[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP0524887B1 - Process and apparatus for the production of powders, in particular metal powders by atomisation - Google Patents

Process and apparatus for the production of powders, in particular metal powders by atomisation Download PDF

Info

Publication number
EP0524887B1
EP0524887B1 EP92402141A EP92402141A EP0524887B1 EP 0524887 B1 EP0524887 B1 EP 0524887B1 EP 92402141 A EP92402141 A EP 92402141A EP 92402141 A EP92402141 A EP 92402141A EP 0524887 B1 EP0524887 B1 EP 0524887B1
Authority
EP
European Patent Office
Prior art keywords
head
atomized
plasma
powders
enclosure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP92402141A
Other languages
German (de)
French (fr)
Other versions
EP0524887A1 (en
Inventor
André Accary
Jean L. Coutiere
André Lacour
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aubert and Duval SA
Original Assignee
Aubert and Duval SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aubert and Duval SA filed Critical Aubert and Duval SA
Publication of EP0524887A1 publication Critical patent/EP0524887A1/en
Application granted granted Critical
Publication of EP0524887B1 publication Critical patent/EP0524887B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/10Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying using centrifugal force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/086Cooling after atomisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0896Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid particle transport, separation: process and apparatus
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2998/00Supplementary information concerning processes or compositions relating to powder metallurgy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention relates to a method and a device for producing powders and in particular metal powders by atomization.
  • the present invention aims to overcome these technical problems and in particular to be able to disperse a sufficiently hot metallic liquid, without there being any chemical interaction between the dispersing means and the liquid, to create a quenching zone eliminating any possibility of pollution of the atomized metal, and to provide a "cold chain” allowing the powders obtained to be used without polluting them before manufacturing the final solid product, after compaction and sintering.
  • a device for producing powders and in particular of metallic powders by atomization comprising means for melting the material to be atomized, an atomization enclosure in which is arranged a dispersion head rotating at high speed for diffusing the molten material in atomized form, means for cooling the atomized material and the head and means for collecting the cooled powder material thus obtained, said melting means comprising at least one vertical inductive plasma furnace producing a gas envelope plasmagens containing the upper face of the dispersion head and said cooling means comprising a first series of members for distributing a cooling fluid disposed in the upper part of the atomization enclosure to create a cold zone at the periphery of the casing and a second series of members for circulating a cooling fluid arranged in the lower part of the enclosure to create a cold zone on the underside of the head, characterized in that said first series of organs for distributing a cooling fluid consists of a ramp of nozzles producing jets of fluid tangential to the surface of said
  • said envelope of plasma gas consists of a cylindrical tube whose vertical axis is parallel to the vertical axis of the rotary head, and preferably the axis of the cylindrical tube is coincident with the 'axis of the head.
  • said vertical inductive plasma furnace is disposed above the upper face of the rotary head.
  • Another object of the invention is a method for manufacturing powders and in particular metallic powders by atomization, comprising the continuous melting of the material to be atomized flowing vertically and coaxially above a dispersing head rotating at great speed. speed intended for dispersing the molten material in atomized form, in a casing of plasma-producing gases by friction on the upper face of the rotary head, then quenching the atomized material and collecting the cooled powder material thus obtained, characterized in that quenching is carried out by passing said atomized material through a cooling vortex situated at the periphery of the envelope of plasma gas.
  • the invention allows the manufacture of ultra pure metallic powders using the above process.
  • the device of the invention can absorb a large flow of heat produced by a plasma torch and onto which the liquid material falls.
  • the atomized material then enters a quenching zone at the periphery of the head formed by a cylindrical tube of plasma gas moving parallel to the vertical axis of the head and enveloped in cold fluid.
  • the powders obtained are recovered in a collection zone comprising at least one chamber containing a neutral gas in the gaseous, liquid or solid state, before their use in formed or shaped products.
  • the powders obtained by the process of the invention with very rapid cooling are ultra pure and have a very fine particle size.
  • Figure 1 is a schematic representation of the atomizing device of the present invention.
  • FIG. 2 is an enlarged view of the central part of the device in FIG. 1.
  • FIG. 3 represents the quenching zone with the members for distributing the cooling fluid.
  • Figures 4a and 4b schematically show embodiments of the means for melting and supplying molten metal to the atomization enclosure.
  • the material to be melted and to be atomized is introduced by supply means A into the apparatus, for example in the initial form of a cylindrical bar 1 whose diameter is related to the power of the melting means, notably consisting of a plasma oven B.
  • the material to be atomized is initially in the form of pieces of various sizes, powders, shots or else may be directly brought to the molten state in the device.
  • the bar 1 is placed vertically in the axis of the oven B, the valve V1 then being closed, maintaining the oven B and the enclosure C in a neutral atmosphere. After vacuuming and purging the bar supply chamber several times, valve V1 is open. The bar 1 is then lowered with a hydropneumatic or electromechanical cylinder regulated at the speed which corresponds to the desired flow rate. It is preheated in the preheating furnace 3 by the currents induced with one or more inducing turns 5 at a frequency between 10 and 30 kHz, depending on its diameter.
  • the bar then enters the inductive plasma oven 4.
  • the plasma is ignited by creating an electric arc between the bar brought to high voltage and a retractable mobile electrode 8 located at ground.
  • a retractable mobile electrode 8 located at ground.
  • the vein or the liquid drops of molten materials pass more or less long over the hottest part of the plasma to, on the one hand, reach overheating and , on the other hand, pass through the most reactive area of the oven.
  • a cold cage 7 is used to protect the oven enclosure, and polished to increase the thermal efficiency of the plasma.
  • the bar 1 is thus heated at its periphery by direct induction of the HF fields - skin effect -, and by thermal conduction and convection of the plasma gases. It melts in a cone, point directed downwards, at an angle, the opening of which depends on the nature of the plasma gases. There is thus a casting which is, depending on the power of the furnace and the penetration of the bar into the plasma, continuous or not and perfectly axial. As for the diameter of the liquid stream or of the drops, it depends on the flow of liquid and the opening of the cone.
  • the material to be atomized is first received in fusion in a cold crucible (as in French patent 2,697,050) from which it flows by gravity passing through an electromagnetic and / or composite nozzle before enter the atomization enclosure as shown in Figures 4a and 4b.
  • the electromagnetic and / or composite nozzle constitutes a means of feeding and regulating the flow of molten metal and optionally makes it possible to maintain the metal in the desired thermal state.
  • the device shown in FIGS. 4a and 4b comprises means B for melting the solid (metal) material M consisting for example of a plasma torch.
  • the molten material then flows into a cold crucible 100 to form a bath of molten metal.
  • the heat losses on the surface of the bath are optionally compensated for by additional heating means B ′.
  • the molten material then flows vertically through the bottom of the crucible through an electromagnetic nozzle 101 ( Figure 4a) or composite 102 ( Figure 4b).
  • French Patent No. 87 00 866 (FR-A-2 609 914) already describes a composite nozzle 102 used for controlling a flow of liquid metal operating for example with a coil 102b at 450 kHz.
  • the electromagnetic nozzle 101 comprises a peripheral coil 101b inducing a high frequency field so as to create a constriction of the liquid stream thus causing a variation in the flow of molten material.
  • the molten material then enters the atomization enclosure to come into contact with the dispersion head 9.
  • the molten material flows into the atomization enclosure C at the center of the upper face of a dispersion or atomization head driven in rotation by the spindle 10 at a speed of up to '' at 125,000 rpm.
  • the shape of the dispersion head 9 is determined according to the optimal thermal mapping and advantageously, it is produced in the form of a cylinder whose dimensions are determined by the nature of the constituent material and the temperature sought on the upper side coming into contact with the molten material depending on the particle size sought for the powders.
  • the upper face of the head is preferably situated in a substantially horizontal plane and is crossed vertically by a heat flux generated by the plasma gases heated by induction by the inductor 6.
  • the plasma zone consists of an envelope of plasma gas in cylindrical tube shape whose vertical axis is parallel, being close to or coincident with the vertical axis of said head 9.
  • the underside of the cylindrical head 9 and the spindle 10 are cooled by axial circulation 11 of a fluid cooling which can be either water for the most important thermal fluxes, or a gas or a liquid gas such as argon or helium for example, in the case where a surface temperature of the head is desired more high.
  • the atomizing cylindrical head 9 is either made of copper, or of tungsten, or of a refractory alloy or not depending on the surface temperature which must be reached.
  • the underside of the cylinder constituting said head 9 is advantageously provided with a hemispherical cavity licked by the cooling fluid 11 circulating axially.
  • the cooling of the underside of the head 9 creates a temperature gradient in the mass thereof which is included for copper between 60 and 180 ° C / cm and between 200 and 500 ° C / cm for tungsten.
  • the liquid particles pass directly from the plasma zone 12 which envelops the head, to a quench zone 13 consisting of a cooling medium, two-phase or not, forming a vortex around the plasma.
  • FIG. 3 there is a ramp of eighteen nozzles 15 distributing a total flow of liquid argon sufficient to obtain complete cooling of the powders.
  • the nozzle ejection axis X 15 is inclined relative to the plane of the upper face of the head 9 with a jet width determined so as to obtain rapid cooling and a rotation effect of opposite direction (counter-rotating) to that of the head 9 in order to brake the movement of powders.
  • the nozzle ejection orifice 15 is located above the powder ejection triangle.
  • the refrigerant vortex 13 thus formed entrains the liquid and then solid particles in spiral trajectories, thus avoiding, on the one hand, direct impacts with the walls of the enclosure C, on the other hand, gas turbulence towards the top of the device, turbulence which could disturb the plasma and atomization.
  • the nozzles 16 oriented towards the walls of the enclosure, projecting onto them an argon mist which flows along the walls, thus driving the powders down and thus ensuring a tangential washing to the enclosure.
  • the mixture of liquid and powder is deposited at the bottom of enclosure C.
  • the powder obtained is therefore deposited at the bottom of the enclosure C and is recovered in the container 17.
  • the cooling and the collection of the powder are thus carried out using a neutral gas in the gaseous, liquid or solidified state after immersion of the collected powder in the liquid phase.
  • the invention also provides the possibility of combining in the same unit several atomization devices arranged around the energy sources: medium frequency preheating generator (MF) and plasma torch generator (HF).
  • MF medium frequency preheating generator
  • HF plasma torch generator
  • the operation is semi-continuous, in sequence of 2 bars.
  • D denotes a flow, P a pressure, T a temperature, V a valve, B a flange.
  • the method and the device of the invention make it possible to manufacture powders from various families of materials and in particular superalloys based on nickel, titanium and titanium alloys, aluminum, Niobium alloys, etc.

