EP2419380A1 - Method and apparatus for purifying a silicon feedstock - Google Patents
Method and apparatus for purifying a silicon feedstockInfo
- Publication number
- EP2419380A1 EP2419380A1 EP10713973A EP10713973A EP2419380A1 EP 2419380 A1 EP2419380 A1 EP 2419380A1 EP 10713973 A EP10713973 A EP 10713973A EP 10713973 A EP10713973 A EP 10713973A EP 2419380 A1 EP2419380 A1 EP 2419380A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- crucible
- torch
- melt
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 title claims abstract description 84
- 229910052710 silicon Inorganic materials 0.000 title claims abstract description 83
- 239000010703 silicon Substances 0.000 title claims abstract description 83
- 238000000034 method Methods 0.000 title claims abstract description 31
- 239000012535 impurity Substances 0.000 claims abstract description 43
- 239000007787 solid Substances 0.000 claims abstract description 30
- 239000002893 slag Substances 0.000 claims abstract description 25
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 239000002245 particle Substances 0.000 claims abstract description 10
- 238000000746 purification Methods 0.000 claims description 40
- 238000009434 installation Methods 0.000 claims description 35
- 239000000155 melt Substances 0.000 claims description 32
- 239000012159 carrier gas Substances 0.000 claims description 22
- 239000007789 gas Substances 0.000 claims description 22
- 230000008018 melting Effects 0.000 claims description 18
- 238000002844 melting Methods 0.000 claims description 17
- 238000000605 extraction Methods 0.000 claims description 16
- 238000003756 stirring Methods 0.000 claims description 14
- 230000008569 process Effects 0.000 claims description 13
- 239000000203 mixture Substances 0.000 claims description 11
- 238000007711 solidification Methods 0.000 claims description 11
- 230000008023 solidification Effects 0.000 claims description 11
- 238000000265 homogenisation Methods 0.000 claims description 10
- 239000000945 filler Substances 0.000 claims description 8
- 238000003780 insertion Methods 0.000 claims description 8
- 230000037431 insertion Effects 0.000 claims description 8
- 230000007935 neutral effect Effects 0.000 claims description 8
- 230000001939 inductive effect Effects 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 3
- FGUUSXIOTUKUDN-IBGZPJMESA-N C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 Chemical compound C1(=CC=CC=C1)N1C2=C(NC([C@H](C1)NC=1OC(=NN=1)C1=CC=CC=C1)=O)C=CC=C2 FGUUSXIOTUKUDN-IBGZPJMESA-N 0.000 claims description 2
- 230000008878 coupling Effects 0.000 claims description 2
- 238000010168 coupling process Methods 0.000 claims description 2
- 238000005859 coupling reaction Methods 0.000 claims description 2
- 238000007789 sealing Methods 0.000 claims description 2
- 238000013519 translation Methods 0.000 claims description 2
- 238000013019 agitation Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 description 11
- 238000012546 transfer Methods 0.000 description 10
- 238000011282 treatment Methods 0.000 description 9
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 5
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 230000006698 induction Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910052796 boron Inorganic materials 0.000 description 3
- 230000008030 elimination Effects 0.000 description 3
- 238000003379 elimination reaction Methods 0.000 description 3
- 230000004927 fusion Effects 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 229910052698 phosphorus Inorganic materials 0.000 description 3
- 239000011574 phosphorus Substances 0.000 description 3
- 238000009834 vaporization Methods 0.000 description 3
- 230000008016 vaporization Effects 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003153 chemical reaction reagent Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 229910052804 chromium Inorganic materials 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005672 electromagnetic field Effects 0.000 description 2
- 230000005674 electromagnetic induction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 238000007670 refining Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 229910021422 solar-grade silicon Inorganic materials 0.000 description 2
- 239000002028 Biomass Substances 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- -1 HCl. before step a) Chemical compound 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000009749 continuous casting Methods 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000018109 developmental process Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 230000003628 erosive effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 238000001033 granulometry Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000011403 purification operation Methods 0.000 description 1
- 239000013014 purified material Substances 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000012925 reference material Substances 0.000 description 1
- 239000011819 refractory material Substances 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000004576 sand Substances 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000011856 silicon-based particle Substances 0.000 description 1
- 239000011863 silicon-based powder Substances 0.000 description 1
- 239000002470 thermal conductor Substances 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/02—Silicon
- C01B33/037—Purification
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/001—Continuous growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
- C30B11/003—Heating or cooling of the melt or the crystallised material
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/02—Elements
- C30B29/06—Silicon
Definitions
- the present invention relates to a process for purifying a silicon-based filler and an installation for its implementation.
- photovoltaic silicon is a polycrystalline silicon having a silicon content of 99.9999%.
- the complement, 100 ppm consists of impurities whose respective levels must be contained within the following limits: boron ⁇ 0.3 ppm, - phosphorus ⁇ 1 ppm,
- US Pat. No. 4,354,987 discloses a method of compacting, after melting, already purified silicon powder using inductive heating by means of a graphite susceptor.
- the inductive plasma torch attractive from the point of view of its non-contaminating characteristics, is on the other hand strongly handicapped on the one hand as for its operation altered by the injection of the products to be treated, on the other hand, by a limited power range.
- the object of the invention is therefore to provide a method and an installation for purifying a charge based on silicon such as metallurgical silicon, overcoming these disadvantages of the prior art.
- the present invention is based on an optimized use of the arc thermal plasma, limiting, without energetic rupture, the steps of a process resulting in photovoltaic quality. It also makes it possible to produce, in industrial operation, large quantities of photovoltaic grade silicon from metallurgical silicon.
- the subject of the present invention is a process for purifying a silicon-based filler to obtain silicon of higher purity.
- this method comprises the following successive steps: a) a plasma dart generated by a first non-transferred arc torch is sent against a solid wall of a volume having an outlet orifice so that the impact of said stinger against said solid wall inside said volume generates a homogeneous plasma flow, b) a silicon-based charge consisting of particles and / or grains is introduced continuously or ground into said homogeneous plasma flow, c) the assembly formed by the homogeneous plasma flow into which said crushed feed has been introduced is continuously directed the outlet orifice of said volume to a crucible having side walls and a bottom and an open top, said crucible comprising means for heating and stirring said mulled charge, d) the entire crushed charge to be treated having been introduced and a melt being formed in said crucible, directs the reactive plasma jet of at least a second non-transferred arc torch on
- the purification process of the invention therefore aims to treat crushed silicon-based fillers or silicon-based charges consisting of particles and / or grains in said homogeneous plasma flow in batch form.
- the treatment of a crushed batch of charge ensures the filling of the crucible.
- silicon-based fillers are preferably fillers of silica, silicate, quartz, metallurgical silicon or combinations of these elements.
- these silicon-based fillers consisting of particles and / or grains may comprise sand having a granulometry smaller than 5 mm, and preferably between 0.4 mm and 1.3 mm.
- These silicon-based fillers may further comprise one or more additives such as carbon black resulting from, for example, biomass combustion.
- the homogenization of the plasma dart generated by the first non-transferred arc torch makes it possible to create a homogeneous plasma flow, particularly in terms of temperature. This homogeneity of the plasma flow allows a uniform treatment of the introduced crushed feedstock.
- the assembly obtained by introducing said ground feed into said homogeneous plasma flow has a sufficient size so as not to cause projections from the melt.
- this assembly is sent into the central portion of the upper opening of the crucible and the reactive plasma jet generated by at least one other non-transferred arc torch is sent away from the walls of the crucible so as not to create hot spots on these walls.
- the latter is electromagnetically stirred so that its impurities accumulate on the surface of the melt to be vaporized by one or more emitted plasma streams. by one or more other non-transferred arc plasma torches.
- This electromagnetic stirring can be provided by any electromagnetic mixer such as inductive heating means.
- the reactive plasma jet (s) will interact with the surface of the melt to allow the volatilization of some of the bath impurities present on the surface of this bath.
- the electromagnetic stirring of the bath ensures the renewal of this interface to be purified on the surface of the bath.
- the non-transferred arc plasma torch (s) are fed with redox plasmagene gas such as H 2 , CO 2 , O 2 , HCl, HF and combinations of these elements, in order to deliver at high temperature Oxidative reducing chemicals that promote the removal, by vaporization, of some of the impurities in the melt.
- said at least one reactive plasma jet is a homogeneous and reactive plasma flow obtained by impact of the reactive plasma dart generated by said at least second non-transferred arc torch against a solid wall of another volume having an exit orifice, said second torch being connected to said other volume,
- the particle size of said ground feedstock is between 10 and 500 ⁇ m, and more preferably between 80 and 150 ⁇ m,
- step b) the milled feed being introduced by means of a carrier gas, the ratio of the mass of the milled feedstock to the carrier gas mass is greater than 20, Preferably, this ratio is between 20 and 100 so as not to cool the plasma dart generated by the non-transferred arc plasma torch placed in the introduction chamber.
- the carrier gas being a reactive gas in contact with the homogeneous plasma flow, a first purification of the ground feedstock is carried out in this homogeneous plasma flow,
- the carrier gas becomes reactive in contact with the homogeneous plasma flow by transferring energy from the latter to the carrier gas.
- this carrier gas is a gas comprising chlorine such as HCl.
- the distance separating the exit orifice of the non-transferred arc plasma torch from this solid wall is of the order of three to five times the diameter of the plasma dart measured at the exit of this torch connected to the introductory speaker.
- step c) the electromagnetic stirring of the melt is carried out
- step d) the crucible having a diameter D and a height H such that D / H> 5
- the reactive plasma jets of at least a second and a third non-transferred arc torch are sent onto the surface of the melting bath to volatilize at least some of the melt impurities present on the surface of this bath,
- a single jet of reactive plasma is oriented on the surface of the melt to give the slag a quantity of movement able to direct it towards at least one discharge orifice placed on the side walls of said crucible this reactive plasma jet being generated in turn or not by other non-transferred arc torches,
- each non-transferred arc torch emitting a plasma jet allows a gradual evacuation of the slag in preferred directions.
- the spatial volume of the homogeneous plasma flows is increased to avoid projections in said crucible in step c) and to treat a surface of said larger melt in step d)
- step f) the melt thus purified is discharged from its impurities by plasma by controlling its extraction rate, its extraction temperature and the quantity extracted, thus, this solidification being carried out without an additional melting step, ingots having an impurity-enriched silicon outer shell and a silicon-containing core of higher purity are obtained. It then remains to remove this envelope to obtain the silicon of higher purity.
- the method of the invention therefore allows in a single step of cooling the melt to obtain ingots having an impurity-enriched silicon outer shell while the core of these ingots comprises the silicon of higher purity desired.
- These ingots preferably have a solar-grade silicon bar shape. They can, for example, have a section of 40x40 cm 2 .
- the invention also relates to a purification plant for carrying out the purification process as described above.
- this installation comprises: an insertion chamber comprising at a first end a non-transferred arc plasma torch having a main axis, said torch being intended to generate a plasma dart having an axis of propagation substantially centered on the main axis of said torch,
- said insertion chamber comprising a bent part having an outlet orifice, this bent part placed downstream of said plasma torch comprising a solid wall such that said plasma dart collides with said solid wall to form a homogeneous plasma flow
- this introduction chamber comprising at least one insertion port placed downstream of said plasma torch for introduction into continuous operation of a milled feedstock for mixing with said homogeneous plasma flow,
- the outlet orifice of said introduction chamber is placed above a crucible having side walls and a bottom and an open top, said crucible being intended to continuously receive said assembly formed by the plasma flow; homogeneous in which said milled feedstock was introduced until complete introduction of the milled feed, to form a melt,
- said crucible comprising means for heating and stirring said molten melt, one or more extraction orifices placed on its side walls for evacuating the slag and at least one discharge orifice for discharging said melt,
- said installation comprising one or more other non-transferred arc plasma torches each for generating a jet of reactive plasma sent on the surface of the melt in order to volatilize at least some of the surface impurities of said melt.
- the crucible preferably has a cylindrical or ovoid shape or any other geometry having an axis of symmetry.
- the internal volume of this crucible is delimited by walls comprising a non-polluting refractory material with respect to the silicon to be purified, for example, ultrapure silica.
- the crucible can be rotatable about a vertical axis to be inclined to facilitate the evacuation of the slag. This inclination can be of a few degrees.
- the extraction orifices of the slag are, for example, evenly distributed around the periphery of the crucible opposite the zones of intersection of the reactive plasma jets with the surface of the melt.
- these extraction orifices comprise three notches for overflow of the slag film positioned in the wall of the crucible, being distributed at 120 ° and diametrically opposite to the points of intersection with the surface of the melt of the plasma darts generated. by other non-transferred arc torches for the treatment of surface impurities.
- said at least one discharge port comprises means for ensuring its obstruction such as valves or electromagnetic means.
- this installation comprises means of visualization of the melt to determine the opportune moment to evacuate the slag
- the gas of said non-transferred arc torch placed on said introduction chamber is a neutral gas or a reactive gas such as H 2 , CO 2 , O 2 , HCl, HF and combinations of these elements,
- the non-transferred arc torches each comprise a downstream electrode which is an electrode flared so as to increase the spatial volume of the plasma dart or the reactive plasma jet generated,
- each downstream electrode is a conical electrode. Its taper angle can be from 1 ° to 2 °.
- the bent portion comprises at least one portion of flared shape to enable the flow of the ground feedstock introduced into said homogeneous plasma flow to be absorbed, this portion of flared shape comprising at its end the outlet orifice of the enclosure of Introduction,
- the wall of the bent portion with which collides the plasma dart may be inclined relative to the axis of propagation of the plasma dart so as to limit the energy transfer to said wall.
- This bent portion may include a flare towards the outlet of the conical shaped enclosure whose half-angle at the top is between 10 and 30 °.
- each of the homogenization enclosures comprises at least one portion of flared shape at the end of which is placed the outlet orifice of the corresponding homogenization enclosure
- the installation comprises means for individually adjusting the distances separating the outlet orifices of the introduction chamber and the homogenization chambers, the bottom of the crucible or the surface of the said melt to optimize the energy balances and the extraction of impurities,
- each of said other non-transferred arc torches generating a reactive plasma jet is connected to a corresponding homogenization chamber comprising a bent part placed downstream of said corresponding plasma torch, said bent part comprising a solid wall so that said jet of reactive plasma generated by said torch correspondingly collides with said solid wall to form a homogeneous and reactive plasma flow,
- said solid wall with which the plasma dart collides is placed relative to the outlet orifice of said torch connected to said introduction chamber, in an area where the temperature of the plasma dart measured in the axis of said plasma dart and in the absence of said solid wall is equal to or substantially equal to half the mean temperature peak value of the plasma dart measured at the output of said non-transferred arc torch, this solid wall is mobile in translation relative to the outlet orifice of said non-transferred arc torch,
- the plasma torch placed at one end of the introduction chamber is movable in order to make it possible to adjust the position of the solid wall with respect to the outlet orifice of this non-transferred arc plasma torch.
