[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2411348A1 - Procede et support pour la cuisson d'une structure en nid d'abeille - Google Patents

Procede et support pour la cuisson d'une structure en nid d'abeille

Info

Publication number
EP2411348A1
EP2411348A1 EP10715959A EP10715959A EP2411348A1 EP 2411348 A1 EP2411348 A1 EP 2411348A1 EP 10715959 A EP10715959 A EP 10715959A EP 10715959 A EP10715959 A EP 10715959A EP 2411348 A1 EP2411348 A1 EP 2411348A1
Authority
EP
European Patent Office
Prior art keywords
support
cooking
width
level
face
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP10715959A
Other languages
German (de)
English (en)
Inventor
Matthias Schumann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Original Assignee
Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Centre de Recherche et dEtudes Europeen SAS filed Critical Saint Gobain Centre de Recherche et dEtudes Europeen SAS
Publication of EP2411348A1 publication Critical patent/EP2411348A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D5/00Supports, screens, or the like for the charge within the furnace
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/10Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/185Mullite 3Al2O3-2SiO2
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/16Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay
    • C04B35/18Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on silicates other than clay rich in aluminium oxide
    • C04B35/195Alkaline earth aluminosilicates, e.g. cordierite or anorthite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/478Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on aluminium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/56Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides
    • C04B35/565Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on carbides or oxycarbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62665Flame, plasma or melting treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5427Particle size related information expressed by the size of the particles or aggregates thereof millimeter or submillimeter sized, i.e. larger than 0,1 mm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • C04B2235/5472Bimodal, multi-modal or multi-fraction
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/72Products characterised by the absence or the low content of specific components, e.g. alkali metal free alumina ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9615Linear firing shrinkage
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • C04B2235/9623Ceramic setters properties