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

La présente invention concerne un procédé et un dispositif de production de poudres et notamment de poudres métalliques par atomisation.The present invention relates to a method and a device for producing powders and in particular metal powders by atomization.

Il existe déjà des installations de production de poudres métalliques, dans lesquelles on utilise des techniques d'atomisation (voir par exemple FR-A-2 629 573). Selon ces techniques connues, on verse du métal en fusion sur un disque horizontal entraîné en rotation par une broche tournant autour d'un axe vertical. Le métal est alors projeté vers l'extérieur du disque sous l'effet de la force centrifuge et se divise en fines gouttelettes de métal qui se solidifient au contact d'un fluide ou d'une paroi froide.There are already installations for the production of metallic powders, in which atomization techniques are used (see for example FR-A-2 629 573). According to these known techniques, molten metal is poured onto a horizontal disc driven in rotation by a spindle rotating around a vertical axis. The metal is then projected towards the outside of the disc under the effect of centrifugal force and is divided into fine metal droplets which solidify on contact with a fluid or a cold wall.

Cependant, quelles que soient les techniques actuelles, les principaux inconvénients sont, d'une part, le problème de la pollution des poudres lors des opérations de fusion, d'atomisation, de trempe et de collecte, d'autre part, les difficultés rencontrées pour atomiser un liquide de matériau parfaitement homogène.However, whatever the current techniques, the main drawbacks are, on the one hand, the problem of powder pollution during melting, atomization, quenching and collection operations, on the other hand, the difficulties encountered to atomize a liquid of perfectly homogeneous material.

La présente invention a pour but de surmonter ces problèmes techniques et notamment de pouvoir disperser un liquide métallique suffisamment chaud, sans qu'il y ait une quelconque interaction chimique entre les moyens de dispersion et le liquide, de créer une zone de trempe éliminant toute possibilité de pollution du métal atomisé, et de prévoir une "chaîne du froid" permettant d'utiliser les poudres obtenues sans les polluer avant de fabriquer le produit massif final, après compaction et frittage.The present invention aims to overcome these technical problems and in particular to be able to disperse a sufficiently hot metallic liquid, without there being any chemical interaction between the dispersing means and the liquid, to create a quenching zone eliminating any possibility of pollution of the atomized metal, and to provide a "cold chain" allowing the powders obtained to be used without polluting them before manufacturing the final solid product, after compaction and sintering.

Ce but est atteint selon l'invention au moyen d'un dispositif de production de poudres et notamment de poudres métalliques par atomisation comprenant des moyens de fusion du matériau à atomiser, une enceinte d'atomisation dans laquelle est disposée une tête de dispersion tournant à grande vitesse pour diffuser le matériau en fusion sous forme atomisée, des moyens de refroidissement du matériau atomisé et de la tête et des moyens de collecte du matériau en poudre refroidie ainsi obtenu, lesdits moyens de fusion comprenant au moins un four vertical à plasma inductif produisant une enveloppe de gaz plasmagènes contenant la face supérieure de la tête de dispersion et lesdits moyens de refroidissement comprenant une première série d'organes de distribution d'un fluide de refroidissement disposée dans la partie supérieure de l'enceinte d'atomisation pour créer une zone froide à la périphérie de l'enveloppe et une seconde série d'organes de circulation d'un fluide de refroidissement disposée dans la partie inférieure de l'enceinte pour créer une zone froide à la face inférieure de la tête, caractérisé en ce que ladite première série d'organes de distribution d'un fluide de refroidissement est constituée d'une rampe de buses produisant des jets de fluide tangentiels à la surface de ladite enveloppe de façon à créer une zone de trempe formée d'un vortex autour du plasma, et de buses produisant un lavage tangentiel à l'enceinte.This object is achieved according to the invention by means of a device for producing powders and in particular of metallic powders by atomization comprising means for melting the material to be atomized, an atomization enclosure in which is arranged a dispersion head rotating at high speed for diffusing the molten material in atomized form, means for cooling the atomized material and the head and means for collecting the cooled powder material thus obtained, said melting means comprising at least one vertical inductive plasma furnace producing a gas envelope plasmagens containing the upper face of the dispersion head and said cooling means comprising a first series of members for distributing a cooling fluid disposed in the upper part of the atomization enclosure to create a cold zone at the periphery of the casing and a second series of members for circulating a cooling fluid arranged in the lower part of the enclosure to create a cold zone on the underside of the head, characterized in that said first series of organs for distributing a cooling fluid consists of a ramp of nozzles producing jets of fluid tangential to the surface of said envelope so as to create a quenching zone formed by a vortex around the plasma, and of nozzles producing a tangential wash to the enclosure.

Selon une autre caractéristique de l'invention ladite enveloppe de gaz plasmagènes est constituée d'un tube cylindrique dont l'axe vertical est parallèle à l'axe vertical de la tête rotative, et de préférence l'axe du tube cylindrique est confondu avec l'axe de la tête.According to another characteristic of the invention, said envelope of plasma gas consists of a cylindrical tube whose vertical axis is parallel to the vertical axis of the rotary head, and preferably the axis of the cylindrical tube is coincident with the 'axis of the head.

Selon encore une autre caractéristique, ledit four vertical à plasma inductif est disposé au-dessus de la face supérieure de la tête rotative.According to yet another characteristic, said vertical inductive plasma furnace is disposed above the upper face of the rotary head.

Un autre objet de l'invention est un procédé de fabrication de poudres et notamment de poudres métalliques par atomisation, comprenant la fusion continue du matériau à atomiser s'écoulant verticalement et de façon coaxiale au-dessus d'une tête de dispersion tournant à grande vitesse destinée à disperser le matériau en fusion sous forme atomisée, dans une enveloppe de gaz plasmagènes par frottement sur la face supérieure de la tête rotative, puis la trempe du matériau atomisé et la collecte du matériau en poudre refroidie ainsi obtenu, caractérisé en ce que l'on réalise la trempe par passage dudit matériau atomisé dans un vortex réfrigérant situé à la périphérie de l'enveloppe de gaz plasmagènes.Another object of the invention is a method for manufacturing powders and in particular metallic powders by atomization, comprising the continuous melting of the material to be atomized flowing vertically and coaxially above a dispersing head rotating at great speed. speed intended for dispersing the molten material in atomized form, in a casing of plasma-producing gases by friction on the upper face of the rotary head, then quenching the atomized material and collecting the cooled powder material thus obtained, characterized in that quenching is carried out by passing said atomized material through a cooling vortex situated at the periphery of the envelope of plasma gas.

L'invention permet la fabrication de poudres métalliques ultra pures au moyen du procédé précédent.The invention allows the manufacture of ultra pure metallic powders using the above process.

Grâce à la tête de dispersion refroidie tournant avec une vitesse pouvant aller jusqu'à 125 000 tr/min, le dispositif de l'invention peut absorber un flux de chaleur important produit par un chalumeau plasma et sur lequel vient tomber le matériau liquide. Le matériau atomisé pénètre ensuite dans une zone de trempe à la périphérie de la tête formée par un tube cylindrique de gaz plasmagènes se déplaçant parallèlement à l'axe vertical de la tête et enveloppé de fluide froid. Enfin, les poudres obtenues sont récupérées dans une zone de collecte comprenant au moins une chambre renfermant un gaz neutre à l'état gazeux, liquide ou solide, avant leur utilisation dans des produits formés ou façonnés.Thanks to the cooled dispersion head rotating with a speed of up to 125,000 rpm, the device of the invention can absorb a large flow of heat produced by a plasma torch and onto which the liquid material falls. The atomized material then enters a quenching zone at the periphery of the head formed by a cylindrical tube of plasma gas moving parallel to the vertical axis of the head and enveloped in cold fluid. Finally, the powders obtained are recovered in a collection zone comprising at least one chamber containing a neutral gas in the gaseous, liquid or solid state, before their use in formed or shaped products.