- said at least one port for introducing the milled feedstock comprises at least one nozzle allowing introduction of said milled feedstock in rotation
- the plasma power of each of the non-transferred arc torches can be continuously adjusted by power adjustment means in order to optimize the energy balances and the elimination of impurities, moreover avoiding the need to create thermal shocks at the walls of the melting / purification crucible,
- in-line measurement means make it possible to continuously determine the degree of purity of the material being purified in the melt
- the crucible has a diameter D and a height H such that D / H> 5,
- this ratio D / H may be equal to 15.
- this shallow depth of the crucible for a large diameter increases the interface of the melt rich in impurities to vaporize and facilitates the return to the surface of the bath by mixing, impurities contained in the bath for the renewal of this interface.
- the installation comprises at least two other non-transferred arc plasma torches.
- the zones of intersection of the reactive plasma jets emitted by these other torches with the surface of the melt are placed at 120 ° from each other on a circle of radius between a quarter and three quarters of the radius of the crucible.
- the means for heating and stirring comprise one or more inductive coupling means such as one or more induction coils,
- the other torches are orientable so as to move the jet of reactive plasma that it generates to the surface of said melt
- This displacement of the plasma jet on the surface of the melt allows in particular to push the slag towards the extraction orifices.
- this installation comprises means for adjusting the composition of the plasma gas of each of the non-transferred arc torches during the operation of the latter,
- this installation comprises receptacles for collecting the melt, these receptacles being placed on means of scrolling so as to be presented one by one under this or these orifices of discharge until said crucible is empty.
- These scrolling means may comprise a linear scroll chain or a rotatable carousel.
- the gravitational flow is initiated and interrupted according to the sequential presentation, under the crucible, of containers.
- a controlled atmosphere chamber which is itself connected to the crucible for the transfer of the melt to the container.
- the installation further comprises sealing connection means for connecting each of these discharge ports with the corresponding container in which the melt is to be discharged.
- FIG. 2 is an enlarged view of the crucible of the installation of FIG. 1 showing a slag extraction orifice with its slag recovery device, FIG. 2 a) is a perspective view of this extraction orifice and FIG. 2b) is a sectional view;
- FIG. 3 is a view from above of the installation of FIG. 1;
- Figure 4 is an enlarged view of the lower part of the installation of Figure 1 showing the means for scrolling containers under the discharge port;
- Figure 1 shows more particularly a sectional view of a plasma purification plant according to a particular embodiment of the invention which will be described here in the context of the metallurgical silicon treatment.
- This installation comprises a melting / purifying crucible 1 of cylindrical shape coupled to a melting / purification chamber 2, also cylindrical in shape and sealed with respect to the crucible 1.
- the crucible 1 and the chamber 2 may however have any other shape, for example ovoid.
- This melting / purification chamber 2 comprises a conduit 3, or chimney, for the evacuation of the gases present in the enclosure 2.
- a milled silicon feedstock is introduced continuously with a carrier gas into an introduction chamber 4, by means of an injector 5 whose orifice opens into the wall of the introduction chamber 4.
- the latter comprises at one end a non-transferred arc plasma torch 6, which delivers a plasma dart.
- This stinger collides with a solid wall 7 of the introduction chamber 4 to generate a homogeneous plasma flow.
- This flow mixes with the milled silicon feedstock and the carrier gas, to produce a two-phase dart 8 at the outlet of a flared section 9 of the introduction enclosure 4.
- the two-phase dart 8 is oriented along the axis 10 crucible 1, substantially vertically towards the melting / purification crucible 1.
- This configuration has the advantages of being able to deliver a controlled milled silicon feed stream in its flow rate, independently of the flow rate of the plasma dart generated by the non-transferred arc torch 6 connected to the introduction enclosure 4, while being treated in its totality in the homogeneous plasma flow. It also makes it possible to start the melting / purification process as soon as the crushed silicon feed is injected with adjustable residence times.
- the non-transferred arc plasma torch 6 supplies the energy which is partially transferred on the one hand to the milled silicon feedstock and on the other hand to the carrier gas, this carrier gas, heated to high temperature, constituting the starting chemical reagent.
- the ground silicon charge having a particle size of between 10 and 500 microns, and more preferably between 80 and 150 microns, the silicon particles have a maximum exchange surface.
- the ground silicon charge, confined and conveyed by the diphasic dart 8 fills the melting / purification crucible 1, bringing it to the pre-melted state due to the continuous supply of energy by the arc plasma torch not transferred 6, while the purification process is still active.
- a high frequency electromagnetic field, produced by an induction coil 12 brings the silicon contained in the crucible 1 in the molten state, creating a stirred melt 13.
- This surface 17 is fed continuously by the residual impurities due to the electromagnetic stirring generated by the induction coil 12.
- the three other non-transferred arc plasma torches 14, 15 and 16 are respectively connected to bent portions 18, 19 and 20 (Fig. 3) which respectively deflect the reactive plasma jets generated by these torches by causing a collision between each jet of reactive plasma and a solid wall of the corresponding bent portion to create homogeneous and reactive plasma flows 21, 22 ( Figure 1).
- These bent portions respectively comprise flared sections 23, 24 orienting the homogeneous and reactive plasma flows substantially vertically towards the surface of the bath 17.
- the non-transferred arc plasma torches 3, 14, 15 and 16 are each connected to the enclosure 2 by sealed devices (not shown), which furthermore allow orientation of the homogeneous plasma flows 8, 21, 22 with respect to the vertical of a maximum angle of inclination of 10 °.
- the plasma torches 14, 15 and 16 and their associated bent portions 18, 19 and 20 are concentric with the outlet orifice of the introduction chamber 4, the intersections of the axes 25, 26 of the homogeneous plasma flows 21, 22 with the surface 17 being distributed at 120 ° on a circle whose radius is between one quarter and three quarters of the radius of the crucible 1.
- the distance between the torches 3, 14, 15, 16 and the surface 17 of the bath, or still the bottom of the crucible, is adjustable by moving the crucible 1 relative to the chamber 2, while maintaining the seal between the chamber 2 and the crucible 1. This mobility increases the thermal efficiency and thermochemical torches relative to on the surface of the bath 17.
- the slag film which can form on the surface of the bath, to the detriment of the extraction efficiency of the impurities, is evacuated at regular intervals.
- the slag is received in three notches 27-29, arranged in the crucible 1 just below the surface of the bath 17 when the crucible 1 is filled ( Figure 2).
- These notches 27-29 face, during the movement of the crucible relative to the chamber 2, interfaces 30 fixed to the chamber 2 and made of a material identical or similar to that of the crucible 1.
- the interfaces 30 are housed respectively in the notches 27-29 to maintain the level 17 of the bath 13.
- the notches 27-29 are respectively diametrically opposed to the impact zones of the homogeneous plasma flows 21, 22 with the surface of the bath 17.
- only one of the three non-transferred arc torches 14, 15 and 16 is turned on at the same time and in turn to cause, respectively by mechanical effect of their homogeneous plasma flow 21, 22, the passage of the slag in the openings of the corresponding notches 27-29. This operation being repeated as much as necessary.
- the slag is collected in receptacles (not shown). It should be noted that the height of each notch is adjusted to take into account the decrease of the level 17 of the molten bath 13 during the evacuation of the slag.
- the notch 29 is deeper than the notch 28, which itself is deeper than the notch 27.
- Plasma purified silicon is transferred to a controlled solidification device (not shown in Fig. 1 for the sake of clarity) by semi-continuous casting, positioned in the axis of the bottom 30 of the crucible 1, for example by reheating by an electromagnetic field produced by the coil 31.
- Said controlled solidification device is positioned under the crucible 1 and is sealed relative to the latter, by the interface 32, when casting is allowed.
- the volume of the solidification device being more limited than that of the crucible 1, several controlled solidification devices 33-37 (Fig. 4) will be successively presented. This can be achieved, for example, by horizontal displacement of the latter and set up under the crucible 1 by a vertical movement.
- these solidification devices 33-37 are mounted on a carriage 38 for presentation in line or radiating. Means of measurement and control can capture the temperature and pressure in the melting / purification chamber 2, the level of the melt 13 and the degree of purification of the material.
- the purification process comprises the following steps: a) a milled metallurgical silicon stream is transported, for example by means of a carrier gas and is injected substantially vertically downwards in a homogeneous plasma flow obtained by the collision of a plasma dart emitted by a non-transferred arc torch, supplied with a neutral gas, for example argon, operating substantially at its nominal power, with a solid wall.
- a neutral gas for example argon
- the preheated silicon stream is simultaneously subjected to purification "in flight" (first purification) of vaporizable impurities, by the choice of carrier gas raised at high temperature by the homogeneous plasma flow, for example chlorine or chloride of hydrogen, the plasma / silicon exchange surface being maximized by the finely divided state of the incoming millstock, b / the two-phase mixture is directed substantially vertically downward in a melting / purifying crucible (second purification ), substantially along the vertical axis thereof, to form a melt pre-purified material, the crucible having a volume defined by walls made of an ultra pure material with high temperature resistance and non-contaminating with respect to the silicon charge, c) when the crucible is filled with a molten bath under the action of the plasma in neutral gas, the injection of the ground silicon metallurgic charge that ceases, the plasma power of the non-transferred arc torch fed with neutral gas is reduced, the chemical function of the carrier gas is still active to continue the purification in the crucible, d
- This plasma is also generated by one or more other non-transferred arc plasma torches. It is also used for its mechanical effects so as to evacuate, laterally and at regular intervals, the slag film which can form on the surface of the bath, because of additional reactions between the plasma and the silicon, in particular oxides of silicon. This film must be evacuated because it reduces the efficiency of the plasma dedicated to the surface removal of impurities.
- evacuating the slag film preferably its vaporization by the use of specific plasma gases having the ability to vaporize this film, a "cleaning" chemical at regular intervals.
- the casting is initiated to transfer the bath to crystallization means, the electromagnetic induction heating being maintained in a suitable power range, and that, if necessary, the plasma in neutral gas at reduced power.
- the process described above therefore allows a first elimination of impurities (first purification) on the particles of the milled feed "in flight" within the mixture of plasma gas neutral / carrier gas of the central torch fed with neutral gas, followed by a second purification on the surface of the bath continuously supplied with residual impurities by the electromagnetic stirring.
- the impurities extracted are phosphorus and metal impurities, for example Fe, Ti, in the form of gaseous chlorides.
- metal impurities for example Fe, Ti
- the reactive mixture of plasmagene gas, of the oxygen, hydrogen, carbon dioxide and even hydrogen chloride type allow the surface vaporization of the bath of other impurities by oxidizing them.
- Boron is converted into a gaseous compound of chemical formula BOH, while carbon is oxidized to carbon monoxide. It results from these plasma treatments, a silicon still containing impurities, but only consisting of metallic chemical elements whose contents are compatible with the last extraction by segregation in the controlled solidification process, in particular Cu, V, Al, Cr.
- the erosion of the electrodes of the arc torches produces Cu and Cr type metallic elements, in minimum quantities, which are eliminated by segregation during the controlled solidification phase.
- this process advantageously allows an optimized use of the plasma for the following reasons: pre-fusion thermal function of the metallurgical silicon, initially little thermal conductor, "in flight" and in the crucible , function of first and second purification coupled to the thermal function, in the initial phase of injecting the material into the plasma and into the crucible, by a combined action with the carrier gas,
- arc plasma is insensitive to the injection of pulverulent metallurgical silicon, which makes it particularly efficient for this type of application.
- the operation and the performance of the non-transferred arc plasma torch connected to the introduction chamber are not modified, or very marginally, by the injection of the material, and therefore the efficiency of the
- the process is solely related, as regards plasma, to optimizing the heat and chemical transfer of the plasma from the torch to the material to be treated.
- the configuration adopted guarantees that all the silicon will be effectively treated. This purification process offers a very favorable energy balance:
- the plasma and electromagnetic energy sources are respectively used for a maximum transfer of energy to the ground metallurgical silicon charge, namely
- an industrial purification plant has the following main characteristics:
- the crucible 1 has an inner diameter of order of 1.5 meters
- the height of the bath is of the order of 0.2 meters
- the plasma power of the torch 3 is of the order of one megawatt
- the unit power of each side torch, 14, or 15 or 16 is of the order of 300 kW
- the power of the electromagnetic heating device is of the order of one megawatt
- the flow rate of metallurgical silicon is of the order of 500 kg / hour.
- the capacity of a purified silicon production unit is of the order of 400 kg / hour.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Inorganic Chemistry (AREA)
- Silicon Compounds (AREA)
Abstract
The invention relates to a method for purifying a silicon feedstock in order to obtain silicon with a higher purity. According to the invention, the following steps are carried out: a) a plasma cone generated by a first non-transferred arc torch (6) is directed onto a solid wall (7) of a space having an outlet opening such that the impact of the cone against said solid wall (7) generates a homogeneous plasma flow; b) a silicon feedstock to be treated, consisting of particles and/or grains or crushed, is continuously injected into said homogeneous plasma flow; c) the whole consisting of the homogeneous plasma into which the crushed feedstock was injected is continuously directed from the outlet opening towards a crucible (1) comprising a means for heating and agitating said crushed feedstock in the molten state; d) once the entire crushed feedstock has been injected and a molten pool (13) has been formed in the crucible (1), the reactive plasma jet of at least one second non-transferred arc torch is directed towards the surface of said pool; e) the slag on the surface (17) of said pool is removed, and steps d) and e) are optionally repeated in order to evaporate at least some of the impurities of the pool brought to the surface (17) of said pool by agitation.
Description
Procédé et Installation de purification d'une charge à base de silicium Method and apparatus for purifying a silicon-based charge
La présente invention concerne un procédé de purification d'une charge à base de silicium et une installation pour sa mise en oeuvre.The present invention relates to a process for purifying a silicon-based filler and an installation for its implementation.
Il est connu que la production de silicium photovoltaïque est actuellement insuffisante pour répondre aux besoins actuels du marché, marché en forte croissance en raison de l'intérêt pour les énergies renouvelables. Son approvisionnement a été basé pendant des années sur les déchets de silicium électronique, la rareté actuelle et future de ce matériau provoquant alors un accroissement des prix qui est incompatible avec l'extension programmée de ce marché. Même si des travaux de recherche sont conduits avec des matériaux autres que le silicium pour transformer l'énergie lumineuse en énergie thermique ou électrique, le silicium reste le matériau de référence.It is known that the production of photovoltaic silicon is currently insufficient to meet the current needs of the market, a market that is growing strongly due to the interest in renewable energies. Its supply has been based for years on electronic silicon waste, the current and future scarcity of this material then causing an increase in prices that is incompatible with the planned extension of this market. Even if research is conducted with materials other than silicon to transform light energy into thermal or electrical energy, silicon remains the reference material.
Aussi, d'autres filières de production de silicium photovoltaïque sont activement explorées, soit par voie chimique simplifiée par rapport à celle mise en œuvre pour la production de silicium électronique, soit par voie électrochimique à haute température.Also, other photovoltaic silicon production lines are actively explored, either by simplified chemical process compared to that implemented for the production of electronic silicon, or electrochemically at high temperature.
