EP2580458B1 - Heat-exchanging cylinder head - Google Patents
Heat-exchanging cylinder head Download PDFInfo
- Publication number
- EP2580458B1 EP2580458B1 EP11744027.1A EP11744027A EP2580458B1 EP 2580458 B1 EP2580458 B1 EP 2580458B1 EP 11744027 A EP11744027 A EP 11744027A EP 2580458 B1 EP2580458 B1 EP 2580458B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- heat
- engine
- walls
- fluid
- cylinder head
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012530 fluid Substances 0.000 claims description 54
- 230000006835 compression Effects 0.000 claims description 19
- 238000007906 compression Methods 0.000 claims description 19
- 230000005855 radiation Effects 0.000 claims description 10
- 239000003507 refrigerant Substances 0.000 claims description 9
- 239000000463 material Substances 0.000 claims description 5
- 238000001816 cooling Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 claims description 3
- 238000005192 partition Methods 0.000 claims description 2
- 230000003247 decreasing effect Effects 0.000 claims 2
- 230000035882 stress Effects 0.000 claims 2
- 239000003570 air Substances 0.000 claims 1
- 239000000314 lubricant Substances 0.000 claims 1
- 238000000926 separation method Methods 0.000 claims 1
- 230000008646 thermal stress Effects 0.000 claims 1
- 240000008042 Zea mays Species 0.000 description 4
- 238000000605 extraction Methods 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000009434 installation Methods 0.000 description 2
- 230000001050 lubricating effect Effects 0.000 description 2
- 241001644893 Entandrophragma utile Species 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241001080024 Telles Species 0.000 description 1
- 241000959851 Thermales Species 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000002826 coolant Substances 0.000 description 1
- 238000005461 lubrication Methods 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/04—Hot gas positive-displacement engine plants of closed-cycle type
- F02G1/043—Hot gas positive-displacement engine plants of closed-cycle type the engine being operated by expansion and contraction of a mass of working gas which is heated and cooled in one of a plurality of constantly communicating expansible chambers, e.g. Stirling cycle type engines
- F02G1/053—Component parts or details
- F02G1/055—Heaters or coolers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G1/00—Hot gas positive-displacement engine plants
- F02G1/02—Hot gas positive-displacement engine plants of open-cycle type
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02G—HOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
- F02G2254/00—Heat inputs
Definitions
- This invention relates to a heat engine (piston, or rotary type Wankel) whose heat energy input is made from an external heat source which can be a hot fluid or radiation. This is the application of cycles similar to the Stirling or Ericsson cycles.
- the engine fluid is compressible under the operating conditions of the engine and rejects the heat of the exhaust to a cold source of any nature whatsoever (fluid or solid ) with or without the aid of an external cooling exchanger depending on whether it is an open or closed cycle.
- the working fluid used may be a refrigerant or a gas such as air, or any fluid that may be able to exchange heat under the operating conditions of the engine.
- Cycle studies and the diagram of the figure 1 show that the influence of the volumetric compression ratio of the engine on the cycle efficiency or on the extractable mechanical energy is even lower than the temperature ratio T4 / TB (hot source / cold source) is low. There is therefore an optimum compressive compression ratio for each hot source. In other words, if the supply of heat from the hot source is free, it is possible to extract useful work from a cycle by modifying the design of the engine in order to be able to capture and transfer heat from this source. hot to the engine fluid through a cylinder head exchanger.
- This invention proposes to reduce the compression ratio of the engine to a sufficiently low level to allow on the one hand to produce useful work and on the other hand to allow to place a cylinder head 2 with an exchanger internal 9 directly placed in the dead volume released in the cylinder when the piston is dead center up.
- the motor cycle is conventional 2-stroke or 4- stroke.
- the supply of heat to the working fluid is done continuously through the exchanger head 2 during compression and relaxation.
- the initial supply of heat being free, we first seek to increase the exchange surface of the exchanger head 2 as shown on the part 9 of figures 4 and 5 while dimensioning a dead volume that is consistent with the volumetric compression ratio of the engine chosen.
- the internal heat exchanger 9 situated inside the "dead volume" of the cylinder may consist of fins integrally or integrally attached to the exchanger head 2 of the engine 1.
- Other types of exchangers may be used, such as the microporous exchangers.
- the external heat exchanger 11 bathed by the fluid of the hot source (by exchange with a fluid or by radiation) is located outside "dead volume" of the cylinder.
- the exchange of heat between the two exchangers can be done by conduction through the material of the part 10 or with the aid of an exchange fluid between the two exchangers. It has a profile of fins or any other form to exchange heat with this hot source. Profiles and form interior exchange fins 9 and 11 external of the cylinder head exchanger 2 will be adapted to the type of compressible working fluid and the type of fluid to the hot source (liquid or steam or the exhaust gas or radiation)
- the 1 to 2 or 4 stroke heat engine may have conventional valves or lights commonly found in current engines to allow the intake 5 and exhaust 6 of the engine fluid.
- This engine 1 can use conventional lubrication by bubbling or under hydraulic pressure.
- an insulating heat seal 7 is disposed between the exchanger head and the liner body of the cylinder or engine block 4 according to the type of engine to reduce the heat transfer from the cylinder head to this body.
