[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2419750A1 - Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing - Google Patents

Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing

Info

Publication number
EP2419750A1
EP2419750A1 EP10705870A EP10705870A EP2419750A1 EP 2419750 A1 EP2419750 A1 EP 2419750A1 EP 10705870 A EP10705870 A EP 10705870A EP 10705870 A EP10705870 A EP 10705870A EP 2419750 A1 EP2419750 A1 EP 2419750A1
Authority
EP
European Patent Office
Prior art keywords
battery
internal resistance
battery cell
cell
during
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10705870A
Other languages
English (en)
French (fr)
Inventor
Holger Fink
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP2419750A1 publication Critical patent/EP2419750A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0013Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries acting upon several batteries simultaneously or sequentially
    • H02J7/0014Circuits for equalisation of charge between batteries
    • H02J7/0016Circuits for equalisation of charge between batteries using shunting, discharge or bypass circuits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present invention relates to a method and a device for determining the internal resistance of a battery cell of a battery, in particular a traction battery, according to the preambles of claims 1 and 6.
  • battery and battery system are adapted to common usage, used for accumulator system.
  • FIG. 1 The basic functional structure of a battery system according to the prior art is shown in FIG.
  • a battery cell 1 In order to achieve the required power and energy data with the battery system, in a battery cell 1 individual battery cells 1a are connected in series and partially in parallel in addition.
  • the block diagram of a so-called traction battery for hybrid or electric vehicles is shown in FIG.
  • a so-called safety & fuse unit 16 Between the battery cells 1 a and the poles of the battery system is a so-called safety & fuse unit 16, which, for example, the connection and disconnection of the battery 1 to external systems and the protection of the battery system against unacceptably high currents and voltages and provides security functions such as the unipolar disconnection of the battery cells 1a from the battery system poles when opening the battery case.
  • Another functional unit is the battery management 17, which is next to the battery state detection 17a also performs the communication with other systems as well as the thermal management of the battery 1.
  • the functional unit battery status recognition 17a shown in FIG. 4 has the task of determining the current status of the battery 1 and of predicting the future behavior of the battery 1, e.g. a lifetime prediction and / or a range prediction.
  • the prediction of future behavior is also called prediction.
  • the basic structure of a model-based battery state detection is shown in FIG.
  • the illustrated model-based battery state detection and prediction is based on an evaluation of the electrical quantities battery current and voltage and the temperature of the battery 1 by means of an observer 17b and a battery model 17c in a known manner.
  • the battery state detection can be carried out for individual cells 1 a of a battery 1, wherein this then takes place on the basis of the corresponding cell voltage, the cell current and the cell temperature.
  • the battery condition detection can also be carried out for the entire battery 1. This is then - depending on the requirements of the accuracy - either by evaluating the states of the individual cells 1 a of the battery 1 and based thereon aggregation for the entire battery 1 or directly by evaluating the entire battery voltage, the battery current and the battery temperature. It is common to all prior art methods that the current, voltage and temperature profiles occurring during normal operation of the battery 1 are used for the determination of the battery condition as well as for the prediction of the future behavior.
  • FIG. 7 shows the functional principle of an arrangement for the so-called resistive balancing of battery cells 1 a.
  • the task of the cell balancing is to ensure, in the case of a series connection of a plurality of individual cells 1 a, that the cells 1 a all have the same state of charge or the same cell voltage. Due to the principle existing asymmetries of the battery cells 1 a, for example, slightly different capacity, slightly different self-discharge, this would not be possible without additional measures when operating the battery.
  • the battery cells 1 a can be discharged by switching on an ohmic resistor 2 arranged parallel to the cell.
  • the resistor 2 with the value R Ba ⁇ _n via the transistor 10 (T Ba ⁇ _n) parallel to the cell 1a with the Number n switched on.
  • T Ba ⁇ _n the transistor 10
  • a symmetrization of the states of charge or voltages across all cells 1 a of the battery 1 can be brought about .
  • the voltage applied to a cell 1a voltage is supplied for evaluation via a filter consisting of two resistors 11, 12 and a capacitor 13 and an A / D converter 14 of a control and evaluation unit 15, which is provided for each cell 1a and with a higher-level central control unit, such as the battery state detection 17a communicates.
  • the object of the present invention is to present a new concept for the determination of the internal resistance of the individual cells of a battery system with which the battery state detection and prediction can be realized more robustly, more accurately and independently of the operating state of the battery compared with the current state of the art.
  • inventive method with the features of claim 1 and the device according to the invention with the features of claim 6 have the advantage that they can be used to determine the internal resistance of battery cells in battery systems with resistive Zellbalancing with little or no additional electronic circuitry .
  • This method and this device have the advantage compared with the current state of the art that the same operating sequence can be brought about time and again to determine the internal resistance and, as a result, a particularly robust and accurate determination becomes possible.
  • the new method and the new device have the advantage that they can also be used in operating phases in which the battery delivers no power at its poles, or - A -
  • the method according to the invention and the device according to the invention particularly preferably comprise that the first time is selected so that the first current is equal to zero, and the second time is an arbitrary time during the following discharge phase or charging phase of the battery cell.
  • the method according to the invention and the device according to the invention particularly preferably comprise that the first time is an arbitrary time during a discharge phase or charging phase of the battery cell and the second time is an arbitrary time during the same discharge phase or charging phase of the battery cell.
  • the inventive method alternatively or additionally comprises the step of determining an aging-dependent increase in the internal resistance of the battery cell based on a known dependence of the internal resistance of an existing during the determination of the internal resistance cell temperature and during the determination of the internal resistance existing state of charge of the battery cell.
  • the corresponding preferred development of the device according to the invention preferably comprises a table which stores a dependency of the internal resistance on a cell temperature existing during the determination of the internal resistance and a state of charge of the battery cell during the determination of the internal resistance, and a first evaluation unit which generates an age-dependent increase in the internal resistance Internal resistance of the battery cell determined on the basis of the determined internal resistance and a query of the table.
  • a second arithmetic unit can be provided, which reproduces the dependence of the internal resistance on the cell temperature during the determination of the internal resistance and the state of charge of the battery cell during the determination of the internal resistance, using one or more mathematical equations.
  • the inventive method further comprises alternatively or additionally the step of determining a frequency dependence of a resistive portion of the internal resistance of the battery cell by a variation of a frequency of excitation of the resistive cell balancing during several consecutive determinations of internal resistance and / or by a variation of a duty cycle of excitation of the resistive cell balancing during several successive determinations of internal resistance.
  • the corresponding preferred development of the device according to the invention comprises for this purpose a second control module for varying a frequency of excitation of the resistive cell balancing during a plurality of successive determinations of the internal resistance and / or for varying a duty cycle of an excitation of the resistive cell balancing during a plurality of successive determinations of the internal resistance, and a second evaluation unit for determining a frequency dependence of a resistive component of the internal resistance of the battery cell by evaluating the several successive determinations of the internal resistance.
