241C1 (en) * 2020-04-21 2021-06-07 Владимир Викторович Михайлов Engine with external heat supply and method of operation of an engine with external heat supply
JP7100404B1 (en) * 2021-01-12 2022-07-13 丸子警報器株式会社 Rotary heat pumps and air conditioners and automobiles equipped with them
US11988166B2 (en) * 2021-01-12 2024-05-21 Maruko Keihoki Co., Ltd. Rotary heat pump
JP7549382B2 (en) * 2022-12-27 2024-09-11 丸子警報器株式会社 Rotary drive unit and rotary heat pump

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3180078A (en) 1961-04-14 1965-04-27 Liston Joseph Combined internal combustion and hot-air engine
GB1081499A (en) 1966-02-09 1967-08-31 Michael William Saunders Combined internal combustion engine and hot air engine
DE2200842A1 (en) * 1972-01-08 1973-07-12 Fritz Ilg ROTARY LISTON POWER MACHINE WITH EXTERNAL HEAT SOURCE
US4085588A (en) * 1976-04-05 1978-04-25 Ford Motor Company Concentric crossflow recuperator for stirling engine
US4121423A (en) 1977-05-31 1978-10-24 Automotive Propulsion Laboratories, Ltd. Compound internal-combustion hot-gas engines
DE3170664D1 (en) * 1981-01-27 1985-07-04 Treuhand Gmbh Fides Piston engine
US4389844A (en) * 1981-06-11 1983-06-28 Mechanical Technology Incorporated Two stage stirling engine
US4722188A (en) * 1985-10-22 1988-02-02 Otters John L Refractory insulation of hot end in stirling type thermal machines
US5644917A (en) * 1996-05-13 1997-07-08 Mcwaters; Thomas David Kinematic stirling engine
US6381958B1 (en) * 1997-07-15 2002-05-07 New Power Concepts Llc Stirling engine thermal system improvements
GB9812238D0 (en) * 1998-06-08 1998-08-05 Schack Engineering Gb Limited Heat exchanger
US6279318B1 (en) * 1999-12-17 2001-08-28 Fantom Technologies Inc. Heat exchanger for a heat engine
US6293101B1 (en) * 2000-02-11 2001-09-25 Fantom Technologies Inc. Heat exchanger in the burner cup of a heat engine
DE10143342A1 (en) 2001-09-04 2003-04-03 Herfried Wichern IC motor has a hot air motor incorporated in the exhaust system, to be powered by the hot exhaust gas to give added power output to the drive transmission
GB0123881D0 (en) * 2001-10-04 2001-11-28 Bg Intellectual Pty Ltd A stirling engine assembly
GB0328292D0 (en) * 2003-12-05 2004-01-07 Microgen Energy Ltd A stirling engine assembly
FR2905728B1 (en) 2006-09-11 2012-11-16 Frederic Thevenod HYBRID ENGINE WITH EXHAUST HEAT RECOVERY
US7937943B2 (en) * 2006-12-22 2011-05-10 Yiding Cao Heat engines
US7784300B2 (en) * 2006-12-22 2010-08-31 Yiding Cao Refrigerator
US8341951B2 (en) * 2009-11-04 2013-01-01 GM Global Technology Operations LLC Vehicle exhaust heat recovery with multiple coolant heating modes and method of managing exhaust heat recovery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220314784A1 (en) * 2021-03-31 2022-10-06 Honda Motor Co., Ltd. Internal combustion engine
US11731502B2 (en) * 2021-03-31 2023-08-22 Honda Motor Co., Ltd. Internal combustion engine

Also Published As

Publication number Publication date
FR2961266B1 (en) 2015-07-17
FR2961266A1 (en) 2011-12-16
WO2011154622A4 (en) 2012-02-02
EP2580458A1 (en) 2013-04-17
US20130067906A1 (en) 2013-03-21
WO2011154622A1 (en) 2011-12-15

Similar Documents

Publication Publication Date Title
EP2580458B1 (en) Heat-exchanging cylinder head
CN101463775B (en) Stirling reversible heat engine
US8590302B2 (en) Thermodynamic cycle and heat engine
NO314643B1 (en) heat Machine
FR3042857B1 (en) THERMODYNAMIC BOILER WITH THERMAL COMPRESSOR
EP3099917B1 (en) A compressor train with a stirling engine
US20100186405A1 (en) Heat engine and method of operation
WO2005103453A1 (en) System for recovering heat energy from a heat engine vehicle
US3009315A (en) Heat engines operating on the stirling or ericsson heat cycles
JP5525371B2 (en) External combustion type closed cycle heat engine
WO2021120592A1 (en) Conditioning-type liquid turbine and method of operation thereof
US10982543B2 (en) Near-adiabatic engine
JP4438070B2 (en) Energy conversion system
CN104533604B (en) A kind of engine exhaust heat recovery system based on Piston Expander
EP3458695B1 (en) Reversible system for dissipating thermal power generated in a gas-turbine engine
RU2477375C2 (en) Method of piston engine cycling and piston engine
FR2851796A1 (en) HYDRAULIC PUMP AND HYDRAULIC SYSTEM COMPRISING SUCH A PUMP.
FR2966203A1 (en) Stirling type thermodynamic device for autonomous heat pump, has chambers arranged on working liquid circuits, and shifter connected to lower parts of chambers so that each chamber is entirely filled with fluid when shifter is put in motion
EP4100637A1 (en) Thermodynamic engine
TN2022000105A1 (en) STIRLING ENGINE WITH STAGED COMPRESSION AND IMPROVED PERFORMANCE
RU44352U1 (en) LUBRICANT SYSTEM HYDRAULIC BATTERY
EP0244435A1 (en) Multiple energy generator with integrated thermal cycle.
RU73400U1 (en) PISTON ENGINE-POWER INSTALLATION
FR2973104A1 (en) Cold gas producing device for air-conditioning system used to refresh air in room of home, has hydraulic pump whose driving chamber is in fluid communication with enclosure delimited by membrane that expands to reduce volume of enclosure
WO2011128520A1 (en) Fuelless combustion engine suited notably to the automotive and nuclear fields

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20130109

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20131104

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140218

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

INTG Intention to grant announced

Effective date: 20140520

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 690774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141015

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011010454

Country of ref document: DE

Effective date: 20141120

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20141008

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 690774

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141008

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150209

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150208

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150108

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150109

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011010454

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

26N No opposition filed

Effective date: 20150709

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150530

REG Reference to a national code

Ref country code: CH

Ref legal event code: AECN

Free format text: LE BREVET A ETE REACTIVE SELON LA DEMANDE DE POURSUITE DE LA PROCEDURE DU 10.02.2016

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150530

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: CH

Effective date: 20160212

Ref country code: LI

Effective date: 20160212

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110530

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20141008

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190715

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190723

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190717

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602011010454

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240518

Year of fee payment: 14