- the installation of this seal 7 will be adapted to the type of use depending on whether or not it is necessary to avoid a transfer of calories to the engine block 4, for example to avoid too high wall temperatures incompatible with the characteristics of the engine.
- lubricating fluid used eg oil
- refrigerant one may want on the contrary maintain a heat input to the walls to prevent too rapid condensation of the fluid at the end of relaxation. In this case, the seal 7 will not be installed and a raised wall exchanger head 2 will be used as shown. figure 5 .
- the engine block 4 can be cooled by air or by fluid or not be cooled if the temperature level of the inner wall is compatible with the level of temperature. acceptable temperature of the lubricating fluid (which may be oil) .
- a partition wall 8 may be installed to separate the hot source from the cold source or an intermediate cooling zone. of the engine if the driving fluid is distinct from the coolant as shown on the figure 11 in the context of application of a refrigerant fluid. In this case it is possible, for example, to bury in the soil 20 or to place in a cold fluid (river 20 ) a cooler 19 which is immersed in the cold source 20.
- a hydraulic or diphasic pump 21 vapor liquid
- may be used to feed the evaporator 18 which may be radiation also from which will be transferred the steam from the engine fluid to the engine 1 as indicated on the figure 11 .
- the present invention proposes to install a deflection or obstruction to the passage of fluid from the hot source.
- This deflection can be done using a movable wall 14 installed as shown on the Figures 8 - 9 and 10 which can be moved by a cylinder or an electric or hydraulic motor.
- the hot fluids 17 from the hot source are totally or partially deflected towards the exchanger head 2 in order to control the power of the engine 1.
- On these Figures 8 - 9 and 10 only the deflected fluid 16 exchanges with the exchanger cylinder head 2.
- This system uses the fixed walls 12, 13 and 8 to distinguish the flow rates 16 and 17.
- the engine power is thus controlled by controlling the flow rate of the fluid from the hot source.
- Another way is to install a valve for venting the cylinder. The engine stopping for lack of compression.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cylinder Crankcases Of Internal Combustion Engines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Description
Cette invention concerne un moteur thermique (à piston, ou rotatif type Wankel) dont l'apport d'énergie calorifique s'effectue à partir d'une source chaude externe qui peut être un fluide chaud ou un rayonnement. Il s'agit de l'application des cycles similaires aux cycles de Stirling ou d'Ericsson.This invention relates to a heat engine (piston, or rotary type Wankel) whose heat energy input is made from an external heat source which can be a hot fluid or radiation. This is the application of cycles similar to the Stirling or Ericsson cycles.
Pour produire de l'énergie mécanique ce moteur utilise un cycle ouvert ou fermé.Le fluide moteur est compressible dans les conditions de fonctionnement du moteur et rejette la chaleur de l'échappement à une source froide de quelque nature que ce soit (fluide ou solide) avec ou sans l'aide d'un échangeur de refroidissement externe selon qu'il s'agit d'un cycle ouvert ou fermé. Le fluide moteur utilisé peut être un fluide frigorigène ou un gaz comme l'air, ou tout fluide susceptible de pouvoir échanger de la chaleur dans les conditions de fonctionnement du moteur.To produce mechanical energy this engine uses an open or closed cycle. The engine fluid is compressible under the operating conditions of the engine and rejects the heat of the exhaust to a cold source of any nature whatsoever (fluid or solid ) with or without the aid of an external cooling exchanger depending on whether it is an open or closed cycle. The working fluid used may be a refrigerant or a gas such as air, or any fluid that may be able to exchange heat under the operating conditions of the engine.
Ce moteur se caractérise en ce qu'il inclut une culasse échangeur qui, transfère au fluide interne du moteur par conduction au travers du matériau de la culasse elle-même l'énergie calorifique prélevée à la source chaude d'un fluide externe au moteur (liquide ou gazeux) ou encore par apport extérieur de chaleur par rayonnement. N'importe quelle forme de récupération de chaleur d'une source chaude peut être utilisée:
- À partir d'un concentrateur de rayons solaires,
- De la récupération de chaleur des gaz d'échappement de moteur à piston ou d'un cycle de turbine à gaz
- À partir d'une source chaude thermale
- De la récupération de chaleur à la sortie d'une turbine à vapeur.
- Toute source chaude capable d'échanger de la chaleur avec la culasse échangeur. Le fonctionnement de ce moteur n'est pas limité au domaine aérobie, mais il peut utiliser des fluides frigorigènes comme fluide moteur en particulier lorsque la température de la source chaude est faible.
- From a solar concentrator,
- Heat recovery from piston engine exhaust or a gas turbine cycle
- From a hot spring
- From heat recovery to the output of a steam turbine.
- Any hot source capable of exchanging heat with the exchanger breech. The operation of this engine is not limited to the aerobic domain, but it can use refrigerants as the driving fluid especially when the temperature of the hot source is low.
Les applications possibles concernent les domaines terrestres, maritimes, aériens ou spatiaux.Possible applications are in the terrestrial, maritime, air or space domains.