L'industrie photovoltaïque exige un silicium à haut degré de pureté pour produire des cellules photovoltaïques, ou cellules solaires. Ce silicium photovoltaïque est un silicium polycristallin ayant un taux de silicium à 99,9999 %. Le complément, 100 ppm, est constitué d'impuretés dont les taux respectifs doivent être contenus dans les limites suivantes : - bore < 0,3 ppm,
- phosphore < 1 ppm,The photovoltaic industry requires high purity silicon to produce photovoltaic cells, or solar cells. This photovoltaic silicon is a polycrystalline silicon having a silicon content of 99.9999%. The complement, 100 ppm, consists of impurities whose respective levels must be contained within the following limits: boron <0.3 ppm, - phosphorus <1 ppm,
- total des impuretés métalliques < 100 ppm,- total metal impurities <100 ppm,
- carbone < 10 ppm, - oxygène < 10 ppm. Le silicium métallurgique étant un silicium de basse pureté, il est donc nécessaire de le purifier pour produire un silicium de qualité photovoltaïque.- carbon <10 ppm, - oxygen <10 ppm. As metallurgical silicon is a low purity silicon, it is therefore necessary to purify it to produce a photovoltaic grade silicon.
On connaît de nombreux procédés de purification de silicium métallurgique afin d'éliminer notamment les impuretés que sont le bore et le phosphore. On connaît, par le brevet US 4 354 987, une méthode de compactage, après fusion, de silicium en poudre déjà purifié, utilisant un chauffage inductif au moyen d'un suscepteur en graphite.Many metallurgical silicon purification processes are known in order to eliminate, in particular, impurities such as boron and phosphorus. US Pat. No. 4,354,987 discloses a method of compacting, after melting, already purified silicon powder using inductive heating by means of a graphite susceptor.
Les brevets FR 2 487 608 et FR 2 585 690 décrivent également la purification du silicium sous plasma inductif avec un mélange plasmagène argon, hydrogène et oxygène. Le brevet US 4 379 777 décrit également un procédé de traitement plasma du silicium métallurgique, par torche à plasma inductive fonctionnant avec un mélange argon/hydrogène.The patents FR 2 487 608 and FR 2 585 690 also describe the purification of silicon under inductive plasma with a plasmagene mixture of argon, hydrogen and oxygen. US Pat. No. 4,379,777 also describes a plasma metallurgical silicon treatment process using an inductively coupled plasma torch operating with an argon / hydrogen mixture.
Il est clair que de nombreux développements ont été menés, depuis plusieurs décennies, pour purifier le silicium métallurgique, avec pour objectif un coût économique compétitif à la qualité photovoltaïque.It is clear that many developments have been conducted, for several decades, to purify metallurgical silicon, with the objective of a competitive economic cost to photovoltaic quality.
En particulier, de nombreux travaux ont été consacrés à l'utilisation du plasma thermique, parfois en combinaison avec un mode de chauffage électromagnétique ou résistif, pour fondre et purifier du silicium métallurgique.In particular, many studies have been devoted to the use of thermal plasma, sometimes in combination with an electromagnetic or resistive heating mode, for melting and purifying metallurgical silicon.
Cependant, tous ces procédés présentent l'un ou l'autre les inconvénients suivants :However, all these methods have one or the other of the following disadvantages:
- on obtient le degré de purification requis par des procédés complexes nécessitant plusieurs étapes. A titre d'exemple, le documentthe degree of purification required is obtained by complex processes requiring several steps. For example, the document
"Thermodynamics of solar grade silicon refining" (Revue Intermetallics 11 ,"Thermodynamics of solar grade silicon refining" (Revue Intermetallics 11,
2003, 1111 -1117), propose une analyse complète conduisant à proposer un procédé de purification de silicium métallurgique ne comportant pas moins de cinq étapes pour aboutir à la qualité photovoltaïque : addition de calcium, lixiviation à l'acide, raffinage par oxydation, traitement sous vide et solidification contrôlée, chaque étape étant spécialisée dans la préparation et/ou l'extraction d'impuretés spécifiques. - on peut aussi obtenir le résultat souhaité par l'adjonction de fondants
directement dans un bain fondu de silicium.2003, 1111-1117), proposes a complete analysis leading to propose a metallurgical silicon purification process comprising not less than five steps to achieve photovoltaic quality: calcium addition, acid leaching, oxidation refining, treatment under vacuum and controlled solidification, each step being specialized in the preparation and / or extraction of specific impurities. - we can also obtain the desired result by adding fluxes directly in a molten bath of silicon.
Dans tous les cas, les quantités de silicium photovoltaïque produites restent marginales et les bilans énergétiques défavorables puisque grevés soit par l'adjonction de matériaux facilitant l'élimination des impuretés, soit par la multiplication des étapes du procédé, soit les deux.In all cases, the quantities of silicon photovoltaic produced remain marginal and unfavorable energy balances since encumbered either by the addition of materials facilitating the removal of impurities, either by the multiplication of the process steps, or both.
Il est à noter qu'à ce jour, aucune installation industrielle n'est opérationnelle et encore moins sur une échelle qui pourrait être compatible avec les besoins du marché et les nécessaires réductions des coûts.It should be noted that to date, no industrial facility is operational and even less on a scale that could be compatible with the needs of the market and the necessary cost reductions.
Si l'on s'en tient à l'utilisation du plasma thermique, il est certain que la torche à plasma inductif, séduisante du point de vue de ses caractéristiques non contaminantes, est par contre fortement handicapée d'une part quant à son fonctionnement altéré par l'injection des produits à traiter, d'autre part, par une gamme de puissance limitée.If one sticks to the use of the thermal plasma, it is certain that the inductive plasma torch, attractive from the point of view of its non-contaminating characteristics, is on the other hand strongly handicapped on the one hand as for its operation altered by the injection of the products to be treated, on the other hand, by a limited power range.
Le but de l'invention est donc de proposer un procédé et une installation pour purifier une charge à base de silicium telle que du silicium métallurgique, surmontant ces inconvénients de l'art antérieur.The object of the invention is therefore to provide a method and an installation for purifying a charge based on silicon such as metallurgical silicon, overcoming these disadvantages of the prior art.
Avantageusement, la présente invention est basée sur une utilisation optimisée du plasma thermique d'arc, limitant, sans rupture énergétique, les étapes d'un procédé aboutissant à la qualité photovoltaïque. Elle permet de produire également dans un fonctionnement industriel de grandes quantités de silicium de qualité photovoltaïque à partir de silicium métallurgique.Advantageously, the present invention is based on an optimized use of the arc thermal plasma, limiting, without energetic rupture, the steps of a process resulting in photovoltaic quality. It also makes it possible to produce, in industrial operation, large quantities of photovoltaic grade silicon from metallurgical silicon.
A cet effet, la présente invention a pour objet un procédé de purification d'une charge à base de silicium pour obtenir du silicium de pureté supérieure. Selon l'invention, ce procédé comporte les étapes successives suivantes : a) on envoie un dard plasma généré par une première torche à arc non transféré contre une paroi pleine d'un volume ayant un orifice de sortie de sorte que l'impact dudit dard contre ladite paroi pleine à l'intérieur dudit volume génère un écoulement plasma homogène, b) on introduit de manière continue une charge à traiter à base de silicium constituée de particules et/ou de grains ou encore broyée dans ledit écoulement plasma homogène, c) on dirige de manière continue l'ensemble formé par l'écoulement plasma homogène dans lequel a été introduite ladite charge broyée, de
l'orifice de sortie dudit volume vers un creuset ayant des parois latérales et un fond et une partie supérieure ouverte, ledit creuset comportant des moyens pour chauffer et brasser ladite charge broyée à l'état fondu, d) l'intégralité de la charge broyée à traiter ayant été introduite et un bain de fusion étant formé dans ledit creuset, on dirige le jet de plasma réactif d'au moins une deuxième torche à arc non transféré sur la surface dudit bain afin de volatiliser au moins certaines des impuretés du bain de fusion présentes à la surface dudit bain, e) on évacue le laitier présent à la surface dudit bain, et on répète éventuellement les étapes d) et e) pour volatiliser au moins certaines des impuretés du bain amenées à la surface dudit bain par brassage, f) on décharge ledit bain de fusion.For this purpose, the subject of the present invention is a process for purifying a silicon-based filler to obtain silicon of higher purity. According to the invention, this method comprises the following successive steps: a) a plasma dart generated by a first non-transferred arc torch is sent against a solid wall of a volume having an outlet orifice so that the impact of said stinger against said solid wall inside said volume generates a homogeneous plasma flow, b) a silicon-based charge consisting of particles and / or grains is introduced continuously or ground into said homogeneous plasma flow, c) the assembly formed by the homogeneous plasma flow into which said crushed feed has been introduced is continuously directed the outlet orifice of said volume to a crucible having side walls and a bottom and an open top, said crucible comprising means for heating and stirring said mulled charge, d) the entire crushed charge to be treated having been introduced and a melt being formed in said crucible, directs the reactive plasma jet of at least a second non-transferred arc torch on the surface of said bath to volatilize at least some of the impurities in the bath of melting present on the surface of said bath, e) the slag present at the surface of said bath is removed, and steps d) and e) are optionally repeated to volatilize at least some of the impurities in the bath brought to the surface of said bath by stirring, f) discharging said melt.
Le procédé de purification de l'invention vise donc à traiter des charges à base de silicium broyées ou des charges à base de silicium constituées de particules et/ou de grains dans ledit écoulement plasma homogène sous forme de lots. De préférence, le traitement d'un lot de charge broyée assure le remplissage du creuset.The purification process of the invention therefore aims to treat crushed silicon-based fillers or silicon-based charges consisting of particles and / or grains in said homogeneous plasma flow in batch form. Preferably, the treatment of a crushed batch of charge ensures the filling of the crucible.
Ces charges à base de silicium sont, de préférence, des charges de silice, de silicate, de quartz, de silicium métallurgique ou des combinaisons de ces éléments.These silicon-based fillers are preferably fillers of silica, silicate, quartz, metallurgical silicon or combinations of these elements.
A titre purement illustratif, ces charges à base de silicium constituées de particules et/ou de grains peuvent comporter du sable ayant une granulométhe inférieure à 5 mm, et de préférence comprise entre 0,4 mm à 1 ,3 mm. Ces charges à base de silicium peuvent de plus comprendre un ou plusieurs additifs tels que du noir de carbone résultant, par exemple, de la combustion de biomasse.As a purely illustrative example, these silicon-based fillers consisting of particles and / or grains may comprise sand having a granulometry smaller than 5 mm, and preferably between 0.4 mm and 1.3 mm. These silicon-based fillers may further comprise one or more additives such as carbon black resulting from, for example, biomass combustion.
L'homogénéisation du dard plasma généré par la première torche à arc non transféré permet de créer un écoulement de plasma homogène notamment en température. Cette homogénéité de l'écoulement de plasma autorise un traitement uniforme de la charge broyée introduite.The homogenization of the plasma dart generated by the first non-transferred arc torch makes it possible to create a homogeneous plasma flow, particularly in terms of temperature. This homogeneity of the plasma flow allows a uniform treatment of the introduced crushed feedstock.
Avantageusement, en sortie de l'enceinte d'introduction, l'ensemble obtenu par l'introduction de ladite charge broyée dans ledit écoulement plasma homogène a une dimension suffisante de manière à ne pas provoquer de projections provenant du bain de fusion.
De préférence, cet ensemble est envoyé dans la portion centrale de l'ouverture supérieure du creuset et le jet de plasma réactif généré par au moins une autre torche à arc non transféré est envoyé à distance des parois du creuset pour ne pas créer de points chauds sur ces parois. De manière à assurer un traitement de certaines des impuretés contenues dans le bain de fusion, ce dernier est brassé de manière électromagnétique de sorte que ses impuretés s'accumulent à la surface du bain de fusion pour être vaporisées par un ou plusieurs jets de plasma émis par une ou plusieurs autres torches à plasma à arc non transféré. Ce brassage électromagnétique peut être assuré par tout mélangeur électromagnétique tel que des moyens de chauffage inductif. Typiquement, le ou les jets de plasma réactifs vont interagir avec la surface du bain de fusion pour permettre la volatilisation de certaines des impuretés du bain présentes à la surface de ce bain. Le brassage électromagnétique du bain assure le renouvellement de cette interface à purifier à la surface du bain. Avantageusement, la ou les autres torches à plasma à arc non transféré sont alimentées en gaz plasmagène oxydo-réducteur tel que H2, CO2, O2, HCI, HF et des combinaisons de ces éléments, afin de délivrer à haute température des espèces chimiques oxydo réductrices favorisant l'élimination, par vaporisation, de certaines des impuretés du bain de fusion.Advantageously, at the outlet of the introduction chamber, the assembly obtained by introducing said ground feed into said homogeneous plasma flow has a sufficient size so as not to cause projections from the melt. Preferably, this assembly is sent into the central portion of the upper opening of the crucible and the reactive plasma jet generated by at least one other non-transferred arc torch is sent away from the walls of the crucible so as not to create hot spots on these walls. In order to ensure a treatment of some of the impurities contained in the melt, the latter is electromagnetically stirred so that its impurities accumulate on the surface of the melt to be vaporized by one or more emitted plasma streams. by one or more other non-transferred arc plasma torches. This electromagnetic stirring can be provided by any electromagnetic mixer such as inductive heating means. Typically, the reactive plasma jet (s) will interact with the surface of the melt to allow the volatilization of some of the bath impurities present on the surface of this bath. The electromagnetic stirring of the bath ensures the renewal of this interface to be purified on the surface of the bath. Advantageously, the non-transferred arc plasma torch (s) are fed with redox plasmagene gas such as H 2 , CO 2 , O 2 , HCl, HF and combinations of these elements, in order to deliver at high temperature Oxidative reducing chemicals that promote the removal, by vaporization, of some of the impurities in the melt.
Dans différents modes de réalisation particuliers de ce procédé de purification, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:In various particular embodiments of this purification process, each having its particular advantages and susceptible to numerous possible technical combinations:
- ledit au moins un jet de plasma réactif est un écoulement plasma homogène et réactif obtenu par impact du dard plasma réactif généré par ladite au moins deuxième torche à arc non transféré contre une paroi pleine d'un autre volume ayant un orifice de sortie, ladite deuxième torche étant reliée audit autre volume,said at least one reactive plasma jet is a homogeneous and reactive plasma flow obtained by impact of the reactive plasma dart generated by said at least second non-transferred arc torch against a solid wall of another volume having an exit orifice, said second torch being connected to said other volume,
- la granulométrie de ladite charge broyée est comprise entre 10 et 500 μm, et encore mieux entre 80 et 150 μm,the particle size of said ground feedstock is between 10 and 500 μm, and more preferably between 80 and 150 μm,
- à l'étape b), la charge broyée étant introduite au moyen d'un gaz porteur, le rapport de la masse de la charge broyée sur la masse de gaz porteur est supérieur à 20,
De préférence, ce rapport est compris entre 20 et 100 pour ne pas refroidir le dard plasma généré par la torche à plasma à arc non transféré placée dans l'enceinte d'introduction.in step b), the milled feed being introduced by means of a carrier gas, the ratio of the mass of the milled feedstock to the carrier gas mass is greater than 20, Preferably, this ratio is between 20 and 100 so as not to cool the plasma dart generated by the non-transferred arc plasma torch placed in the introduction chamber.