Les poudres obtenues par le procédé de l'invention avec un refroidissement très rapide sont ultra pures et possède une granulométrie très fine.The powders obtained by the process of the invention with very rapid cooling are ultra pure and have a very fine particle size.

L'invention sera mieux comprise à la lecture de la description qui va suivre et se rapportant aux dessins annexés.The invention will be better understood on reading the description which follows and relating to the accompanying drawings.

La figure 1 est une représentation schématique du dispositif d'atomisation de la présente invention.Figure 1 is a schematic representation of the atomizing device of the present invention.

La figure 2 est une vue agrandie de la partie centrale du dispositif de la figure 1.FIG. 2 is an enlarged view of the central part of the device in FIG. 1.

La figure 3 représente la zone de trempe avec les organes de distribution du fluide de refroidissement.FIG. 3 represents the quenching zone with the members for distributing the cooling fluid.

Les figures 4a et 4b représentent de façon schématique des modes de réalisation des moyens de fusion et d'alimentation en métal fondu de l'enceinte d'atomisation.Figures 4a and 4b schematically show embodiments of the means for melting and supplying molten metal to the atomization enclosure.

Comme représenté sur les figures 1 et 2, le matériau à fondre et à atomiser est introduit par des moyens d'alimentation A dans l'appareil par exemple sous forme initiale d'un barreau cylindrique 1 dont le diamètre est en rapport avec la puissance des moyens de fusion, constitués notamment d'un four plasma B.As shown in FIGS. 1 and 2, the material to be melted and to be atomized is introduced by supply means A into the apparatus, for example in the initial form of a cylindrical bar 1 whose diameter is related to the power of the melting means, notably consisting of a plasma oven B.

Selon des variantes de mise en oeuvre du procédé le matériau à atomiser est initialement sous forme de morceaux de tailles variées, de poudres, de grenailles ou bien encore peut être directement amené à l'état fondu dans le dispositif.According to variants of implementation of the process, the material to be atomized is initially in the form of pieces of various sizes, powders, shots or else may be directly brought to the molten state in the device.

Le barreau 1 est placé verticalement dans l'axe du four B, la vanne V1 étant alors fermée, maintenant le four B et l'enceinte C sous atmosphère neutre. Après avoir fait le vide et purgé plusieurs fois la chambre d'alimentation du barreau A la vanne V1 est ouverte. Le barreau 1 est alors descendu avec un vérin hydropneumatique ou électromécanique régulé à la vitesse qui correspond au débit de coulée désiré. Il est préchauffé dans le four de préchauffage 3 par les courants induits avec une ou plusieurs spires inductrices 5 à une fréquence comprise entre 10 et 30 kHz, selon son diamètre.The bar 1 is placed vertically in the axis of the oven B, the valve V1 then being closed, maintaining the oven B and the enclosure C in a neutral atmosphere. After vacuuming and purging the bar supply chamber several times, valve V1 is open. The bar 1 is then lowered with a hydropneumatic or electromechanical cylinder regulated at the speed which corresponds to the desired flow rate. It is preheated in the preheating furnace 3 by the currents induced with one or more inducing turns 5 at a frequency between 10 and 30 kHz, depending on its diameter.

On peut aussi réaliser la fusion du matériau à atomiser au moyen d'un dispositif de fusion par induction directe en cage froide avec confinement électromagnétique de la charge fondue comme décrit dans le brevet français 88 04 460 (FR-A-2 629 573).It is also possible to carry out the melting of the material to be atomized by means of a melting device by direct induction in a cold cage with electromagnetic confinement of the molten charge as described in French patent 88 04 460 (FR-A-2 629 573).

Le barreau pénètre ensuite dans le four à plasma inductif 4. Le plasma est allumé en créant un arc électrique entre le barreau porté à haute tension et une électrode mobile escamotable 8 se trouvant à la masse. Selon la position plus ou moins avancée du barreau dans la flamme, lors de la coulée, la veine ou les gouttes liquides de matériaux fondus traversent plus ou moins longtemps la partie la plus chaude du plasma pour, d'une part, atteindre une surchauffe et,d'autre part, traverser la zone la plus réactive du four.The bar then enters the inductive plasma oven 4. The plasma is ignited by creating an electric arc between the bar brought to high voltage and a retractable mobile electrode 8 located at ground. Depending on the more or less advanced position of the bar in the flame, during the casting, the vein or the liquid drops of molten materials pass more or less long over the hottest part of the plasma to, on the one hand, reach overheating and , on the other hand, pass through the most reactive area of the oven.

On utilise de préférence une cage froide 7 pour protéger l'enceinte du four, et polie pour accroître le rendement thermique du plasma. Le barreau 1 est ainsi chauffé à sa périphérie par induction directe des champs HF -effet de peau-, et par conduction et convection thermiques des gaz plasmagènes. Il fond en cône, pointe dirigée vers le bas, avec un angle dont l'ouverture est fonction de la nature des gaz plasmagènes. On a ainsi une coulée qui est, selon la puissance du four et la pénétration du barreau dans le plasma, continue ou non et parfaitement axiale. Quant au diamètre de la veine liquide ou des gouttes, il est fonction du débit de liquide et de l'ouverture du cône.Preferably a cold cage 7 is used to protect the oven enclosure, and polished to increase the thermal efficiency of the plasma. The bar 1 is thus heated at its periphery by direct induction of the HF fields - skin effect -, and by thermal conduction and convection of the plasma gases. It melts in a cone, point directed downwards, at an angle, the opening of which depends on the nature of the plasma gases. There is thus a casting which is, depending on the power of the furnace and the penetration of the bar into the plasma, continuous or not and perfectly axial. As for the diameter of the liquid stream or of the drops, it depends on the flow of liquid and the opening of the cone.

Dans ces conditions, le matériau à atomiser est d'abord reçu en fusion dans un creuset froid (comme dans le brevet français 2 697 050) d'où il s'écoule par gravité en passant par une busette électromagnétique et/ou composite avant de pénétrer dans l'enceinte d'atomisation comme représenté sur les figures 4a et 4b. La busette électromagnétique et/ou composite constitue un moyen d'alimentation et de régulation du débit de métal fondu et permet éventuellement de maintenir le métal à l'état thermique désiré.Under these conditions, the material to be atomized is first received in fusion in a cold crucible (as in French patent 2,697,050) from which it flows by gravity passing through an electromagnetic and / or composite nozzle before enter the atomization enclosure as shown in Figures 4a and 4b. The electromagnetic and / or composite nozzle constitutes a means of feeding and regulating the flow of molten metal and optionally makes it possible to maintain the metal in the desired thermal state.

Le dispositif représenté sur les figures 4a et 4b comprend des moyens de fusion B du matériau (métal) solide M constitués par exemple d'une torche plasma. Le matériau fondu s'écoule ensuite dans un creuset froid 100 pour former un bain de métal fondu. Les pertes thermiques à la surface du bain sont éventuellement compensées par des moyens de chauffe complémentaires B′. Le matériau à l'état fondu s'écoule ensuite verticalement par le fond du creuset au travers d'une busette électromagnétique 101 (figure 4a) ou composite 102 (figure 4b).The device shown in FIGS. 4a and 4b comprises means B for melting the solid (metal) material M consisting for example of a plasma torch. The molten material then flows into a cold crucible 100 to form a bath of molten metal. The heat losses on the surface of the bath are optionally compensated for by additional heating means B ′. The molten material then flows vertically through the bottom of the crucible through an electromagnetic nozzle 101 (Figure 4a) or composite 102 (Figure 4b).

Le brevet français n° 87 00 866 (FR-A-2 609 914) décrit déjà une busette composite 102 utilisé pour le contrôle d'un débit de métal liquide fonctionnant par exemple avec une bobine 102b sous 450 kHz.French Patent No. 87 00 866 (FR-A-2 609 914) already describes a composite nozzle 102 used for controlling a flow of liquid metal operating for example with a coil 102b at 450 kHz.

La busette électromagnétique 101 comprend une bobine périphérique 101b induisant un champ à haute fréquence de façon à créer une striction de la veine liquide entraînant ainsi une variation du débit de matériau fondu. Le matériau fondu pénètre ensuite dans l'enceinte d'atomisation pour venir au contact de la tête de dispersion 9.The electromagnetic nozzle 101 comprises a peripheral coil 101b inducing a high frequency field so as to create a constriction of the liquid stream thus causing a variation in the flow of molten material. The molten material then enters the atomization enclosure to come into contact with the dispersion head 9.