  • the internal resistance in particular the ohmic component of the impedance of the battery cells, is determined as a function of the frequency of the excitation with the new method.
  • FIG. 1 shows a block diagram of a first preferred embodiment of a device according to the invention for determining the internal resistance of a battery cell
  • Figure 2 shows a first example of the excitation of the battery cells to the
  • FIG. 4 shows a functional structure of a battery system according to the prior art
  • FIG. 5 shows a further block diagram of a battery system according to the current state of the art
  • FIG. 6 shows a block diagram of a model-based
  • FIG. 7 shows a block diagram of an arrangement for the resistive cell balancing of the battery cells according to the prior art.
  • FIG. 1 shows a preferred embodiment of the device according to the invention, which is an extension of the circuit principle shown in FIG. 7 for resistive cell balancing. If the battery cell 1 a is to be discharged with the number n, because it has, for example, a higher state of charge than other cells of the battery system, by switching on the transistor 10 (T Ba ⁇ _n) of the ohmic resistor 2 (RßaLn) parallel to the cell 1 a ( n) switched. This discharges the cell 1a (n).
  • FIG. 7 additionally shows a filter circuit 11, 12, 13 for processing the differential voltage signal of the cell 1 a (n) for an analog / digital converter 14.
  • the cell voltage is provided in compliance with the sampling theorem of a control and evaluation unit 15, which processes it and forwards it to the superordinate battery state detection 17b.
  • the circuit used for the cell balancing is, optionally with the illustrated additional circuit elements, but preferably also in the control and Evaluation unit 15 can be integrated, also used for the inventive determination of the internal resistance of the cell.
  • the circuit shown in Figure 7 for the resistive cell balancing is extended by a first control module 3, with which the voltage applied to the battery cell 1 a voltage U n and the current flowing from the battery cell 1 a current (T Ba ⁇ _ n ) at different times during the charge collection are detected.
  • the first control module 3 is connected to a computing unit 4, which calculates the internal resistance of the battery cell as described below as the quotient of the difference of two detected voltage values with the difference of two detected current values.
  • the starting point for explaining the mode of operation is an operating state in which the battery does not output or pick up power at its terminals. In this state, no current flows through the battery cells. If now the transistor 10 (T Ba ⁇ _ n ) is turned on, the cell 1 a (n) discharges via the ohmic resistor 2 (R ⁇ L n ) - By switching on the transistor 10 changes in comparison to the initial state (no power output or receiving) the cell voltage, which is detected by means of the arrangement shown in Figure 1. In addition, of course, the current flowing through the battery cell 1 a (n) also changes. This current can be easily determined via the ohmic law with known resistance 2 (Rß a i_ n ).
  • a temperature correction of the value of the resistor 2 used for determining the current of the battery cell 1 a (n) is recommended (R a i n ) - this is usually the case in the battery system sufficiently accurate temperature information available because the temperature of the battery cells 1 a is determined and the electronics for carrying out the cell balancing and for determining the cell voltage is meaningfully arranged spatially directly at the battery cells 1 a.
  • signals are available both for voltage and for the current change, which result from the connection of the ohmic resistor 2 (R ⁇ a i_ n ) in the cell 1 a (n), each having a high accuracy according to the requirements exhibit.
  • the temperature, charge state and age-dependent internal resistance R, n of the battery cell 1 a (n) can thus be determined, for example, as follows:
  • the aging-dependent increase of the internal resistance of the battery cell can be determined.
  • the arithmetic unit 4 is connected to a first evaluation unit 7, which determines the aging-dependent increase of the internal resistance of the battery cell 1a (n) on the basis of the determined internal resistance and a query of a table 6, the dependence of the internal resistance of the existing during the determination of the internal resistance cell temperature and an existing during the determination of the internal resistance state of charge of the battery cell 1 a stores.
  • a second arithmetic unit can be requested, which maps the dependence of the internal resistance of the cell temperature and the state of charge using mathematical equations.
  • the presented method according to the invention for determining the internal resistance can e.g. even when the vehicle is parked. As a result, the determination of the internal resistance is not adversely affected by the superimposed "normal operation" of the battery 1. This represents a significant advantage over the previously known methods.
  • the proposed principle according to the invention for determining the internal resistance of the battery cells can also be used during the "normal operation" of the battery 1. Then, to determine the internal resistance, the influence of the battery current currently superimposed on the balancing current in the cell 1 a must be taken into account. This approach lends itself but only in operating conditions to, in which the battery 1 is loaded with low currents and discharged.
  • the internal resistance R, _ n of the battery cell 1 a (n) is to turn determined from the quotient of the Zellêtsund cell current difference between two considered one time points ,
  • one of the essential information required for battery state detection and prediction - the temperature, charge state and aging dependent change of the internal resistance of the battery cells - can be determined in all operating states of the battery .
  • the internal resistance can only be determined in operating phases in which the battery current changes appreciably during "normal operation.” In this way, it is possible to carry out the determination of the internal resistance of the battery cells in a much more robust and accurate manner compared with the prior art.
  • the dependence on the frequency of the excitation is preferably determined.
  • the following procedures are preferably used for this:
  • FIG. 2 shows by way of example in the two time courses for the control of the transistor 10 (T ⁇ aL n ) how the dependence of the internal resistance of the battery cells on the frequency of the excitation can be determined.
  • the duty cycle of the excitation is shown symmetrically in Figure 2, ie, duty cycle and turn-off of the transistor are the same. In principle, the method can also be realized with asymmetrical duty cycles.
  • the frequency of the excitation is varied to determine the frequency dependence of the internal resistance.
  • FIG. 2 shows the curves for 2 frequencies.
  • the measurement times are plotted as upward-pointing arrows, in which the internal resistance according to equation (1) can be determined.
  • the measurement times are here in each case before and after a change in the switching state of the transistor 10 (T Ba ⁇ _ n ) selected.
  • FIG. 3 shows a further possibility for determining the frequency-dependent internal resistance of the battery cells.
  • the duty cycle of the excitation is varied while the frequency is kept constant. Also in this procedure, the measurement times shown as upward arrows are respectively before and after a change in the switching state of the transistor 10 (TßaL n ) selected.
  • the frequency-dependent internal resistance of the battery cells is again determined according to equation (1).
  • the methods according to the invention make it possible to determine the frequency dependence of the internal resistance, similar to the procedure in so-called impedance spectroscopy.
  • impedance spectroscopy the methods according to the invention can be implemented without complex additional measuring electronics. Only with regard to the detection of the cell voltages are it possible to set higher demands with regard to dynamics and sampling frequency compared to the circuits usually used in battery systems.
  • a second control module 8 is provided according to the invention, which is coupled to the first control module 3 and the control and evaluation unit 15.
  • the second control module 8 is further connected to a second evaluation unit 9, which is also connected to the arithmetic unit 4.
  • the second evaluation unit 9 determines the frequency dependence of the internal resistance of the battery cell by evaluating the several successive determinations of the internal resistance, taking into account the change in the frequency and / or the duty cycle of the excitation.
  • the presented preferred method for determining the frequency dependence of the internal resistance of the battery cells can also be one of the essential information required for a battery state detection and prediction - the temperature, charge state and Age-dependent change of the internal resistance of the battery cells - be determined.
  • the internal resistance can only be determined in operating phases in which the battery current changes appreciably during "normal operation.” In this way, the determination of the internal resistance of the battery cells compared to the prior art is much more robust and accurate perform.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)