- le gaz porteur étant un gaz réactif au contact de l'écoulement plasma homogène, on réalise une première purification de la charge broyée dans cet écoulement plasma homogène,the carrier gas being a reactive gas in contact with the homogeneous plasma flow, a first purification of the ground feedstock is carried out in this homogeneous plasma flow,
Le gaz porteur devient réactif au contact de l'écoulement plasma homogène par transfert d'énergie de ce dernier avec le gaz porteur. A titre purement illustratif, ce gaz porteur est un gaz comportant du chlore tel que HCI. - préalablement à l'étape a), on ajuste la distance séparant ladite paroi pleine de l'orifice de sortie de la torche à arc non transféré, Avantageusement, cette paroi pleine est placée par rapport à l'orifice de sortie de ladite torche à arc non transféré, dans une zone où la température du dard plasma mesurée dans l'axe dudit dard plasma et en l'absence de la paroi pleine serait égale ou sensiblement égale à la moitié de la valeur du pic de température moyenne du dard plasma mesurée en sortie de la torche à arc non transféré.The carrier gas becomes reactive in contact with the homogeneous plasma flow by transferring energy from the latter to the carrier gas. For purely illustrative purposes, this carrier gas is a gas comprising chlorine such as HCl. before step a), the distance separating said solid wall from the outlet orifice of the non-transferred arc torch is advantageously adjusted. Advantageously, this solid wall is placed relative to the outlet orifice of said torch. non-transferred arc, in an area where the plasma dart temperature measured in the axis of said plasma dart and in the absence of the solid wall would be equal to or substantially equal to half the value of the mean temperature peak of the measured plasma dart at the output of the non-transferred arc torch.
A titre purement illustratif, la distance séparant l'orifice de sortie de la torche à plasma à arc non transféré de cette paroi pleine est de l'ordre de trois à cinq fois le diamètre du dard plasma mesuré à la sortie de cette torche reliée à l'enceinte d'introduction.As a purely illustrative example, the distance separating the exit orifice of the non-transferred arc plasma torch from this solid wall is of the order of three to five times the diameter of the plasma dart measured at the exit of this torch connected to the introductory speaker.
- à l'étape c), on brasse électromagnétiquement le bain de fusion,in step c), the electromagnetic stirring of the melt is carried out,
- à l'étape d), le creuset ayant un diamètre D et une hauteur H tels que D/H >5, on envoie les jets plasma réactifs d'au moins une deuxième et une troisième torches à arc non transféré sur la surface du bain de fusion afin de volatiliser au moins certaines des impuretés du bain de fusion présentes à la surface de ce bain,in step d), the crucible having a diameter D and a height H such that D / H> 5, the reactive plasma jets of at least a second and a third non-transferred arc torch are sent onto the surface of the melting bath to volatilize at least some of the melt impurities present on the surface of this bath,
- à l'étape e), on oriente un seul jet de plasma réactif à la surface du bain de fusion pour conférer au laitier une quantité de mouvement apte à le diriger vers au moins un orifice d'évacuation placé sur les parois latérales dudit creuset, ce jet de plasma réactif étant généré à tour de rôle ou non par les autres torches à arc non transféré,in step e), a single jet of reactive plasma is oriented on the surface of the melt to give the slag a quantity of movement able to direct it towards at least one discharge orifice placed on the side walls of said crucible this reactive plasma jet being generated in turn or not by other non-transferred arc torches,
Pendant qu'une des torches est en fonctionnement et émet un jet de plasma réactif, le reste des autres torches à arc non transféré mises en œuvre pour traiter les impuretés présentes à la surface du bain sont mises à l'arrêt.
Avantageusement, la mise à l'arrêt alternative de chacune des torches à arc non transféré émettant un jet de plasma permet une évacuation progressive du laitier selon des directions privilégiées.While one of the torches is operating and emits a jet of reactive plasma, the rest of the other non-transferred arc torches used to treat the impurities on the bath surface are shut down. Advantageously, the alternative shutdown of each non-transferred arc torch emitting a plasma jet allows a gradual evacuation of the slag in preferred directions.
- on augmente le volume spatial des écoulements plasma homogènes pour éviter des projections dans ledit creuset à l'étape c) et pour traiter une surface dudit bain de fusion plus importante à l'étape d)the spatial volume of the homogeneous plasma flows is increased to avoid projections in said crucible in step c) and to treat a surface of said larger melt in step d)
- à l'étape f), on décharge le bain fondu ainsi purifié de ses impuretés par plasma en contrôlant sa vitesse d'extraction, sa température d'extraction et la quantité extraite, Ainsi, cette solidification étant réalisée sans étape de fusion supplémentaire, on obtient des lingots ayant une enveloppe extérieure en silicium enrichi en impuretés et un cœur contenant le silicium de pureté supérieure. Il ne reste plus alors qu'à enlever cette enveloppe pour obtenir le silicium de pureté supérieure. Le procédé de l'invention permet donc en une seule et unique étape de refroidissement du bain de fusion d'obtenir des lingots ayant une enveloppe extérieure en silicium enrichi en impuretés tandis que le cœur de ces lingots comporte le silicium de pureté supérieure recherché. De préférence, ces lingots présentent directement une forme de barreau de silicium de qualité solaire. Ils peuvent, par exemple, avoir une section de 40x40 cm2.in step f), the melt thus purified is discharged from its impurities by plasma by controlling its extraction rate, its extraction temperature and the quantity extracted, thus, this solidification being carried out without an additional melting step, ingots having an impurity-enriched silicon outer shell and a silicon-containing core of higher purity are obtained. It then remains to remove this envelope to obtain the silicon of higher purity. The method of the invention therefore allows in a single step of cooling the melt to obtain ingots having an impurity-enriched silicon outer shell while the core of these ingots comprises the silicon of higher purity desired. These ingots preferably have a solar-grade silicon bar shape. They can, for example, have a section of 40x40 cm 2 .
L'invention concerne également une installation de purification pour la mise en œuvre du procédé de purification tel que décrit précédemment. Selon l'invention, cette installation comprend : - une enceinte d'introduction comportant à une première extrémité une torche plasma à arc non transféré ayant un axe principal, ladite torche étant destinée à générer un dard plasma ayant un axe de propagation sensiblement centré sur l'axe principal de ladite torche,The invention also relates to a purification plant for carrying out the purification process as described above. According to the invention, this installation comprises: an insertion chamber comprising at a first end a non-transferred arc plasma torch having a main axis, said torch being intended to generate a plasma dart having an axis of propagation substantially centered on the main axis of said torch,
- cette enceinte d'introduction comportant une partie coudée ayant un orifice de sortie, cette partie coudée placée en aval de ladite torche plasma comprenant une paroi pleine de sorte que ledit dard plasma entre en collision avec ladite paroi pleine pour former un écoulement plasma homogène,said insertion chamber comprising a bent part having an outlet orifice, this bent part placed downstream of said plasma torch comprising a solid wall such that said plasma dart collides with said solid wall to form a homogeneous plasma flow,
- cette enceinte d'introduction comportant au moins un port d'introduction placé en aval de ladite torche plasma pour l'introduction en
continu d'une charge broyée à traiter en vue de son mélange avec ledit écoulement plasma homogène,this introduction chamber comprising at least one insertion port placed downstream of said plasma torch for introduction into continuous operation of a milled feedstock for mixing with said homogeneous plasma flow,
- l'orifice de sortie de ladite enceinte d'introduction est placé au-dessus d'un creuset ayant des parois latérales et un fond et une partie supérieure ouverte, ledit creuset étant destiné à recevoir en continu ledit ensemble formé par l'écoulement plasma homogène dans lequel a été introduite ladite charge broyée jusqu'à introduction complète de la charge broyée, pour former un bain de fusion,the outlet orifice of said introduction chamber is placed above a crucible having side walls and a bottom and an open top, said crucible being intended to continuously receive said assembly formed by the plasma flow; homogeneous in which said milled feedstock was introduced until complete introduction of the milled feed, to form a melt,
- ledit creuset comprenant des moyens pour chauffer et brasser ledit bain de fusion à l'état fondu, un ou plusieurs orifices d'extraction placés sur ses parois latérales pour évacuer le laitier et au moins un orifice de décharge pour décharger ledit bain de fusion,said crucible comprising means for heating and stirring said molten melt, one or more extraction orifices placed on its side walls for evacuating the slag and at least one discharge orifice for discharging said melt,
- ladite installation comprenant une ou plusieurs autres torches plasma à arc non transféré pour générer chacune un jet de plasma réactif envoyé sur la surface du bain de fusion afin de volatiliser au moins certaines des impuretés de surface dudit bain de fusion.said installation comprising one or more other non-transferred arc plasma torches each for generating a jet of reactive plasma sent on the surface of the melt in order to volatilize at least some of the surface impurities of said melt.
Le creuset a, de préférence, une forme cylindrique ou ovoïde ou toute autre géométrie ayant un axe de symétrie. Avantageusement, le volume interne de ce creuset est délimité par des parois comportant un matériau réfractaire non polluant par rapport au silicium à purifier, par exemple, de la silice ultra pure. Le creuset peut être mobile en rotation autour d'un axe vertical pour être incliné de manière à faciliter l'évacuation du laitier. Cette inclinaison peut être de quelques degrés. Les orifices d'extraction du laitier sont, par exemple, répartis de manière régulière sur le pourtour du creuset à l'opposé des zones d'intersection des jets de plasma réactifs avec la surface du bain de fusion. A titre purement illustratif, ces orifices d'extraction comportent trois encoches de débordement du film de laitier positionnées dans la paroi du creuset en étant réparties à 120° et diamétralement opposées aux points d'intersection avec la surface du bain de fusion des dards plasma générés par les autres torches à arc non transféré pour le traitement des impuretés de surface.The crucible preferably has a cylindrical or ovoid shape or any other geometry having an axis of symmetry. Advantageously, the internal volume of this crucible is delimited by walls comprising a non-polluting refractory material with respect to the silicon to be purified, for example, ultrapure silica. The crucible can be rotatable about a vertical axis to be inclined to facilitate the evacuation of the slag. This inclination can be of a few degrees. The extraction orifices of the slag are, for example, evenly distributed around the periphery of the crucible opposite the zones of intersection of the reactive plasma jets with the surface of the melt. As a purely illustrative example, these extraction orifices comprise three notches for overflow of the slag film positioned in the wall of the crucible, being distributed at 120 ° and diametrically opposite to the points of intersection with the surface of the melt of the plasma darts generated. by other non-transferred arc torches for the treatment of surface impurities.
Bien entendu, ledit au moins un orifice de décharge comporte des moyens pour assurer son obstruction tels que des vannes ou moyen électromagnétique.
Dans différents modes de réalisation particuliers de cette installation, chacun ayant ses avantages particuliers et susceptibles de nombreuses combinaisons techniques possibles:Of course, said at least one discharge port comprises means for ensuring its obstruction such as valves or electromagnetic means. In different particular embodiments of this installation, each having its particular advantages and susceptible to many possible technical combinations:
- cette installation comporte des moyens de visualisation du bain de fusion afin de déterminer le moment opportun pour évacuer le laitier,this installation comprises means of visualization of the melt to determine the opportune moment to evacuate the slag,
- le gaz de ladite torche à arc non transféré placée sur ladite enceinte d'introduction est un gaz neutre ou un gaz réactif tel que H2, CO2, O2, HCI, HF et des combinaisons de ces éléments,the gas of said non-transferred arc torch placed on said introduction chamber is a neutral gas or a reactive gas such as H 2 , CO 2 , O 2 , HCl, HF and combinations of these elements,
- les torches à arc non transféré comportent chacune une électrode aval qui est une électrode évasée de manière à augmenter le volume spatial du dard plasma ou du jet de plasma réactif généré,the non-transferred arc torches each comprise a downstream electrode which is an electrode flared so as to increase the spatial volume of the plasma dart or the reactive plasma jet generated,
De préférence, chaque électrode aval est une électrode conique. Son angle de conicité peut être de 1 ° à 2°.Preferably, each downstream electrode is a conical electrode. Its taper angle can be from 1 ° to 2 °.
- la partie coudée comporte au moins une portion de forme évasée pour permettre d'absorber le flux de la charge broyée introduite dans ledit écoulement plasma homogène, cette portion de forme évasée comprenant à son extrémité l'orifice de sortie de l'enceinte d'introduction, La paroi de la partie coudée avec laquelle entre en collision le dard plasma peut être inclinée par rapport à l'axe de propagation de ce dard plasma de manière à limiter les transferts d'énergie à ladite paroi.the bent portion comprises at least one portion of flared shape to enable the flow of the ground feedstock introduced into said homogeneous plasma flow to be absorbed, this portion of flared shape comprising at its end the outlet orifice of the enclosure of Introduction, The wall of the bent portion with which collides the plasma dart may be inclined relative to the axis of propagation of the plasma dart so as to limit the energy transfer to said wall.
Cette partie coudée peut comporter un évasement vers l'orifice de sortie de l'enceinte de forme conique dont le demi-angle au sommet est compris entre 10 et 30°.This bent portion may include a flare towards the outlet of the conical shaped enclosure whose half-angle at the top is between 10 and 30 °.
- la partie coudée de chacune des enceintes d'homogénéisation comprend au moins une portion de forme évasée à l'extrémité de laquelle est placé l'orifice de sortie de l'enceinte d'homogénéisation correspondante,the bent portion of each of the homogenization enclosures comprises at least one portion of flared shape at the end of which is placed the outlet orifice of the corresponding homogenization enclosure,
- l'installation comprend des moyens pour ajuster individuellement les distances séparant les orifices de sortie de l'enceinte d'introduction et des enceintes d'homogénéisation, du fond du creuset ou de la surface dudit bain de fusion pour optimiser les bilans énergétiques et l'extraction des impuretés,the installation comprises means for individually adjusting the distances separating the outlet orifices of the introduction chamber and the homogenization chambers, the bottom of the crucible or the surface of the said melt to optimize the energy balances and the extraction of impurities,
- chacune desdites autres torches à arc non transféré générant un jet de plasma réactif est reliée à une enceinte d'homogénéisation correspondante comprenant une partie coudée placée en aval de ladite torche plasma correspondante, ladite partie coudée comprenant une paroi pleine de sorte que ledit jet de plasma réactif généré par ladite torche
correspondante entre en collision avec ladite paroi pleine pour former un écoulement plasma homogène et réactif,each of said other non-transferred arc torches generating a reactive plasma jet is connected to a corresponding homogenization chamber comprising a bent part placed downstream of said corresponding plasma torch, said bent part comprising a solid wall so that said jet of reactive plasma generated by said torch correspondingly collides with said solid wall to form a homogeneous and reactive plasma flow,
- ladite paroi pleine avec laquelle le dard plasma entre en collision est placée par rapport à l'orifice de sortie de ladite torche reliée à ladite enceinte d'introduction, dans une zone où la température du dard plasma mesurée dans l'axe dudit dard plasma et en l'absence de ladite paroi pleine est égale ou sensiblement égale à la moitié de la valeur du pic de température moyenne du dard plasma mesurée en sortie de ladite torche à arc non transféré, - cette paroi pleine est mobile en translation par rapport à l'orifice de sortie de ladite torche à arc non transféré,said solid wall with which the plasma dart collides is placed relative to the outlet orifice of said torch connected to said introduction chamber, in an area where the temperature of the plasma dart measured in the axis of said plasma dart and in the absence of said solid wall is equal to or substantially equal to half the mean temperature peak value of the plasma dart measured at the output of said non-transferred arc torch, this solid wall is mobile in translation relative to the outlet orifice of said non-transferred arc torch,
Alternativement, la torche à plasma placée à une extrémité de l'enceinte d'introduction est mobile afin de permettre d'ajuster la position de la paroi pleine par rapport à l'orifice de sortie de cette torche à plasma à arc non transféré.Alternatively, the plasma torch placed at one end of the introduction chamber is movable in order to make it possible to adjust the position of the solid wall with respect to the outlet orifice of this non-transferred arc plasma torch.