Sur les figures 1 et 2, le matériau fondu s'écoule dans l'enceinte d'atomisation C au centre de la face supérieure d'une tête de dispersion ou d'atomisation entraînée en rotation par la broche 10 à une vitesse pouvant aller jusqu'à 125 000 tr/min. La forme de la tête de dispersion 9 est déterminée en fonction de la cartographie thermique optimale et de manière avantageuse, elle est réalisée sous la forme d'un cylindre dont les dimensions sont déterminées par la nature de la matière constitutive et la température recherchée sur la face supérieure entrant en contact avec le matériau en fusion en fonction de la granulométrie recherchée pour les poudres. La face supérieure de la tête est située de préférence dans un plan sensiblement horizontal et est traversée verticalement par un flux thermique généré par les gaz plasmagènes chauffés par induction par l'inducteur 6. La zone plasma est constituée d'une enveloppe de gaz plasmagène en forme de tube cylindrique dont l'axe vertical est parallèle, en étant voisin ou confondu avec l'axe vertical de ladite tête 9. La face inférieure de la tête cylindrique 9 et la broche 10 sont refroidies par circulation axiale 11 d'un fluide de refroidissement qui peut être soit de l'eau pour les flux thermiques les plus importants, soit un gaz ou un gaz liquifié comme l'argon ou l'hélium par exemple, dans le cas où l'on désire une température superficielle de la tête plus élevée.In FIGS. 1 and 2, the molten material flows into the atomization enclosure C at the center of the upper face of a dispersion or atomization head driven in rotation by the spindle 10 at a speed of up to '' at 125,000 rpm. The shape of the dispersion head 9 is determined according to the optimal thermal mapping and advantageously, it is produced in the form of a cylinder whose dimensions are determined by the nature of the constituent material and the temperature sought on the upper side coming into contact with the molten material depending on the particle size sought for the powders. The upper face of the head is preferably situated in a substantially horizontal plane and is crossed vertically by a heat flux generated by the plasma gases heated by induction by the inductor 6. The plasma zone consists of an envelope of plasma gas in cylindrical tube shape whose vertical axis is parallel, being close to or coincident with the vertical axis of said head 9. The underside of the cylindrical head 9 and the spindle 10 are cooled by axial circulation 11 of a fluid cooling which can be either water for the most important thermal fluxes, or a gas or a liquid gas such as argon or helium for example, in the case where a surface temperature of the head is desired more high.

La tête cylindrique d'atomisation 9 est soit en cuivre, soit en tungstène, soit en alliage réfractaire ou non selon la température superficielle que l'on doit atteindre.The atomizing cylindrical head 9 is either made of copper, or of tungsten, or of a refractory alloy or not depending on the surface temperature which must be reached.

La face inférieure du cylindre constituant ladite tête 9 est avantageusement pourvue d'une cavité hémisphérique léchée par le fluide de refroidissement 11 circulant de façon axiale. Le refroidissement de la face inférieure de la tête 9 crée un gradient de température dans la masse de celle-ci qui est compris pour du cuivre entre 60 et 180°C/cm et entre 200 et 500°C/cm pour du tungstène.The underside of the cylinder constituting said head 9 is advantageously provided with a hemispherical cavity licked by the cooling fluid 11 circulating axially. The cooling of the underside of the head 9 creates a temperature gradient in the mass thereof which is included for copper between 60 and 180 ° C / cm and between 200 and 500 ° C / cm for tungsten.

L'apport de chaleur par le plasma au métal liquide jusqu'à la surface même de la tête et la résistance thermique entre le matériau liquide et ladite tête font que le matériau dispersé reste liquide (malgré la chaleur extraite à travers la tête).The supply of heat by the plasma to the liquid metal up to the very surface of the head and the thermal resistance between the liquid material and said head make the dispersed material remain liquid (despite the heat extracted through the head).

Pour accroître la résistance thermique et, d'une part avoir une tête de dispersion la plus froide possible eu égard à ses propriétés mécaniques, d'autre part, avoir un liquide à disperser suffisamment chaud pour rester homogène, l'atomisation s'effectue par "érosion", l'"érosion" consistant à diffuser et disperser le liquide par frottement et éviter ainsi son "mouillage" avec la face supérieure de la tête.To increase the thermal resistance and, on the one hand to have a dispersion head as cold as possible having regard to its mechanical properties, on the other hand, to have a liquid to be dispersed sufficiently hot to remain homogeneous, atomization is carried out by "erosion", the "erosion" consisting in diffusing and dispersing the liquid by friction and thus avoiding its "wetting" with the upper side of the head.

L'utilisation de la "torche" plasma permet de :

  • a. fondre le matériau dans des conditions géométriques et thermocinétiques optimales, pour obtenir une coulée parfaitement axiale et stable ;
  • b. surchauffer la veine liquide pour obtenir un liquide homogène ;
  • c. créer un flux thermique à travers la face supérieure de la tête d'atomisation 9 et assurer une cartographie thermique compatible avec la tenue mécanique de ladite tête ;
  • d. maintenir la pureté des produits lors de l'atomisation jusqu'à la trempe.
The use of the plasma "torch" allows to:
  • at. melt the material under optimal geometrical and thermokinetic conditions, to obtain a perfectly axial and stable casting;
  • b. overheating the liquid stream to obtain a homogeneous liquid;
  • vs. create a heat flow through the upper face of the atomization head 9 and provide thermal mapping compatible with the mechanical strength of said head;
  • d. maintain the purity of the products during atomization until quenching.

Après atomisation, les particules liquides passent directement de la zone plasma 12 qui enveloppe la tête, à une zone de trempe 13 constituée d'un milieu réfrigérant, diphasique ou non, formant un vortex autour du plasma. A cet effet une série de buses 15 placées sur une rampe circulaire 14 dans le haut de l'enceinte d'atomisation C, envoie le fluide de refroidissement tangentiellement au tube de gaz plasmagènes 12.After atomization, the liquid particles pass directly from the plasma zone 12 which envelops the head, to a quench zone 13 consisting of a cooling medium, two-phase or not, forming a vortex around the plasma. To this end, a series of nozzles 15 placed on a circular ramp 14 at the top of the atomization enclosure C, sends the cooling fluid tangentially to the plasma gas tube 12.

Selon un mode de réalisation avantageux tel que représenté sur la figure 3 on dispose d'une rampe de dix huit buses 15 distribuant un débit total d'argon liquide suffisant pour obtenir un refroidissement complet des poudres.L'axe d'éjection X des buses 15 est incliné par rapport au plan de la face supérieure de la tête 9 avec une largeur de jet déterminée de façon à obtenir un refroidissement rapide et un effet de rotation de sens contraire (contra-rotatif) à celui de la tête 9 afin de freiner le mouvement des poudres.According to an advantageous embodiment as shown in FIG. 3, there is a ramp of eighteen nozzles 15 distributing a total flow of liquid argon sufficient to obtain complete cooling of the powders. The nozzle ejection axis X 15 is inclined relative to the plane of the upper face of the head 9 with a jet width determined so as to obtain rapid cooling and a rotation effect of opposite direction (counter-rotating) to that of the head 9 in order to brake the movement of powders.

L'orifice d'éjection des buses 15 est situé au-dessus du triangle d'éjection des poudres.The nozzle ejection orifice 15 is located above the powder ejection triangle.

Le passage de la zone plasma constituée de l'enveloppe de gaz plasmagènes 12 à haute température, à la zone de trempe 13 à basse température, d'une part, élimine les réactions chimiques qui se produisent entre 1 500°C et 200°C et tout particulièrement celles d'oxydation dans le cas de métaux et alliages et, d'autre part, évite la formation de phases intermédiaires ne permettant pas d'obtenir des structures microcristallines et même amorphes.The passage from the plasma zone consisting of the envelope of plasma gases 12 at high temperature, to the quenching zone 13 at low temperature, on the one hand, eliminates the chemical reactions which occur between 1500 ° C and 200 ° C and very particularly those of oxidation in the case of metals and alloys and, on the other hand, avoids the formation of phases intermediates which do not allow microcrystalline and even amorphous structures to be obtained.

Le vortex réfrigérant 13 ainsi constitué entraîne les particules liquides, puis solides, dans des trajectoires en spirales, évitant ainsi, d'une part, les chocs directs avec les parois de l'enceinte C, d'autre part, les turbulences des gaz vers le haut de l'appareil, turbulences qui risquent de perturber le plasma et l'atomisation.The refrigerant vortex 13 thus formed entrains the liquid and then solid particles in spiral trajectories, thus avoiding, on the one hand, direct impacts with the walls of the enclosure C, on the other hand, gas turbulence towards the top of the device, turbulence which could disturb the plasma and atomization.

Les buses 16 orientées vers les parois de l'enceinte, projettent sur celles-ci un brouillard d'argon qui ruisselle le long des parois, entraînant ainsi les poudres vers le bas et assurant ainsi un lavage tangentiel à l'enceinte.The nozzles 16 oriented towards the walls of the enclosure, projecting onto them an argon mist which flows along the walls, thus driving the powders down and thus ensuring a tangential washing to the enclosure.

Le mélange de liquide et de poudre se dépose dans le bas de l'enceinte C.The mixture of liquid and powder is deposited at the bottom of enclosure C.

La poudre obtenue se dépose donc au fond de l'enceinte C et est récupérée dans le conteneur 17.The powder obtained is therefore deposited at the bottom of the enclosure C and is recovered in the container 17.

Le refroidissement et la collecte de la poudre sont ainsi réalisés en utilisant un gaz neutre à l'état gazeux, liquide ou solidifié après immersion de la poudre collectée en phase liquide.The cooling and the collection of the powder are thus carried out using a neutral gas in the gaseous, liquid or solidified state after immersion of the collected powder in the liquid phase.