Abstract

Die Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung des Innenwiderstands einer Batteriezelle (1a) einer Batterie (1), insbesondere einer Traktionsbatterie, das sowohl bei Ladevorgängen als auch bei Entladevorgängen als auch in Phasen anwendbar ist, in den die Batterie (1) einschließlich der Batteriezelle (1a) keine elektrische Leistung abgibt oder aufnimmt, wobei in der Batterie (1) ein resistives Zellbalancing zum Ausgleich der Ladezustände der Batteriezellen (1a) ausgeführt wird, bei dem der Batteriezelle (1a) über einen Widerstand (2) Energie entnommen wird. Erfindungsgemäß sind ein erstes Steuermodul (3) zum Bestimmen einer an der Batteriezelle (1a) anliegenden ersten Spannung und eines von oder zu der Batteriezelle fließenden ersten Stroms zu einem ersten Zeitpunkt während der Ladungsentnahme bzw. Ladungszufuhr und zum Bestimmen einer an der Batteriezelle (1a) anliegenden zweiten Spannung und eines von oder zu der Batteriezelle (1a) fließenden zweiten Stroms zu einem zweiten Zeitpunkt während der Ladungsentnahme bzw. Ladungszufuhr, und eine Recheneinheit (4) zum Berechnen des Innenwiderstands der Batteriezelle (1a) als den Quotienten der Differenz der zweiten Spannung und der ersten Spannung mit der Differenz des zweiten Stroms und des ersten Stroms vorgesehen.