- la charge broyée étant introduite avec un gaz porteur, ledit au moins un port d'introduction de la charge broyée comporte au moins une buse permettant une introduction de ladite charge broyée en rotation,the ground feedstock being introduced with a carrier gas, said at least one port for introducing the milled feedstock comprises at least one nozzle allowing introduction of said milled feedstock in rotation,
Cette introduction en rotation permet d'allonger le temps de séjour de la charge broyée dans l'écoulement plasma homogène afin d'assurer un bon transfert thermique de l'écoulement plasma vers la charge broyée. Dans le cas d'un gaz porteur réactif, ce bon transfert thermique autorise, par ailleurs, de démarrer le processus de purification.This introduction in rotation makes it possible to lengthen the residence time of the milled feedstock in the homogeneous plasma flow in order to ensure a good thermal transfer of the plasma flow towards the milled feedstock. In the case of a reactive carrier gas, this good heat transfer also makes it possible to start the purification process.
- la puissance plasma de chacune des torches à arc non transféré peut être ajustée en continu par des moyens d'ajustement de puissance pour optimiser les bilans énergétiques et l'élimination des impuretés, par ailleurs évitant de créer des chocs thermiques au niveau des parois du creuset de fusion/purification,the plasma power of each of the non-transferred arc torches can be continuously adjusted by power adjustment means in order to optimize the energy balances and the elimination of impurities, moreover avoiding the need to create thermal shocks at the walls of the melting / purification crucible,
- des moyens de mesure en ligne permettent de déterminer en permanence le degré de pureté du matériau en cours de purification dans le bain de fusion,in-line measurement means make it possible to continuously determine the degree of purity of the material being purified in the melt,
- le creuset a un diamètre D et une hauteur H tels que D/H >5, A titre purement illustratif, ce rapport D/H peut être égal à 15. Avantageusement, cette faible profondeur du creuset pour un grand diamètre augmente l'interface du bain de fusion riche en impuretés à vaporiser et
facilite la remontée à la surface de ce bain par brassage, des impuretés contenues dans le bain en vue du renouvellement de cette interface. De préférence, dans ce mode de réalisation, l'installation comporte au moins deux autres torches à plasma à arc non transféré. Par exemple, l'installation comportant trois autres torches à plasma à arc non transféré, les zones d'intersection des jets de plasma réactifs émis par ces autres torches avec la surface du bain de fusion sont placées à 120° les unes des autres sur un cercle de rayon compris entre un quart et trois quart du rayon du creuset.the crucible has a diameter D and a height H such that D / H> 5, For purely illustrative purposes, this ratio D / H may be equal to 15. Advantageously, this shallow depth of the crucible for a large diameter increases the interface of the melt rich in impurities to vaporize and facilitates the return to the surface of the bath by mixing, impurities contained in the bath for the renewal of this interface. Preferably, in this embodiment, the installation comprises at least two other non-transferred arc plasma torches. For example, since the installation comprises three other non-transferred arc plasma torches, the zones of intersection of the reactive plasma jets emitted by these other torches with the surface of the melt are placed at 120 ° from each other on a circle of radius between a quarter and three quarters of the radius of the crucible.
- les moyens pour chauffer et brasser comprennent un ou plusieurs moyens de couplage inductif tels que une ou plusieurs bobines d'induction,the means for heating and stirring comprise one or more inductive coupling means such as one or more induction coils,
- les autres torches sont orientables de manière à déplacer le jet de plasma réactif qu'elle génère, à la surface dudit bain de fusion,the other torches are orientable so as to move the jet of reactive plasma that it generates to the surface of said melt,
Ce déplacement du jet de plasma à la surface du bain de fusion permet notamment de pousser le laitier vers le ou les orifices d'extraction. - cette installation comporte des moyens pour ajuster la composition du gaz plasmagène de chacune des torches à arc non transféré pendant le fonctionnement de ces dernières,This displacement of the plasma jet on the surface of the melt allows in particular to push the slag towards the extraction orifices. this installation comprises means for adjusting the composition of the plasma gas of each of the non-transferred arc torches during the operation of the latter,
- le ou les orifices de décharge étant placés dans le fond du creuset, cette installation comporte des récipients pour recueillir le bain de fusion, ces récipients étant placés sur des moyens de défilement de manière à être présentés un à un sous ce ou ces orifices de décharge jusqu'à ce que ledit creuset soit vide.the discharge orifice (s) being placed in the bottom of the crucible, this installation comprises receptacles for collecting the melt, these receptacles being placed on means of scrolling so as to be presented one by one under this or these orifices of discharge until said crucible is empty.
Ces moyens de défilement peuvent comporter une chaîne de défilement linéaire ou un carrousel mobile en rotation. Avantageusement, la coulée gravitationnelle est amorcée et interrompue en fonction de la présentation séquentielle, sous le creuset, de récipients. A chacun de ces récipients a été adjoint une enceinte sous atmosphère contrôlée qui est elle-même raccordée au creuset pour le transfert du bain de fusion vers le récipient.These scrolling means may comprise a linear scroll chain or a rotatable carousel. Advantageously, the gravitational flow is initiated and interrupted according to the sequential presentation, under the crucible, of containers. To each of these containers has been added a controlled atmosphere chamber which is itself connected to the crucible for the transfer of the melt to the container.
De préférence, l'installation comporte de plus des moyens de liaison étanches pour relier chacun de ces orifices de décharge avec le récipient correspondant dans laquelle du bain de fusion doit être déchargé.Preferably, the installation further comprises sealing connection means for connecting each of these discharge ports with the corresponding container in which the melt is to be discharged.
L'invention sera décrite plus en détail en référence aux dessins annexés dans lesquels:
- la figure 1 représente schématiquement une vue en coupe de l'installation de purification selon un mode de réalisation particulier de l'invention;The invention will be described in more detail with reference to the accompanying drawings in which: - Figure 1 shows schematically a sectional view of the purification plant according to a particular embodiment of the invention;
- la figure 2 est une vue élargie du creuset de l'installation de la Figure 1 montrant un orifice d'extraction du laitier avec son dispositif de récupération dudit laitier, la Fig. 2 a) est une vue en perspective de cet orifice d'extraction et la Fig. 2b) est une vue en coupe;FIG. 2 is an enlarged view of the crucible of the installation of FIG. 1 showing a slag extraction orifice with its slag recovery device, FIG. 2 a) is a perspective view of this extraction orifice and FIG. 2b) is a sectional view;
- la figure 3 est une vue de dessus de l'installation de la Figure 1 ;FIG. 3 is a view from above of the installation of FIG. 1;
- la figure 4 est une vue élargie de la partie inférieure de l'installation de la Figure 1 montrant les moyens de défilement des récipients sous l'orifice de décharge;- Figure 4 is an enlarged view of the lower part of the installation of Figure 1 showing the means for scrolling containers under the discharge port;
La Figure 1 montre plus particulièrement une vue en coupe d'une installation de purification par plasma selon un mode particulier de réalisation de l invention qui sera décrite, ici, dans le cadre du traitement de silicium métallurgique.Figure 1 shows more particularly a sectional view of a plasma purification plant according to a particular embodiment of the invention which will be described here in the context of the metallurgical silicon treatment.
Cette installation comporte un creuset de fusion/purification 1 de forme cylindrique couplé à une enceinte de fusion/purification 2, également de forme cylindrique et étanche par rapport au creuset 1. Le creuset 1 et l'enceinte 2 peuvent cependant avoir tout autre forme, par exemple ovoïde. Cette enceinte de fusion/purification 2 comporte un conduit 3, ou cheminée, pour l'évacuation des gaz présents dans l'enceinte 2.This installation comprises a melting / purifying crucible 1 of cylindrical shape coupled to a melting / purification chamber 2, also cylindrical in shape and sealed with respect to the crucible 1. The crucible 1 and the chamber 2 may however have any other shape, for example ovoid. This melting / purification chamber 2 comprises a conduit 3, or chimney, for the evacuation of the gases present in the enclosure 2.
Dans une première phase, dite de pré-purification, une charge de silicium broyée est introduite en continu avec un gaz porteur dans une enceinte d'introduction 4, au moyen d'un injecteur 5 dont l'orifice débouche à la paroi de l'enceinte d'introduction 4. Cette dernière comporte à une extrémité une torche à plasma à arc non transféré 6, qui délivre un dard plasma. Ce dard entre en collision avec une paroi pleine 7 de l'enceinte d'introduction 4 pour le générer un écoulement plasma homogène. Cet écoulement se mélange à la charge de silicium broyée et au gaz porteur, pour produire un dard diphasique 8 en sortie d'une section évasée 9 de l'enceinte d'introduction 4. Le dard diphasique 8 est orienté, selon l'axe 10 du creuset 1 , sensiblement verticalement vers le creuset de fusion/purification 1. L'injecteur 5, qui est positionné de manière à ce que la charge de silicium broyée suive une trajectoire principale selon l'axe 10 du dard diphasique,
permet avantageusement de conférer à cette trajectoire principale des composantes secondaires, par exemple une composante en rotation 11 , pour augmenter le temps de séjour de la charge de silicium broyée dans le mélange écoulement plasma homogène/gaz porteur. Cette configuration présente les avantages de pouvoir délivrer un flux de charge de silicium broyée maîtrisé dans son débit, indépendamment du débit du dard plasma généré par la torche à arc non transféré 6 relié à l'enceinte d'introduction 4, tout en étant traité dans sa totalité dans l'écoulement plasma homogène. Elle permet également de démarrer le processus de fusion/purification dès l'injection de la charge de silicium broyée avec des temps de séjour ajustables.In a first phase, called pre-purification, a milled silicon feedstock is introduced continuously with a carrier gas into an introduction chamber 4, by means of an injector 5 whose orifice opens into the wall of the introduction chamber 4. The latter comprises at one end a non-transferred arc plasma torch 6, which delivers a plasma dart. This stinger collides with a solid wall 7 of the introduction chamber 4 to generate a homogeneous plasma flow. This flow mixes with the milled silicon feedstock and the carrier gas, to produce a two-phase dart 8 at the outlet of a flared section 9 of the introduction enclosure 4. The two-phase dart 8 is oriented along the axis 10 crucible 1, substantially vertically towards the melting / purification crucible 1. The injector 5, which is positioned so that the crushed silicon charge follows a main trajectory along the axis of the two-phase dart, advantageously makes it possible to give this main trajectory secondary components, for example a rotating component 11, to increase the residence time of the ground silicon charge in the homogeneous plasma flow / carrier gas mixture. This configuration has the advantages of being able to deliver a controlled milled silicon feed stream in its flow rate, independently of the flow rate of the plasma dart generated by the non-transferred arc torch 6 connected to the introduction enclosure 4, while being treated in its totality in the homogeneous plasma flow. It also makes it possible to start the melting / purification process as soon as the crushed silicon feed is injected with adjustable residence times.
La torche à plasma à arc non transféré 6 fournit l'énergie qui est partiellement transférée d'une part à la charge de silicium broyée et d'autre part au gaz porteur, ce gaz porteur, porté à haute température, constituant le réactif chimique démarrant le processus de purification du silicium chauffé au sein du dard diphasique 8. La charge de silicium broyée ayant une granulométrie comprise entre 10 et 500 μm, et encore mieux entre 80 et 150 μm, les particules de silicium présentent une surface d'échange maximale. La charge de silicium broyée, confinée et véhiculée par le dard diphasique 8, remplit le creuset de fusion/purification 1 , l'amenant à l'état pré fondu en raison de l'apport continu d'énergie par la torche à plasma à arc non transféré 6, alors que le processus de purification est toujours actif. Un champ électromagnétique haute fréquence, produit par une bobine d'induction 12, amène le silicium contenu dans le creuset 1 à l'état fondu, créant un bain de fusion brassé 13.The non-transferred arc plasma torch 6 supplies the energy which is partially transferred on the one hand to the milled silicon feedstock and on the other hand to the carrier gas, this carrier gas, heated to high temperature, constituting the starting chemical reagent. the silicon purification process heated within the two-phase dart 8. The ground silicon charge having a particle size of between 10 and 500 microns, and more preferably between 80 and 150 microns, the silicon particles have a maximum exchange surface. The ground silicon charge, confined and conveyed by the diphasic dart 8, fills the melting / purification crucible 1, bringing it to the pre-melted state due to the continuous supply of energy by the arc plasma torch not transferred 6, while the purification process is still active. A high frequency electromagnetic field, produced by an induction coil 12, brings the silicon contained in the crucible 1 in the molten state, creating a stirred melt 13.
En plus de la torche à plasma à arc non transféré 6 reliée à l'enceinte d'introduction 4, dont la puissance est réduite quand la bobine d'induction 12 est mise en service, trois autres torches à arc non transféré 14, 15 et 16 (Fig. 3) sont mises en service pour apporter les réactifs chimiques du plasma qu'elles produisent et qui sont nécessaires à la poursuite du processus de purification à la surface 17 du bain de fusion 13.In addition to the non-transferred arc plasma torch 6 connected to the input enclosure 4, whose power is reduced when the induction coil 12 is put into operation, three other non-transferred arc torches 14, 15 and 16 (Fig. 3) are put into service to supply the chemical reagents of the plasma which they produce and which are necessary for the continuation of the purification process on the surface 17 of the melt 13.
Cette surface 17 est alimentée en continu par les impuretés résiduelles en raison du brassage électromagnétique engendré par la bobine d'induction 12. Les trois autres torches à plasma à arc non transféré 14, 15 et 16 sont respectivement connectées à des parties coudées 18, 19 et 20 (Fig. 3) qui
dévient respectivement les jets de plasma réactifs générés par ces torches en occasionnant une collision entre chaque jet de plasma réactif et une paroi pleine de la partie coudée correspondante pour créer des écoulement plasma homogènes et réactifs 21 , 22 (Fig. 1 ). Ces parties coudées comportent respectivement des sections évasées 23, 24 orientant les écoulements plasma homogènes et réactifs de manière sensiblement verticale vers la surface du bain 17.This surface 17 is fed continuously by the residual impurities due to the electromagnetic stirring generated by the induction coil 12. The three other non-transferred arc plasma torches 14, 15 and 16 are respectively connected to bent portions 18, 19 and 20 (Fig. 3) which respectively deflect the reactive plasma jets generated by these torches by causing a collision between each jet of reactive plasma and a solid wall of the corresponding bent portion to create homogeneous and reactive plasma flows 21, 22 (Figure 1). These bent portions respectively comprise flared sections 23, 24 orienting the homogeneous and reactive plasma flows substantially vertically towards the surface of the bath 17.