Definitions

  • the invention relates to a support for cooking structures of the honeycomb type and to its method of production.
  • Such structures may be filtering and / or catalytic and are used in particular in an exhaust line of a diesel-type internal combustion engine.
  • the invention relates more particularly to baking supports for filtering structures or catalyst supports based on oxide ceramics, and in particular aluminum titanate-based filters, and to their method of production.
  • catalytic filters for the treatment of gases and the removal of soot from a diesel engine are well known in the prior art.
  • These structures all most often have a honeycomb shape, one of the faces of the structure allowing the admission of the exhaust gas to be treated and the other side the evacuation of the treated exhaust gas.
  • the structure comprises, between the intake and discharge faces, a set of adjacent ducts or channels of axes parallel to each other separated by porous walls.
  • the ducts are closed at one or the other of their ends to delimit inlet chambers opening on the inlet face and outlet chambers opening along the discharge face.
  • the channels are alternately closed in an order such that the exhaust gases, during the crossing of the honeycomb body, are forced to pass through the sidewalls of the inlet channels to join the outlet channels. In this way, particles or soot are deposited and accumulate on the porous walls of the filter body.
  • the particulate filter is subjected to a succession of filtration (soot accumulation) and regeneration phases.
  • soot particles emitted by the engine are retained and are deposited inside the filter.
  • soot particles are burned inside the filter, in order to restore its filtration properties.
  • the structures referred to hereafter as "asymmetrical" have a constant filter volume, a surface or a volume of the input channels different from that or of the output channels of said filter.
  • asymmetrical it has been proposed in the patent application WO 05/016491 structures in which the wall elements succeed one another in cross section and following a horizontal and / or vertical row of channels, to define a sinusoidal shape or wave (wavy in English).
  • the wall elements typically wave a half-period of sinusoid across the width of a channel.
  • Such channel configurations provide a low pressure drop and a large soot storage volume.
  • the filters are porous ceramic material, for example cordierite or silicon carbide or aluminum titanate.
  • Silicon carbide filters made with these structures are for example described in patent applications EP 816 065, EP 1 142 619, EP 1 455 923 or WO 2004/090294 and WO 2004/065088, to which the skilled person For example, reference may be made for more details and details, both for the description of filters according to the present invention and for their method of production.
  • These filters advantageously have a high chemical inertness with respect to soot and hot gases but a coefficient of thermal expansion a little high, which leads, for the production of large filters, the need to assemble several monolithic elements by a seal cement in a filter block, in order to reduce their thermomechanical stresses. Due to the high mechanical strength of the recrystallized SiC materials, it is possible to produce filters with thin filter walls and high porosity, with a very satisfactory filtration efficiency.
  • Cordierite filters have also been used for a long time because of their low cost. Due to the very low coefficient of thermal expansion of this material, in the normal operating temperature range of a filter it is possible to produce monolithic filters of larger size.
  • the aluminum Titanate material may also have a low coefficient of thermal expansion and exhibits refractoriness and corrosion resistance superior to that of cordierite. It thus makes it possible to produce monolithic filters of large size provided, however, to control the thermal stability of the titanate of aluminum, especially during the regeneration phases of the filter.
  • Monolithic filters are thus described in the patent application WO 2004/011124, which proposes structures based on aluminum titanate for 60 to 90% by weight, reinforced with mullite, present at a level of 10 to 40% by weight. According to the authors, the filter thus obtained has improved durability.
  • the patent application EP 1 741 684 describes a filter having a low coefficient of expansion and whose main phase of aluminum titanate is stabilized firstly by the substitution of a fraction of the Al atoms by Mg atoms in the lattice Al 2 TiO 5 in a solid solution and on the other hand by substitution of a fraction of the atoms Al on the surface of said solid solution by Si atoms, brought into the structure by a phase additional intergranular type of potassium aluminosilicate and sodium, especially feldspar.
  • the deformation is all the more marked that the extruded structure 2 is large.
  • large size is meant in particular structures of diameter greater than 100 mm or section greater than 75 cm 2 .
  • the problem becomes even critical for structures of very great length, for example longer than 150 mm and / or very large diameter, for example greater than 125 mm in diameter or large section, that is to say greater than or equal to 120 cm 2 .
  • obtaining structures is problematic if the withdrawal of the structure after cooking, according to its largest dimension, is greater than or equal to 5%.
  • shrinkage it is understood in the sense of the present description the difference, in percentage, between a characteristic dimension of the structure before and after firing, referred to said dimension before firing.
  • the shrinkage can be measured either on the length or on the diameter of said structure.
  • structure before firing is meant the structure in the dry green state, that is to say having a residual moisture of less than 1%.
  • the shrinkage is measured on a section of the filter substantially parallel to the plane formed by the bearing surface of the structure in contact with its cooking support, sufficiently far from said surface of the support to overcome the phenomenon of "elephant leg” mentioned above. Practically, the shrinkage is measured ideally on the upper third of the height of the structure.
  • an initial solution consists in extruding a raw structure of greater length than necessary. The part of the structure most deformed at its base, that is to say, that located in the portion near its face of support on the cooking support, is then cut after cooking. Finally, the structure is plugged and then optionally annealed in order to sinter the material constituting the plugs.
  • the patent application EP 0 234 887 proposes a cooking support formed by a cooked or raw honeycomb having at least, at its face in contact with the structure to be cooked, a width less than the width of said structure to cook. For example, this cooking support may have a chamfer or different forms of course.
  • the present invention relates in a first aspect to a method of cooking a honeycomb structure possibly filtering, using a new type of cooking support, which can effectively meet all the needs previously exposed , in particular :
  • the present invention relates to a method of cooking a porous ceramic structure of the honeycomb type on a baking support, said structure comprising a plurality of longitudinal through channels. ending on two ends of the structure, the end bearing on the support having a maximum width L 3 before firing, according to a longitudinal sectional plane passing through the main axis of the structure.
  • said support has according to said longitudinal sectional plane: a first level corresponding to a first face of the support serving as a bearing surface of the structure to be fired, said first level having a maximum width Li, a second level, spaced from said first face of the support by a thickness Ei 2 , said second level having a maximum width L 2 ,
  • the main axis of the structure of the honeycomb type in a conventional manner, is defined according to the invention as the main axis of symmetry of the structure, parallel to the through channels . It is of course defined according to the shape of the structure and in particular of its section. By way of example, it is the axis of revolution in the case of a cylindrical structure, the central axis of a parallelepiped or ovoid structure.
  • the main axis is in particular represented in the diagrammatic views of FIGS. 3 and 6.
  • the support used according to the invention preferably has a generally similar overall shape, that is to say, respectively of substantially oval, round or square shape, in particular whose dimensions are such that Li is between L 3 and 1.1 L 3 , in any longitudinal plane passing through the main axis of the structure to be cooked.
  • the width Li is between L 3 and 1.1 L 3 .
  • the relative difference (Li-L 2 ) / Li between the two widths Li and L 2 is greater than or equal to approximately 5%.
  • the end of the structure and the face of the support which serves as a bearing face have a shape and / or a substantially identical geometry.
  • the support is of the honeycomb type, and comprises a plurality of longitudinal through channels opening on two ends, the upper end of the support constituting said first level.
  • the support has a porosity adapted to the porosity of the material constituting the walls of the filter.
  • the support generally has between 20 and 65%, preferably between 30 and 50%, the average pore size being ideally between 10 and 20 microns.
  • porosity that is too high leads to a level of mechanical resistance that is too low to support the filter. Too low a porosity can be harmful for the filter because the removal of the support may not be sufficient to accompany the removal of the filter during cooking.
  • the thickness of the walls of the honeycomb support is advantageously between 0.2 to 1.0 mm, preferably 0.2 to 0.5 mm.
  • the number of channels in the filter elements is preferably between 7.75 and 62 per cm 2 , said channels having a section of about 0.5 to 9 mm 2 .
  • the first level corresponding to a first face of the support serving as support for the structure to be fired is a plane.
  • the third level corresponding to the second face to the base of the support serving as support of the support on the cooking device is preferably a plane, such a plane for a better stability.
  • the thermal expansion of the material constituting the support varies by at most 2% of the thermal expansion of the material constituting the structure, in the temperature range of the cooking.
  • the firing shrinkage of the material constituting the support varies by at most 2% of the baking shrinkage of the material constituting the structure, in the temperature range of the firing.
  • the support has a trapezoidal shape, said second level corresponding to the second face of the support.
  • said support has a third level corresponding to the second face of the support, having a width L 3 , the width L 3 being greater than or equal to the width L 2 and at least equal to 3/5 of the width Ls.
  • the cooking method as described above can in particular be used advantageously in a process for obtaining a honeycomb filtering structure, in which the longitudinal through channels of the structure are previously alternately plugged at their ends.
  • the invention also relates to the support suitable for firing a porous ceramic structure of the honeycomb type as just described above, and comprising in particular, according to a section plane passing through its main axis:
  • a second level spaced from said first face of the support by a thickness Ei 2 , said second level having a maximum width L 2 ,
  • the width Li is between L 3 and 1.1 L 3 .
  • the relative difference (Li-L 2 ) / Li between the two widths Li and L 2 is greater than or equal to approximately 5%.
  • said cooking medium of the honeycomb type, comprises a plurality of longitudinal through channels opening on two ends, the upper end of the support constituting said first level.
  • said support has a trapezoidal shape, said second level corresponding to its second face.
  • said support has a third level corresponding to its second face, of maximum width L 3 , the width L 3 being greater than or equal to the width L 2 .
  • the thermal expansion measured at a temperature T corresponds to the percentage of variation in length of a specimen of the material subjected to a variation of the temperature up to the temperature T (final temperature of the cooking), relative to its initial length at ambient temperature (20 ° C.), taken as a reference. It is conventionally measured by differential dilatometry according to the standard provided for this purpose NFB40-308.
  • the expansion of the test piece of material constituting the support or the structure to be cooked is measured in a plane parallel to the plane formed by the bearing face 3 on the cooking support 4 as indicated previously in FIG.
  • a thermal expansion of the support in the temperature range of the cooking is close to that of the structure within the meaning of the present invention if it is equal to that of the structure, plus or minus 2%, and of preferably at least 1%, regardless of the temperature in the range considered (20 0 C - T).
  • the support is believed to best support the dimensional variations of the structure during cooking.
  • the support material is chosen such that its shrinkage after the heat treatment for firing the structure is equal to that of the structure plus or minus 2%, preferably plus or minus 1%.
  • the support according to the invention can be implemented according to different modes, some of which are illustrated below. Of course, the invention is not, in any of the described aspects, limited to these modes.
  • the support according to the invention has a width Li ranging between L 3 and 1.1 L 3 .
  • the support used according to the invention preferably has a similar general shape, that is to say, respectively oval, round or square, whose dimensions are such that Li is between L 3 and 1.1 L 3 , in any longitudinal plane passing through the main axis of the structure to be fired.
  • the support has a width L 2 less than Li so as to accompany the horizontal deformation of the structure during cooking.