Description

Beschreibung
Titel
Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie bei
Einsatz von resistivem Zellbalancinq
Stand der Technik
Die vorliegende Erfindung betrifft ein Verfahren und eine Vorrichtung zur Ermittlung des Innenwiderstands einer Batteriezelle einer Batterie, insbesondere einer Traktionsbatterie, gemäß den Oberbegriffen der Patentansprüche 1 und 6.
Es zeichnet sich ab, dass in Zukunft sowohl bei stationären Anwendungen, z.B. bei Windkraftanlagen, als auch in Fahrzeugen z.B. in Hybrid- und Elektrofahr- zeugen, vermehrt neue Batteriesysteme zum Einsatz kommen werden. In der vorliegenden Beschreibung werden die Begriffe Batterie und Batteriesystem dem üblichen Sprachgebrauch angepasst, für Akkumulator bzw. Akkumulatorsystem verwendet.
Der prinzipielle funktionale Aufbau eines Batteriesystems gemäß dem Stand der Technik ist in Figur 4 dargestellt. Um die geforderten Leistungs- und Energiedaten mit dem Batteriesystem zu erzielen, werden in einer Batteriezelle 1 einzelne Batteriezellen 1a in Serie und teilweise zusätzlich parallel geschaltet. Für eine Serienschaltung von Batteriezellen ist das Prinzipschaltbild einer sogenannten Traktionsbatterie für Hybrid- oder Elektrofahrzeuge in Figur 5 dargestellt. Zwischen den Batteriezellen 1 a und den Polen des Batteriesystems befindet sich eine sogenannte Safety&Fuse-Einheit 16, welche z.B. das Zu- und Abschalten der Batterie 1 an externe Systeme und die Absicherung des Batteriesystems gegen unzulässig hohe Ströme und Spannungen übernimmt sowie Sicherheitsfunktionen bereitstellt wie z.B. das einpolige Abtrennen der Batteriezellen 1a von den Batteriesystempolen bei Öffnen des Batteriegehäuses. Eine weitere Funktionseinheit bildet das Batteriemanagement 17, welches neben der Batteriezustandserkennung 17a auch die Kommunikation mit anderen Systemen sowie das Thermomanagement der Batterie 1 durchführt.
Die in Figur 4 dargestellte Funktionseinheit Batteriezustandserkennung 17a hat die Aufgabe, den aktuellen Zustand der Batterie 1 zu bestimmen sowie das künftige Verhalten der Batterie 1 vorherzusagen, z.B. eine Lebensdauervorhersage und/oder eine Reichweitenvorhersage. Die Vorhersage des künftigen Verhaltens wird auch als Prädiktion bezeichnet. Der prinzipielle Aufbau einer modellbasierten Batteriezustandserkennung ist in Figur 6 dargestellt. Die dargestellte modellbasierte Batteriezustandserkennung und -prädiktion basiert auf einer Auswertung der elektrischen Größen Batteriestrom und -Spannung sowie der Temperatur der Batterie 1 mittels eines Beobachters 17b und eines Batteriemodells 17c in bekannter Weise. Die Batteriezustandserkennung kann für einzelne Zellen 1 a einer Batterie 1 erfolgen, wobei dies dann auf Basis der entsprechenden Zellspannung, des Zellstroms sowie der Zelltemperatur erfolgt. Weiter kann die Batteriezustandserkennung auch für die gesamte Batterie 1 erfolgen. Dies erfolgt dann - je nach Anspruch an die Genauigkeit - entweder durch Auswertung der Zustände der einzelnen Zellen 1 a der Batterie 1 und einer darauf basierenden Aggregation für die gesamte Batterie 1 oder direkt durch Auswertung der gesamten Batteriespannung, des Batteriestroms und der Batterietemperatur. Allen Verfahren gemäß Stand der Technik ist dabei gemein, dass die im normalen Betrieb der Batterie 1 auftretenden Strom-, Spannungsund Temperaturverläufe für die Ermittlung des Batteriezustands sowie für die Prädiktion des künftigen Verhaltens herangezogen werden.
In Figur 7 ist das Funktionsprinzip einer Anordnung für das sogenannte resistive Balancing von Batteriezellen 1 a dargestellt. Aufgabe des Zellbalancings ist, bei einer Serienschaltung von mehreren Einzelzellen 1 a dafür zu sorgen, dass die Zellen 1 a alle den gleichen Ladezustand bzw. die gleiche Zellspannung aufweisen. Aufgrund der prinzipiell vorhandenen Unsymmetrien der Batteriezellen 1 a, z.B. geringfügig unterschiedliche Kapazität, geringfügig unterschiedliche Selbstentladung, wäre dies ohne zusätzliche Maßnahmen bei Betrieb der Batterie nicht gegeben. Beim resistiven Zellbalancing können die Batteriezellen 1 a über Zuschaltung eines parallel zu der Zelle angeordneten ohmschen Widerstands 2 entladen werden. In Figur 6 wird der Widerstand 2 mit dem Wert RBaι_n über den Transistor 10 (TBaι_n) parallel zur Zelle 1a mit der Nummer n zugeschaltet. Durch Entladung jener Zellen 1 a, die einen höheren Ladezustand bzw. eine höhere Spannung aufweisen, als die Zellen 1a mit Nummern n mit geringstem Ladezustand bzw. geringster Spannung kann eine Symmetrierung der Ladezustände bzw. Spannungen über alle Zellen 1 a der Batterie 1 herbeigeführt werden. Die an einer Zelle 1a anliegende Spannung wird zur Auswertung über einen aus zwei Widerständen 11 , 12 und einem Kondensator 13 bestehenden Filter und einen A/D-Wandler 14 einer Steuer- und Auswerteeinheit 15 zugeführt, die für jede Zelle 1a vorhanden ist und mit einer übergeordneten zentralen Steuereinheit, z.B. der Batteriezustandserkennung 17a kommuniziert. Bei Lithium-Ionen-Batterien, die aus einer Serienschaltung mehrerer Einzelzellen 1 a bestehen, ist der Einsatz von resistivem Zellbalancing Stand der Technik. Weiter existieren auch andere Verfahren für das Zellbalancing, welche prinzipbedingt verlustfrei arbeiten können, z.B. das sogenannte induktive Zellbalancing.
Aufgabe der vorliegenden Erfindung ist, ein neues Konzept für die Ermittlung des Innenwiderstands der Einzelzellen eines Batteriesystems vorzustellen, mit dem die Batteriezustandserkennung und -prädiktion gegenüber dem heutigen Stand der Technik robuster, genauer und unabhängig vom Betriebszustand der Batterie realisiert werden kann.
Offenbarung der Erfindung
Das erfindungsgemäße Verfahren mit den Merkmalen des Patentanspruchs 1 und die erfindungsgemäße Vorrichtung mit den Merkmalen des Patentanspruchs 6 weisen demgegenüber den Vorteil auf, dass sie zur Bestimmung des Innenwiderstands von Batteriezellen bei Batteriesystemen mit resistivem Zellbalancing ohne oder mit lediglich geringem zusätzlichen elektronischen Schaltungsaufwand zum Einsatz kommen können. Dieses Verfahren und diese Vorrichtung haben gegenüber dem heutigen Stand der Technik den Vorteil, dass zur Bestimmung des Innenwiderstands immer wieder der gleiche Betriebablauf herbeigeführt werden kann und dadurch eine besonders robuste und genaue Bestimmung möglich wird. Darüber hinaus haben das neue Verfahren und die neue Vorrichtung den Vorteil, dass sie auch in Betriebsphasen eingesetzt werden können, in denen die Batterie an ihren Polen keine Leistung abgibt oder - A -
aufnimmt, also z.B. bei abgestelltem Fahrzeug. Dies ist bei den aktuell bekannten Verfahren nicht möglich.
Die Unteransprüche zeigen bevorzugte Weiterbildungen der Erfindung.
Besonders bevorzugt umfassen das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung, dass der erste Zeitpunkt so gewählt ist, dass der erste Strom gleich Null ist, und der zweite Zeitpunkt ein beliebiger Zeitpunkt während der folgenden Entladephase bzw. Ladephase der Batteriezelle ist.
Alternativ umfassen das erfindungsgemäße Verfahren und die erfindungsgemäße Vorrichtung besonders bevorzugt, dass der erste Zeitpunkt ein beliebiger Zeitpunkt während einer Entladephase bzw. Ladephase der Batteriezelle ist und der zweite Zeitpunkt ein beliebiger Zeitpunkt während der gleichen Entladephase bzw. Ladephase der Batteriezelle ist.