L'application des cycles de Stirling, Rankine ou Hirn à un moteur thermique n'est pas nouvelle et de nombreux brevets (
Cependant la plupart de ces brevets posaient les problèmes suivants :
- Soit ils utilisaient un échangeur de chaleur indépendant situé à l'extérieur et non solidaire de la chambre du moteur
DE 22 00 842 A1 (ILG FRITZ) 12 Juillet 1973 - ∘ Et le volume important de cet échangeur (équivalent à 500 ou 1000 fois le volume mort du cylindre) nécessitait d'abord une première mise en pression de cet échangeur d'où la nécessité de dépenser une énergie mécanique initiale importante incompatible avec les systèmes de démarrage conventionnel (capacité des démarreurs et taille des batteries).
- ∘ De plus, un débit important d'air était transvasé au travers de cet échangeur extérieur alors que seule une petite quantité de cet air était utile pour produire de l'énergie mécanique dans le cylindre. Il était donc nécessaire de prélever une énergie non négligeable sur le cycle moteur uniquement pour compenser le travail de transvasement de cet air non producteur d'énergie mécanique.
- ∘ Le transfert d'énergie calorifique prélevée s'effectuait le piston au point mort haut au cours de durées extrêmement faibles (quelques millisecondes selon le régime moteur). Ce transfert s'effectuait en transvasant cet air chaud de l'échangeur extérieur vers le volume mort du cylindre. Ceci nécessitait d'une part l'ajout de soupapes spécifiques supplémentaires (en plus de celles d'admission et d'échappement) de large dimension pour permettre le transvasement de la masse d'air chauffée mais d'autre part les ouvertures et les fermetures de ces soupapes devaient s'effectuer à une pression élevée car proche du point mort haut du piston. Ces hautes pressions et les tubes utilisés pour le transfert de masse de gaz généraient de nombreuses fuites.
- ∘ Enfin la taille de l'échangeur était incompatible avec des moteurs à forte pression du fait des contraintes engendrées par le différentiel de pression intérieur extérieur de cet échangeur.Les niveaux de contraintes thermique et mécanique étaient proches de celles rencontrées dans les culasses de moteur mais avec des volumes et surfaces d'échangeur bien plus importantes.
- Soit ils utilisaient un échangeur de chaleur situé à l'intérieur du moteur (brevets
GB1081499 US 4 514 979 A (MOHR ERNST) 7 Mai 1985WO 2009/066178 A2 (CAO YDING US) 28 Mai 2009 - ∘ Soit à des dimensions de tubes trop petites créant ainsi une perte de charge et une contre-pression à l'échappement des autres cylindres qui obèrent le taux de détente de ces cylindres moteurs conventionnels.
- ∘ Soit à des tubes convenablement dimensionnés et le volume mort de la chambre devenait alors trop petit pour placer ces tubes ou conduisait un rapport volumétrique de compression trop élevé avec le niveau de température de la source chaude.
- Either they used an independent heat exchanger located outside and not integral with the engine room
DE 22 00 842 A1 (ILG FRITZ) July 12, 1973 - ∘ And the large volume of this exchanger (equivalent to 500 or 1000 times the dead volume of the cylinder) first required a first pressurization of this exchanger, hence the need to spend a significant initial mechanical energy incompatible with the systems of conventional start (starter capacity and battery size).
- ∘ In addition, a large flow of air was transferred through this external exchanger while only a small amount of this air was useful to produce mechanical energy in the cylinder. It was therefore necessary to take a significant amount of energy from the engine cycle only to compensate for the transfer work of this non-mechanical energy producing air.
- ∘ The transfer of heat energy taken was carried out at high dead center during extremely short periods of time (a few milliseconds depending on the engine speed). This transfer was carried out by transferring this hot air from the external exchanger to the dead volume of the cylinder. This required on the one hand the addition of additional specific valves (in addition to those of admission and exhaust) of large size to allow the transfer of the heated air mass but on the other hand the openings and closures these valves had to be carried out at a high pressure because close to the top dead center of the piston. These high pressures and the tubes used for gas mass transfer generated many leaks.
- ∘ Finally, the size of the exchanger was incompatible with high pressure engines because of the constraints generated by the external pressure differential of this exchanger. The thermal and mechanical stress levels were close to those found in the engine cylinder heads but with much larger volumes and exchanger surfaces.
- Either they used a heat exchanger located inside the engine (patents
GB1081499 US 4,514,979 A (MOHR ERNST) May 7, 1985 WO 2009/066178 A2 (US CAO YDING) May 28, 2009 - ∘ That is to say, the dimensions of the tubes are too small, thus creating a pressure drop and a counter-pressure at the exhaust of the other cylinders which obey the expansion ratio of these conventional engine cylinders.
- ∘ Either properly sized tubes and the dead volume of the chamber then became too small to place these tubes or led a volumetric compression ratio too high with the temperature level of the hot source.