  • the relative difference between the two widths ((Li-L 2 ) / Li), in percentage is greater than or equal to about 5%, preferably greater than or equal to about 10%, even more preferably greater than or equal to about 15%. In general, this difference remains less than 50%, preferably less than 40%, or even less than 30%.
  • the support of FIG. 3 furthermore has a width L 3 measured on a second face or face of the support opposed to the face 3 horn indicated in FIG. 1, so as to ensure a sufficient stability of the support-structure assembly this second being in contact, during the cooking process for example the sole of the baking oven or the cooking device.
  • the support has a sufficient thickness Ei_ 2 between the level Li in contact with the structure to be fired and the level L 2 of the support.
  • the values of E 1 2 and the width L 2 according to the invention depend and vary according to the nature of the material constituting the support, of its internal geometry
  • the conditions of the heat treatment envisaged in particular the final temperature level, the speed of the rise in temperature and the cooking time at the end of maximum temperature.
  • the optimum thickness E 1 2 can be determined and adjusted experimentally.
  • the width L 3 of the structure to be fired for example the external diameter of the structure if it is of cylindrical section,
  • the thickness E 1 2 and the width L 2 are adjusted experimentally, for example by successive iterations, so as to have optimum resistance creep or subsidence under the load of the structure to be cooked.
  • E 1 and Li 2 , L 2 are chosen so that the angle CC, as shown in Figure 3, is greater than 15 °, preferably greater than 45 °.
  • E 1 and Li 2 , L 2 are chosen so that the angle CC is less than 85 °.
  • the support has a constant thickness E 2 _ 3 between the level L 2 and the level L 3 at the base of the support which is in contact with the hearth of the oven or with the cooking device.
  • E 2 _ 3 is preferably less than 5/3 of L 3 .
  • the support according to the invention may also have other shapes between the levels L 2 and Li, provided that the distance L 2 remains lower than the distance Li, in particular rounded edges or concave or convex surface curves.
  • the support according to the invention may also advantageously comprise one or more of the following optional features: a) the support preferably has a suitable roughness, for example as described in EP 1808423, but this is not necessary for the benefit of the support according to the present invention. Indeed, the deposition of a grain or a bed of powder, for example alumina or globular corundum can avoid the phenomena of bonding to the support while filling the surface irregularities of the support. b) the support is raw and its mineralogical and granulometric chemical composition is similar or identical to that of the structure to be cooked.
  • the support is porous. In particular, it preferably has an open porosity close to that of the structure to be fired. After cooking, the porosity of the support is typically between 10% and 80%, and preferably between 30% and 70%. Especially in the particle filter application, too low porosity leads to a too high pressure drop.
  • the median diameter d 5 in volume, pores constituting the porosity of the support after firing is preferably between 5 and 30 microns, preferably between 8 and 25 microns.
  • the support itself is formed of channels, as shown in FIG. 6, so as to allow the gases emitted by or reacting with the structure to flow freely during debinding and cooking of said structure, oriented in the same direction when cooking.
  • the support may have the same internal honeycomb macrostructure as the structure to be cooked.
  • the support 4 is preferably of the honeycomb type in an arrangement as shown in FIG. 6, in which the plugs 6 are furthermore shown. shutting the channels.
  • the dimensional characteristics of the support channels are then preferably close to those of the structure to be cooked, or even identical.
  • the support can be adapted so that its channels are of the same open surface as those of the structure facing and at the level of the support face to be cooked.
  • Such an embodiment can be particularly advantageous for optimal cooking of structures of the "asymmetrical" type, that is to say the surface of part of the inlet channels is different and preferably greater than that of part of the output channels, as illustrated by WO05 / 016491 previously cited.
  • Such an arrangement allows an accelerated elimination of binders at the start of cooking, at the open channels of the support on the outside.
  • Such an arrangement is ultimately favorable to the good performance of the filter structure and in particular prevents the appearance of cracks or deformation of the structure during cooking.
  • An example of a method of manufacturing a honeycomb structure in which a support according to the invention can advantageously be used typically comprises the following main steps: a) preparation of a composition based on the material constituting the structure and shaped, in particular by extrusion through a die of said material and cutting to obtain a structure of honeycomb, b) preparing a composition of a sealing material and sealing said raw structure of part of the channels with said composition before and / or after drying before and / or after cooking according to step e) in order to to obtain a filtering structure after cooking. c) optionally drying in air according to a technique chosen from hot air drying, drying by microwave drying, drying by lyophilization at a temperature below 130 ° C. or a combination of said techniques, d) baking said structure on a support according to the invention, possibly comprising an initial debinding step.
  • the firing step e) is carried out up to a temperature depending on the material constituting the structure.
  • the support according to the invention was particularly advantageous for cooking previously clogged filter structures, which makes it possible to avoid an additional cooking step in order to sinter the plugs.
  • the use of the supports according to the invention ultimately promotes the production of filter structures having improved cohesion between plugs and walls.
  • the filtering structure is monolithic and the filtering walls are based on an inorganic oxide material, in particular based on titanate.
  • Aluminum or Cordierite or Mullite or a composite from these materials By the term “based on”, it is understood that said walls comprise at least 50% by weight and preferably at least 70% by weight, or even at least 90 or even 98% by weight of said material.
  • the porous walls of the filtering structure consist of a material based on aluminum titanate.
  • the composition of the porous ceramic material based on aluminum titanate may have all known additions for stabilizing the aluminum titanate phase.
  • High temperature stability means the ability of the aluminum titanate material not to decompose into two phases of TiO 2 titanium oxide and Al 2 O 3 aluminum oxide, under normal conditions of use. a particle filter.
  • this property is measured according to the invention by a stability test consisting of determining the phases present in the material, typically by X-ray diffraction, then subjecting it to heat treatment at 1100 ° C.
  • the porous walls of the filtering structure consist of an SiC-based material and a ceramic and / or vitreous binder matrix, said vitreous matrix optionally comprising SiO 2.
  • ceramic binder matrix is meant a continuous structure between grains typically of size or average diameter of between 1 and 100 microns, preferably between 10 and 100 microns and obtained by baking or sintering so as to consolidate the material constituting said matrix.
  • vitreous matrix is understood to mean, in particular, a matrix formed by a material having little or no crystallinity and comprising at least 30% silica (SiO 2 )
  • the porous walls of the filtering structure consist of a material based on alumina.
  • the porous walls of the filtering structure consist of a Cordierite-based material.
  • the filter is constituted by the assembly of monolithic filtering elements, the section of a monolithic element constituting the assembled structure is preferably square, the width of the element being between 30 mm and 50 mm.
  • the seal material is understood here as a moldable composition formed by a particulate and / or fibrous mix, dry or wet, capable of setting in mass able to have sufficient mechanical strength at ambient temperature or after drying and / or heat treatment of which the temperature will not exceed the softening or subsidence temperature which defines the refractoriness of the material (s) constituting the monolithic elements.
  • the seal material preferably comprises particles and / or fibers of ceramic or refractory material, chosen from non-oxides, such as SiC, aluminum and / or silicon nitride, aluminum oxynitride, or from oxides, especially comprising Al 2 O 3 , SiO 2 , MgO, TiO 2 , ZrO 2 , Cr 2 O 3 or any of their mixtures.
  • non-oxides such as SiC, aluminum and / or silicon nitride, aluminum oxynitride, or from oxides, especially comprising Al 2 O 3 , SiO 2 , MgO, TiO 2 , ZrO 2 , Cr 2 O 3 or any of their mixtures.
  • the assembled or unassembled filter preferably has a coating cement integral with the assembled filter, in particular of the same mineral composition as the grouting material in order to reduce the thermomechanical stresses.
  • the filter structure obtained according to the process according to the invention may further comprise a supported or preferably unsupported active catalytic phase, typically comprising at least one precious metal such as Pt and / or Rh and / or Pd and optionally an oxide such as Ce ⁇ 2, ZrO 2 , CeO 2 -ZrO 2 .
  • Aluminum Titanate was prepared from the following raw materials:
  • alumina approximately 40% by weight of alumina with a degree of purity in Al 2 ⁇ 3 of greater than 99.5% and a median diameter of 5 ⁇ m of 90 ⁇ m, sold under the reference AR75® by the company Pechiney, approximately 50% by weight rutile titanium oxide having more than 95% TiO2 and about 1% zirconia having a median diameter d 5 o of about 120 microns, marketed by the company Europe Minerais,
  • magnesia powder with a MgO purity level of greater than 98% and of which more than 80% particles having a diameter of between 0.25 and 1 mm, sold by the company Nedmag.
  • a particle size fraction is characterized by a median diameter d 5 o substantially equal to 50 microns, referred to as a large fraction according to the present invention, a particle size fraction characterized by a median diameter d 5 substantially equal to 1.5 microns, referred to as the fine fraction according to the present invention.
  • the median diameter d 5 o denotes the diameter particles, measured by sedigraphy, below which is 50% by volume of the population. Microprobe analysis shows that all the grains of the melt phase thus obtained have the following composition, as a percentage by weight of the oxides (Table 1):
  • the porosity characteristics were measured by high-pressure mercury porosimetry analyzes carried out with a Micromeritics 9500 porosimeter.
  • the shrinkage is measured by the percentage ratio of the difference between the diameter (in mm) of the monolith after cooking. and that of the dry green monolith related to the diameter (in mm) of the dry raw monolith.
  • the diameter is measured in the upper part of the filter, that is to say close to the face opposite to that directly in contact with the cooking support, so as not to take into account the possible deformation in elephant leg at the base. of the filter.
  • the removal value reported in Table 2 corresponds to an average obtained by measurements made on a population of 10 monoliths.
  • Example 1 the monoliths were cooked on a raw support in a nest bee with the same structure and the same mineralogical and granulometric chemical composition as the monoliths.
  • the dimensional characteristics of the support are described in table 3.
  • the baking support also has a cylindrical shape and a diameter identical to that of the structure to be fired.
  • the monoliths obtained according to Example 2 were fired on a support of a geometry identical to that of FIG. 7 of patent EP 0 234 887.
  • the dimensions of this are shown in Table 3.
  • the attached FIG. 7 schematizes the shape of the support, the dimension a and the angle ⁇ characterizing the support described in this prior art.
  • the monoliths of example 3, 4 and 5 according to the invention were cooked on a raw honeycomb support whose shape is illustrated in FIG. 5 and whose dimensions are shown in FIG. Table 3 below.
  • the support is constituted this time by two circular levels of respective diameter Li (level 1) and L 2 (2nd level), the diameter L 2 being in accordance with the invention, less than the diameter Li.
  • the width L 3 was measured on dry green structure at the base of the monolith.
  • the dimensions Li, L 2 , L 3 , E 1 -2 , E 2 -3, a, H and the angles CC and ⁇ were measured on the dry green support.
  • the horizontal deformation (elephant leg), that is to say parallel to the plane formed by the surface of the support in contact with the piece to be cooked was measured on each monolithic filter after cooking.
  • the percentage of strain expressed in Table 3 is an average percentage measured on a sample of 10 filters. It is determined by measuring the difference in the outer diameter at the top and base of the filter in contact with the firing support and dividing by the average diameter of the filter and multiplying by 100. A horizontal strain greater than 2% is considered no satisfactory with respect to the application.
  • the vertical deformation was measured on filter or monolith after cooking by the difference in length of the filter at the center and periphery of the filter, dividing by the length at the center of the filter and multiplying by 100.
  • a vertical strain greater than 0.1% requires additional machining of the part obtained and is considered for this reason as not satisfactory.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thermal Sciences (AREA)
  • Filtering Materials (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)
  • Catalysts (AREA)

Abstract

L'invention se rapporte à un procédé de cuisson d'une structure céramique poreuse du type en nid d'abeille sur un support de cuisson, ladite structure comprenant une pluralité de canaux traversant longitudinaux se terminant sur deux extrémités de la structure, l'extrémité en appui sur le support présentant une largeur maximale Ls avant cuisson, selon un plan de coupe longitudinale passant par l'axe principal de la structure, ledit procédé se caractérisant en ce que le support présente selon ledit plan de coupe longitudinale, un premier niveau correspondant à une première face du support servant de surface d' appui de la structure à cuire, ledit niveau présentant une largeur maximale L1, un deuxième niveau, espacé de ladite première face du support par une épaisseur E1-2, ledit deuxième niveau présentant une largeur maximale L2, la largeur L1 étant supérieure ou égale à Ls et la largeur L2 étant inférieure à L1, ainsi qu'au support tel que précédemment décrit.

Description

PROCEDE ET SUPPORT POUR LA CUISSON D'UNE STRUCTURE EN NID D'ABEILLE
L' invention se rapporte à un support de cuisson de structures du type en nid d'abeilles et à son procédé d'obtention. De telles structures peuvent être filtrantes et/ou catalytiques et sont notamment utilisées dans une ligne d'échappement d'un moteur à combustion interne du type diesel. L'invention concerne plus particulièrement des supports de cuisson pour des structures filtrantes ou des supports catalytiques à base de céramique oxyde et notamment les filtres à base de Titanate d'Aluminium, ainsi qu'à leur procédé d'obtention.
A titre d'exemple, les filtres catalytiques permettant le traitement des gaz et l'élimination des suies issues d'un moteur diesel sont bien connus de l'art antérieur. Ces structures présentent toutes le plus souvent une forme en nid d'abeille, une des faces de la structure permettant l'admission des gaz d'échappement à traiter et l'autre face l'évacuation des gaz d'échappement traités. La structure comporte, entre les faces d'admission et d'évacuation, un ensemble de conduits ou canaux adjacents d'axes parallèles entre eux séparés par des parois poreuses. Les conduits sont obturés à l'une ou l'autre de leurs extrémités pour délimiter des chambres d'entrée s ' ouvrant suivant la face d'admission et des chambres de sortie s ' ouvrant suivant la face d'évacuation. Les canaux sont alternativement obturés dans un ordre tel que les gaz d'échappement, au cours de la traversée du corps en nid d'abeille, sont contraints de traverser les parois latérales des canaux d'entrée pour rejoindre les canaux de sortie. De cette manière, les particules ou suies se déposent et s'accumulent sur les parois poreuses du corps filtrant.
De façon connue, durant son utilisation, le filtre à particules est soumis à une succession de phases de filtration (accumulation des suies) et de régénération
(élimination des suies) . Lors des phases de filtration, les particules de suies émises par le moteur sont retenues et se déposent à l'intérieur du filtre. Lors des phases de régénération, les particules de suie sont brûlées à l'intérieur du filtre, afin de lui restituer ses propriétés de filtration.
De manière à augmenter notamment le volume de stockage en particules ou en suies, et celui des résidus issus de la combustion de ces suies et ainsi augmenter le délai entre deux régénérations, il a déjà été proposé, dans l'art antérieur, différentes structures filtrantes. Notamment, les structures appelées par la suite « asymétriques » présentent à volume de filtre constant, une surface ou un volume des canaux d'entrée différent de celle ou celui des canaux de sortie dudit filtre. Par exemple, il a été proposé dans la demande de brevet WO 05/016491 des structures dans lesquelles les éléments de paroi se succèdent, en coupe transversale et en suivant un rang horizontal et/ou vertical de canaux, pour définir une forme sinusoïdale ou en vague (wavy en anglais) . Les éléments de paroi ondulent typiquement d'une demi-période de sinusoïde sur la largeur d'un canal. De telles configurations de canaux permettent d' obtenir une perte de charge faible et un volume de stockage de suies important. Selon un autre mode de réalisation, il est proposé dans la demande EP 1 495 791 des blocs monolithes se caractérisant par une disposition octogonale des canaux internes d'entrée (souvent appelée structure octosquare dans le domaine) . Le plus souvent, les filtres sont en matière céramique poreuse, par exemple en cordiérite ou en carbure de silicium ou encore en titanate d'aluminium.
Des filtres en Carbure de Silicium réalisés avec ces structures sont par exemple décrits dans les demandes de brevets EP 816 065, EP 1 142 619, EP 1 455 923 ou encore WO 2004/090294 et WO 2004/065088, auquel l'homme du métier pourra par exemple se référer pour plus de précisions et de détails, tant pour la description de filtres selon la présente invention que pour leur procédé d'obtention. Ces filtres présentent avantageusement une forte inertie chimique vis à vis des suies et des gaz chauds mais un coefficient de dilatation thermique un peu élevé, qui conduit, pour la réalisation de filtres de grande taille, à la nécessité d'assembler plusieurs éléments monolithiques par un ciment de joint en un bloc filtrant, afin de réduire leurs contraintes thermomécaniques. En raison de la résistance mécanique élevée des matériaux en SiC recristallisé, il est possible de réaliser des filtres avec des parois filtrantes de faible épaisseur et une porosité élevée, avec une efficacité de filtration très satisfaisante .
Les filtres en cordiérite sont également utilisés depuis longtemps du fait de leur faible coût. Grâce au coefficient de dilatation thermique très faible de ce matériau, dans la gamme de température de fonctionnement normal d'un filtre, il est possible de réaliser des filtres monolithiques de plus grande dimension.
Le matériau Titanate d'Aluminium peut aussi présenter un coefficient de dilation thermique faible et montre une réfractarité et une résistance à la corrosion supérieure à celle de la cordiérite. Il permet ainsi de réaliser des filtres monolithiques de grande taille à la condition cependant de maitriser la stabilité thermique du titanate d' aluminium, notamment lors des phases de régénération du filtre. Des filtres monolithiques sont ainsi décrits dans la demande de brevet WO 2004/011124, qui propose des structures à base de titanate d'aluminium pour 60 à 90% poids, renforcé par de la mullite, présente à hauteur de 10 à 40% poids. Selon les auteurs, le filtre ainsi obtenu présente une durabilité améliorée. Selon une autre réalisation, la demande de brevet EP 1 741 684 décrit un filtre présentant un faible coefficient de dilatation et dont la phase principale en titanate d'aluminium est stabilisée d'une part par la substitution d'une fraction des atomes Al par des atomes Mg dans le réseau cristallin Al2TiO5 au sein d'une solution solide et d'autre part par substitution d'une fraction des atomes Al en surface de ladite solution solide par des atomes de Si, apportés dans la structure par une phase supplémentaire intergranulaire du type d' aluminosilicate de potassium et sodium, notamment de feldspath.
Ces structures monolithiques sont typiquement extrudées puis, dans le cas d'une structure filtrante, obturées à l'une et l'autre de leurs extrémités afin de délimiter des chambres d'entrée et des chambres de sortie comme décrit précédemment. Ces structures sont cuites afin de fritter ou consolider mécaniquement le matériau constituant la structure. Il s'avère qu'il se produit pendant la phase de cuisson une déformation de la structure appelée « patte d'éléphant », schématiquement illustrée par la figure 1. On voit sur la figure 1 que la base 1 de la structure 2 proche de la face d' appui 3 sur le support 4 de cuisson (partie basse) présente une largeur plus importante qu'en partie haute de la structure. Typiquement, un écart dimensionnel supérieur à 1% sur la largeur du filtre, pour une longueur de 100 mm dudit filtre, est considéré comme non acceptable pour l'application. La déformation est d' autant plus marquée que la structure extrudée 2 est de grande taille. Par grande taille, on entend en particulier des structures de diamètre supérieur à 100 mm ou de section supérieure à 75 cm2. Le problème devient même critique pour des structures de très grande longueur, par exemple de longueur supérieure à 150 mm et/ou de très grand diamètre, par exemple de diamètre supérieur à 125 mm ou encore de grande section, c'est-à-dire supérieure ou égale à 120 cm2. De même l'obtention des structures pose problème si le retrait de la structure après cuisson, selon sa plus grande dimension, est supérieur ou égal à 5%. Par retrait, il est entendu au sens de la présente description la différence, en pourcentage, entre une dimension caractéristique de la structure avant et après cuisson, rapportée à ladite dimension avant cuisson. Typiquement, dans le cas d'une structure extrudée de section circulaire, le retrait peut être mesuré soit sur la longueur, soit sur le diamètre de ladite structure. Par « structure avant cuisson » on entend la structure à l'état cru sec, c'est-à-dire présentant une humidité résiduelle inférieure à 1%.
Au sens de la présente description et dans les exemples qui suivent, le retrait est mesuré sur une section du filtre sensiblement parallèle au plan formé par la surface d'appui de la structure au contact de son support de cuisson, suffisamment éloignée de ladite surface d'appui pour s'affranchir du phénomène de « patte d'éléphant » cité précédemment. Pratiquement, le retrait est mesuré idéalement sur le tiers supérieur de la hauteur de la structure . Pour résoudre le problème du phénomène de « patte d'éléphant », une solution initiale consiste à extruder une structure crue de plus grande longueur que nécessaire. La partie de la structure la plus déformée à sa base, c'est-à- dire celle située dans la portion au voisinage de sa face d'appui sur le support de cuisson, est alors coupée après la cuisson. Finalement, la structure est bouchée puis éventuellement recuite afin de fritter le matériau constituant les bouchons. Cette solution conduit à une perte de matière importante car la chute de découpe peut représenter plus de 15% de la masse totale de la structure. En outre, le bouchage sur structure cuite est délicat car les bouchons présentent une réfractarité ou une étanchéité trop faible si la structure bouchée n'est pas recuite. Une deuxième cuisson pour cuire les bouchons et obtenir une structure filtrante ayant une efficacité de filtration suffisante représente une opération et un coût supplémentaires, ce qui n'est pas envisageable économiquement . La demande de brevet EP 0 234 887 propose un support de cuisson formé par un nid d'abeille cuit ou cru présentant au moins, au niveau de sa face en contact avec la structure à cuire, une largeur inférieure à la largeur de ladite structure à cuire. Par exemple ce support de cuisson peut présenter un chanfrein ou différentes formes d'évidemment. Cette solution, qui a l'avantage de conférer une bonne stabilité de la pièce, conduit également à une déformation verticale indésirable de la structure à cuire, notamment lorsque le retrait de la pièce est supérieur à 5%. La structure obtenue après cuisson présente alors au final une longueur supérieure sur les bords, ce qui oblige donc à mettre en œuvre un usinage supplémentaire de la structure, ainsi qu'une opération de bouchage supplémentaire après cuisson . La demande EP 1 808 423 décrit un support cru qui forme une phase cristallisée de même nature que la structure pendant la cuisson et présente une rugosité de surface de 8 à 50μm afin de réduire le frottement entre le support de cuisson et la structure. Si cette solution convient pour éliminer l'occurrence de fractures ou de fissures importantes sur la structure cuite, elle ne permet pas de résoudre le problème de la déformation en patte d'éléphant décrite précédemment et illustrée par la figure 1 ci-jointe.
La présente invention se rapporte selon un premier aspect à un procédé de cuisson d'une structure en nid d'abeille éventuellement filtrante, utilisant un support de cuisson d'un type nouveau, qui permet de répondre efficacement à l'ensemble des besoins précédemment exposés, en particulier :
-améliorer la qualité des filtres en évitant notamment l'apparition de fissures et/ou de déformations de la structure pendant la cuisson, de manière à obtenir une structure filtrante présentant une efficacité de filtration satisfaisante,
-permettre une stabilité suffisante de la structure à cuire sur son support et du support lui-même,
-permettre un déliantage (élimination des liants) et une cuisson (ou un frittage) plus rapides sans risque de dégrader la qualité des structures obtenues, afin d'obtenir une productivité élevée.
Dans sa forme la plus générale et selon un premier aspect, la présente invention se rapporte à un procédé de cuisson d'une structure céramique poreuse du type en nid d'abeille sur un support de cuisson, ladite structure comprenant une pluralité de canaux traversant longitudinaux se terminant sur deux extrémités de la structure, l'extrémité en appui sur le support présentant une largeur maximale L3 avant cuisson, selon un plan de coupe longitudinale passant par l'axe principal de la structure. Dans le procédé selon l'invention, ledit support présente selon ledit plan de coupe longitudinale: - un premier niveau correspondant à une première face du support servant de surface d' appui de la structure à cuire, ledit premier niveau présentant une largeur maximale Li, - un deuxième niveau, espacé de ladite première face du support par une épaisseur Ei_2, ledit deuxième niveau présentant une largeur maximale L2,
- la largeur Li étant supérieure ou égale à L3,
- la largeur L2 étant inférieure à Li. L'axe principal de la structure du type en nid d'abeille, de façon classique, est défini selon l'invention comme l'axe de symétrie principal de la structure, parallèle aux canaux traversants. Il est bien entendu défini en fonction de la forme de la structure et en particulier de sa section. A titre d'exemple, c'est l'axe de révolution dans le cas d'une structure cylindrique, l'axe central d'une structure parallèlopipédique ou ovoïde. L'axe principal est en particulier représenté sur les vues schématiques des figures 3 et 6. Ainsi, pour une structure en nid d'abeille présentant une section de forme donnée à son extrémité inférieure (c'est-à-dire sur sa face d'appui), par exemple ovale, ronde ou carrée, le support utilisé selon l'invention présente de préférence une forme générale globalement similaire, c'est-à-dire respectivement de forme sensiblement ovale, ronde ou carrée, en particulier dont les dimensions sont telles que Li est compris entre L3 et 1,1 L3, selon tout plan longitudinal passant par l'axe principal de la structure à cuire.
Des modes de réalisations particuliers d'un tel procédé sont notamment décrits ci-dessous :
- la largeur Li est comprise entre L3 et 1,1 L3.
- l'écart relatif (Li-L2) /Li entre les deux largeurs Li et L2 est supérieur ou égal à environ 5%. - l'extrémité de la structure et la face du support qui lui sert de face d'appui présentent une forme et/ou une géométrie sensiblement identique.
- le support est du type en nid d'abeille, et comprend une pluralité de canaux traversant longitudinaux débouchant sur deux extrémités, l'extrémité supérieure du support constituant ledit premier niveau. le support présente une porosité adaptée à la porosité du matériau constituant les parois du filtre. Le support présente en général comprise entre 20 et 65%, de préférence entre 30 et 50%, la taille moyenne des pores étant idéalement comprise entre 10 et 20 microns. Une porosité trop élevée conduit en revanche à un niveau de résistance mécanique trop faible pour supporter le filtre. Une porosité trop faible peut être dommageable pour le filtre car le retrait du support peut ne pas accompagner suffisamment le retrait du filtre pendant sa cuisson.
- l'épaisseur des parois du support en nid d'abeille est avantageusement comprise entre 0,2 à 1,0mm, de préférence 0,2 et 0,5mm. Le nombre de canaux dans les éléments filtrants est de préférence compris entre 7,75 et 62 par cm2, lesdits canaux ayant une section d'environ 0,5 à 9 mm2.
- le premier niveau correspondant à une première face du support servant d' appui de la structure à cuire est un plan .
- le troisième niveau correspondant à la deuxième face à la base du support servant d' appui du support sur le dispositif de cuisson (wagon ou sole du four par exemple) est de préférence un plan, un tel plan permettant une meilleure stabilité. l'expansion thermique du matériau constituant le support varie d'au plus 2% de l'expansion thermique du matériau constituant la structure, dans le domaine de température de la cuisson.
- le retrait à la cuisson du matériau constituant le support varie d'au plus 2% du retrait à la cuisson du matériau constituant la structure, dans le domaine de température de la cuisson.
- le support présente une forme trapézoïdale, ledit deuxième niveau correspondant à la deuxième face du support . - ledit support présente un troisième niveau correspondant à la deuxième face du support, présentant une largeur L3, la largeur L3 étant supérieure ou égale à la largeur L2 et au moins égale à 3/5 de la largeur Ls.
Le procédé de cuisson tel que décrit précédemment peut notamment être utilisé avantageusement dans un procédé d'obtention d'une structure filtrante en nid d'abeille, dans lequel les canaux traversant longitudinaux de la structure sont préalablement alternativement bouchés sur leurs extrémités.
L' invention se rapporte également au support convenant pour la cuisson d'une structure céramique poreuse du type nid d'abeille tel qu'il vient d'être décrit précédemment, et comprenant notamment, selon un plan de coupe passant par son axe principal:
- un premier niveau correspondant à une première face du support servant de surface d' appui de la structure à cuire, ledit niveau présentant une largeur maximale Li,
- un deuxième niveau, espacé de ladite première face du support par une épaisseur Ei_2, ledit deuxième niveau présentant une largeur maximale L2,
- la largeur L2 étant inférieure à Li. Selon d'autres aspects possibles dudit support :
- la largeur Li est comprise entre L3 et 1,1 L3. - l'écart relatif (Li-L2) /Li entre les deux largeurs Li et L2 est supérieur ou égal à environ 5%.
- ledit support de cuisson, du type en nid d'abeille, comprend une pluralité de canaux traversant longitudinaux débouchant sur deux extrémités, l'extrémité supérieure du support constituant ledit premier niveau.
- ledit support présente une forme trapézoïdale, ledit deuxième niveau correspondant à sa deuxième face. - ledit support présente un troisième niveau correspondant à sa deuxième face, de largeur maximale L3, la largeur L3 étant supérieure ou égale à la largeur L2.
Plus précisément, les meilleurs résultats ont été obtenus selon l'invention lorsque le matériau constituant le support est choisi de manière à ce que son expansion thermique soit proche de celle du matériau constituant la structure à cuire. Au sens de la présente description, l'expansion thermique mesurée à une température T correspond au pourcentage de variation de longueur d'une éprouvette du matériau soumis à une variation de la température jusqu'à la température T (température finale de la cuisson) , par rapport à sa longueur initiale à la température ambiante (200C), prise comme référence. Elle est classiquement mesurée par dilatométrie différentielle selon la norme prévue à cet effet NFB40-308. Selon la présente invention, l'expansion de l' éprouvette de matériau constituant le support ou la structure à cuire est mesurée dans un plan parallèle au plan formé par la face d'appui 3 sur le support de cuisson 4 comme indiqué précédemment sur la figure 1. Une expansion thermique du support dans le domaine de température de la cuisson est proche de celle de la structure aux sens de la présente invention si elle est égale à celle de la structure, plus ou moins 2%, et de préférence plus au moins 1%, quelque soit la température dans le domaine considéré (200C - T) .
De préférence, selon l'invention, le support est cru afin d'accompagner au mieux les variations dimensionnelles de la structure pendant sa cuisson. Avantageusement le matériau du support est choisi de telle façon que son retrait après le traitement thermique permettant la cuisson de la structure, soit égal à celui de la structure plus ou moins 2%, de préférence plus ou moins 1%. Le support selon l'invention peut être mis en œuvre selon différents modes dont quelques-uns sont illustrés par la suite. Bien entendu, l'invention n'est, sous aucun des aspects décrits, limité à ces modes.
La figure 3 illustre un support 4 selon une première configuration selon l'invention, selon un plan de coupe longitudinal de la structure, dont l'axe principal 5 est représenté. Le support selon l'invention présente une largeur Li comprise entre L3 et 1,1 L3. Pour une structure présentant une face d'appui de forme donnée, par exemple ovale, ronde ou carrée, le support utilisé selon l'invention présente de préférence une forme générale similaire, c'est-à-dire respectivement ovale, ronde ou carrée, dont les dimensions sont telles que Li est compris entre L3 et 1,1 L3, selon tout plan longitudinal passant par l'axe principal de la structure à cuire. Une telle configuration permet avantageusement d'éviter une déformation verticale de la structure, la direction verticale étant ici entendue comme la direction perpendiculaire au plan formé par la surface d' appui sur le support de la structure à cuire. Selon l'invention, le support présente une largeur L2 inférieure à Li de manière à accompagner la déformation horizontale de la structure pendant sa cuisson. De préférence, l'écart relatif entre les deux largeurs ( (Li-L2) /Li) , en pourcentage, est supérieur ou égal à environ 5%, de préférence supérieur ou égal à environ 10%, de manière encore plus préférée supérieur ou égal à environ 15%. En général, cet écart reste cependant inférieur à 50%, de préférence inférieur à 40%, voire inférieur à 30%.
Le support de la figure 3 présente en outre une largeur L3 mesurée sur une deuxième face ou face de repos du support opposée à la face 3 corne indiqué sur la figure 1, de manière à assurer une stabilité suffisante de l'ensemble support-structure, cette deuxième étant au contact, lors du procédé de cuisson par exemple de la sole du four de cuisson ou du dispositif de cuisson.
Le support présente une épaisseur suffisante Ei_2 entre le niveau Li au contact de la structure à cuire et le niveau L2 du support. Les valeurs de Ei_2 et la largeur L2 selon l'invention dépendent et varient selon la nature du matériau constituant le support, de sa géométrie interne
(notamment en fonction de la présence de canaux, de l'épaisseur des parois etc.) et des conditions du traitement thermique envisagé (en particulier du niveau de température finale, de la vitesse de la montée en température et du temps de cuisson à la température maximale) .
Typiquement, l'épaisseur Ei_2 optimale peut être déterminée et ajustée expérimentalement.
Pour déterminer un tel optimum, on considérera différents paramètres, parmi lesquels :
- la largeur L3 de la structure à cuire, par exemple le diamètre externe de la structure si celle-ci est de section cylindrique,
- la hauteur h ou la longueur de la structure à cuire. De préférence, l'épaisseur Ei_2 et la largeur L2 sont ajustés expérimentalement, par exemple par itérations successives, de manière à présenter une résistance optimale au fluage ou à l'affaissement sous la charge de la structure à cuire.
De préférence, Ei_2 et Li, L2 sont choisis de manière que l'angle CC, tel que représenté sur la figure 3, soit supérieur à 15°, de préférence supérieur à 45°.
De préférence, Ei_2 et Li, L2 sont choisis de manière que l'angle CC, soit inférieur à 85°.
Selon un autre mode illustré par la figure 4, le support selon l'invention présente une configuration telle que les paramètres L2 et L3 précédemment décrits sont sensiblement identiques, c'est-à-dire que L2 = L3.
Selon ce mode, le support présente une épaisseur constante E2_3 entre le niveau L2 et le niveau L3 à la base du support qui est en contact avec la sole du four ou avec le dispositif de cuisson. Selon un mode possible ayant donné des résultats satisfaisant, E2_3 est de préférence inférieure à 5/3 de L3.
Dans une variante préférée, illustré par la figure 5, le support selon l'invention est de forme sensiblement trapézoïdale, correspondant au cas extrême dans lequel E2-3=0.
Selon d'autres modes possibles non illustrés par des figures dans la présente description, le support selon l'invention peut également présenter d'autres formes entre les niveaux L2 et Li, pourvu que la distance L2 demeure inférieure à la distance Li, en particulier des pourtours arrondis ou des courbes de surface concaves ou convexes.
Le support selon l'invention peut en outre avantageusement comporter une ou plusieurs des caractéristiques optionnelles suivantes : a) le support présente, de préférence, une rugosité adaptée, par exemple tel que décrit dans la demande EP 1808423, sans que cela soit cependant nécessaire pour le gain des avantages du support selon la présente invention. En effet le dépôt d'une grainette ou d'un lit de poudre par exemple d'alumine ou de corindon globulaire peut permettre d'éviter les phénomènes de collage au support tout en comblant les irrégularités de surface du support. b) le support est cru et sa composition chimique minéralogique et granulométrique est similaire voire identique à celle de la structure à cuire. Les expériences menées dans le cadre de la présente invention ont montrées qu'une telle configuration permettait de réduire efficacement les contraintes mécaniques sur la structure pendant la cuisson, notamment si le retrait est élevé, en particulier si ce retrait est supérieur à environ 7%. Par composition minéralogique similaire, on entend une composition présentant les mêmes phases et/ou une répartition volumique ou massique des phases cristallisées présentes très proche voire identique après la cuisson de la structure. c) le support est poreux. En particulier il présente de préférence une porosité ouverte proche de celle de la structure à cuire. Après cuisson la porosité du support est typiquement comprise entre 10% et 80%, et de manière préférée entre 30% et 70%. Notamment dans l'application filtre à particules, une porosité trop faible conduit à une perte de charge trop élevée. Une porosité trop élevée correspondant à un niveau de résistance mécanique trop faible. Le diamètre médian d5o, en volume, des pores constituant la porosité du support après cuisson est de préférence compris entre 5 et 30 microns, de préférence entre 8 et 25 microns. d) le support est lui-même formé de canaux, tel que représenté selon la figure 6, de manière à laisser circuler librement les gaz émis par ou réagissant avec la structure lors du déliantage et de cuisson de ladite structure, orientés selon la même direction lors de la cuisson. En particulier, le support peut présenter la même macrostructure interne en nid d'abeille que la structure à cuire. Ainsi, lorsque la structure 2 à cuire est du type nid d'abeilles, le support 4 est de préférence du type nid d'abeille selon une disposition telle que représentée selon la figure 6, dans laquelle, on a représenté en outre les bouchons 6 obturant les canaux. Les caractéristiques dimensionnelles des canaux du support (densité de canaux, épaisseur de parois, forme des canaux en particulier) sont alors de préférence proches de celles de la structure à cuire, voire identiques. Le support peut être adapté de manière que ses canaux sont de même surface ouverte que ceux de la structure en regard et au niveau de la face d'appui à cuire. Une telle réalisation peut être particulièrement avantageuse pour une cuisson optimale de structures du type « asymétrique » c'est-à-dire dont la surface d'une partie des canaux d'entrée est différente et de préférence supérieure à celle d'une partie des canaux de sortie, comme illustré par la demande WO05/016491 précédemment citée. Une telle disposition permet une élimination accélérée des liants au démarrage de la cuisson, au niveau des canaux du support ouverts sur l'extérieur. Une telle disposition est au final favorable à la bonne tenue de la structure filtrante et en particulier évite l'apparition de fissures ou de déformation de la structure au cours de la cuisson.
Un exemple de procédé de fabrication d'une structure en nid d'abeille dans lequel un support selon l'invention peut être avantageusement utilisé, comprend typiquement les étapes principales suivantes: a) préparation d'une composition à base du matériau constitutif de la structure et mise en forme, notamment par extrusion à travers une filière dudit matériau et découpe afin d'obtenir une structure en nid d'abeille, b) préparation d'une composition d'un matériau de bouchage et obturation de ladite structure crue d'une partie des canaux par ladite composition avant et/ou après séchage avant et/ou après cuisson selon étape e) afin d'obtenir une structure filtrante après cuisson. c) éventuellement séchage sous air selon une technique choisie parmi le séchage par air chaud, le séchage par séchage micro-onde, le séchage par lyophilisation à une température inférieure à 1300C ou une combinaison desdites techniques, d) cuisson de ladite structure sur un support selon l'invention, comprenant éventuellement une étape initiale de déliantage. Typiquement, l'étape e) de cuisson est mise en œuvre jusqu'à une température dépendant du matériau constitutif de la structure.
Les inventeurs ont observé que le support selon l'invention était particulièrement avantageux pour la cuisson de structures filtrantes déjà bouchées à cru, ce qui permet d'éviter une étape de cuisson supplémentaire afin de fritter les bouchons. Ainsi, l'utilisation des supports selon l'invention favorise au final l'obtention de structures filtrantes présentant une cohésion améliorée entre bouchons et parois.
De préférence la structure filtrante est monolithique et les parois filtrantes sont à base d'un matériau inorganique oxyde en particulier à base de Titanate d'Aluminium ou de Cordiérite voire de Mullite ou un composite à partir de ces matériaux. Par l'expression «à base de », il est entendu que lesdites parois comprennent au moins 50% poids et de préférence au moins 70% poids, voire au moins 90 ou même 98% poids dudit matériau.
Selon un premier mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de titanate d'aluminium. De façon générale, la composition du matériau céramique poreux à base de Titanate d'Aluminium peut présenter tous les ajouts connus permettant de stabiliser la phase titanate d'aluminium. Par stabilité à haute température, on entend la capacité du matériau à base de titanate d' aluminium à ne pas se décomposer en deux phases d' oxyde de titane Tiθ2 et d'oxyde d'aluminium AI2O3, dans les conditions normales d'utilisation d'un filtre à particules. De manière classique, cette propriété est mesurée selon l'invention par un test de stabilité consistant à déterminer les phases présentes dans le matériau, typiquement par diffraction X, puis à le soumettre à un traitement thermique à 11000C pendant 10 heures et vérifier, selon la même méthode d'analyse par diffraction X et dans les mêmes conditions, l'apparition des phases alumine et oxyde de titane, au seuil de détection du matériel. Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de SiC et d'une matrice liante céramique et/ou vitreuse, ladite matrice vitreuse comprenant éventuellement du Siθ2. Par matrice liante céramique, on entend une structure continue entre les grains typiquement de taille ou de diamètre moyen compris entre 1 et 100 microns, de préférence entre 10 et 100 microns et obtenue par cuisson ou frittage de manière à consolider le matériau constituant ladite matrice. Par matrice vitreuse, on entend en particulier une matrice formée par un matériau non ou peu cristallisé comportant au moins 30% de silice (SiO2) •
Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base d'alumine.
Selon un autre mode possible selon l'invention, les parois poreuses de la structure filtrante sont constituées d'un matériau à base de Cordiérite. Selon un mode possible le filtre est constitué par l'assemblage d'éléments monolithiques filtrants, la section d'un élément monolithique constituant la structure assemblée est de préférence carrée, la largeur de l'élément étant comprise entre 30 mm et 50 mm. Le matériau de joint est entendu ici comme une composition moulable formée par un mélange particulaire et/ou fibreux, sec ou humide, apte à prendre en masse apte à avoir une tenue mécanique suffisante à température ambiante ou après séchage et/ou traitement thermique dont la température n'excédera pas la température de ramollissement ou d'affaissement qui définit la réfractarité du ou des matériaux constituant les éléments monolithiques. Le matériau de joint comprend de préférence des particules et/ou des fibres de céramique ou de matériau réfractaire, choisi parmi les non oxydes, tels que le SiC, le nitrure d'aluminium et/ou de silicium, l'oxynitrure d'aluminium, ou parmi les oxydes, notamment comprenant Al2O3, SiO2, MgO, TiO2, ZrO2, Cr2O3 ou l'un quelconque de leurs mélanges.
Le filtre assemblé ou non présente de préférence un ciment de revêtement solidaire du filtre assemblé, notamment de même composition minérale que le matériau de jointoiement afin de réduire les contraintes thermomécaniques . La structure filtrante obtenue selon le procédé selon l'invention peut en outre comprendre une phase catalytique active supportée ou de préférence non supportée, comprenant typiquement au moins un métal précieux tel que Pt et/ou Rh et/ou Pd et éventuellement un oxyde tel que Ceθ2, ZrO2, CeO2-ZrO2.
L' invention et ses avantages seront mieux compris à la lecture des exemples non limitatifs qui suivent fournis uniquement pour démontrer les avantages liés à l'utilisation du support selon l'invention. Dans les exemples, tous les pourcentages sont donnés en poids.
Exemples :
a) réalisation d'une poudre de titanate d'aluminium électrofondue :
Dans tous les exemples les pourcentages sont donnés en poids. Dans une étape préliminaire, du Titanate d'Aluminium a été préparé à partir des matières premières suivantes :
- environ 40% poids d'alumine avec un taux de pureté en Al2θ3 supérieur à 99,5% et de diamètre médian d5o de 90 μm, commercialisée sous la référence AR75 ® par la société Pechiney, - environ 50% poids d'oxyde de titane sous forme rutile comportant plus de 95% de TiO2 et environ 1% de zircone présentant un diamètre médian d5o d'environ 120 μm, commercialisée par la société Europe Minerais,
- environ 5% poids de silice avec un taux de pureté en SiO2 supérieur à 99,5% et de diamètre médian d5o de l'ordre de
210 μm, commercialisée par la société SIFRACO,
- environ 4% poids d'une poudre de magnésie avec un taux de pureté en MgO supérieur à 98% et dont plus de 80% de particules présentant un diamètre compris entre 0,25 et 1 mm, commercialisée par la société Nedmag.
Le mélange des oxydes réactifs initiaux a été fondu dans un four à arcs électriques, sous air, avec une marche électrique oxydante. Le mélange fondu a ensuite été coulé en moule CS de façon à obtenir un refroidissement rapide. Le produit obtenu est broyé et tamisé pour obtenir des poudres de différentes fractions granulométriques . Plus précisément, le broyage et le tamisage sont réalisés dans des conditions permettant l'obtention au final de deux fractions granulométriques : une fraction granulométrique se caractérisant par un diamètre médian d5o sensiblement égal à 50 microns, désignée sous le terme fraction grosse selon la présente invention, une fraction granulométrique se caractérisant par un diamètre médian d5o sensiblement égal à 1,5 microns, désignée sous le terme fraction fine selon la présente invention, Au sens de la présente description, le diamètre médian d5o désigne le diamètre des particules, mesuré par sédigraphie, au dessous duquel se trouve 50% en volume de la population. L'analyse par microsonde montre que tous les grains de la phase fondue ainsi obtenue présentent la composition suivante, en pourcentage poids des oxydes (tableau 1) :
Tableau 1
b) fabrication des monolithes crus Dans un premier temps, on a synthétisé une série de monolithes crus secs de la manière suivante : Dans un malaxeur, on mélange des poudres selon la composition suivante :
100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 75% d'une première poudre de diamètre médian de 50 μm et 25% d'une deuxième poudre de diamètre médian de 1,5 μm. On ajoute, par rapport à la masse totale du mélange :
- 4% poids d'un liant organique du type cellulose, - 15% poids d'un agent porogène,
- 5 % de plastifiant dérivé d' éthylène glycol,
- 2% de lubrifiant (huile) ,
- 0,1 % de surfactant,
- environ 20% d'eau environ de manière à obtenir, selon les techniques de l'art, une pâte homogène après malaxage dont la plasticité permet l'extrusion à travers une filière d'une structure en nid d'abeille qui après cuisson présente les caractéristiques dimensionnelles selon le tableau 2. On sèche ensuite les monolithes crus obtenus par micro-onde pendant un temps suffisant pour amener la teneur en eau non liée chimiquement à moins de 1 % en masse.
On bouche les canaux des deux extrémités des monolithes selon des techniques bien connues, par exemple décrites dans le brevet US 4,557,773 et avec un mélange répondant à la formulation suivante :
100 % d'un mélange de deux poudres de titanate d'aluminium réalisées précédemment par électrofusion, environ 66% d'une première poudre de diamètre médian de 50 μm et 34% d'une deuxième poudre de diamètre médian de 1,5 μm.
- 1,5% de liant organique du type cellulose,
- 21,4% de porogène,
- 0,8% de dispersant à base d'acide carboxylique, - environ 55 % eau environ de manière à obtenir un mélange apte à obturer les monolithes, un canal sur deux. Les caractéristiques des monolithes, après cuisson progressive sous air jusqu'à atteindre une température de 1450°C qui est maintenue pendant 4 heures, figurent dans le tableau 2 suivant:
Tableau 2
Les caractéristiques de porosité ont été mesurées par des analyses par porosimétrie à haute pression de mercure, effectuées avec un porosimètre de type Micromeritics 9500. Le retrait est mesuré par le ratio en pourcentage de la différence entre le diamètre (en mm) du monolithe après cuisson et celui du monolithe cru sec rapporté au diamètre (en mm) du monolithe cru sec. Le diamètre est mesuré dans la partie haute du filtre, c'est à dire proche de la face opposée à celle directement au contact du support de cuisson, de manière à ne pas tenir compte de la déformation éventuelle en patte d'éléphant à la base du filtre. La valeur de retrait reportée dans le tableau 2 correspond à une moyenne obtenue par des mesures effectuées sur une population de 10 monolithes.
Dans le cas de l'exemple 1 (comparatif), les monolithes ont été cuits sur un support cru en nid d'abeille de même structure et de même composition chimique minéralogique et granulométrique que les monolithes. Les caractéristiques dimensionnelles du support, dont la forme générale est illustrée par la figure 2, sont décrites dans le tableau 3. Selon cet exemple, le support de cuisson présente également une forme cylindrique et un diamètre identique à celui de la structure à cuire.
A la différence de l'exemple précédent, les monolithes obtenus selon l'exemple 2 (également comparatif), ont été cuits sur un support d'une géométrie identique à celle de la figure 7 du brevet EP 0 234 887. Les dimensions de ce support sont décrites dans le tableau 3. La figure 7 ci- jointe schématise la forme du support, la cote a et l'angle δ caractérisant le support décrit dans cet art antérieur. A la différence des exemples comparatifs précédents, les monolithes de l'exemple 3, 4 et 5 selon l'invention ont été cuits sur un support cru en nid d'abeille dont la forme est illustrée par la figure 5 et dont les dimensions figurent dans le tableau 3 ci-dessous. Le support est constitué cette fois de deux niveaux de forme circulaire, de diamètre respectifs Li (1er niveau) et L2 (2eme niveau), le diamètre L2 étant, conformément à l'invention, inférieur au diamètre Li.
Tableau 3
La largeur L3 a été mesurée sur structure à l'état cru sec à la base du monolithe.
Les cotes Li, L2, L3, Ei_2, E2-3, a, H et les angles CC et δ ont été mesurés sur le support cru sec. La déformation horizontale (en patte d'éléphant), c'est à dire parallèlement au plan formé par la surface du support en contact avec la pièce à cuire a été mesurée sur chaque filtre monolithique après cuisson. Le pourcentage de déformation exprimé dans le tableau 3 est un pourcentage moyen mesuré sur un échantillon de 10 filtres. Il est déterminé en mesurant la différence du diamètre externe au sommet et à la base du filtre au contact du support de cuisson et en divisant par le diamètre moyen du filtre et en multipliant par 100. Une déformation horizontale supérieure à 2% est considérée comme non satisfaisante vis-à-vis de l'application.
La déformation verticale a été mesurée sur filtre ou monolithe après cuisson par la différence de longueur du filtre au centre et en périphérie du filtre, en divisant par la longueur au centre du filtre et en multipliant par 100. Une déformation verticale supérieure à 0,1% oblige à un usinage supplémentaire de la pièce obtenue et est considérée pour cette raison comme non satisfaisante.
Les résultats présentés dans le tableau 3 montrent ainsi que les supports selon l'invention permettent d'obtenir un filtre présentant les plus faibles déformations aussi bien dans un plan horizontal que dans le plan vertical. En particulier, l'utilisation du support selon l'invention se traduit par l'obtention de structures pour lesquels aucun ajustement, découpe ou usinage n'apparaît nécessaire après la cuisson. En outre, dans le cas d'une structure filtrante, la mise en place des bouchons peut être effectuée sans inconvénient avant l'étape de cuisson de la structure, ce qui permet d'améliorer de façon significative l'homogénéité et la résistance des filtres obtenus, notamment dans une utilisation comme filtre à particules dans une ligne d'échappement d'un moteur automobile.

Claims

REVENDICATIONS
1. Procédé de cuisson d'une structure céramique poreuse (2) du type en nid d'abeille sur un support de cuisson
(4), ladite structure comprenant une pluralité de canaux traversant longitudinaux se terminant sur deux extrémités de la structure, l'extrémité en appui (3) sur le support (4) présentant une largeur maximale L3 avant cuisson, selon un plan de coupe longitudinale passant par l'axe principal (5) de la structure, ledit procédé se caractérisant en ce que le support présente selon ledit plan de coupe longitudinale:
- un premier niveau correspondant à une première face du support servant de surface d'appui de la structure à cuire, ledit niveau présentant une largeur maximale Li,
- un deuxième niveau, espacé de ladite première face du support par une épaisseur Ei_2, ledit deuxième niveau présentant une largeur maximale L2, - la largeur Li étant supérieure ou égale à L3,
- la largeur L2 étant inférieure à Li.
2. Procédé de cuisson selon la revendication 1, dans lequel la largeur Li est comprise entre L3 et 1,1 L3.
3. Procédé de cuisson selon l'une des revendications précédentes, dans lequel l'écart relatif (Li-L2) /Li entre les deux largeurs Li et L2 est supérieur ou égal à environ 5%.
4. Procédé selon l'une des revendications précédentes, dans lequel l'extrémité de la structure et la face du support qui lui sert de face d' appui présentent une forme et/ou une géométrie sensiblement identique.
5. Procédé de cuisson selon l'une des revendications précédentes, dans lequel le support est du type en nid d'abeille, et comprend une pluralité de canaux traversant longitudinaux débouchant sur deux extrémités, l'extrémité supérieure du support constituant ledit premier niveau.
6. Procédé de cuisson selon l'une des revendications précédentes, dans lequel l'expansion thermique du matériau constituant le support varie d'au plus 2% de l'expansion thermique du matériau constituant la structure, dans le domaine de température de la cuisson .
7. Procédé de cuisson selon l'une des revendications précédentes, dans lequel le retrait à la cuisson du matériau constituant le support varie d'au plus 2% du retrait à la cuisson du matériau constituant la structure, dans le domaine de température de la cuisson .
8. Procédé de cuisson selon l'une des revendications précédentes, dans lequel le support présente une forme trapézoïdale, ledit deuxième niveau correspondant à la deuxième face du support.
9. Procédé de cuisson selon l'une des revendications 1 à 7, dans lequel ledit support présente un troisième niveau correspondant à la deuxième face du support, présentant une largeur L3, la largeur L3 étant supérieure ou égale à la largeur L2 et au moins égale à 3/5 de la largeur L3.
10. Procédé de cuisson selon l'une des revendications précédentes, dans un procédé d'obtention d'une structure filtrante en nid d'abeille, dans lequel les canaux traversant longitudinaux de la structure sont préalablement alternativement bouchés sur leurs extrémités.
11. Support de cuisson (4) convenant pour la cuisson de structure céramique poreuse (2) du type nid d'abeille, caractérisé en ce qu' il comprend, selon un plan de coupe passant par son axe principal (5) : - un premier niveau correspondant à une première face du support pour servir de surface d'appui (3) de la structure à cuire, ledit niveau présentant une largeur maximale Li, - un deuxième niveau, espacé de ladite première face du support par une épaisseur Ei_2, ledit deuxième niveau présentant une largeur maximale L2,
- la largeur L2 étant inférieure à Li.
12. Support de cuisson selon la revendication 11, dans lequel la largeur Li est comprise entre L3 et 1,1 L3.
13. Support de cuisson selon la revendication 11 ou 12, dans lequel l'écart relatif (Li-L2) /Li entre les deux largeurs Li et L2 est supérieur ou égal à environ 5%.
14. Support de cuisson selon l'une des revendications 11 à 13, du type en nid d'abeille, comprenant une pluralité de canaux traversant longitudinaux débouchant sur deux extrémités, l'extrémité supérieure du support constituant ledit premier niveau.
15. Support de cuisson selon l'une des revendications 11 à 14, présentant une forme trapézoïdale, ledit deuxième niveau correspondant à la deuxième face du support.
16. Support de cuisson selon l'une des revendications 11 à 14, présentant un troisième niveau correspondant à la deuxième face du support, présentant une largeur L3, la largeur L3 étant supérieure ou égale à la largeur L2.
EP10715959A 2009-03-24 2010-03-22 Procede et support pour la cuisson d'une structure en nid d'abeille Withdrawn EP2411348A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0951871 2009-03-24
PCT/FR2010/050504 WO2010109120A1 (fr) 2009-03-24 2010-03-22 Procede et support pour la cuisson d'une structure en nid d'abeille

Publications (1)

Publication Number Publication Date
EP2411348A1 true EP2411348A1 (fr) 2012-02-01

Family

ID=41259157

Family Applications (1)

Application Number Title Priority Date Filing Date
EP10715959A Withdrawn EP2411348A1 (fr) 2009-03-24 2010-03-22 Procede et support pour la cuisson d'une structure en nid d'abeille

Country Status (7)

Country Link
US (1) US9091482B2 (fr)
EP (1) EP2411348A1 (fr)
JP (1) JP5722869B2 (fr)
KR (1) KR20120012781A (fr)
CN (1) CN102448909B (fr)
MX (1) MX2011010000A (fr)
WO (1) WO2010109120A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011068517A (ja) * 2009-09-25 2011-04-07 Sumitomo Chemical Co Ltd セラミックス焼成体の製造方法
KR20130079330A (ko) * 2010-05-17 2013-07-10 스미또모 가가꾸 가부시끼가이샤 세라믹스 허니컴 소성체의 제조 방법
EP2894140A4 (fr) * 2012-09-05 2016-05-18 Sumitomo Chemical Co Procédé de fabrication de structure en nid-d'abeilles
US8808613B1 (en) * 2013-03-15 2014-08-19 Ibiden Co., Ltd. Method for manufacturing aluminum-titanate-based ceramic honeycomb structure
US11273930B2 (en) * 2014-09-17 2022-03-15 The Boeing Company Cradle system for shaping fuselage sections
JP6200404B2 (ja) 2014-11-18 2017-09-20 日本碍子株式会社 ハニカム成形体焼成用生トチ、及びハニカム成形体の焼成方法
JP6224637B2 (ja) * 2015-02-24 2017-11-01 日本碍子株式会社 ハニカム構造体の製造方法、及びハニカム成形体
JP6312617B2 (ja) * 2015-02-24 2018-04-18 日本碍子株式会社 ハニカム構造体の製造方法
JP6397843B2 (ja) * 2016-03-24 2018-09-26 日本碍子株式会社 ハニカム構造体の製造方法
DE112016006636T5 (de) * 2016-03-24 2018-12-06 Ngk Insulators, Ltd. Brenneinsatz und Verfahren zur Herstellung einer Wabenstruktur unter Verwendung des Brenneinsatzes
RU187774U1 (ru) * 2018-10-04 2019-03-19 федеральное государственное бюджетное образовательное учреждение высшего образования "Ульяновский государственный университет" Кубит на основе композитного материала РММА+Ag

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3337875A1 (de) * 1983-10-18 1985-04-25 Keramikindustrieanlagen W.Strohmenger GmbH & Co KG, 8524 Neunkirchen Keramische tragplatte
US4786542A (en) 1986-02-20 1988-11-22 Ngk Insulators, Ltd. Setters and firing of ceramic honeycomb structural bodies by using the same
JPH10218671A (ja) * 1997-02-06 1998-08-18 Ngk Insulators Ltd セラミックハニカム構造体の焼成用敷板および焼成方法
JP2002114579A (ja) * 2000-10-03 2002-04-16 Hitachi Metals Ltd 焼成用セッター
JP2003082403A (ja) * 2001-09-11 2003-03-19 Ngk Insulators Ltd 焼成用敷板
JP2005219977A (ja) * 2004-02-06 2005-08-18 Ngk Insulators Ltd セラミックスハニカム焼成用トチ及びセラミックスハニカムの焼成方法
EP1808423B1 (fr) * 2004-09-27 2011-08-03 NGK Insulators, Ltd. Plaque de support pour utilisation dans le chauffage et procédé de chauffage des articles en nid d'abeilles utilisant laditte plaque
WO2006137150A1 (fr) * 2005-06-24 2006-12-28 Ibiden Co., Ltd. Corps de structure en nid d’abeille
DE602006002244D1 (de) * 2006-02-28 2008-09-25 Ibiden Co Ltd Trageelement für Trocknung, Trocknungsverfahren eines Presslings mit Wabenstruktur, und Verfahren zur Herstellung eines Wabenkörpers.
WO2008063538A2 (fr) * 2006-11-21 2008-05-29 Corning Incorporated Procédé et appareil d'enlèvement thermique d'un liant d'un corps vert cellulaire thermique
CN100445237C (zh) * 2007-04-11 2008-12-24 南京工业大学 一种多相功能陶瓷蜂窝支撑体及其制备方法
JPWO2009118863A1 (ja) * 2008-03-27 2011-07-21 イビデン株式会社 断熱層用止め具、焼成炉及び該焼成炉を用いたハニカム構造体の製造方法
US20110127699A1 (en) * 2009-11-30 2011-06-02 Michael James Vayansky Method And Apparatus For Thermally Debindering A Cellular Ceramic Green Body

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010109120A1 *

Also Published As

Publication number Publication date
CN102448909A (zh) 2012-05-09
MX2011010000A (es) 2011-10-10
WO2010109120A1 (fr) 2010-09-30
KR20120012781A (ko) 2012-02-10
US20120013052A1 (en) 2012-01-19
JP2012521345A (ja) 2012-09-13
US9091482B2 (en) 2015-07-28
CN102448909B (zh) 2014-09-24
JP5722869B2 (ja) 2015-05-27

Similar Documents

Publication Publication Date Title
WO2010109120A1 (fr) Procede et support pour la cuisson d'une structure en nid d'abeille
EP2303796B1 (fr) Grains fondus d'oxydes comprenant al, ti, mg et zr et produits ceramiques comportant de tels grains
EP2234693B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
WO2009156652A1 (fr) Structure en nid d'abeille a base de titanate d'aluminium
EP2547417A1 (fr) Structure filtrante comprenant un materiau de bouchage
EP2244804B1 (fr) Structure de filtration d'un gaz a canaux hexagonaux assymetriques
WO2010001066A2 (fr) Structure poreuse du type titanate d'alumine
FR2957820A3 (fr) Structures ceramiques en nid d’abeilles
FR2946892A1 (fr) Structure de filtration d'un gaz a canaux hexagonaux irreguliers.
FR2928562A1 (fr) Structure de filtration d'un gaz a epaisseur de paroi variable
WO2009115762A2 (fr) Structure de filtration de gaz
EP2421686A1 (fr) Structure filtrante dont les faces d'entree et de sortie presentent un materiau de bouchage different
EP2303797A2 (fr) Melange de grains pour la synthese d'une structure poreuse du type titanate d'alumine
WO2010001064A2 (fr) GRAINS FONDUS D'OXYDES COMPRENANT AL, TI et MG ET PRODUITS CERAMIQUES COMPORTANT DE TELS GRAINS
EP2091890B1 (fr) Procede d'obtention d'une structure poreuse a base de carbure de silicium et structure poreuse obtenue
FR2925355A1 (fr) Structure de filtration d'un gaz a canaux hexagonaux concaves ou convexes.
FR2931697A1 (fr) Filtre ou support catalytique a base de carbure de silicium et de titanate d'aluminium
EP1910249B1 (fr) Procede de preparation d'une structure poreuse utilisant des agents porogenes a base de silice
EP2468382A1 (fr) Filtre a particules du type assemble
FR2931698A1 (fr) Structure en nid d'abeille a base de titanate d'aluminium.
FR2954175A1 (fr) Structure filtrante assemblee
WO2011051901A1 (fr) Corps filtrant assemblé à résistance thermique spécifique variable

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20111024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20130613

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161128

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20170411