Das erfindungsgemäße Verfahren umfasst alternativ oder zusätzlich den Schritt der Ermittlung einer alterungsabhängigen Erhöhung des Innenwiderstands der Batteriezelle anhand einer bekannten Abhängigkeit des Innenwiderstands von einer während der Bestimmung des Innenwiderstands bestehenden Zellentemperatur und einem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle. Die korrespondierende bevorzugte Weiterbildung der erfindungsgemäßen Vorrichtung umfasst hierfür bevorzugt eine Tabelle, die eine Abhängigkeit des Innenwiderstands von einer während der Bestimmung des Innenwiderstands bestehenden Zellentemperatur und einem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle speichert, und eine erste Auswerteeinheit, die eine alterungsabhängige Erhöhung des Innenwiderstands der Batteriezelle anhand des ermittelten Innenwiderstands und einer Abfrage der Tabelle bestimmt. Alternativ zu der Tabelle kann eine zweite Recheneinheit vorgesehen sein, die die Abhängigkeit des Innenwiderstands von der während der Bestimmung des Innenwiderstands bestehenden Zellentemperatur und dem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle anhand einer oder mehrerer mathematischer Gleichung(en) wiedergibt. Das erfindungsgemäße Verfahren umfasst weiter alternativ oder zusätzlich den Schritt der Ermittlung einer Frequenzabhängigkeit eines ohmschen Anteils des Innenwiderstands der Batteriezelle durch eine Variation einer Frequenz einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands und/oder durch eine Variation eines Tastverhältnisses einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands. Die korrespondierende bevorzugte Weiterbildung der erfindungsgemäßen Vorrichtung umfasst hierfür ein zweites Steuermodul zur Variation einer Frequenz einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands und/oder zur Variation eines Tastverhältnisses einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands, und eine zweite Auswerteeinheit zur Ermittlung einer Frequenzabhängigkeit eines ohmschen Anteils des Innenwiderstands der Batteriezelle durch Auswertung der mehreren aufeinanderfolgenden Bestimmungen des Innenwiderstands. In dieser bevorzugten Ausgestaltung wird mit dem neuen Verfahren auch der Innenwiderstand, insbesondere der ohmsche Anteil der Impedanz der Batteriezellen, in Abhängigkeit von der Frequenz der Anregung ermittelt.
Zeichnung
Nachfolgend wird ein Ausführungsbeispiel der Erfindung unter Bezugnahme auf die begleitende Zeichnung im Detail beschrieben. In der Zeichnung zeigen:
Figur 1 ein Prinzipschaltbild einer ersten bevorzugten Ausführungsform einer erfindungsgemäßen Vorrichtung zur Ermittlung des Innenwiderstands einer Batteriezelle,
Figur 2 ein erstes Beispiel für die Anregung der Batteriezellen, um die
Frequenzabhängigkeit des Innenwiderstands über eine Variation der Anregefrequenz zu ermitteln, Figur 3 ein zweites Beispiel für die Anregung der Batteriezellen, um die
Frequenzabhängigkeit des Innenwiderstands über eine Variation des Tastverhältnisses zu ermitteln,
Figur 4 einen funktionalen Aufbau eines Batteriesystems gemäß dem Stand der Technik,
Figur 5 ein weiteres Prinzipschaltbild eines Batteriesystems gemäß dem derzeitigen Stand der Technik,
Figur 6 ein Prinzipschaltbild einer modellbasierten
Batteriezustandserkennung und -prädiktion nach dem Stand der Technik, und
Figur 7 ein Prinzipschaltbild einer Anordnung für das resistive Zellbalancing der Batteriezellen nach dem Stand der Technik.
Bevorzugte Ausführungsformen der Erfindung
Nachfolgend werden unter Bezugnahme auf die Figuren bevorzugte Ausführungsformen der Erfindung im Detail beschrieben.
In Figur 1 ist eine bevorzugte Ausführungsform der erfindungsgemäßen Vorrichtung dargestellt, diese ist eine Erweiterung des in Figur 7 dargestellten Schaltungsprinzips für das resistive Zellbalancing. Soll die Batteriezelle 1 a mit der Nummer n entladen werden, weil sie z.B. einen höheren Ladezustand aufweist, als andere Zellen des Batteriesystems, wird durch Einschalten des Transistors 10 (TBaι_n) der ohmsche Widerstand 2 (RßaLn) parallel zur Zelle 1 a (n) geschaltet. Dadurch wird die Zelle 1a (n) entladen. In Figur 7 ist zusätzlich auch eine Filterschaltung 11 , 12, 13 zur Aufbereitung des Differenzspannungssignals der Zelle 1 a (n) für einen Analog/Digital-Wandler 14 dargestellt. Über diesen wird die Zellspannung unter Einhaltung des Abtasttheorems einer Steuer- und Auswerteeinheit 15 bereitgestellt, welche diesen verarbeitet und der übergeordneten Batteriezustandserkennung 17b weiterleitet. Die für das Zellbalancing eingesetzte Schaltung wird, gegebenenfalls mit den dargestellten zusätzlichen Schaltungselementen, die aber bevorzugt auch in die Steuer- und Auswerteeinheit 15 integriert werden können, auch für die erfindungsgemäße Bestimmung des Innenwiderstands der Zelle eingesetzt. Erfindungsgemäß ist die in Figur 7 dargestellte Schaltung für das resistive Zellbalancing um ein erstes Steuermodul 3 erweitert, mit dem die an der Batteriezelle 1 a anliegende Spannung Un und der von der Batteriezelle 1 a fließende Strom (TBaι_n) zu verschiedenen Zeitpunkten während der Ladungsentnahme erfasst werden. Dies kann entweder über eine direkte Strom- und Spannungsmessung, wie auch über die Steuer- und Auswerteeinheit 15 der Zelle 1 a (n) erfolgen, welche zumindest die Batteriespannung Un über den aus zwei Widerständen 11 , 12 und einem Kondensator 13 bestehenden Filter und einen A/D-Wandler 14 erfasst. Das erste Steuermodul 3 ist mit einer Recheneinheit 4 verbunden, die den Innenwiderstand der Batteriezelle wie nachfolgend beschrieben als den Quotienten der Differenz von zwei erfassten Spannungswerten mit der Differenz von zwei erfassten Stromwerten berechnet.
Ausgangspunkt für die Erläuterung der Funktionsweise sei ein Betriebszustand, in dem die Batterie an ihren Klemmen keine Leistung abgibt oder aufnimmt. In diesem Zustand fließt kein Strom durch die Batteriezellen. Wird nun der Transistor 10 (TBaι_n) eingeschaltet, entlädt sich die Zelle 1 a (n) über den ohmschen Widerstand 2 (RßaLn)- Durch das Einschalten des Transistors 10 ändert sich im Vergleich zum Ausgangszustand (keine Leistungsabgabe bzw. - aufnähme) die Zellspannung, welche mittels der in Figur 1 dargestellten Anordnung erfasst wird. Zusätzlich ändert sich natürlich auch der Strom, der durch die Batteriezelle 1 a (n) fließt. Dieser Strom kann über das ohmsche Gesetz bei bekanntem Widerstand 2 (Rßai_n) einfach ermittelt werden. Aufgrund der erheblichen Temperaturunterschiede, welche bei Betrieb der Batterie in einem Fahrzeug auftreten können, empfiehlt sich eine Temperaturkorrektur des zur Ermittlung des Stroms der Batteriezelle 1 a (n) herangezogenen Wertes des Widerstands 2 (Rßai_n)- Hierfür stehen in dem Batteriesystem üblicherweise ausreichend genaue Temperaturinformationen zur Verfügung, da die Temperatur der Batteriezellen 1 a ermittelt wird und die Elektronik zur Durchführung des Zellbalancing und zur Ermittlung der Zellspannung sinnvoller Weise räumlich direkt bei den Batteriezellen 1 a angeordnet wird. Somit stehen sowohl für Spannungs- und für die Stromänderung, welche sich durch das Zuschalten des ohmschen Widerstands2 (Rßai_n) in der Zelle 1 a (n) ergeben, Signale zur Verfügung, die jeweils eine den Anforderungen entsprechend hohe Genauigkeit aufweisen. Der temperatur-, ladezustands- und alterungsabhängige Innenwiderstand R, n der Batteriezelle 1 a (n) kann damit z.B. wie folgt ermittelt werden:
U n„ -U n
R1 „ (Temp, SOC, Alterung) =
*Bal_n
Bei bekannter Abhängigkeit des Innenwiderstands von der Zelltemperatur und dem Ladezustand der Zelle, kann die alterungsabhängig Erhöhung des Innenwiderstands der Batteriezelle ermittelt werden. Hierzu ist die Recheneinheit 4 mit einer ersten Auswerteeinheit 7 verbunden, die die alterungsabhängige Erhöhung des Innenwiderstands der Batteriezelle 1a (n) anhand des ermittelten Innenwiderstands und eine Abfrage einer Tabelle 6 bestimmt, die die Abhängigkeit des Innenwiderstands von der während der Bestimmung des Innenwiderstands bestehenden Zelltemperatur und einem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle 1 a speichert. Alternativ zur Abfrage der Tabelle 6 kann eine zweite Recheneinheit angefragt werden, die die Abhängigkeit des Innenwiderstands von der Zelltemperatur und des Ladezustands anhand mathematischer Gleichungen abbildet. Das vorgestellte erfindungsgemäße Verfahren zur Bestimmung des Innenwiderstands kann z.B. auch bei abgestelltem Fahrzeug durchgeführt werden. Dadurch wird die Bestimmung des Innenwiderstands nicht durch den überlagerten „Normalbetrieb" der Batterie 1 negativ beeinflusst. Dies stellt einen wesentlichen Vorteil gegenüber den bisher bekannten Verfahren dar.
Das vorgestellte erfindungsgemäße Prinzip zur Bestimmung des Innenwiderstands der Batteriezellen kann natürlich auch während des „Normalbetriebs" der Batterie 1 angewandt werden. Dann muss zur Bestimmung des Innenwiderstands der Einfluss des aktuell überlagert zu dem Balancing- Strom in der Zelle 1 a fließenden Batteriestroms berücksichtigt werden. Dieses Vorgehen bietet sich aber nur in Betriebszuständen an, in denen die Batterie 1 mit geringen Strömen geladen bzw. entladen wird. Der Innenwiderstand R,_n der Batteriezelle 1 a (n) wird dazu wiederum aus dem Quotient der Zellspannungsund Zellstromdifferenz zweier betrachteter Zeitpunkte ermittelt.
In Betriebsphasen, in denen die Batterie 1 mit hohen Strömen geladen bzw. entladen wird, macht es wenig Sinn, eine zusätzliche „Anregung" der Zelle durch Belastung über den Balancing-Strom herbeizuführen. Während solcher Betriebsphasen wird erfindungsgemäß bevorzugt der Einsatz der gemäß heutigem Stand der Technik eingesetzten Verfahren zur Ermittlung des Innenwiderstands aus der Zellspannung und dem Zellstrom herangezogen, welche aus dem „Normalbetrieb" der Batterie 1 resultieren.
Mit dem vorgestellten Verfahren zur Ermittlung des Innenwiderstands der Batterie nach der Erfindung kann eine der wesentlichen Informationen, die für eine Batteriezustandserkennung und -prädiktion erforderlich sind - die temperatur-, ladezustands- und alterungsabhängige Änderung des Innenwiderstands der Batteriezellen - in allen Betriebszuständen der Batterie ermittelt werden. Bei den bisher bekannten Verfahren kann der Innenwiderstand nur in Betriebsphasen ermittelt werden, bei denen der Batteriestrom sich während des „Normalbetriebs" nennenswert ändert. Auf diese Weise gelingt es, die Ermittlung des Innenwiderstands der Batteriezellen gegenüber dem Stand der Technik wesentlich robuster und genauer durchzuführen.
Erfindungsgemäß wird bevorzugt die Abhängigkeit von der Frequenz der Anregung ermittelt. Dazu werden bevorzugt folgende Vorgehensweisen eingesetzt:
• Variation der Frequenz der Anregung bei konstantem Tastverhältnis
• Variation des Tastverhältnisses der Anregung bei konstanter Frequenz
• Kombination der beiden erstgenannten
In Figur 2 ist in den beiden Zeitverläufen für die Ansteuerung des Transistors 10 (TßaLn) beispielhaft dargestellt, wie die Abhängigkeit des Innenwiderstands der Batteriezellen von der Frequenz der Anregung ermittelt werden kann. Das Tastverhältnis der Anregung ist in Figur 2 symmetrisch dargestellt, d.h., Einschaltdauer und Ausschaltdauer des Transistors sind gleich. Grundsätzlich ist das Verfahren auch mit unsymmetrischen Tastverhältnissen realisierbar. Die Frequenz der Anregung wird zur Bestimmung der Frequenzabhängigkeit des Innenwiderstandes variiert. In Figur 2 sind die Verläufe für 2 Frequenzen dargestellt. Zusätzlich sind in Figur 2 die Messzeitpunkte als nach oben weisende Pfeile eingezeichnet, bei denen der Innenwiderstand gemäß Gleichung (1 ) ermittelt werden kann. Die Messzeitpunkte sind hier jeweils vor und nach einer Änderung des Schaltzustands des Transistors 10 (TBaι _n) gewählt.
In Figur 3 ist eine weitere Möglichkeit zur Ermittlung des frequenzabhängigen Innenwiderstands der Batteriezellen dargestellt. Dabei wird das Tastverhältnis der Anregung bei konstant gehaltener Frequenz variiert. Auch bei diesem Vorgehen sind die als nach oben weisende Pfeile dargestellten Messzeitpunkte jeweils vor und nach einer Änderung des Schaltzustands des Transistors 10 (TßaLn) gewählt. Der frequenzabhängige Innenwiderstand der Batteriezellen wird wiederum gemäß Gleichung (1 ) ermittelt.
Grundsätzlich sind natürlich auch Kombinationen der beiden beschriebenen Methoden möglich, um den Innenwiderstand in Abhängigkeit von der Anregung zu beschreiben. Die erfindungsgemäßen Verfahren erlauben es, ähnlich der Vorgehensweise bei der sogenannten Impedanzspektroskopie, die Frequenzabhängigkeit des Innenwiderstands zu ermitteln. Im Gegensatz zur Impedanzspektroskopie sind die erfindungsgemäßen Verfahren ohne aufwändige zusätzliche Messelektronik realisierbar. Lediglich an die Erfassung der Zellspannungen sind gegenüber den üblicherweise in Batteriesystemen eingesetzten Schaltungen gegebenenfalls erhöhte Anforderungen hinsichtlich Dynamik und Abtastfrequenz zu stellen.
Um die Frequenz und/oder das Tastverhältnis der Anregung zu ändern, ist erfindungsgemäß ein zweites Steuermodul 8 vorgesehen, welches mit dem ersten Steuermodul 3 und der Steuer- und Auswerteeinheit 15 gekoppelt ist. Das zweite Steuermodul 8 ist weiter mit einer zweiten Auswerteeinheit 9 verbunden, welche ebenfalls mit der Recheneinheit 4 verbunden ist. Die zweite Auswerteeinheit 9 ermittelt die Frequenzabhängigkeit des Innenwiderstands der Batteriezelle durch Auswertung der mehreren aufeinanderfolgenden Bestimmungen des Innenwiderstands unter Berücksichtigung der Änderung der Frequenz und/oder des Tastverhältnisses der Anregung.
Mit dem vorgestellten bevorzugten Verfahren zur Ermittlung der Frequenzabhängigkeit des Innenwiderstands der Batteriezellen kann ebenso eine der wesentlichen Informationen, die für eine Batteriezustandserkennung und -prädiktion erforderlich sind - die temperatur-, ladezustands- und alterungsabhängige Änderung des Innenwiderstands der Batteriezellen - ermittelt werden. Im Gegensatz zu den bisher bekannten Verfahren kann der Innenwiderstand nur in Betriebsphasen ermittelt werden, bei denen der Batteriestrom sich während des „Normalbetriebs" nennenswert ändert. Auf diese Weise gelingt es, die Ermittlung des Innenwiderstands der Batteriezellen gegenüber dem Stand der Technik wesentlich robuster und genauer durchzuführen.
Neben der obigen schriftlichen Offenbarung wird hier ausdrücklich auf die Offenbarung in den Figuren verwiesen.