L'invention prévoit également la possibilité de combiner dans une même unité plusieurs dispositifs d'atomisation disposés autour des sources énergétiques : générateur de préchauffage moyenne fréquence (MF) et générateur de la torche plasma (HF).The invention also provides the possibility of combining in the same unit several atomization devices arranged around the energy sources: medium frequency preheating generator (MF) and plasma torch generator (HF).

La description qui va suivre illustre un exemple de mode opératoire du procédé de l'invention en référence au dispositif illustré sur la figure 1.The description which follows illustrates an example of the operating mode of the method of the invention with reference to the device illustrated in FIG. 1.

ExempleExample

Elaboration dans le dispositif de l'invention, de 10 kg de poudre d'alliage avec deux barreaux de 24 mm de diamètre.Elaboration in the device of the invention, of 10 kg of alloy powder with two bars of 24 mm in diameter.

L'opération est semi-continue, par séquence de 2 barreaux.The operation is semi-continuous, in sequence of 2 bars.

On commencera par l'opération de chargement du barreau n° 1 puis par celle de préchauffage par le four Moyenne Fréquence de 10 kHz de 30 kW, suivie de celles de fusion par la torche plasma de 100 kW, de dispersion centrifuge et de refroidissement par de l'argon liquide dans l'hélium gazeux, enfin par celle de récupération de la poudre dans un collecteur refroidi par azote liquide.We will start with the loading operation of the bar n ° 1 then by that of preheating by the Medium Frequency oven of 10 kHz of 30 kW, followed by those of fusion by the plasma torch of 100 kW, of centrifugal dispersion and of cooling by of liquid argon in gaseous helium, finally by that of recovery of the powder in a collector cooled by liquid nitrogen.

Dans toute la suite, D désigne un débit, P une pression, T une température, V une vanne, B une bride.In the following, D denotes a flow, P a pressure, T a temperature, V a valve, B a flange.

Opérations PRELIMINAIRES : PRELIMINARY Operations:

  • Dégazage à la température ambiante avec la pompe PV1, puis à la pompe moléculaire PV2 pour obtenir dans l'enceinte le collecteur, le disperseur ou tête rotative, les conduites d'argon et l'accumulateur d'argon liquide, un vide statique de 10-5 torr ;Degassing at room temperature with the PV1 pump, then with the PV2 molecular pump to obtain in the enclosure the collector, the disperser or rotary head, the argon pipes and the liquid argon accumulator, a static vacuum of 10 -5 torr;
  • Balayage par l'argon U à 1 bar ;Argon U sweep at 1 bar;
  • Fermeture de la vanne V1Closing of valve V1
  • Vide à 10-3 torr ;Empty at 10-3 torr;
  • Remplissage avec l'hélium par la vanne V4 via un dispositif de régulation de pression (MKS) pour maintien à 2 bars ;Filling with helium by the valve V4 via a pressure regulation device (MKS) to maintain at 2 bars;
  • Ouverture de la vanne VA9 du palier à gaz du disperseur, avec PA9 = 2 bars ;Opening of valve VA9 of the disperser gas bearing, with PA9 = 2 bars;
  • Mise en rotation du disperseur à basse vitesse, à 5 000 tr/min environ ;Rotation of the disperser at low speed, at around 5,000 rpm;
  • Introduction de l'eau de refroidissement de la tête, à un débit DE1 = 10 g/s ;Introduction of cooling water from the head, at a flow rate DE1 = 10 g / s;
  • Mise en froid de l'enceinte et du collecteur à l'azote liquide à 3 bars ;Cooling of the enclosure and the collector with liquid nitrogen at 3 bars;
  • Mise en froid de l'accumulateur à 2 bars ;Cooling of the accumulator to 2 bars;
  • Remplissage de l'accumulateur par condensation de l'argon UFilling the accumulator by condensing argon U
  • Introduction d'argon gazeux dans la cage froide de la torche plasma par la vanne VA2 à un débit DA2 = 0,3 l/s ;Introduction of argon gas into the cold cage of the plasma torch by the valve VA2 at a flow DA2 = 0.3 l / s;
  • Mise en pression, PA6 = 3 bars, de l'accumulateur d'argon (non représenté) et ouverture des vannes VA3, VA4 et VA5 pour dégazage des canalisations d'argon liquide et amorçage des pompes cryogéniques ;Pressurization, PA6 = 3 bars, of the argon accumulator (not shown) and opening of the valves VA3, VA4 and VA5 for degassing of the liquid argon pipes and priming of the pumps cryogenic;
  • Remplissage des réservoirs d'expansion d'azote liquide (non représenté) jusqu'aux niveaux "ni" respectivement aux pressions PNi = 2 bars, pour i = 1 à 6.Filling the liquid nitrogen expansion tanks (not shown) up to the "ni" levels respectively at pressures PNi = 2 bars, for i = 1 to 6.

Opérations A : CHARGEMENT Operations A: LOADING DUREE secondesDURATION seconds A1A1 Introduction et fixation du barreau n° 1Introduction and fixing of bar n ° 1 2020 A2A2 Fermeture des brides B1 et B2 et de la vanne V8Closing of flanges B1 and B2 and of valve V8 1010 A3A3 Mise en route de la pompe à vide PV1Starting the PV1 vacuum pump A4A4 Ouverture de la vanne V7 : vide < 0,01 torrV7 valve opening: vacuum <0.01 torr 3030 A5AT 5 Fermeture de la vanne V7 et ouverture de la vanne VA1, Remplissage du sas à 3 bars, fermeture de la vanne VA1Closing of valve V7 and opening of valve VA1, Filling the airlock at 3 bars, closing of valve VA1 1010 A6A6 Purgeage : ouverture de la vanne V7 pour vide à moins de 0,1 torrPurging: opening of the V7 valve for vacuum within 0.1 torr A7A7 Fermeture de V7 et arrêt de le pompe à vide PV1Closing of V7 and stopping of the vacuum pump PV1 A8AT 8 Ouverture de la vanne enceinte-sas V1 pour remplissage du sas en hélium par la vanne V4 du dispositif régulateur de pression (MKS) à 2 barsOpening of the enclosure-airlock valve V1 for filling the airlock with helium via valve V4 of the pressure regulator device (MKS) at 2 bars 4040 110 ¯