C'est le lieu précis où s'effectue l'échange de chaleur entre le fluide de la source chaude et le fluide moteur qui caractérise l'invention. Le mot « échange » étant ici exprimé comme le lieu précis ou le flux de chaleur passe par conduction à travers le matériau d'un côté d'une paroi (baigné par la source chaude) vers l'autre côté de cette même paroi (baigné par le fluide moteur). Comme le montre la
L'invention proposée ici permet de résoudre ces problèmes
- Grâce d'une part à la
culasse échangeur 2 qui distingue l'échangeur externe 11 en contact avec la source chaude située à l'extérieur du « volume mort mais solidaire de laculasse 2 et de la chambre du moteur et l'échangeur interne 9 en contact avec le fluide moteur situé à l'intérieur du « volume mort » de cette chambre. Les 2 échangeurs dechaleur 11 et 9 peuvent être l'assemblage de plusieurs pièces telles que montré sur laFigure 8 . Lapièce 10 est utilisée comme conducteur de chaleur entre lapièce 11 et lapièce 9. Les 2échangeurs 9 et 11 peuvent également être une même pièce (les 9,10 et 11 forment alors une seule pièce la culasse échangeur 2). Dans la suite du texte, nous appellerons cet ensemble de pièces 9,10 et 11 la culasse échangeur 2 tel que montré sur lapièces figure 7 .Cette conformation permet d'obtenir des contraintes thermiques et mécaniques dans la culasse échangeur 2 similaire à celles rencontrées dans les culasses conventionnelles des autres moteurs. Elle permet également de limiter la masse d'air transvasée au cours de l'échange de chaleur au strict minimum. - Et d'autre part, en optimisant le rapport volumétrique de compression du moteur avec le niveau de température de la source chaude. L'énergie récupérée ou échangée à la source chaude étant gratuite, on réduit ce rapport volumétrique de compression à un niveau suffisamment bas pour libérer un volume mort assez grand lorsque le piston est point mort haut pour y placer l'échangeur de chaleur
interne 9. Le rapport volumétrique de compression du moteur, qui ne sera pas au point du meilleur rendement, sera quand même suffisamment élevé pour extraire une énergie mécanique significative. Il s'agit d'accroître la faisabilité technologique au détriment d'une perte de rendement acceptable compte tenu de la gratuité de l'apport de la source chaude.
- Thanks firstly to the
exchanger head 2 which distinguishes theexternal exchanger 11 in contact with the hot source located outside the "dead volume but integral with thecylinder head 2 and the engine chamber and theinternal exchanger 9 in contact with the working fluid located inside the "dead volume" of this chamber. The two 11 and 9 can be the assembly of several pieces as shown on theheat exchangers Figure 8 . Thepart 10 is used as a heat conductor between thepart 11 and thepart 9. The 2 9 and 11 can also be a single piece (theexchangers 9,10 and 11 then form a single piece the exchanger head 2 ). In what follows, we will call this set of 9.10 parts and 11 theparts head exchanger 2 as shown infigure 7 This conformation makes it possible to obtain thermal and mechanical stresses in theexchanger head 2 similar to those encountered in the conventional heads of the other engines. It also limits the amount of air transferred during the heat exchange to a minimum. - And secondly, by optimizing the volumetric compression ratio of the engine with the temperature level of the hot source. As the energy recovered or exchanged at the hot source is free, this volumetric compression ratio is reduced to a level low enough to release a large dead volume when the piston is top dead center to place the
internal heat exchanger 9. The volumetric compression ratio of the engine, which will not be point of the best yield, will still be high enough to extract significant mechanical energy. This is to increase the technological feasibility to the detriment of an acceptable yield loss given the free supply of the hot spring.
Les études de cycles et le diagramme de la
Des premiers calculs d'échange, paroi air côté cylindre (loi de Woschni) montrent qu'il est possible de dimensionner un échangeur de chaleur 9 interne au cylindre dont la surface et le volume d'échange aux parois sont cohérents avec d'une part le volume mort disponible (piston point mort haut) et d'autre part le taux de compression du cycle moteur.First exchange calculations, cylinder side air wall (Woschni law) show that it is possible to size a
Le cycle moteur est conventionnel à 2 temps ou 4 temps. L'apport de chaleur au fluide moteur se fait continûment au travers de la culasse échangeur 2 au cours de la compression et de la détente.L'apport initial de chaleur étant gratuit, nous recherchons d'abord à augmenter la surface d'échange de la culasse échangeur 2 tel que montré sur la pièce 9 des
Bien que cette invention puisse s'appliquer à tout type de moteur à piston, ou rotatif type Wankel et qu'elle puisse trouver diverses type d'application selon la nature de la source chaude disponible (rayonnement ou échanges gazeux) nous nous limiterons dans ce qui suit à la description de moteur à piston conventionnel afin de faciliter la compréhension.Although this invention can be applied to any type of piston engine, or Wankel-type rotary and that it can find various types of application depending on the nature of the available hot source (radiation or gas exchange) we will limit ourselves in this which follows the conventional piston engine description to facilitate understanding.