Claims

Ansprüche
1. Verfahren zur Ermittlung des Innenwiderstands einer Batteriezelle (1a) einer Batterie (1 ), insbesondere einer Traktionsbatterie, das sowohl bei Ladevorgängen als auch bei Entladevorgängen als auch in Phasen anwendbar ist, in den die Batterie (1 ) einschließlich der Batteriezelle (1a) keine elektrische Leistung abgibt oder aufnimmt, wobei in der Batterie (1 ) ein resistives Zellbalancing zum Ausgleich der Ladezustände der Batteriezellen (1a) ausgeführt wird, bei dem der Batteriezelle (1 a) über einen Widerstand (2) Energie entnommen wird, mit den folgenden Schritten:
Bestimmen einer an der Batteriezelle (1 a) anliegenden ersten Spannung und eines von oder zu der Batteriezelle (1 a) fließenden ersten Stroms zu einem ersten Zeitpunkt während der Ladungsentnahme oder -zufuhr,
Bestimmen einer an der Batteriezelle (1 a) anliegenden zweiten Spannung und eines von oder zu der Batteriezelle (1 a) fließenden zweiten Stroms zu einem zweiten Zeitpunkt während der Ladungsentnahme oder -zufuhr, und
Berechnen des Innenwiderstands der Batteriezelle (1 a) als den Quotienten der Differenz der zweiten Spannung und der ersten Spannung mit der Differenz des zweiten Stroms und des ersten Stroms.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Zeitpunkt so gewählt ist, dass der erste Strom gleich Null ist, und der zweite Zeitpunkt ein beliebiger Zeitpunkt während der folgenden Entladephase bzw. Ladephase der Batteriezelle (1 a) ist.
3. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass der erste Zeitpunkt ein beliebiger Zeitpunkt während einer Entladephase bzw. Ladephase der Batteriezelle (1 a) ist und der zweite Zeitpunkt ein beliebiger Zeitpunkt während der gleichen Entladephase bzw. Ladephase der Batteriezelle (1 a) ist.
4. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt der Ermittlung einer alterungsabhängigen Erhöhung des Innenwiderstands der Batteriezelle (1 a) anhand einer bekannten Abhängigkeit des Innenwiderstands von einer während der Bestimmung des Innenwiderstands bestehenden Zellentemperatur und einem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle (1 a).
5. Verfahren nach einem der vorstehenden Ansprüche, gekennzeichnet durch den Schritt der Ermittlung einer Frequenzabhängigkeit des Innenwiderstands der Batteriezelle (1 a) durch eine Variation einer Frequenz einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands und/oder durch eine Variation eines Tastverhältnisses einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands.
6. Vorrichtung zur Ermittlung des Innenwiderstands einer Batteriezelle (1 a) einer Batterie (1 ), insbesondere einer Traktionsbatterie, wobei die Ermittlung des Innenwiderstands sowohl bei Ladevorgängen als auch bei Entladevorgängen als auch in Phasen anwendbar ist, in denen die Batterie (1 ) einschließlich der Batteriezelle (1 a) keine elektrische Leistung abgibt oder aufnimmt und wobei in der Batterie (1 ) ein resistives Zellbalancing zum Ausgleich der Ladezustände der Batteriezellen (1 a) ausgeführt wird, bei dem der Batteriezelle (1 a) über einen Widerstand (2) Energie entnommen wird, mit: einem ersten Steuermodul (3) zum Bestimmen einer an der Batteriezelle (1 a) anliegenden ersten Spannung und eines von oder zu der Batteriezelle fließenden ersten Stroms zu einem ersten Zeitpunkt während der Ladungsentnahme oder -zufuhr und zum Bestimmen einer an der Batteriezelle (1 a) anliegenden zweiten Spannung und eines von oder zu der Batteriezelle (1 a) fließenden zweiten Stroms zu einem zweiten Zeitpunkt während der Ladungsentnahme oder -zufuhr, und einer Recheneinheit (4) zum Berechnen des Innenwiderstands der Batteriezelle (1 a) als den Quotienten der Differenz der zweiten Spannung und der ersten Spannung mit der Differenz des zweiten Stroms und des ersten Stroms.
7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das erste Steuermodul (3) den ersten Zeitpunkt so wählt, dass der erste Strom gleich Null ist, und den zweiten Zeitpunkt als einen beliebigen Zeitpunkt während der folgenden Entladephase bzw. Ladephase der Batteriezelle (1 a) bestimmt.
8. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass das erste Steuermodul (3) den ersten Zeitpunkt als einen beliebigen Zeitpunkt während einer Entladephase bzw. Ladephase der Batteriezelle (1 a) und den zweiten Zeitpunkt als einen beliebigen Zeitpunkt während der gleichen Entladephase bzw. Ladephase der Batteriezelle (1 a) bestimmt.
9. Vorrichtung nach einem der vorstehenden Ansprüche 6 bis 8, gekennzeichnet durch eine Tabelle (6), die eine Abhängigkeit des Innenwiderstands von einer während der Bestimmung des Innenwiderstands bestehenden Zellentemperatur und einem während der Bestimmung des Innenwiderstands bestehenden Ladezustand der Batteriezelle (1 a) speichert, und eine erste Auswerteeinheit (7), die eine alterungsabhängige Erhöhung des Innenwiderstands der Batteriezelle (1 a) anhand des ermittelten Innenwiderstands und einer Abfrage der Tabelle (6) bestimmt.
10. Vorrichtung nach einem der vorstehenden Ansprüche 6 bis 9, gekennzeichnet durch ein zweites Steuermodul (8) zur Variation einer Frequenz einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands und/oder zur Variation eines Tastverhältnisses einer Anregung des resistiven Zellbalancings während mehrerer aufeinanderfolgender Bestimmungen des Innenwiderstands, und eine zweite Auswerteeinheit (9) zur Ermittlung einer Frequenzabhängigkeit des Innenwiderstands der Batteriezelle (1 a) durch Auswertung der mehreren aufeinanderfolgenden Bestimmungen des Innenwiderstands.
EP10705870A 2009-04-17 2010-02-25 Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing Withdrawn EP2419750A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102009002465A DE102009002465A1 (de) 2009-04-17 2009-04-17 Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie bei Einsatz von resistivem Zellbalancing
PCT/EP2010/052376 WO2010118909A1 (de) 2009-04-17 2010-02-25 Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing

Publications (1)

Publication Number Publication Date
EP2419750A1 true EP2419750A1 (de) 2012-02-22

Family

ID=42115966

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10705870A Withdrawn EP2419750A1 (de) 2009-04-17 2010-02-25 Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing

Country Status (5)