Figure imgb0001
110 ¯
Figure imgb0001
Opérations B et C : PRECHAUFFAGE, FUSION ET DISPERSION CENTRIGUGE Operations B and C: PREHEATING, MELTING AND CENTRIGUGAL DISPERSION DUREE secondesDURATION seconds B1 Mise en route du générateur MF de 30 kWB1 Starting the 30 kW MF generator 55 B2 Descente du barreau : à une vitesse Vb de 5 cm/s jusqu'à l'inducteur HF I2(2)B2 Lowering the bar: at a speed Vb of 5 cm / s to the HF I2 inductor (2) 1010 C2 Introduction des gaz dans la tête de la torche plasma : ouverture de la vanne VA2, la vanne VH2 étant fermée Argon U : DA = 0,3 l/s ; Hydrogène : DH2 = 0C2 Introduction of gases into the head of the plasma torch: opening of the valve VA2, the valve VH2 being closed Argon U: DA = 0.3 l / s; Hydrogen: DH2 = 0 LN2 (LN2 = azote liquide) Pression azote dans le capot du disperseur : PN5 = 6 barsLN2 (LN2 = liquid nitrogen) Nitrogen pressure in the cover of the disperser: PN5 = 6 bars C3 Allumage du plasma à 18 kW par arc électrique HF de 6 kV entre le barreau et une électrode mobile à la masse, puis, remontée du barreau jusqu'à l'inducteur MF, I1(1)C3 Plasma ignition at 18 kW by 6 kV HF electric arc between the rod and a movable electrode to ground, then, ascent from the rod to the MF inductor, I1 (1) 2020 C4 Montée à 50 % de la puissance maximale du plasmaC4 Rise to 50% of the maximum plasma power C5 Augmentation du débit d'argon à DA2 = 0,5 l/s et introduction de l'hydrogène-ouverture de VH2- avec DH2 = 0,0025 l/sC5 Increase in argon flow at DA2 = 0.5 l / s and introduction of hydrogen-opening of VH2- with DH2 = 0.0025 l / s 55 LN2 Baisse des températures et donc des pressions d'azote dansLN2 Lower temperatures and therefore nitrogen pressures in - la jaquette supérieure de l'enceinte : PN1 = 1 bar,- the upper jacket of the enclosure: PN1 = 1 bar, - la jaquette inférieure de l'enceinte : PN2 = 1,6 bar,- the lower jacket of the enclosure: PN2 = 1.6 bar, - la jaquette de l'accumulateur ...... : PN4 = 1,6 bar,- the accumulator jacket ......: PN4 = 1.6 bar, - la jaquette des canalisations d'argon : PN6 = 1 bar- the jacket of the argon pipes: PN6 = 1 bar C6 Ouverture de la vanne argon liquide haute pression VA3 : DA3 = 0,075 l/s (PA3 = 10 bars)C6 Opening of the high pressure liquid argon valve VA3: DA3 = 0.075 l / s (PA3 = 10 bars) 1010 B3 Montée en puissance du générateur MF, PMo, pour obtenir TbB3 Rise in power of the MF generator, PMo, to obtain Tb 55 B4 Lorsque la température du barreau est à Tb fixée, descente du barreau à la vitesse Vb = 0,27 cm/s (10 g/s) ajuster la puissance PMo pour garder Tb au défilé ;B4 When the temperature of the bar is at Tb fixed, lowering of the bar at the speed Vb = 0.27 cm / s (10 g / s) adjust the power PMo to keep Tb at the parade; 100100 C7 Idem C4 à 100 % et C5 avec les débits : DH2 = 0,005 l/s, DA2 = 1 l/s Montée en vitesse de la tête rotative : Vrd = 1 000 tr/sC7 Same as C4 at 100% and C5 with flow rates: DH2 = 0.005 l / s, DA2 = 1 l / s Speed increase of the rotary head: Vrd = 1000 r / s 1010 C8 Argon liquide des buses de refroidissement : DA = 0,15 l/s ; PA3 = 20 barsC8 Liquid argon from the cooling nozzles: DA = 0.15 l / s; PA3 = 20 bars C9 Course du barreau de 125 cm dans le plasma à Vb = 0,27 cm/sC9 Stroke of the 125 cm bar in the plasma at Vb = 0.27 cm / s 455455 C10 Arrêt du préchauffageC10 Preheating stop C11 Course de 10 cm du barreau dans le plasma à Vb = 0,27 cm/sC11 10 cm stroke of the rod in the plasma at Vb = 0.27 cm / s 4040 D1 Remontée du barreau (140 cm) à la vitesse Vb = 20 m/sD1 Rise of the bar (140 cm) at speed Vb = 20 m / s D2 Fermeture de la vanne de séparation enceinte-sas, V1 C12 Baisse du générateur plasma à 18 % de la puissance maximale DH2 = 0 et DA2 = 0,3 l/s, Diminution de la vitesse de la tête Vrd = 80 tr/sD2 Closure of the enclosure-airlock separation valve, V1 C12 Decrease of the plasma generator to 18% of the maximum power DH2 = 0 and DA2 = 0.3 l / s, Reduction of the head speed Vrd = 80 rpm LN2 PN1 = 1,6 bar, PN2 = 2 bars, PN3 = 2 bars, DA5 = 10 g/s, PN6 = 2 barsLN2 PN1 = 1.6 bar, PN2 = 2 bar, PN3 = 2 bar, DA5 = 10 g / s, PN6 = 2 bar Durée de la fusion 660 ¯
Figure imgb0002
Duration of the merger 660 ¯
Figure imgb0002
Opérations E, D et A : LAVAGE, DECHARGEMENT, CHARGEMENT Operations E, D and A: WASHING, UNLOADING, LOADING DUREE secondesDURATION seconds D3 Dépressurisation du sas : ouverture de la vanne V8D3 Airlock depressurization: opening of valve V8 D4 Refroidissement du barreau ; ouverture de la vanne VA1D4 Cooling of the bar; opening of valve VA1 E1 Ouverture de VA4, VA7 étant fermée pour le lavage du bas de l'enceinte, débit DA4 = 1 l/sE1 Opening of VA4, VA7 being closed for washing the bottom of the enclosure, flow DA4 = 1 l / s 2020 E2 2 secondes après l'ouverture de VA4 et pendant 5 secondes ouverture de VA5, débit DA5 = 1 l/sE2 2 seconds after opening VA4 and for 5 seconds opening VA5, flow DA5 = 1 l / s E5 Sédimentation partielle de la poudre (supérieure à 30 µm)E5 Partial sedimentation of the powder (greater than 30 µm) 5050 D5 Ouverture de la bride B2D5 B2 flange opening D6 Fermeture de la vanne VA1D6 Closing of valve VA1 D7 Ouverture de la porte B1D7 Opening of door B1 D8 Dégoupillage et extraction du "mégot" du barreauD8 Unpinning and extraction of the "butt" from the bar 70 ¯
Figure imgb0003
70 ¯
Figure imgb0003
E6 Deux possibilités se présententE6 There are two possibilities - sédimentation totale de la poudre supérieure à 5 µm- total sedimentation of the powder greater than 5 µm 12001200 - réapprovisionnement de l'accumulateur en argon liquide :- replenishment of the accumulator with liquid argon: 6060 Pendant ce temps sont effectuées les opérations A, de A1 à A7, pour le barreau n° 2.During this time, operations A, from A1 to A7, are carried out for bar n ° 2. A8 Ouverture de la vanne VA1 pour remplir le sas à 2 barsA8 Opening of valve VA1 to fill the airlock at 2 bars 1260 ¯
Figure imgb0004
1260 ¯
Figure imgb0004
Opérations B et C : PRECHAUFFAGE, FUSION ET DISPERSION CENTRIFUGE Operations B and C: PREHEATING, MELTING AND CENTRIFUGAL DISPERSION DUREE secondesDURATION seconds A9 Ouverture de la vanne d'enceinte-sas, V1A9 Opening of the airlock valve, V1 55 C4 Montée à 50 % de la puissance maximale du plasmaC4 Rise to 50% of the maximum plasma power C5 DA2 = 0,5 l/s et introduction de l'hydrogène, DH2 = 0,0025 l/sC5 DA2 = 0.5 l / s and introduction of hydrogen, DH2 = 0.0025 l / s 55 LN2 Baisse des températures et donc des pressions d'azote dansLN2 Lower temperatures and therefore nitrogen pressures in - la jaquette supérieure de l'enceinte : PN1 = 1 bar,- the upper jacket of the enclosure: PN1 = 1 bar, - la jaquette inférieure de l'enceinte : PN2 = 1,6 bar,- the lower jacket of the enclosure: PN2 = 1.6 bar, - la jaquette de l'accumulateur ...... : PN4 = 1,6 bar,- the accumulator jacket ......: PN4 = 1.6 bar, - la jaquette des canalisations d'argon : PN6 = 1 bar- the jacket of the argon pipes: PN6 = 1 bar C6 Ouverture de la vanne argon liquide haute pression VA3 : DA3 = 0,075 l/s (PA3 = 10 bars)C6 Opening of the high pressure liquid argon valve VA3: DA3 = 0.075 l / s (PA3 = 10 bars) 1010 B3 Montée en puissance du générateur MF, PMo, pour obtenir Tb ;B3 Rise in power of the MF generator, PMo, to obtain Tb; 55 B4 Lorsque la température du barreau est à Tb fixée, descente du barreau 25 cm à la vitesse Vb = 0,27 cm/s (10 g/s)B4 When the temperature of the bar is at Tb fixed, lowering of the bar 25 cm at the speed Vb = 0.27 cm / s (10 g / s) 100100 C7 Idem C4 à 100 % et C5 avec les débits : DH2 = 0,0051 l/s, Montée en vitesse de la tête : Vrd = 1 000 tr/sC7 Same as C4 at 100% and C5 with flow rates: DH2 = 0.0051 l / s, Head speed increase: Vrd = 1000 rpm 1010 C8 Argon liquide des buses de refroidissement : DA3 = 0,15 l/s ; PA3 = 20 barsC8 Liquid argon from the cooling nozzles: DA3 = 0.15 l / s; PA3 = 20 bars C9 Course de 125 cm du barreau dans le plasma à Vb = 0,27 cm/sC9 125 cm stroke of the bar in the plasma at Vb = 0.27 cm / s 455455 C10 Arrêt du préchauffageC10 Preheating stop C11 Course de 10 cm du barreau dans le plasma à Vb = 0,27 cm/sC11 10 cm stroke of the rod in the plasma at Vb = 0.27 cm / s 4040 C12 Arrêt ou baisse du générateur plasma à 18 % de la puissance maximale avec arrêt de H2 et baisse de l'argon à DA2 = 0,3 l/s, Diminution de la vitesse de la tête Vrd = 80 tr/sC12 Stopping or lowering the plasma generator to 18% of maximum power with stopping H2 and lowering the argon at DA2 = 0.3 l / s, Decreasing the speed of the head Vrd = 80 r / s LN2 PN1 = 1,6 bar, PN2 = 2 bars, PN3 = 2 bars, DA5 = 10 g/s, PN6 = 2 barsLN2 PN1 = 1.6 bar, PN2 = 2 bar, PN3 = 2 bar, DA5 = 10 g / s, PN6 = 2 bar Durée de la fusion : 630 ¯
Figure imgb0005
Duration of the merger: 630 ¯
Figure imgb0005
Opérations E, D, A et G : LAVAGE, DECHARGEMENT, CHARGEMENT, TETE Operations E, D, A and G: WASHING, UNLOADING, LOADING, HEAD DUREE secondesDURATION seconds D1, D2, D3, D4, E1, D2, E5, D5, D6, D7, D8, E6 Sédimentation de la poudre Opérations A : A1, A2, A3, A4, A5, A6, A7, A8 ; Changement de tête de dispersion si nécessaire : Opération GD1, D2, D3, D4, E1, D2, E5, D5, D6, D7, D8, E6 Sedimentation of the powder Operations A: A1, A2, A3, A4, A5, A6, A7, A8; Change of dispersion head if necessary: Operation G G1 Obturation de la tête du capot par la capsule-électrodeG1 Closure of the hood head by the capsule electrode G2 Fermeture des vannes VE1 et VN5, Vidangeage de l'eau et de l'azoteG2 Closure of valves VE1 and VN5, Draining of water and nitrogen 12001200 1200 ¯
Figure imgb0006
1200 ¯
Figure imgb0006
G3 Arrêt puis extraction du moteurG3 Stopping then extracting the engine G4 Changement de tête de dispersion ou Polissage de la têteG4 Change of dispersion head or Polishing of the head G5 Remise en place du disperseurG5 Replacing the disperser G6 Dégazage et remise en pression de l'enceinte disperseurG6 Degassing and re-pressure of the disperser chamber
Opérations F : DEPOTAGE Operations F: DEPOSIT DUREE secondesDURATION seconds F1 Vidange du bas du réservoir par ouverture de la vanne VA6 (Utilisation d'un réservoir accumulateur cryogénique annexe)F1 Emptying of the bottom of the tank by opening the VA6 valve (Use of an annex cryogenic accumulator tank) 3030 F2 Fermeture des vannes VA6 et V9F2 Closure of valves VA6 and V9 2020 F3 Extraction du collecteur et remplacement par un 2e F3 Extraction of the manifold and replacement with a 2nd 6060 F4 Réchauffage du 1er collecteur par vidange de l'azote liquide et passage d'air chaud dans la jaquette, Dégazage par le vide du 2e collecteur, VA10 ouverteF4 Reheat 1 collector drain liquid nitrogen and hot air passing through the jacket, degassing by the vacuum of the 2nd collector, open VA10 120120 F6 Refroidissement par l'azote liquide du 2e collecteurF6 by cooling the liquid nitrogen 2nd collector 230 ¯
Figure imgb0007
230 ¯
Figure imgb0007