Les torches à plasma à arc non transféré 3, 14, 15 et 16 sont chacune connectées à l'enceinte 2 par des dispositifs étanches (non représentés), qui de plus autorisent une orientation des écoulements plasma homogènes 8, 21 , 22 par rapport à la verticale d'un angle d'inclinaison maximal de 10°. Les torches à plasma 14, 15 et 16 et leurs parties coudées associées 18, 19 et 20 sont concentriques à l'orifice de sortie de l'enceinte d'introduction 4, les intersections des axes 25, 26 des écoulements plasma homogènes 21 , 22 avec la surface 17 étant réparties à 120° sur un cercle dont le rayon est compris entre le quart et les trois quarts du rayon du creuset 1. La distance entre les torches 3, 14, 15, 16 et la surface 17 du bain, ou encore le fond du creuset, est ajustable par déplacement du creuset 1 par rapport à l'enceinte 2, tout en conservant l'étanchéité entre l'enceinte 2 et le creuset 1. Cette mobilité accroît l'efficacité thermique et thermochimique des torches par rapport à la surface du bain 17.The non-transferred arc plasma torches 3, 14, 15 and 16 are each connected to the enclosure 2 by sealed devices (not shown), which furthermore allow orientation of the homogeneous plasma flows 8, 21, 22 with respect to the vertical of a maximum angle of inclination of 10 °. The plasma torches 14, 15 and 16 and their associated bent portions 18, 19 and 20 are concentric with the outlet orifice of the introduction chamber 4, the intersections of the axes 25, 26 of the homogeneous plasma flows 21, 22 with the surface 17 being distributed at 120 ° on a circle whose radius is between one quarter and three quarters of the radius of the crucible 1. The distance between the torches 3, 14, 15, 16 and the surface 17 of the bath, or still the bottom of the crucible, is adjustable by moving the crucible 1 relative to the chamber 2, while maintaining the seal between the chamber 2 and the crucible 1. This mobility increases the thermal efficiency and thermochemical torches relative to on the surface of the bath 17.
Le film de laitier qui peut se former à la surface du bain, au détriment de l'efficacité d'extraction des impuretés, est évacué à intervalles réguliers. Le laitier est reçu dans trois encoches 27-29, aménagées dans le creuset 1 juste au-dessous de la surface du bain 17 lorsque le creuset 1 est rempli (Fig. 2). Ces encoches 27-29 font face, au cours du déplacement du creuset par rapport à l'enceinte 2, à des interfaces 30 fixées sur l'enceinte 2 et constituées d un matériau identique ou similaire à celui du creuset 1. Dans le mode de fonctionnement fusion/purification, les interfaces 30 viennent se loger respectivement dans les encoches 27-29 pour maintenir le niveau 17 du bain 13. Dans le mode évacuation du laitier, le déplacement vertical vers le bas du creuset 1 , de quelques millimètres, dégage des ouvertures qui permettent le passage du laitier. Les encoches 27-29 sont respectivement diamétralement opposées aux zones d'impact des écoulements plasma homogènes 21 , 22 avec la surface du bain 17.
Pour permettre l'évacuation du laitier, une seule des trois torches à arc non transféré 14, 15 et 16 est mise en service à la fois et à tour de rôle pour provoquer respectivement, par effet mécanique de leur écoulement plasma homogène 21 , 22, le passage du laitier dans les ouvertures des encoches correspondantes 27-29. Cette opération étant répétée autant que nécessaire. Le laitier est collecté dans des réceptacles (non représentés). Il est à noter que la hauteur de chaque encoche est ajustée pour tenir compte de la baisse du niveau 17 du bain fondu 13 pendant l'évacuation du laitier. Ainsi, l'encoche 29 est plus profonde que l'encoche 28, qui elle-même est plus profonde que l'encoche 27.The slag film which can form on the surface of the bath, to the detriment of the extraction efficiency of the impurities, is evacuated at regular intervals. The slag is received in three notches 27-29, arranged in the crucible 1 just below the surface of the bath 17 when the crucible 1 is filled (Figure 2). These notches 27-29 face, during the movement of the crucible relative to the chamber 2, interfaces 30 fixed to the chamber 2 and made of a material identical or similar to that of the crucible 1. In the mode of fusion / purification operation, the interfaces 30 are housed respectively in the notches 27-29 to maintain the level 17 of the bath 13. In the slag evacuation mode, the vertical downward movement of the crucible 1, a few millimeters, gives off openings that allow the passage of slag. The notches 27-29 are respectively diametrically opposed to the impact zones of the homogeneous plasma flows 21, 22 with the surface of the bath 17. In order to allow the slag to escape, only one of the three non-transferred arc torches 14, 15 and 16 is turned on at the same time and in turn to cause, respectively by mechanical effect of their homogeneous plasma flow 21, 22, the passage of the slag in the openings of the corresponding notches 27-29. This operation being repeated as much as necessary. The slag is collected in receptacles (not shown). It should be noted that the height of each notch is adjusted to take into account the decrease of the level 17 of the molten bath 13 during the evacuation of the slag. Thus, the notch 29 is deeper than the notch 28, which itself is deeper than the notch 27.
Le silicium purifié par plasma est transféré dans un dispositif de solidification contrôlée (non représenté sur la Fig. 1 par souci de clarté), par une coulée semi-continue, positionnée dans l'axe du fond 30 du creuset 1 , par exemple par réchauffage par un champ électromagnétique produit par la bobine 31. Ledit dispositif de solidification contrôlée est positionné sous le creuset 1 et est étanche par rapport à ce dernier, par l'interface 32, quand la coulée est autorisée.Plasma purified silicon is transferred to a controlled solidification device (not shown in Fig. 1 for the sake of clarity) by semi-continuous casting, positioned in the axis of the bottom 30 of the crucible 1, for example by reheating by an electromagnetic field produced by the coil 31. Said controlled solidification device is positioned under the crucible 1 and is sealed relative to the latter, by the interface 32, when casting is allowed.
Le volume du dispositif de solidification étant plus limité que celui du creuset 1 , on présentera successivement plusieurs dispositifs de solidification contrôlée 33-37 (Fig. 4). Ceci peut être obtenu, par exemple, par déplacement horizontal de ces derniers et mise en place sous le creuset 1 par un déplacement vertical. A titre illustratif, ces dispositifs de solidification 33-37 sont montés sur un chariot 38 pour une présentation soit en ligne, soit rayonnante. Des moyens de mesure et de contrôle permettent de capter la température et la pression dans l'enceinte de fusion/purification 2, le niveau du bain de fusion 13 et le degré de purification du matériau.The volume of the solidification device being more limited than that of the crucible 1, several controlled solidification devices 33-37 (Fig. 4) will be successively presented. This can be achieved, for example, by horizontal displacement of the latter and set up under the crucible 1 by a vertical movement. As an illustration, these solidification devices 33-37 are mounted on a carriage 38 for presentation in line or radiating. Means of measurement and control can capture the temperature and pressure in the melting / purification chamber 2, the level of the melt 13 and the degree of purification of the material.
Dans cette installation, le procédé de purification comprend les phases suivantes : a/ on transporte un flux de silicium métallurgique broyé, par exemple au moyen d'un gaz porteur et on l'injecte sensiblement verticalement vers le bas dans un écoulement plasma homogène obtenu par la collision d'un dard plasma émis par une torche à arc non transféré, alimentée par un gaz neutre, par exemple de l'argon, fonctionnant sensiblement à sa puissance nominale, avec une paroi pleine.
Le flux de silicium préchauffé est soumis, simultanément, à une purification « en vol » (première purification) d'impuretés vaporisables, par le choix du gaz porteur porté à haute température par l'écoulement plasma homogène, par exemple du chlore ou du chlorure d'hydrogène, la surface d'échange plasma/particules de silicium étant maximisée par l'état finement divisé de la charge broyée entrante, b/ le mélange diphasique est dirigé sensiblement verticalement vers le bas dans un creuset de fusion/purification (seconde purification), sensiblement selon l'axe vertical de ce dernier, pour constituer un bain pré fondu de matériau pré purifié, le creuset ayant un volume délimité par des parois constituées d'un matériau ultra pur à haute tenue en température et non contaminant par rapport à la charge de silicium, c) lorsque le creuset est rempli d'un bain pré fondu sous l'action du plasma en gaz neutre, l'injection de la charge broyée de silicium métallurgique cesse, la puissance plasma de la torche à arc non transféré alimentée en gaz neutre est réduite, la fonction chimique du gaz porteur étant toujours active pour continuer la purification dans le creuset, d/ un chauffage électromagnétique assure la fusion complète du bain et son maintien en température, induisant de plus un brassage pour l'homogénéisation de ce dernier et la diffusion des impuretés vers la surface du bain, e/ on délivre alors, verticalement au-dessus du bain et en direction de la surface de ce dernier, un second plasma homogénéisé dédié, par le choix d un gaz plasmagène évolutif dans sa composition, par exemple un mélange oxygène, hydrogène, gaz carbonique, éventuellement du chlorure d'hydrogène, à l'élimination, à la surface du bain, des impuretés vaporisables encore présentes à la surface du bain de silicium (troisième purification), par des réactions thermochimiques spécifiques. Ce plasma est également généré par une ou plusieurs autres torches à plasma à arc non transféré. Il est également utilisé pour ses effets mécaniques de manière à évacuer, latéralement et à intervalles réguliers, le film de laitier qui peut se former à la surface du bain, en raison de réactions additionnelles entre le plasma et le silicium, en particulier des oxydes de silicium. Ce film doit être évacué car il réduit l'efficacité du plasma dédié à l'élimination en surface des impuretés.
II est prévu une variante pour évacuer le film de laitier, avantageusement sa vaporisation par l'utilisation de gaz plasmagènes spécifiques ayant la capacité de vaporiser ce film, un « nettoyage » chimique à intervalles réguliers. f/ quand le bain de silicium est purifié de toutes les impuretés vaporisables par les actions du plasma thermique, la coulée est amorcée pour transférer le bain vers des moyens de cristallisation, le chauffage par induction électromagnétique étant maintenu dans une gamme de puissance appropriée, ainsi que, si nécessaire, le plasma en gaz neutre à puissance réduite. Le procédé décrit ci-dessus autorise donc une première élimination des impuretés (première purification) sur les particules de la charge broyée « en vol » au sein du mélange gaz plasmagène neutre/gaz porteur de la torche centrale alimentée en gaz neutre, suivie d'une seconde purification à la surface du bain continûment alimentée en impuretés résiduelles par le brassage électromagnétique.In this plant, the purification process comprises the following steps: a) a milled metallurgical silicon stream is transported, for example by means of a carrier gas and is injected substantially vertically downwards in a homogeneous plasma flow obtained by the collision of a plasma dart emitted by a non-transferred arc torch, supplied with a neutral gas, for example argon, operating substantially at its nominal power, with a solid wall. The preheated silicon stream is simultaneously subjected to purification "in flight" (first purification) of vaporizable impurities, by the choice of carrier gas raised at high temperature by the homogeneous plasma flow, for example chlorine or chloride of hydrogen, the plasma / silicon exchange surface being maximized by the finely divided state of the incoming millstock, b / the two-phase mixture is directed substantially vertically downward in a melting / purifying crucible (second purification ), substantially along the vertical axis thereof, to form a melt pre-purified material, the crucible having a volume defined by walls made of an ultra pure material with high temperature resistance and non-contaminating with respect to the silicon charge, c) when the crucible is filled with a molten bath under the action of the plasma in neutral gas, the injection of the ground silicon metallurgic charge that ceases, the plasma power of the non-transferred arc torch fed with neutral gas is reduced, the chemical function of the carrier gas is still active to continue the purification in the crucible, d / electromagnetic heating ensures the complete melting of the bath and its maintaining temperature, further inducing a stirring for the homogenization of the latter and the diffusion of impurities towards the surface of the bath, e / then delivers, vertically above the bath and towards the surface thereof, a second dedicated homogenized plasma, by the choice of an evolutionary plasmagene gas in its composition, for example a mixture of oxygen, hydrogen, carbon dioxide, possibly hydrogen chloride, to the elimination, on the surface of the bath, of the vaporizable impurities still present on the surface of the silicon bath (third purification), by specific thermochemical reactions. This plasma is also generated by one or more other non-transferred arc plasma torches. It is also used for its mechanical effects so as to evacuate, laterally and at regular intervals, the slag film which can form on the surface of the bath, because of additional reactions between the plasma and the silicon, in particular oxides of silicon. This film must be evacuated because it reduces the efficiency of the plasma dedicated to the surface removal of impurities. There is provided a variant for evacuating the slag film, preferably its vaporization by the use of specific plasma gases having the ability to vaporize this film, a "cleaning" chemical at regular intervals. f / when the silicon bath is purified of all vaporizable impurities by the actions of the thermal plasma, the casting is initiated to transfer the bath to crystallization means, the electromagnetic induction heating being maintained in a suitable power range, and that, if necessary, the plasma in neutral gas at reduced power. The process described above therefore allows a first elimination of impurities (first purification) on the particles of the milled feed "in flight" within the mixture of plasma gas neutral / carrier gas of the central torch fed with neutral gas, followed by a second purification on the surface of the bath continuously supplied with residual impurities by the electromagnetic stirring.
Pour une charge de silicium métallurgique, les impuretés extraites sont le phosphore et des impuretés métalliques, par exemple de Fe, Ti, sous forme de chlorures gazeux. Plusieurs torches latérales alimentées par le mélange réactif de gaz plasmagène, de type oxygène, hydrogène, gaz carbonique et même chlorure d'hydrogène permettent la vaporisation en surface du bain d'autres impuretés, en les oxydant. Le bore est transformé en un composé gazeux de formule chimique BOH, alors que le carbone est oxydé en monoxyde de carbone. Il résulte de ces traitements plasma, un silicium contenant encore des impuretés, mais seulement constituées d éléments chimiques métalliques dont les teneurs sont compatibles avec la dernière extraction par ségrégation dans le procédé de solidification contrôlée, en particulier Cu, V, Al, Cr. Il est à noter que l'érosion des électrodes des torches à arc produit des éléments métalliques de type Cu et Cr, en quantités minimales, qui sont éliminés par ségrégation au cours de la phase de solidification contrôléeFor a charge of metallurgical silicon, the impurities extracted are phosphorus and metal impurities, for example Fe, Ti, in the form of gaseous chlorides. Several lateral torches fed by the reactive mixture of plasmagene gas, of the oxygen, hydrogen, carbon dioxide and even hydrogen chloride type allow the surface vaporization of the bath of other impurities by oxidizing them. Boron is converted into a gaseous compound of chemical formula BOH, while carbon is oxidized to carbon monoxide. It results from these plasma treatments, a silicon still containing impurities, but only consisting of metallic chemical elements whose contents are compatible with the last extraction by segregation in the controlled solidification process, in particular Cu, V, Al, Cr. It should be noted that the erosion of the electrodes of the arc torches produces Cu and Cr type metallic elements, in minimum quantities, which are eliminated by segregation during the controlled solidification phase.
Dans le cadre du traitement d'une charge de silicium métallurgique, ce procédé permet avantageusement une utilisation optimisée du plasma pour les raisons suivantes : - fonction thermique de pré fusion du silicium métallurgique, initialement peu conducteur thermique, « en vol » et dans le creuset,
- fonction de première et seconde purification couplée à la fonction thermique, dans la phase initiale d'injection du matériau dans le plasma et dans le creuset, par une action combinée avec le gaz porteur,In the context of the treatment of a charge of metallurgical silicon, this process advantageously allows an optimized use of the plasma for the following reasons: pre-fusion thermal function of the metallurgical silicon, initially little thermal conductor, "in flight" and in the crucible , function of first and second purification coupled to the thermal function, in the initial phase of injecting the material into the plasma and into the crucible, by a combined action with the carrier gas,
- fonction de troisième purification au niveau de la surface du bain constitué, par un plasma spécifique, évolutif quant à sa composition,function of third purification at the level of the surface of the bath constituted by a specific plasma, evolutionary as to its composition,
- continuité entre l'ensemble des fonctions thermiques et chimiques.- continuity between all the thermal and chemical functions.
Il est à noter que la génération du plasma d'arc est peu sensible à l'injection du silicium métallurgique pulvérulent, ce qui le rend particulièrement performant pour ce type d'application. En d'autres termes, le fonctionnement et les performances de la torche à plasma à arc non transféré relié à l'enceinte d'introduction ne sont pas modifiées, ou très marginalement, par l'injection du matériau, et donc l'efficacité du procédé est uniquement liée, pour ce qui est du plasma, à l'optimisation des transferts thermique et chimique du plasma de la torche vers le matériau à traiter. Par ailleurs, la configuration retenue garantit que la totalité du silicium sera effectivement traité. Ce procédé de purification offre un bilan énergétique très favorable :It should be noted that the generation of arc plasma is insensitive to the injection of pulverulent metallurgical silicon, which makes it particularly efficient for this type of application. In other words, the operation and the performance of the non-transferred arc plasma torch connected to the introduction chamber are not modified, or very marginally, by the injection of the material, and therefore the efficiency of the The process is solely related, as regards plasma, to optimizing the heat and chemical transfer of the plasma from the torch to the material to be treated. Moreover, the configuration adopted guarantees that all the silicon will be effectively treated. This purification process offers a very favorable energy balance:
- d'une part les sources d'énergie plasma et électromagnétique sont respectivement utilisées pour un transfert maximal de l'énergie à la charge broyée de silicium métallurgique, à savoiron the one hand the plasma and electromagnetic energy sources are respectively used for a maximum transfer of energy to the ground metallurgical silicon charge, namely
- par le plasma, un premier préchauffage des particules « en vol » au sein du plasma, puis une pré fusion en bain,by the plasma, a first preheating of the particles "in flight" within the plasma, then a pre-melt in a bath,
- par l'induction électromagnétique une fusion complète et son maintien (le transfert thermique électromagnétique est alors plus efficace que le transfert thermique plasma),by the electromagnetic induction a complete fusion and its maintenance (the electromagnetic thermal transfer is then more effective than the plasma heat transfer),
D'autre part, ce procédé ne présente pas de rupture thermique (de type chauffage/refroidissement/réchauffage) et en particulier aucun chauffage du silicium autre que le chauffage initial, d'où un transfert du bain directement vers le procédé final de solidification. Dans un mode de mise en oeuvre particulier, et à titre purement illustratif, une installation de purification industrielle présente les principales caractéristiques suivantes :On the other hand, this method does not exhibit a thermal break (heating / cooling / heating) and in particular no silicon heating other than the initial heating, hence a bath transfer directly to the final solidification process. In a particular embodiment, and for illustrative purposes only, an industrial purification plant has the following main characteristics:
- le creuset 1 a un diamètre intérieur d'ordre de 1 ,5 mètre,the crucible 1 has an inner diameter of order of 1.5 meters,
- la hauteur du bain est de l'ordre de 0,2 mètre,
- la puissance plasma de la torche 3 est de l'ordre du Mégawatt, alors que la puissance unitaire de chaque torche latérale, 14, ou 15 ou 16 est de l'ordre de 300 kW,the height of the bath is of the order of 0.2 meters, the plasma power of the torch 3 is of the order of one megawatt, while the unit power of each side torch, 14, or 15 or 16 is of the order of 300 kW,
- la puissance du dispositif de chauffage électromagnétique est de l'ordre du Mégawatt,the power of the electromagnetic heating device is of the order of one megawatt,
- le débit de silicium métallurgique est de l'ordre de 500 Kg/heure. Compte tenu d'un rendement matière de 80 % en sortie du creuset de fusion/purification et d'un temps de traitement global par lots de 1 heure, la capacité d'une unité de production en silicium purifié est de l'ordre de 400 Kg/heure.
the flow rate of metallurgical silicon is of the order of 500 kg / hour. Given a material yield of 80% at the outlet of the melting / purification crucible and an overall batch treatment time of 1 hour, the capacity of a purified silicon production unit is of the order of 400 kg / hour.
Claims
1. Procédé de purification d'une charge à base de silicium pour obtenir du silicium de pureté supérieure, caractérisé en ce qu'on réalise les étapes suivantes : a) on envoie un dard plasma généré par une première torche à arc non transféré (6) contre une paroi pleine (7) d'un volume ayant un orifice de sortie de sorte que l'impact dudit dard contre ladite paroi pleine (7) à l'intérieur dudit volume génère un écoulement plasma homogène, b) on introduit de manière continue une charge à traiter à base de silicium constituée de particules et/ou de grains, ou broyée dans ledit écoulement plasma homogène, c) on dirige de manière continue l'ensemble formé par l'écoulement plasma homogène dans lequel a été introduite ladite charge broyée, de l'orifice de sortie dudit volume vers un creuset (1 ) ayant des parois latérales et un fond (30) et une partie supérieure ouverte, ledit creuset (1 ) comportant des moyens pour chauffer et brasser (12) ladite charge broyée à l'état fondu, d) l'intégralité de la charge broyée à traiter ayant été introduite et un bain de fusion (13) étant formé dans ledit creuset (1 ), on dirige le jet de plasma réactif d'au moins une deuxième torche (14-16) à arc non transféré sur la surface (17) dudit bain afin de volatiliser au moins certaines des impuretés du bain de fusion (13) présentes à la surface (17) dudit bain, e) on évacue le laitier présent à la surface (17) dudit bain, et on répète éventuellement les étapes d) et e) pour volatiliser au moins certaines des impuretés du bain amenées à la surface (17) dudit bain par brassage, f) on décharge ledit bain de fusion (13).1. Process for purifying a silicon-based filler to obtain silicon of higher purity, characterized in that the following steps are carried out: a) a plasma dart generated by a first non-transferred arc torch (6) is sent; ) against a solid wall (7) of a volume having an outlet so that the impact of said stinger against said solid wall (7) within said volume generates a homogeneous plasma flow, b) introduced continues a charge to be treated based on silicon consisting of particles and / or grains, or ground in said homogeneous plasma flow, c) continuously directs the assembly formed by the homogeneous plasma flow in which said charge has been introduced ground, from the outlet of said volume to a crucible (1) having sidewalls and a bottom (30) and an open top, said crucible (1) having means for heating and stirring (12) said charge in the molten state, d) all of the milled feed to be processed having been introduced and a melt (13) being formed in said crucible (1), the reactive plasma jet is directed at least once second torch (14-16) to arc not transferred to the surface (17) of said bath to volatilize at least some of the impurities of the melt (13) present on the surface (17) of said bath, e) the slag is evacuated present on the surface (17) of said bath, and steps d) and e) are optionally repeated to volatilize at least some of the impurities in the bath brought to the surface (17) of said bath by stirring, f) said melt is discharged (13).
2. Procédé selon la revendication 1 , caractérisé en ce que ledit au moins un jet de plasma réactif est un écoulement plasma homogène et réactif obtenu par impact du dard plasma réactif généré par ladite au moins deuxième torche (14-16) à arc non transféré contre une paroi pleine (7) d'un autre volume ayant un orifice de sortie, ladite deuxième torche (14-16) étant reliée audit autre volume.2. Method according to claim 1, characterized in that said at least one reactive plasma jet is a homogeneous and reactive plasma flow obtained by impact of the reactive plasma dart generated by said at least second non-transferred arc torch (14-16). against a solid wall (7) of another volume having an outlet, said second torch (14-16) being connected to said other volume.
3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la granulométrie de ladite charge broyée est comprise entre 10 et 500 μm, et encore mieux entre 80 et 150 μm. 3. Method according to claim 1 or 2, characterized in that the particle size of said ground feed is between 10 and 500 microns, and more preferably between 80 and 150 microns.
4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce qu'à l'étape b), ladite charge broyée étant introduite au moyen d'un gaz porteur, le rapport de la masse de la charge broyée sur la masse de gaz porteur est supérieur à 20. 4. Method according to any one of claims 1 to 3, characterized in that in step b), said ground feed being introduced by means of a carrier gas, the ratio of the mass of the milled feedstock on the carrier gas mass is greater than 20.
5. Procédé selon la revendication 4, caractérisée en ce que ledit gaz porteur étant un gaz réactif au contact dudit écoulement plasma homogène, on réalise une première purification de ladite charge broyée dans ledit écoulement plasma homogène.5. Method according to claim 4, characterized in that said carrier gas being a reactive gas in contact with said homogeneous plasma flow, a first purification of said ground feed is carried out in said homogeneous plasma flow.
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'à l'étape c), on brasse électromagnétiquement ledit bain de fusion (13).6. Method according to any one of claims 1 to 5, characterized in that in step c), electromagnetically stir said melt (13).
7. Procédé selon l'une quelconque des revendications 1 à 6, caractérisé en ce qu'à l'étape d), ledit creuset (1 ) ayant un diamètre D et une hauteur H tels que D/H >5, on envoie les jets plasma réactifs d'au moins une deuxième et une troisième torches (14-16) à arc non transféré sur ladite surface (17) dudit bain de fusion (13) afin de volatiliser au moins certaines des impuretés du bain de fusion (13) présentes à la surface (17) dudit bain.7. Method according to any one of claims 1 to 6, characterized in that in step d), said crucible (1) having a diameter D and a height H such that D / H> 5, are sent the reactive plasma jets of at least second and third non-transferred arc torches (14-16) on said surface (17) of said melt (13) to volatilize at least some of the impurities in the melt (13) present on the surface (17) of said bath.
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'à l'étape e), on oriente un seul jet de plasma réactif à la surface (17) dudit bain pour conférer audit laitier une quantité de mouvement apte à le diriger vers au moins un orifice d'évacuation placé sur les parois latérales dudit creuset (1 ), ledit jet de plasma réactif étant généré à tour de rôle ou non par lesdites autres torches à arc non transféré.8. Process according to any one of claims 1 to 7, characterized in that in step e), a single jet of reactive plasma is oriented on the surface (17) of said bath to impart to said slag a quantity of movement adapted to direct it to at least one discharge orifice placed on the side walls of said crucible (1), said reactive plasma jet being generated in turn or not by said other non-transferred arc torches.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'à l'étape f), on décharge le bain fondu ainsi purifié de ses impuretés par plasma en contrôlant sa vitesse d'extraction, sa température d'extraction et la quantité extraite.9. Method according to any one of claims 1 to 8, characterized in that in step f), the molten bath thus purified is discharged from its impurities by plasma by controlling its extraction rate, its temperature of extraction and the quantity extracted.
10. Procédé selon la revendication 9, caractérisé en ce que ladite solidification étant réalisée sans étape de fusion supplémentaire, on obtient des lingots ayant une enveloppe extérieure riche en silicium enrichi en impuretés et un cœur contenant le silicium de pureté supérieure et on enlève ladite enveloppe pour obtenir ledit silicium de pureté supérieure.10. Process according to claim 9, characterized in that said solidification being carried out without additional melting step, ingots having an outer shell rich in impurity-enriched silicon and a core containing the silicon of higher purity are obtained and said envelope is removed. to obtain said silicon of higher purity.
11. Procédé selon l'une quelconque des revendications 1 à 10 et 2, caractérisé en ce qu'on augmente le volume spatial desdits écoulements plasma homogènes pour éviter des projections dans ledit creuset (1 ) à l'étape c) et pour traiter une surface (17) dudit bain de fusion (13) plus importante à l'étape d).11. Method according to any one of claims 1 to 10 and 2, characterized in that increases the spatial volume of said homogeneous plasma flows to avoid projections into said crucible (1) at step c) and for treating a surface (17) of said larger melt (13) in step d).
12. Installation de purification pour la mise en œuvre du procédé de purification selon l'une quelconque des revendications 1 à 11 , caractérisée en ce qu'elle comprend :12. Purification plant for carrying out the purification process according to any one of claims 1 to 11, characterized in that it comprises:
- une enceinte d'introduction (4) comportant à une première extrémité une torche plasma (6) à arc non transféré ayant un axe principal, ladite torche étant destinée à générer un dard plasma ayant un axe de propagation sensiblement centré sur l'axe principal de ladite torche, - ladite enceinte d'introduction (4) comportant une partie coudée ayant un orifice de sortie, ladite partie coudée placée en aval de ladite torche plasma (6) comprenant une paroi pleine (7) de sorte que ledit dard plasma entre en collision avec ladite paroi pleine (7) pour former un écoulement plasma homogène, - ladite enceinte d'introduction (4) comportant au moins un port d'introduction (5) placé en aval de ladite torche plasma (6) pour l'introduction en continu d'une charge broyée à traiter en vue de son mélange avec ledit écoulement plasma homogène,an insertion chamber (4) comprising at a first end a non-transferred arc plasma torch (6) having a main axis, said torch being intended to generate a plasma dart having an axis of propagation substantially centered on the main axis; said torch, said insertion chamber (4) having a bent portion having an exit orifice, said bent portion disposed downstream of said plasma torch (6) comprising a solid wall (7) so that said plasma dart enters in collision with said solid wall (7) to form a homogeneous plasma flow, - said introduction chamber (4) comprising at least one insertion port (5) placed downstream of said plasma torch (6) for the introduction continuously a crushed feedstock to be treated for mixing with said homogeneous plasma flow,
- l'orifice de sortie de ladite enceinte d'introduction (4) est placé au- dessus d'un creuset (1 ) ayant des parois latérales et un fond (30) et une partie supérieure ouverte, ledit creuset (1 ) étant destiné à recevoir en continu ledit ensemble formé par l'écoulement plasma homogène dans lequel a été introduite ladite charge broyée jusqu'à introduction complète de la charge broyée, pour former un bain de fusion (13), - ledit creuset (1 ) comprenant des moyens pour chauffer et brasserthe outlet orifice of said insertion chamber (4) is placed above a crucible (1) having side walls and a bottom (30) and an open top, said crucible (1) being intended continuously receiving said assembly formed by the homogeneous plasma flow into which said milled feed has been introduced until complete introduction of the milled feed, to form a melt (13), - said crucible (1) comprising means to heat and brew
(12) ledit bain de fusion (13) à l'état fondu, un ou plusieurs orifices d'extraction (27-29) placés sur ses parois latérales pour évacuer le laitier et au moins un orifice de décharge pour décharger ledit bain de fusion (13),(12) said melt (13) in the molten state, one or more extraction orifices (27-29) placed on its side walls for discharging the slag and at least one discharge port for discharging said melt (13)
- ladite installation comprenant une ou plusieurs autres torches plasma à arc non transféré (14-16) pour générer chacune un jet de plasma réactif envoyé sur la surface (17) du bain de fusion (13) afin de volatiliser au moins certaines des impuretés de surface dudit bain de fusion (13).said plant comprising one or more other non-transferred arc plasma torches (14-16) for each generating a reactive plasma jet sent on the surface (17) of the melt (13) to volatilize at least some of the impurities of the surface of said melt (13).
13. Installation selon la revendication 12, caractérisée en ce que le gaz de ladite torche à arc non transféré placée sur ladite enceinte d'introduction (4) est un gaz neutre ou un gaz réactif. 13. Installation according to claim 12, characterized in that the gas of said non-transferred arc torch placed on said introduction chamber (4) is a neutral gas or a reactive gas.
14. Installation selon la revendication 12 ou 13, caractérisée en ce que lesdites torches à arc non transféré (6, 14-16) comportent chacune une électrode aval qui est une électrode évasée de manière à augmenter le volume spatial du dard plasma ou du jet de plasma réactif généré. 14. Installation according to claim 12 or 13, characterized in that said non-transferred arc torches (6, 14-16) each comprise a downstream electrode which is an electrode flared so as to increase the spatial volume of the plasma jet or jet reactive plasma generated.
15. Installation selon l'une quelconque des revendications 12 à 14, caractérisée en ce que ladite partie coudée comporte au moins une portion de forme évasée (9) pour permettre d'absorber le flux de la charge broyée introduite dans ledit écoulement plasma homogène, ladite portion de forme évasée (9) comprenant à son extrémité l'orifice de sortie de ladite enceinte d'introduction (4).15. Installation according to any one of claims 12 to 14, characterized in that said bent portion comprises at least one portion of flared shape (9) to allow to absorb the flow of the ground feed introduced into said homogeneous plasma flow, said flared portion (9) comprising at its end the outlet of said insertion chamber (4).
16. Installation selon l'une quelconque des revendications 12 à 15, caractérisée en ce que chacune desdites autres torches à arc non transféré (14-16) générant un jet de plasma réactif est reliée à une enceinte d'homogénéisation correspondante comprenant une partie coudée placée en aval de ladite torche plasma correspondante, ladite partie coudée comprenant une paroi pleine (7) de sorte que ledit jet de plasma réactif généré par ladite torche correspondante entre en collision avec ladite paroi pleine (7) pour former un écoulement plasma homogène et réactif.16. Installation according to any one of claims 12 to 15, characterized in that each of said other non-transferred arc torches (14-16) generating a reactive plasma jet is connected to a corresponding homogenization chamber comprising a bent portion placed downstream of said corresponding plasma torch, said bent portion comprising a solid wall (7) so that said reactive plasma jet generated by said corresponding torch collides with said solid wall (7) to form a homogeneous and reactive plasma flow .
17. Installation selon la revendication 16, caractérisée en ce que ladite partie coudée (18-20) de chacune desdites enceintes d'homogénéisation comprend au moins une portion de forme évasée (23, 24) à l'extrémité de laquelle est placé l'orifice de sortie de ladite enceinte d'homogénéisation correspondante.17. Installation according to claim 16, characterized in that said bent portion (18-20) of each of said homogenization enclosures comprises at least one portion of flared shape (23, 24) at the end of which is placed the outlet of said corresponding homogenization chamber.
18. Installation selon la revendication 16 ou 17, caractérisée en ce que ladite installation comprend des moyens pour ajuster individuellement les distances séparant les orifices de sortie de l'enceinte d'introduction (4) et des enceintes d'homogénéisation, du fond du creuset (1 ) ou de la surface (17) dudit bain de fusion (13) pour optimiser les bilans énergétiques et l'extraction des impuretés. 18. Installation according to claim 16 or 17, characterized in that said installation comprises means for individually adjusting the distances separating the outlet orifices of the introduction chamber (4) and the homogenization chambers from the bottom of the crucible. (1) or the surface (17) of said melt (13) to optimize the energy balances and the extraction of impurities.
19. Installation selon l'une quelconque des revendications 12 à 18, caractérisée en ce que ladite paroi pleine (7) avec laquelle le dard plasma entre en collision est placée par rapport à l'orifice de sortie de ladite torche reliée à ladite enceinte d'introduction (4), dans une zone où la température du dard plasma mesurée dans l'axe dudit dard plasma et en l'absence de ladite paroi pleine (7) est égale ou sensiblement égale à la moitié de la valeur du pic de température moyenne du dard plasma mesurée en sortie de ladite torche à arc non transféré.19. Installation according to any one of claims 12 to 18, characterized in that said solid wall (7) with which the plasma plunger collides is placed relative to the outlet of said torch connected to said enclosure. introduction (4), in an area where the plasma dart temperature measured in the axis of said plasma dart and in the absence of said solid wall (7) is equal to or substantially equal to half the value of the mean temperature peak of the plasma dart measured at the output of said non-transferred arc torch.
20. Installation selon la revendication 19, caractérisée en ce que ladite paroi pleine (7) est mobile en translation par rapport à l'orifice de sortie de ladite torche à arc non transféré (6).20. Installation according to claim 19, characterized in that said solid wall (7) is movable in translation relative to the outlet of said non-transferred arc torch (6).
21. Installation selon l'une quelconque des revendications 12 à 20, caractérisée en ce que ladite charge broyée étant introduite avec un gaz porteur, ledit au moins un port d'introduction (5) de la charge broyée comporte au moins une buse permettant une introduction de ladite charge broyée en rotation.21. Installation according to any one of claims 12 to 20, characterized in that said ground load being introduced with a carrier gas, said at least one port (5) for introducing the milled feed comprises at least one nozzle allowing a introducing said milled load into rotation.
22. Installation selon l'une quelconque des revendications 12 à 21 , caractérisée en ce que ledit creuset (1 ) a un diamètre D et une hauteur H tels que D/H >5.22. Installation according to any one of claims 12 to 21, characterized in that said crucible (1) has a diameter D and a height H such that D / H> 5.
23. Installation selon l'une quelconque des revendications 12 à 22, caractérisée en ce que lesdits moyens pour chauffer et brasser (12) comprennent un ou plusieurs moyens de couplage inductif.23. Installation according to any one of claims 12 to 22, characterized in that said means for heating and stirring (12) comprise one or more inductive coupling means.
24. Installation selon l'une quelconque des revendications 12 à 23, caractérisée en ce que lesdites autres torches (14-16) sont orientables de manière à déplacer le jet de plasma réactif qu'elle génère, à la surface (17) dudit bain de fusion (13).24. Installation according to any one of claims 12 to 23, characterized in that said other torches (14-16) are adjustable so as to move the jet of reactive plasma that it generates, to the surface (17) of said bath melting point (13).
25. Installation selon l'une quelconque des revendications 12 à 24, caractérisée en ce que ladite installation comporte des moyens pour ajuster la composition du gaz plasmagène de chacune des torches à arc non transféré pendant le fonctionnement de ces dernières. 25. Installation according to any one of claims 12 to 24, characterized in that said installation comprises means for adjusting the composition of the plasma gas of each non-transferred arc torches during operation of the latter.
26. Installation selon l'une quelconque des revendications 12 à 25, caractérisée en ce que ledit ou lesdits orifices de décharge étant placés dans le fond dudit creuset (1 ), ladite installation comporte des récipients pour recueillir le bain de fusion (13), lesdits récipients (33-37) étant placés sur des moyens de défilement (38) de manière à être présentés un à un sous ledit ou lesdits orifices jusqu'à ce que ledit creuset (1 ) soit vide.26. Installation according to any one of claims 12 to 25, characterized in that said or said discharge ports being placed in the bottom of said crucible (1), said installation comprises containers for collecting the melt (13), said containers (33-37) being placed on scrolling means (38) so as to be presented one by one under said at least one orifice until said crucible (1) is empty.
27. Installation selon la revendication 26, caractérisée en ce que ladite installation comporte de plus des moyens de liaison (32) étanches pour relier chacun desdites orifices de décharge avec ledit récipient (33-37) correspondant. 27. Installation according to claim 26, characterized in that said installation further comprises sealing means (32) sealed to connect each of said discharge ports with said container (33-37) corresponding.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR0952532A FR2944520B1 (en) | 2009-04-17 | 2009-04-17 | PROCESS AND INSTALLATION FOR THE PURIFICATION OF METALLURGICAL SILICON. |
PCT/EP2010/055059 WO2010119129A1 (en) | 2009-04-17 | 2010-04-16 | Method and apparatus for purifying a silicon feedstock |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2419380A1 true EP2419380A1 (en) | 2012-02-22 |
Family
ID=41350643
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10713973A Withdrawn EP2419380A1 (en) | 2009-04-17 | 2010-04-16 | Method and apparatus for purifying a silicon feedstock |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120090984A1 (en) |
EP (1) | EP2419380A1 (en) |
CN (1) | CN102459077B (en) |
CA (1) | CA2758563A1 (en) |
FR (1) | FR2944520B1 (en) |
WO (1) | WO2010119129A1 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102718221B (en) * | 2012-06-28 | 2014-06-11 | 厦门大学 | Polycrystalline silicon self-plugging casting device |
FR3011542B1 (en) * | 2013-10-03 | 2015-12-11 | Commissariat Energie Atomique | PROCESS FOR THE DEOXIDATION OF SILICON |
TWI619855B (en) * | 2016-12-21 | 2018-04-01 | Sun Wen Bin | Method for purifying high-purity silicon by fractionation |
CN109911902B (en) * | 2019-05-05 | 2022-06-24 | 上海大学 | Silicon purification device and method |
CN114561697A (en) * | 2022-03-02 | 2022-05-31 | 宁夏高创特能源科技有限公司 | Ingot casting preparation method and preparation equipment for fine columnar crystalline silicon target material matrix |
CN115872408B (en) * | 2022-10-19 | 2023-08-11 | 北京理工大学 | Quartz sand purification method based on thermal plasma jet |
CN115571883B (en) * | 2022-10-24 | 2023-12-08 | 广德特旺光电材料有限公司 | Purifying device for preparing crystalline silicon of photovoltaic material |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2487608A1 (en) | 1980-07-24 | 1982-01-29 | Gache Jean Louis | Portable phase modulation duplex transceiver - has common aerial coupled to transmitter and receiver through isolating duplexer having cell structure |
CA1147698A (en) | 1980-10-15 | 1983-06-07 | Maher I. Boulos | Purification of metallurgical grade silicon |
US4354987A (en) | 1981-03-31 | 1982-10-19 | Union Carbide Corporation | Consolidation of high purity silicon powder |
FR2585690B1 (en) | 1985-07-31 | 1987-09-25 | Rhone Poulenc Spec Chim | DIVIDED SILICON PLASMA PURIFICATION PROCESS |
JP3000109B2 (en) * | 1990-09-20 | 2000-01-17 | 株式会社住友シチックス尼崎 | Manufacturing method of high purity silicon ingot |
JPH10182127A (en) * | 1996-12-20 | 1998-07-07 | Kawasaki Steel Corp | Boron removal refining torch for silicon |
EP0855367A1 (en) * | 1997-01-22 | 1998-07-29 | Kawasaki Steel Corporation | Method for removing boron from metallurgical grade silicon and apparatus |
US6994835B2 (en) * | 2000-12-28 | 2006-02-07 | Sumitomo Mitsubishi Silicon Corporation | Silicon continuous casting method |
US7556764B2 (en) * | 2005-11-09 | 2009-07-07 | Heraeus Shin-Etsu America, Inc. | Silica vessel with nozzle and method of making |
EP2007919A2 (en) * | 2006-04-14 | 2008-12-31 | Silica Tech, LLC | Plasma deposition apparatus and method for making solar cells |
US20100047148A1 (en) * | 2008-05-23 | 2010-02-25 | Rec Silicon, Inc. | Skull reactor |
-
2009
- 2009-04-17 FR FR0952532A patent/FR2944520B1/en not_active Expired - Fee Related
-
2010
- 2010-04-16 US US13/264,858 patent/US20120090984A1/en not_active Abandoned
- 2010-04-16 CN CN201080024857.7A patent/CN102459077B/en not_active Expired - Fee Related
- 2010-04-16 EP EP10713973A patent/EP2419380A1/en not_active Withdrawn
- 2010-04-16 WO PCT/EP2010/055059 patent/WO2010119129A1/en active Application Filing
- 2010-04-16 CA CA2758563A patent/CA2758563A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2010119129A1 * |
Also Published As
Publication number | Publication date |
---|---|
CA2758563A1 (en) | 2010-04-16 |
CN102459077A (en) | 2012-05-16 |
FR2944520B1 (en) | 2011-05-20 |
FR2944520A1 (en) | 2010-10-22 |
WO2010119129A1 (en) | 2010-10-21 |
CN102459077B (en) | 2014-06-25 |
US20120090984A1 (en) | 2012-04-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2419380A1 (en) | Method and apparatus for purifying a silicon feedstock | |
EP0524887B1 (en) | Process and apparatus for the production of powders, in particular metal powders by atomisation | |
SU1331435A3 (en) | Method and installation for production of rare high-melting metal | |
JP5550903B2 (en) | Plasma deposition apparatus and method for making polycrystalline silicon | |
EP1042224B1 (en) | Method and installation for refining silicon | |
EP0093632B1 (en) | Process and device for heating a fluidized bed with an injection of plasma, and use in nitrogen oxide synthesis, in the gazification of substances containing carbon, and in ore reduction | |
JP5886831B2 (en) | Generation of single crystal semiconductor materials | |
EP0711254B1 (en) | Method of rendering inert, with the aid of a plasma torch, products containing metals, in particular heavy metals, and facility for carrying out said method | |
FR2512313A1 (en) | METHOD OF USING A PLASMA ARC HEATING DEVICE TO PROVIDE THERMAL ENERGY TO A REACTOR | |
EP1517855B1 (en) | Method for calcium nitride synthesis | |
WO2008065031A1 (en) | Device and method of inerting toxic materials by plasma melting | |
EP2265547B1 (en) | Method for purifying silicon for photovoltaic applications | |
WO2008104702A2 (en) | Silicon refining equipment | |
EP2769160B1 (en) | Facility for purifying a material | |
FR2621575A1 (en) | Process and device for the continuous production of liquid silicon from carbon and silica | |
CA3020262C (en) | A system and method for manufacturing high purity silicon | |
EP4431454A1 (en) | Apparatus and method for producing 3n or higher purity silicon by purifying 2n purity silicon | |
WO2019234072A1 (en) | Device for producing molten silicon | |
FR2585690A1 (en) | Process for the purification under plasma of divided silicon | |
WO2002028573A1 (en) | Method and device for spheroidisation by metal particle refusion | |
FR2473557A1 (en) | Carbothermic prodn. of aluminium (alloy) - with separate feed of alumina and reductant giving rapid prod. removal from reaction zone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20111115 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20161101 |