Country Link
US (1) US20120032681A1 (de)
EP (1) EP2419750A1 (de)
CN (1) CN102395896A (de)
DE (1) DE102009002465A1 (de)
WO (1) WO2010118909A1 (de)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011075080A1 (en) * 2009-12-17 2011-06-23 Vestas Wind Systems A/S Method and system for estimating the lifetime of a battery of an energy backup system of a wind turbine
EP2447728B1 (de) * 2010-10-28 2013-06-19 Nxp B.V. Messanordnung für Impedanzspektroskopie in Batteriezellen
US9128165B2 (en) * 2011-05-04 2015-09-08 Datang Nxp Semiconductors Co., Ltd. Battery cell impedance measurement method and apparatus
JP5573818B2 (ja) 2011-11-08 2014-08-20 株式会社豊田自動織機 電池均等化装置および方法
DE102012209652A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren zur Bestimmung eines ohmschen Innenwiderstandes eines Batteriemoduls, Batteriemanagementsystem und Kraftfahrzeug
DE102012209657A1 (de) * 2012-06-08 2013-12-12 Robert Bosch Gmbh Verfahren und Vorrichtung zur Ermittlung des Innenwiderstandes von Batteriezellen einer Batterie
DE102012209660A1 (de) 2012-06-08 2013-12-12 Robert Bosch Gmbh Batteriesystem und zugehöriges Verfahren zur Ermittlung des Innenwiderstandes von Batteriezellen oder Batteriemodulen des Batteriesystems
US10475024B1 (en) 2012-10-15 2019-11-12 Square, Inc. Secure smart card transactions
DE102013204888A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Verfahren zum Ausgleich unterschiedlicher Ladungszustände von Batterien
DE102013204885A1 (de) * 2013-03-20 2014-09-25 Robert Bosch Gmbh Verfahren zur Reduzierung des Gesamtladungsverlusts von Batterien
DE102013206942A1 (de) * 2013-04-17 2014-10-23 Robert Bosch Gmbh Batteriesystem mit in einem Batteriestrang angeordneten Batteriemodulen und Verfahren zur Ermittlung zumindest eines Betriebsparameters eines Batteriemoduls des Batteriesystems
US9322885B2 (en) * 2013-11-26 2016-04-26 Infineon Technologies Ag Circuit and method for evaluating cells in a battery
CN103795127B (zh) * 2014-03-06 2016-05-18 北京亚安新能航天科技有限公司 具有在线监测功能的风力发电机变桨电池充电系统
US9760740B1 (en) 2014-06-23 2017-09-12 Square, Inc. Terminal case with integrated dual reader stack
US10753982B2 (en) * 2014-12-09 2020-08-25 Square, Inc. Monitoring battery health of a battery used in a device
US20160231387A1 (en) * 2015-02-09 2016-08-11 Microsoft Microsoft Technology Licensing, LLC Estimating Battery Cell Parameters
US10158148B2 (en) 2015-02-18 2018-12-18 Microsoft Technology Licensing, Llc Dynamically changing internal state of a battery
CN105203846B (zh) * 2015-09-11 2017-11-21 国家电网公司 一种消除低温对储能电池内阻测试影响的方法
JP2017139927A (ja) * 2016-02-05 2017-08-10 株式会社東芝 バッテリおよび電動自転車
DE102018219124B4 (de) 2018-11-09 2020-06-18 Audi Ag Verfahren zum Ermitteln eines Verschleißzustands eines elektrischen Energiespeichers in einem Kraftfahrzeug sowie Steuervorrichtung zum Durchführen des Verfahrens und Kraftfahrzeug

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086656A (ja) * 1999-07-09 2001-03-30 Fujitsu Ltd バッテリ監視装置
EP1377844B1 (de) * 2001-03-08 2005-10-12 DaimlerChrysler AG Verfahren und anordnung zur bestimmung der pufferwirkung einer batterie
US7193392B2 (en) * 2002-11-25 2007-03-20 Tiax Llc System and method for determining and balancing state of charge among series connected electrical energy storage units
JP4778431B2 (ja) * 2004-08-25 2011-09-21 日本電気株式会社 内部インピーダンス検出装置、内部インピーダンス検出方法、劣化度検出装置および劣化度検出方法
KR100796668B1 (ko) * 2006-09-26 2008-01-22 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
KR100839385B1 (ko) * 2006-11-01 2008-06-19 삼성에스디아이 주식회사 배터리 관리 시스템 및 그의 구동 방법
CN101071161A (zh) * 2007-06-08 2007-11-14 合肥工业大学 二次放电在线检测蓄电池内阻的方法
TW201411039A (zh) * 2012-09-11 2014-03-16 Yu-Chen Jian 照明器具

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010118909A1 *

Also Published As

Publication number Publication date
WO2010118909A1 (de) 2010-10-21
CN102395896A (zh) 2012-03-28
DE102009002465A1 (de) 2010-10-21
US20120032681A1 (en) 2012-02-09

Similar Documents

Publication Publication Date Title
EP2419750A1 (de) Ermittlung des innenwiderstands einer batteriezelle einer traktionsbatterie bei einsatz von resistivem zellbalancing
DE102009002468A1 (de) Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie bei Einsatz von induktivem Zellbalancing
DE102014102667B4 (de) Verfahren und system zum schätzen der spannung eines batterieelements
EP2859367B1 (de) Batteriesystem und zugehöriges verfahren zur ermittlung des innenwiderstandes von batteriezellen oder batteriemodulen des batteriesystems
DE112008001881B4 (de) Batterieprüfgerät für Elektrofahrzeug
EP2419990B1 (de) Erweiterte batteriediagnose bei traktionsbatterien
EP2531869B1 (de) Vorrichtung und verfahren zur bestimmung eines bereichs einer batteriekennlinie
DE102014102668B4 (de) Verfahren und system zum bestimmen der spannung eines batterieelements
EP2488885A1 (de) Verfahren zur bestimmung und/oder vorhersage der maximalen leistungsfähigkeit einer batterie
DE102012207815A1 (de) Systeme und verfahren zum bestimmen von zellenkapazitätswerten in einer batterie mit vielen zellen
DE102018216025A1 (de) Erdschlussdetektionsvorrichtung
DE102016207033A1 (de) Elektrische Energiespeichervorrichtung für ein Fahrzeugbordnetz, Fahrzeugbordnetz
DE102016013702A1 (de) Traktionsenergiespeichersystem mit Betriebsgrenzenbestimmung
EP4286215A1 (de) Technik zum veränderlichen verschalten eines traktionsenergiespeichersystems
DE102013206942A1 (de) Batteriesystem mit in einem Batteriestrang angeordneten Batteriemodulen und Verfahren zur Ermittlung zumindest eines Betriebsparameters eines Batteriemoduls des Batteriesystems
DE102019200510A1 (de) Messanordnung, Hochvoltbatterie, Kraftfahrzeug und Verfahren zum Bestimmen einer komplexen Impedanz
DE102013220691A1 (de) Verfahren und Vorrichtung zum Bestimmen eines Batteriestatus einer Fahrzeugbatterie in einem Fahrzeug
DE102020127773A1 (de) Verfahren und Steuergerät zum Ermitteln einer Kapazität einer Batteriezellenanordnung eines Kraftfahrzeugs sowie entsprechend ausgestattetes Kraftfahrzeug
DE102005025616B4 (de) Verfahren zur Überwachung und/oder Steuerung oder Regelung der Spannung einzelner Zellen in einem Zellstapel
DE102009054547B4 (de) Ermittlung des Innenwiderstands einer Batteriezelle einer Traktionsbatterie
EP3380855B1 (de) Verfahren zur ermittlung einer leistungsfähigkeitsinformation einer batterie eines kraftfahrzeugseitigen, an einen gleichspannungswandler angebundenen bordnetzes und kraftfahrzeug
DE102018219124A1 (de) Verfahren zum Ermitteln eines Verschleißzustands eines elektrischen Energiespeichers in einem Kraftfahrzeug sowie Steuervorrichtung zum Durchführen des Verfahrens und Kraftfahrzeug
DE102021127280A1 (de) Batterieverwaltungsvorrichtung und Batterievorrichtung
DE102020103179A1 (de) Verfahren zur Kapazitätsbestimmung eines elektrochemischen Energiespeichers, elektrochemischer Energiespeicher und Kraftfahrzeug
WO2014135394A1 (de) Vorrichtung und verfahren zur vorbereitung eines ladevorgangs eines energiespeichers

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111117

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20120616