Pour obtenir 10 kg de poudre d'alliage dans un collecteur, il faut

  • 1 h 8 min en décantant entre 2 barreaux ou
  • 48 min en remplissant l'accumulateur d'argon liquide avec de l'argon liquide en réserve.
To obtain 10 kg of alloy powder in a collector,
  • 1 h 8 min by decanting between 2 bars or
  • 48 min by filling the accumulator with liquid argon with liquid argon in reserve.

Le procédé et le dispositif de l'invention permettent de fabriquer des poudres de diverses familles de matériaux et notamment de superalliages à base de nickel, de titane et d'alliages de titane, d'aluminium, d'alliages dé Niobium....The method and the device of the invention make it possible to manufacture powders from various families of materials and in particular superalloys based on nickel, titanium and titanium alloys, aluminum, Niobium alloys, etc.

Claims (19)

  1. Apparatus for producing powders, and in particular metal powders by atomizing, the apparatus comprising
    - an atomizing enclosure (C) in which a dispersion head (9) is disposed rotating at high speed to scatter the molten material in atomized form,
    - melting means (B) for melting the material to be atomized (1) comprising at least one vertical inductive plasma furnace (4) producing an envelope of plasma-generating gases (12) containing the top face of the dispersion head,
    - cooling means for cooling the atomized material and the dispersion head (9) constituted by a first series of members (15,16) for dispensing a cooling fluid disposed in the top portion of the atomizing enclosure to create a cold zone (13) at the periphery of the envelope (12), and by a second series of members (11) for circulating a cooling fluid, said series being disposed in the bottom portion of the enclosure (C) to create a cold zone at the bottom face of the head (9), and
    - means (17) for collecting the cooled powder material obtained in this way, characterized in that said first series of members for dispensing a cooling fluid is constituted by a ring of nozzles (15) producing jets of fluid that are tangential to the surface of said envelope (12) so as to create a quenching zone (13) formed of a vortex around the plasma, and nozzles (16) producing a washing that is tangential to the enclosure.
  2. The apparatus according to claim 1, characterized in that said nozzles (15) of the first series are placed above the powder ejection triangle and possess ejection axes X that slope relative to the plane of the top face of the dispersion head (9).
  3. The apparatus according to one of the preceding claims, characterized in that said envelope (12) of plasma-generating gases is constituted by a cylindrical tube whose vertical axis is parallel to the vertical axis of the rotary head (9).
  4. The apparatus according to claim 3, characterized in that the vertical axis of the cylindrical tube is close to or coincides with the vertical axis of the head.
  5. The apparatus according to one of the preceding claims, characterized in that said vertical inductive plasma furnace (4) is disposed above the top face of the rotary head (9).
  6. The apparatus according to one of the preceding claims, characterized in that said dispersion head (9) is cylindrical and its top face is disposed in a plane that is substantially horizontal.
  7. The apparatus according to one of the preceding claims, characterized in that said inductive plasma furnace (4) is associated with an induced current preheating furnace (3).
  8. The apparatus according to one of the preceding claims, characterized in that it further comprises a cold crucible (100) disposed beneath the melting means (A) to receive the material to be atomized in the molten state, and a nozzle (101, 102) for adjusting the flow rate of said molten material for feeding the atomizing enclosure (C).
  9. A method of manufacturing powders, and in particular metal powders, by atomization, the method comprising continuously melting the material to be atomized which flows vertically and coaxially above a dispersion head (9) rotating at high speed for the purpose of dispersing the molten material in atomized form into an envelope of plasma-generating gases by friction on the top face of the rotary head (9), and then quenching the atomized material and collecting the cooled powder material obtained in this way, characterized in that said atomized material is quenched by passing through a cooling vortex situated at the periphery of the envelope of plasma-generating gases.
  10. The method according to claim 9, characterized in that the powders are collected under an inert gas in the gaseous, liquid, or solid state.
  11. The method according to one of claims 9 or 10, characterized in that atomization is performed at pressures greater than atmospheric pressure.
  12. The method according to claims 9 to 11, characterized in that the plasma is lit by striking a high tension electric arc between the material to be atomized (1) and an electrode placed on the axis of the furnace (4).
  13. The method according to one of claims 9 to 12, characterized in that the atomized material is quenched by being brought into contact with a cold, gaseous, liquid, or two-phase fluid, thereby enabling monocrystalline or amorphous structures to be obtained.
  14. The method according to one of claims 9 to 13, characterized in that the gases produced during quenching are liquefied in a condenser and the powders are recovered with a fraction of the liquefied gases in at least one container enabling the mixture to be maintained in the liquid or solid state.
  15. The method according to one of claims 9 to 14, characterized in that the dispersion head (9) is rotated at a speed lying in the range 30,000 rpm to 125,000 rpm.
  16. The method according to one of claims 9 to 15, characterized in that a temperature gradient is established in the dispersion head (9) of 60°C/cm to 180°C/cm for a head made of copper and of 200°C/cm to 500°C/cm for a head made of tungsten.
  17. The method according to one of claims 9 to 16, characterized in that the atomized material is quenched by means of nozzles (15) dispensing a total flow rate of liquid argon that is sufficient to cool the powder completely; the ejection axes of said nozzles being inclined relative to the plane of the top face of said dispersion head (9), and the width of the jets being determined so as to produce a contra-rotating effect thereof relative to said head (9) so as to brake the motion of the powders.
  18. The method according to one of claims 9 to 17, characterized in that the material to be atomized is initially in the form of a cylindrical rod (1).
  19. The method according to one of claims 9 to 18, characterized in that the material to be atomized is initially received in the molten state in a cold crucible (100) from which it flows through a flow adjustment nozzle (101, 102) towards the atomizing enclosure (C).
EP92402141A 1991-07-25 1992-07-24 Process and apparatus for the production of powders, in particular metal powders by atomisation Expired - Lifetime EP0524887B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9109462 1991-07-25
FR9109462A FR2679473B1 (en) 1991-07-25 1991-07-25 METHOD AND DEVICE FOR PRODUCING POWDERS AND ESPECIALLY METAL POWDERS BY ATOMIZATION.