-
La
figure 1 est un diagramme illustrant l'énergie maximale extractible fonction du rapport volumétrique de compression du moteur pour 3 valeurs de rapport T4/To de température source chaude (T4) sur température source froide (To) données comme exemple.Thefigure 1 is a diagram illustrating the maximum extractable energy according to the volumetric compression ratio of the engine for 3 T4 / To ratio values of hot source temperature (T4) on cold source temperature (To) given as an example. -
La
figure 2 est une vue de ¾ d'un exemple de moteur à piston conventionnel 1 équipé d'une culasse échangeur 2. Thefigure 2 is a view of ¾ of an example of aconventional piston engine 1 equipped with acylinder head exchanger 2. -
La
figure 3 est une vue de coupe d'un moteur 2 temps équipé d'une culasse échangeur 2. Thefigure 3 is a sectional view of a 2-stroke engine equipped with anexchanger head 2. -
La
figure 4 est une vue de coupe d'un moteur 4 temps équipé d'une culasse échangeur 2 et de soupapes latérales 5 et 6. Thefigure 4 is a sectional view of a 4-stroke engine equipped with anexchanger head 2 and 5 and 6.side valves -
La
figure 5 est une vue de coupe d'un moteur 2 temps équipé d'une culasse échangeur 2 dont la surface d'échange a été augmentée.Thefigure 5 is a sectional view of a 2-stroke engine equipped with anexchanger head 2 whose exchange surface has been increased. -
La
figure 6 est une vue de coupe d'un moteur rotatif (type Wankel) équipé d'une culasse échangeur 2 adaptée à ce type de moteur.Thefigure 6 is a sectional view of a rotary engine (Wankel type) equipped with anexchanger head 2 adapted to this type of engine. -
La
figure 7 est une vue de coupe d'une culasse échangeur 2 qui peut - être monobloc mais ici représenté composé de 3 éléments 9 -10 et 11 Thefigure 7 is a sectional view of acylinder head exchanger 2 which may be monoblock but here represented composed of 3 elements 9 -10 and 11 -
La
figure 8 est une vue de coupe selon BB du système de régulation du moteur 1 effectué par obstruction dans cet exemple du passage des fluides chauds en provenance de la source chaudeThefigure 8 is a sectional view along BB of the control system of theengine 1 made by obstruction in this example of the passage of hot fluids from the hot source -
La
figure 9 est une vue de dessus selon DD du système présenté à lafigure 8 .Thefigure 9 is a top view according to DD of the system presented to thefigure 8 . -
La
figure 10 est une vue de coupe transversale selon AA ou CC du système présenté à lafigure 8 .Thefigure 10 is a cross-sectional view along AA or CC of the system presented atfigure 8 . -
La
figure 11 est une vue schématique d'une installation utilisant le rayonnement solaire 22 comme source chaude et la position du refroidisseur 19 situé dans l'écoulement d'une rivière 20 ou enterré dans le sol 20 comme source froide à titre d'exemple.Thefigure 11 is a schematic view of an installation using thesolar radiation 22 as a hot source and the position of the cooler 19 located in the flow of ariver 20 or buried in theground 20 as a cold source by way of example. -
La
figure 12 montre les différents type A,B,C de conception échangeur possible.Thefigure 12 shows the different type A, B, C possible exchanger design.
L'échangeur interne 9 situé à l'intérieur du « volume mort » du cylindre peut être constitué d'ailettes faisant partie intégrante ou solidairement attachée à la culasse échangeur 2 du moteur 1. D'autres types d'échangeurs peuvent être utilisés comme les échangeurs microporeux.The
L'échangeur de chaleur externe 11 baigné par le fluide de la source chaude (par échange avec un fluide ou par rayonnement) est situé à l'extérieur « volume mort » du cylindre. L'échange de chaleur entre les 2 échangeurs (externe 11 et interne 9) peut se faire par conduction à travers le matériau de la pièce 10 ou à l'aide d'un fluide d'échange entre les 2 échangeurs. Elle présente un profil d'ailettes ou tout autre forme pour échanger la chaleur avec cette source chaude. Les profils et forme d'ailettes d'échanges intérieurs 9 et extérieurs 11 de la culasse échangeur 2 seront adaptés au type de fluide moteur compressible et au type de fluide de la source chaude (liquide ou vapeur d'eau ou gaz d'échappement ou rayonnement)The
Le moteur thermique 1 à 2 ou 4 temps peut disposer de soupapes conventionnelles ou des lumières couramment rencontrées dans les moteurs actuels pour permettre l'admission 5 et l'échappement 6 du fluide moteur. Ce moteur 1 peut utiliser une lubrification conventionnelles par barbotage ou sous pression hydraulique.The 1 to 2 or 4 stroke heat engine may have conventional valves or lights commonly found in current engines to allow the
Pour séparer la zone de la source chaude de la source froide un joint thermique isolant 7 est disposé entre la culasse échangeur et le corps chemise du cylindre ou bloc-moteur 4 selon le type de moteur afin de réduire le transfert de chaleur de la culasse vers ce corps. L'installation de ce joint 7 sera adaptée au type d'utilisation selon qu'il est nécessaire ou non d'éviter un transfert de calorie vers le bloc-moteur 4 par exemple pour éviter des températures de paroi trop élevées incompatibles avec les caractéristiques du fluide lubrifiant utilisé (exemple huile). Dans certaines conditions d'utilisation de fluide frigorigène, on peut vouloir au contraire conserver un apport de chaleur aux parois pour prévenir une condensation trop rapide du fluide en fin de détente. Dans ce cas, le joint 7 ne sera pas installé et une culasse échangeur 2 à paroi augmentée sera utilisée telle que montré
Pour améliorer le remplissage et la vidange du cylindre d'un moteur 2 temps équipé de lumières d'admission 5 et d'échappement 6 conventionnelles il est possible d'ajouter 1 ou 2 soupapes latérales ou monté en tête et intégré dans le dessin de la culasse échangeur 2 comme montré
Selon le niveau de température de la source chaude et en fonction du niveau thermique, le bloc-moteur 4 pourra être refroidi par air ou par fluide ou ne pas être refroidi si le niveau de la température de la paroi interne est compatible avec le niveau de température acceptable du fluide lubrifiant (qui peut être de l'huile).Selon le niveau de température de la source chaude une paroi de séparation 8 pourra être installée afin de séparer la source chaude de la source froide ou d'une zone intermédiaire de refroidissement du moteur si le fluide moteur est distinct du fluide de refroidissement comme montré sur la
Enfin pour contrôler de manière simple la puissance du moteur 1 la présente invention propose d'installer une déviation ou obstruction au passage du fluide de la source chaude. Cette déviation pouvant se faire à l'aide d'une paroi mobile 14 installée comme montré sur les
Claims (10)
- Thermal engine (1) operating according to a open or closed cycle, 2 or 4 strokes, using a gaseous working fluid, air or refrigerant or any fluid capable to exchange heat in the operating conditions of the engine, that can reject exhaust heat, by using an external cooling exchanger (19) if it is a closed cycle, to a cold source which may be a fluid or a solid, and, comprising at least one conventional piston (3) or a rotary piston Wankel, at least one inlet valve or at least an inlet port (5) and at least one exhaust valve or at least an exhaust port (6), at least an engine block or cylinder liner body (4) conventional or not, in which moves the piston (3), and at least one heat exchanging cylinder head (2), whose supply of heat from a radiation which may be solar or an heat coming from a hot fluid source located outside of the engine (1) is characterized in that said heat-exchanging cylinder head (2) transfers heat by conduction through a heat exchanger (11) external to the cylinder, whose walls at fin profile are in contact with the hot heat source and through a heat exchanger (9) located in the cylinder, whose walls are in contact with the engine working fluid, heat exchangers (9) and (11) which have walls which are an integral part and are integral with the body of the heat-exchanging cylinder head (2) itself, and that said engine (1) comprises at least one heat insulating gasket (7) installed between the heat-exchanging cylinder head (2) and engine block or cylinder liner body (4), and that can include fixed separating walls (8, 12) and (13) which one of the wall (8) is installed at the level of the heat insulating gasket (7) and it may comprise a further wall deflection of the heat carrier fluid by means of a movable wall (14).
- Thermal engine (1) according to claim 1 characterized in that the internal walls (9) of the heat-exchanging cylinder head (2) are fins which shape is adapted to the working fluid (split fin) or exchanger walls micro porous and fully integrated or integrally formed in the heat-exchanging cylinder head (2) itself, and which can form the same piece part, the heat-exchanging cylinder head (2), thereby allowing direct transfer of heat by conduction from the external heat source to the internal engine working fluid located inside the dead volume or located inside the engine block or cylinder liner body (4) while decreasing the levels of mechanical and thermal stresses in the walls (9) and (11), which stresses, near or similar to those encountered in conventional piston engine heads, are a consequence of the pressure and temperature differential between the external heat source fluid and the internal engine working fluid, it is the body of the heat-exchanging cylinder head (2) itself, which is used to conduct heat by conduction and to separate the engine working fluid and the hot heat fluid source.
- Thermal engine (1) according to claims 1 and 2 characterized in that the heat insulating gasket 7 installed between the heat-exchanging cylinder head (2) and the engine block or cylinder liner body (4) reduces the heat transfer through the material of engine block or cylinder liner body (4) and thus limits the temperature of inner wall of the engine block or cylinder liner body (4) at a temperature compatible with the lubricant used.
- Thermal engine (1) according to claims 1,2 and 3, characterized in that fixed partition walls (8, 12) and (13) separates heat source and cold source so that radiation heat or fluid heat from the heat source does not heat the external walls of the engine block or cylinder liner body (4).
- Thermal engine (1) according to claims 1,2, 3.4 and 5, characterized in that the position of the wall (8) installed at the level of the heat insulating gasket (7) may be at a lower level than the level of the piston rings (3) when at top dead center, in order to increase the height of the heat-exchanging engine head (2) and thus increase the heat exchange surfaces of the walls (9) and the exchange surfaces of the walls (11) depending on the level of the temperature of the heat source, in order to increase the supply of heat during the compression and expansion , without increasing the stress in the exchange walls (9) and (11).
- Thermal engine (1) according to claims 1,2, 3.4 and 5, characterized in that the compression ratio of the engine (1) is decreased to increase the dead volume in the engine block or cylinder liner body (4) in order to use this dead volume released to increase the heat exchange surfaces of the walls (9) integral part with the body of the heat-exchanging cylinder head (2), thereby increasing technological feasibility.
- Thermal engine according to claims 1,2, 3,4,5 and 6, characterized in that the fixed separation walls (8, 12) and (13) and at least the movable wall (14) are installed to control the flow of the external heat source in contact with the walls of the exchanger (11) to regulate the power or the rotation speed of the engine (1).
- Thermal engine (1) according to claims 1,2, 3,4,5,6 and 7 with a heat-exchanging cylinder head (2) characterized in that when the fluid is a refrigerant, a cooler (19) is used to exchange with the cold source (20) which is a fluid or a solid.
- Thermal engine (1) according to claims 1,2, 3,4,5,6,7 and 8, characterized in that the refrigerant of the engine (1) uses a hydraulic or diphasic pump (21) for circulating refrigerant to the engine (1).
- Thermal engine (1) according to claims 1,2, 3, 4, 5, 7, 8 and 9 characterized in that the refrigerant of the heat engine 1 is vaporized in the evaporator 18, which the supply of heat can also be radiation.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR1002471A FR2961266B1 (en) | 2010-06-11 | 2010-06-11 | ENGINE THERMAL HEAD EXCHANGER |
PCT/FR2011/000320 WO2011154622A1 (en) | 2010-06-11 | 2011-05-30 | Heat-exchanging cylinder head |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2580458A1 EP2580458A1 (en) | 2013-04-17 |
EP2580458B1 true EP2580458B1 (en) | 2014-10-08 |
Family
ID=43495046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP11744027.1A Active EP2580458B1 (en) | 2010-06-11 | 2011-05-30 | Heat-exchanging cylinder head |
Country Status (4)
Country | Link |
---|---|
US (1) | US20130067906A1 (en) |
EP (1) | EP2580458B1 (en) |
FR (1) | FR2961266B1 (en) |
WO (1) | WO2011154622A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220314784A1 (en) * | 2021-03-31 | 2022-10-06 | Honda Motor Co., Ltd. | Internal combustion engine |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NO334747B1 (en) * | 2012-01-20 | 2014-05-19 | Viking Heat Engines As | External heater, method of operation of an external heater, a thermodynamic process for operating an external heater, and the use of an external heater and / or a thermodynamic process in the operation of a cogeneration plant. |
ITTO20120732A1 (en) * | 2012-08-16 | 2014-02-17 | Aldo Placidi | HEAT EXCHANGER FOR AN ENERGY CONVERSION GROUP, AND ENERGY CONVERSION GROUP PROVIDED WITH THIS HEAT EXCHANGER |
US11181072B2 (en) * | 2019-05-21 | 2021-11-23 | General Electric Company | Monolithic combustor bodies |
RU2749241C1 (en) * | 2020-04-21 | 2021-06-07 | Владимир Викторович Михайлов | Engine with external heat supply and method of operation of an engine with external heat supply |
JP7100404B1 (en) * | 2021-01-12 | 2022-07-13 | 丸子警報器株式会社 | Rotary heat pumps and air conditioners and automobiles equipped with them |
US11988166B2 (en) * | 2021-01-12 | 2024-05-21 | Maruko Keihoki Co., Ltd. | Rotary heat pump |
JP7549382B2 (en) * | 2022-12-27 | 2024-09-11 | 丸子警報器株式会社 | Rotary drive unit and rotary heat pump |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3180078A (en) | 1961-04-14 | 1965-04-27 | Liston Joseph | Combined internal combustion and hot-air engine |
GB1081499A (en) | 1966-02-09 | 1967-08-31 | Michael William Saunders | Combined internal combustion engine and hot air engine |
DE2200842A1 (en) * | 1972-01-08 | 1973-07-12 | Fritz Ilg | ROTARY LISTON POWER MACHINE WITH EXTERNAL HEAT SOURCE |
US4085588A (en) * | 1976-04-05 | 1978-04-25 | Ford Motor Company | Concentric crossflow recuperator for stirling engine |
US4121423A (en) | 1977-05-31 | 1978-10-24 | Automotive Propulsion Laboratories, Ltd. | Compound internal-combustion hot-gas engines |
DE3170664D1 (en) * | 1981-01-27 | 1985-07-04 | Treuhand Gmbh Fides | Piston engine |
US4389844A (en) * | 1981-06-11 | 1983-06-28 | Mechanical Technology Incorporated | Two stage stirling engine |
US4722188A (en) * | 1985-10-22 | 1988-02-02 | Otters John L | Refractory insulation of hot end in stirling type thermal machines |
US5644917A (en) * | 1996-05-13 | 1997-07-08 | Mcwaters; Thomas David | Kinematic stirling engine |
US6381958B1 (en) * | 1997-07-15 | 2002-05-07 | New Power Concepts Llc | Stirling engine thermal system improvements |
GB9812238D0 (en) * | 1998-06-08 | 1998-08-05 | Schack Engineering Gb Limited | Heat exchanger |
US6279318B1 (en) * | 1999-12-17 | 2001-08-28 | Fantom Technologies Inc. | Heat exchanger for a heat engine |
US6293101B1 (en) * | 2000-02-11 | 2001-09-25 | Fantom Technologies Inc. | Heat exchanger in the burner cup of a heat engine |
DE10143342A1 (en) | 2001-09-04 | 2003-04-03 | Herfried Wichern | IC motor has a hot air motor incorporated in the exhaust system, to be powered by the hot exhaust gas to give added power output to the drive transmission |
GB0123881D0 (en) * | 2001-10-04 | 2001-11-28 | Bg Intellectual Pty Ltd | A stirling engine assembly |
GB0328292D0 (en) * | 2003-12-05 | 2004-01-07 | Microgen Energy Ltd | A stirling engine assembly |
FR2905728B1 (en) | 2006-09-11 | 2012-11-16 | Frederic Thevenod | HYBRID ENGINE WITH EXHAUST HEAT RECOVERY |
US7937943B2 (en) * | 2006-12-22 | 2011-05-10 | Yiding Cao | Heat engines |
US7784300B2 (en) * | 2006-12-22 | 2010-08-31 | Yiding Cao | Refrigerator |
US8341951B2 (en) * | 2009-11-04 | 2013-01-01 | GM Global Technology Operations LLC | Vehicle exhaust heat recovery with multiple coolant heating modes and method of managing exhaust heat recovery |
-
2010
- 2010-06-11 FR FR1002471A patent/FR2961266B1/en not_active Expired - Fee Related
-
2011
- 2011-05-30 WO PCT/FR2011/000320 patent/WO2011154622A1/en active Application Filing
- 2011-05-30 US US13/701,902 patent/US20130067906A1/en not_active Abandoned
- 2011-05-30 EP EP11744027.1A patent/EP2580458B1/en active Active
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220314784A1 (en) * | 2021-03-31 | 2022-10-06 | Honda Motor Co., Ltd. | Internal combustion engine |
US11731502B2 (en) * | 2021-03-31 | 2023-08-22 | Honda Motor Co., Ltd. | Internal combustion engine |
Also Published As
Publication number | Publication date |
---|---|
FR2961266B1 (en) | 2015-07-17 |
FR2961266A1 (en) | 2011-12-16 |
WO2011154622A4 (en) | 2012-02-02 |
EP2580458A1 (en) | 2013-04-17 |
US20130067906A1 (en) | 2013-03-21 |
WO2011154622A1 (en) | 2011-12-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2580458B1 (en) | Heat-exchanging cylinder head | |
CN101463775B (en) | Stirling reversible heat engine | |
US8590302B2 (en) | Thermodynamic cycle and heat engine | |
NO314643B1 (en) | heat Machine | |
FR3042857B1 (en) | THERMODYNAMIC BOILER WITH THERMAL COMPRESSOR | |
EP3099917B1 (en) | A compressor train with a stirling engine | |
US20100186405A1 (en) | Heat engine and method of operation | |
WO2005103453A1 (en) | System for recovering heat energy from a heat engine vehicle | |
US3009315A (en) | Heat engines operating on the stirling or ericsson heat cycles | |
JP5525371B2 (en) | External combustion type closed cycle heat engine | |
WO2021120592A1 (en) | Conditioning-type liquid turbine and method of operation thereof | |
US10982543B2 (en) | Near-adiabatic engine | |
JP4438070B2 (en) | Energy conversion system | |
CN104533604B (en) | A kind of engine exhaust heat recovery system based on Piston Expander | |
EP3458695B1 (en) | Reversible system for dissipating thermal power generated in a gas-turbine engine | |
RU2477375C2 (en) | Method of piston engine cycling and piston engine | |
FR2851796A1 (en) | HYDRAULIC PUMP AND HYDRAULIC SYSTEM COMPRISING SUCH A PUMP. | |
FR2966203A1 (en) | Stirling type thermodynamic device for autonomous heat pump, has chambers arranged on working liquid circuits, and shifter connected to lower parts of chambers so that each chamber is entirely filled with fluid when shifter is put in motion | |
EP4100637A1 (en) | Thermodynamic engine | |
TN2022000105A1 (en) | STIRLING ENGINE WITH STAGED COMPRESSION AND IMPROVED PERFORMANCE | |
RU44352U1 (en) | LUBRICANT SYSTEM HYDRAULIC BATTERY | |
EP0244435A1 (en) | Multiple energy generator with integrated thermal cycle. | |
RU73400U1 (en) | PISTON ENGINE-POWER INSTALLATION | |
FR2973104A1 (en) | Cold gas producing device for air-conditioning system used to refresh air in room of home, has hydraulic pump whose driving chamber is in fluid communication with enclosure delimited by membrane that expands to reduce volume of enclosure | |
WO2011128520A1 (en) | Fuelless combustion engine suited notably to the automotive and nuclear fields |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20130109 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20131104 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140218 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
INTG | Intention to grant announced |
Effective date: 20140520 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 690774 Country of ref document: AT Kind code of ref document: T Effective date: 20141015 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: FRENCH |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602011010454 Country of ref document: DE Effective date: 20141120 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 690774 Country of ref document: AT Kind code of ref document: T Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150209 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150208 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150108 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150109 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602011010454 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
26N | No opposition filed |
Effective date: 20150709 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150530 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AECN Free format text: LE BREVET A ETE REACTIVE SELON LA DEMANDE DE POURSUITE DE LA PROCEDURE DU 10.02.2016 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150530 |
|
PGRI | Patent reinstated in contracting state [announced from national office to epo] |
Ref country code: CH Effective date: 20160212 Ref country code: LI Effective date: 20160212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20110530 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20150531 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141008 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20190715 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20190723 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20190717 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602011010454 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200531 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20200530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200530 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240518 Year of fee payment: 14 |