Publications (2)

Publication Number Publication Date
EP0524887A1 EP0524887A1 (en) 1993-01-27
EP0524887B1 true EP0524887B1 (en) 1997-04-09

Family

ID=9415555

Family Applications (1)

Application Number Title Priority Date Filing Date
EP92402141A Expired - Lifetime EP0524887B1 (en) 1991-07-25 1992-07-24 Process and apparatus for the production of powders, in particular metal powders by atomisation

Country Status (5)

Country Link
US (2) US5340377A (en)
EP (1) EP0524887B1 (en)
CA (1) CA2074684A1 (en)
DE (1) DE69218846T2 (en)
FR (1) FR2679473B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097977A (en) * 2018-02-01 2018-06-01 广东美瑞克微金属磁电科技有限公司 A kind of plasma atomization preparation method of iron-silicon-aluminum soft magnet alloy powder

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5855642A (en) * 1996-06-17 1999-01-05 Starmet Corporation System and method for producing fine metallic and ceramic powders
US6972115B1 (en) 1999-09-03 2005-12-06 American Inter-Metallics, Inc. Apparatus and methods for the production of powders
GB2354256B (en) * 1999-09-15 2001-11-07 Korea Atomic Energy Res Uranium high-density dispersion fuel
JP2001254103A (en) * 2000-03-13 2001-09-18 Sanei Kasei Kk Metallic grain having nanocomposite structure and its producing method by self-organizing
US20030156964A1 (en) * 2000-06-26 2003-08-21 Masami Kikuchi Method and apparatus for producing magnetic rare earth alloy powder, method for producing bonded magnet, method for producing rare earth sintering magnet, and method and apparatus for improving purity of inert gas
US7913884B2 (en) 2005-09-01 2011-03-29 Ati Properties, Inc. Methods and apparatus for processing molten materials
CN100413617C (en) * 2006-08-18 2008-08-27 陕西科技大学 Device for preparing metal ultrafine powder and its method
US8268035B2 (en) 2008-12-23 2012-09-18 United Technologies Corporation Process for producing refractory metal alloy powders
WO2011054113A1 (en) * 2009-11-05 2011-05-12 Ap&C Advanced Powders & Coatings Inc. Methods and apparatuses for preparing spheroidal powders
CN101906516B (en) * 2010-09-02 2012-01-11 唐山市长智农工具设计制造有限公司 Metal product quenching medium cyclic utilization device
AU2015230636B2 (en) 2014-03-11 2018-05-17 Tekna Plasma Systems Inc. Process and apparatus for producing powder particles by atomization of a feed material in the form of an elongated member
EP3978166A1 (en) * 2015-06-05 2022-04-06 Pyrogenesis Canada Inc. Plasma apparatus for the production of high quality spherical powders at high capacity
EP3325196B1 (en) * 2015-07-17 2020-09-02 AP&C Advanced Powders&Coatings Inc. Plasma atomization metal powder manufacturing processes and systems therefore
US11235385B2 (en) 2016-04-11 2022-02-01 Ap&C Advanced Powders & Coating Inc. Reactive metal powders in-flight heat treatment processes
US11110540B2 (en) * 2016-05-02 2021-09-07 Electronics And Telecommunications Research Institute Extruder for metal material and 3D printer using the same
CA2999242C (en) 2016-08-24 2018-10-30 5N Plus Inc. Low melting point metal or alloy powders atomization manufacturing processes
CN106216704B (en) * 2016-10-10 2018-05-04 江西悦安超细金属有限公司 A kind of feed arrangement and plasma combine centrifugal atomizing fuel pulverizing plant
TWI618589B (en) * 2016-12-23 2018-03-21 悅城科技股份有限公司 Device and method for manufacturing material particles
CN106622029B (en) * 2017-02-23 2022-08-12 湖南久泰冶金科技有限公司 Tower-type metal atomization powder making equipment
JP7012350B2 (en) * 2017-12-18 2022-01-28 株式会社大阪真空機器製作所 Rotating disk device for centrifugal atomizer, centrifugal atomizer, and method for manufacturing metal powder
CA3090714C (en) 2018-02-15 2021-07-20 5N Plus Inc. High melting point metal or alloy powders atomization manufacturing processes
CN109128206B (en) * 2018-09-25 2020-11-24 中国人民解放军陆军装甲兵学院 Device and method for efficiently preparing superfine spherical metal powder by droplet-by-droplet centrifugal atomization method
CN111014700A (en) * 2019-12-11 2020-04-17 湖南天际智慧材料科技有限公司 Device for preparing high-purity nano material by vacuum crucible-free smelting plasma
CN110883338A (en) * 2019-12-11 2020-03-17 湖南天际智慧材料科技有限公司 Device for preparing micro-nano powder material by radio frequency plasma
CN111331147A (en) * 2020-03-18 2020-06-26 甘肃省机械科学研究院有限责任公司 Method for preparing AlSi9Mg ultrafine powder
CN115679055B (en) * 2022-11-18 2023-09-01 河北鑫泰轴承锻造有限公司 Bearing forming die quenching equipment

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588781A1 (en) * 1985-10-17 1987-04-24 Aubert & Duval Acieries Device for atomising metals or alloys

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1517283A (en) * 1974-06-28 1978-07-12 Singer Alec Production of metal articles
JPS58197206A (en) * 1982-04-30 1983-11-16 Hitachi Metals Ltd Production of powder of high grade metal or its alloy
US5120352A (en) * 1983-06-23 1992-06-09 General Electric Company Method and apparatus for making alloy powder
US5263689A (en) * 1983-06-23 1993-11-23 General Electric Company Apparatus for making alloy power
US4731517A (en) * 1986-03-13 1988-03-15 Cheney Richard F Powder atomizing methods and apparatus
EP0259459B1 (en) * 1986-03-13 1991-12-27 CHENEY, Richard, F. Powder atomizing methods and apparatus
FR2595595B1 (en) * 1986-03-17 1989-07-28 Aubert & Duval Acieries METHOD FOR COOLING AND COLLECTING METAL POWDERS PRODUCED BY ATOMIZATION OF LIQUID METAL
US4762553A (en) * 1987-04-24 1988-08-09 The United States Of America As Represented By The Secretary Of The Air Force Method for making rapidly solidified powder
WO1989000470A1 (en) * 1987-07-20 1989-01-26 Battelle Development Corporation Double disintegration powder method
US4781754A (en) * 1987-09-24 1988-11-01 General Motors Corporation Rapid solidification of plasma sprayed magnetic alloys
FR2629573B1 (en) * 1988-04-05 1991-01-04 Aubert & Duval Acieries CONTINUOUS MELTING HEAD FOR METALS OR ALLOYS
US5084091A (en) * 1989-11-09 1992-01-28 Crucible Materials Corporation Method for producing titanium particles
US5272718A (en) * 1990-04-09 1993-12-21 Leybold Aktiengesellschaft Method and apparatus for forming a stream of molten material

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2588781A1 (en) * 1985-10-17 1987-04-24 Aubert & Duval Acieries Device for atomising metals or alloys

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108097977A (en) * 2018-02-01 2018-06-01 广东美瑞克微金属磁电科技有限公司 A kind of plasma atomization preparation method of iron-silicon-aluminum soft magnet alloy powder

Also Published As

Publication number Publication date
EP0524887A1 (en) 1993-01-27
CA2074684A1 (en) 1993-01-26
FR2679473A1 (en) 1993-01-29
DE69218846D1 (en) 1997-05-15
FR2679473B1 (en) 1994-01-21
US5529292A (en) 1996-06-25
DE69218846T2 (en) 1997-10-23
US5340377A (en) 1994-08-23

Similar Documents

Publication Publication Date Title
EP0524887B1 (en) Process and apparatus for the production of powders, in particular metal powders by atomisation
EP0408453B1 (en) Apparatus for an electromagnetic nozzle for controlling a jet of liquid metal
CA2183290C (en) Metal or ceramic powder production process by plasma atomization
FR2662182A1 (en) PROJECTION DEPOSITION OF RADIOFREQUENCY PLASMA.
FR2642672A1 (en) APPARATUS AND METHOD FOR SPRAYING UNDER PLASMA BY AN AXIAL FLOW LASER
EP0275228B1 (en) Process and device for melting and continuously casting metals
CH648062A5 (en) PROCESS AND PLANT FOR THE PREPARATION OF METALS.
CA2025114C (en) System and method for atomizing a titanium-based material
FR2648068A1 (en) LASER WELDING METHOD AND APPARATUS
EP3817877A1 (en) Granulation method and device
CA2758563A1 (en) Method and apparatus for purifying a silicon feedstock
US5993509A (en) Atomizing apparatus and process
FR2571484A1 (en) METHOD AND DEVICE FOR PROGRESSIVELY MELTING BAR-SHAPED MATERIAL USING AN INDUCTION COIL
FR2512313A1 (en) METHOD OF USING A PLASMA ARC HEATING DEVICE TO PROVIDE THERMAL ENERGY TO A REACTOR
EP0896639A1 (en) Method and installation for metallizing cast-iron pipes
FR2528338A1 (en) PROCESS FOR REFINING METAL POWDER
EP1742870B1 (en) Method and installation for the production of blocks of a semiconductor material
FR2524356A1 (en) PROCESS AND DEVICE FOR THE MANUFACTURE OF HIGH PURITY METAL POWDERS WITHOUT CERAMIC MATERIALS
RU2171160C1 (en) Method for centrifugal spraying of metal and apparatus for performing the same
CA2423140C (en) Method for preparing nuclear metal or metal alloy particles
EP0125964B1 (en) Process and apparatus for cooling a material and application to the manufacture of refractory materials by tempering
EP0457674B1 (en) Process and apparatus for preparing powder alloys by rapid solidification
FR2629573A1 (en) Continuous melting head for metals or alloys
JPS63145703A (en) Apparatus for producing powder
BE635091A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB SE

17P Request for examination filed

Effective date: 19930716

17Q First examination report despatched

Effective date: 19950609

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB SE

REF Corresponds to:

Ref document number: 69218846

Country of ref document: DE

Date of ref document: 19970515

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970521

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 19970716

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19970718

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19970722

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19970731

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980724

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980725

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19980724

EUG Se: european patent has lapsed

Ref document number: 92402141.3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990501

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST