EP2499657B1 - Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil - Google Patents
Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil Download PDFInfo
- Publication number
- EP2499657B1 EP2499657B1 EP10775785.8A EP10775785A EP2499657B1 EP 2499657 B1 EP2499657 B1 EP 2499657B1 EP 10775785 A EP10775785 A EP 10775785A EP 2499657 B1 EP2499657 B1 EP 2499657B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- discharge lamp
- pressure discharge
- range
- discharge
- halide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J61/00—Gas-discharge or vapour-discharge lamps
- H01J61/82—Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr
- H01J61/827—Metal halide arc lamps
Definitions
- the invention relates to a high-pressure discharge lamp according to the preamble of patent claim 1.
- Such a high-pressure discharge lamp is for example in the US 2009/200944 A disclosed.
- This document describes a high-pressure discharge lamp for vehicle headlights with eg ("arc tube group 3-2" in Fig. 4 and 7 and the associated description in [0050] ff) a volume of the discharge space of 0.0187 cm 3 , a halide concentration (iodide density ) of 10.7 mg / cm 3 , a zinc halide content of 9%, thus 0.96 mg / cm 3 of the discharge space volume, and a cold fill pressure of xenon of 177 megapascals (17.5 atm.
- Another high pressure discharge lamp for vehicle headlights is in the EP 1 351 276 A2 disclosed; with a mercury-free filling having a zinc iodide content in the range of 2 mg to 6 mg per 1 cm 3 of the discharge vessel volume.
- the US 2008/001543 A1 discloses a mercury-free metal halide high pressure discharge lamp whose fill contains a halide of thulium.
- the zinc component of the filling replaces the mercury used earlier and is needed to adjust the so-called burning voltage of the high-pressure discharge lamp.
- the term firing voltage refers to the operating voltage of the high-pressure discharge lamp after completion of its ignition and start-up phase and the achievement of its quasi-steady-state operating state in which all filling components are present in the gaseous state.
- the use of the zinc component in the filling has the disadvantage that the luminous flux generated by the high-pressure discharge lamp decreases with increasing zinc content in the filling.
- a high-pressure discharge lamp with a mercury-free filling is to be provided, which has a reduced compared to the above-cited prior art electrical power consumption and a comparable burning voltage and generates a sufficiently high for use as a light source in the vehicle headlights luminous flux.
- the high-pressure discharge lamp according to the invention is provided as a light source in headlights of motor vehicles and has a discharge chamber sealed in a gastight manner, in which electrodes and a filling for generating a gas discharge are enclosed, wherein the filling is formed as a mercury-free filling, the at least xenon and halides of sodium , Scandium, and zinc.
- the filling is formed as a zinc reduced filling having a zinc halide content in the range of greater than 0 mg to 1.0 mg per 1 cm 3 of the discharge space volume, the amount of halides in the discharge space is in the range of 8 mg to 15 mg per 1 cm 3 of the Discharge space volume, the cold pressure of xenon (which is the pressure of the xenon in the discharge space, measured at a temperature of 25 degrees Celsius) is in the range of 1.0 megapascal to 1.8 megapascals and the volume of the discharge space has a value in the range of 0.015 cm 3 to 0.022 cm 3 .
- the term mercury-free filling means that neither mercury nor a mercury compound is introduced into the discharge space of the discharge vessel.
- the filling of the high-pressure discharge lamp according to the invention contains thulium in the form of thulium halide for adjusting the burning voltage, the content of thulium halide in the filling being in the range from 10% to 30% by weight of the halides.
- the effect of thulium is similar to that of zinc, namely the increase of the burning voltage, the decrease of the luminous flux with increasing Thuliumanteil is not as strong as the zinc.
- a high-pressure discharge lamp is made possible according to the invention, which has a reduced electrical power consumption at comparable burning voltage compared to the high-pressure discharge lamp according to the prior art and generates a sufficiently high luminous flux, so that it is suitable as a light source in headlights of motor vehicles.
- a high luminous flux can be achieved.
- the proportion of zinc halide in the filling in the range of 0.1 mg to 1.0 mg per 1 cm 3 of the discharge space volume in order to ensure a sufficiently high burning voltage and luminous flux of the high-pressure discharge lamp.
- FIG. 3 is schematic the relationship between the proportion of zinc halide in percent by weight of the amount of halide in the discharge space and the luminous flux of the high-pressure discharge lamp (curve 1) and the burning voltage of the high-pressure discharge lamp (curve 2).
- Curve 1 the proportion of zinc halide in percent by weight of the amount of halide in the discharge space and the luminous flux of the high-pressure discharge lamp
- curve 2 the burning voltage of the high-pressure discharge lamp
- the filling of the high-pressure discharge lamp according to the invention additionally contains indium halide, wherein the proportion of indium halide in the filling is less than or equal to 3.0 percent by weight of the total amount of halides and thus significantly lower than the proportion of sodium and scandium halide in the filling.
- the small indium halide content in the filling serves to adjust the color locus of the white light emitted by the high-pressure discharge lamp in the standard color chart according to CIE 1931 and DIN 5033.
- the comparatively low Indiumhalogenidanteils in the filling ensures that the high-pressure discharge lamp according to the invention generates white light according to the standard ECE Rule 99.
- a higher indium halide content would adversely affect the luminous flux of the high pressure discharge lamp.
- the content of sodium halide in the filling ranges from 30% to 50% by weight of the total amount of halides and the content of scandium halide in the filling ranges from 30% to 60% by weight of the total amount of halides to white light according to ECE Rule 99 with a color temperature in the range of 4000 Kelvin to 4500 Kelvin to produce.
- the proportion of zinc halide in the charge is less than or equal to 6 percent by weight based on the total amount of halides. This allows a sufficiently high operating voltage (40V) to be set without the luminous flux being too low due to the addition of zinc.
- the discharge vessel of the high-pressure discharge lamp according to the invention advantageously has an ellipsoidal outer contour in the region of the discharge space and a circular-cylindrical inner contour in the region between the electrodes, wherein the relationship between the wall thickness of the discharge vessel 1 . 0 ⁇ D ⁇ 1 / D ⁇ 2 ⁇ 1 . 4 and preferably even the relationship 1 . 2 ⁇ D ⁇ 1 / D ⁇ 2 ⁇ 1 . 3 is where D1 denotes the wall thickness of the discharge vessel in the region between the electrodes and D2 the wall thickness of the discharge vessel in the end portions of the discharge space in which the electrodes are arranged.
- the discharge vessel of the high-pressure discharge lamp according to the invention has a lower convex curvature than the discharge vessel of high-pressure discharge lamps according to the prior art. Therefore, in the case of the high-pressure discharge lamp according to the invention, for example, the optical or optically effective electrode spacing of 4.2 mm prescribed in accordance with ECE Rule 99 can be achieved with the aid of a comparatively larger actual electrode spacing (measured by means of X-ray exposure) than with high-pressure discharge lamps according to the prior art.
- the actual electrode spacing is 3.6 mm
- the real electrode spacing in the high-pressure discharge lamps according to the invention is preferably in the range of 3.8 mm to 4.0 mm.
- the comparatively larger electrode spacing also contributes to a higher burning voltage of the high-pressure discharge lamp according to the invention, so that a sufficiently high burning voltage can be achieved even for this reason, despite the reduction of the amount of zinc component and the absence of mercury in the filling.
- the discharge vessel in the region between the electrodes has an inner diameter in the range of 2.0 mm to 2.7 mm, more preferably in the range of 2.1 mm and 2.4 mm, and an outer diameter in the range of 5.0 mm and 6.0 mm, more preferably in the range of 5.3 mm and 5.7 mm.
- the discharge vessel in the region between the electrodes has a comparatively high wall thickness, which contributes to improved burst protection and good thermal insulation of the discharge vessel.
- the electrodes of the high-pressure discharge lamp according to the invention are preferably rod-shaped and have a diameter which is preferably in the range of 0.20 mm to 0.30 mm and particularly preferably in the range of 0.25 mm to 0.27 mm in order to ensure a high current carrying capacity of To ensure electrodes so that the high-pressure discharge lamp according to the invention during the so-called start-up phase, which immediately follows the ignition phase and during which evaporate the halides of the filling, can be operated with three to five times the value of the rated power and thereby faster
- Transition can be achieved in the quasi-stationary operating state of the high-pressure discharge lamp.
- the cold filling pressure of xenon in the filling of the high-pressure discharge lamp according to the invention is in the range from 1.0 megapascal to 1.8 megapascal.
- the range of 1.5 megapascals to 1.7 megapascals is particularly preferred because the burning voltage of the high-pressure discharge lamp according to the invention can be increased by the comparatively high xenon pressure and white light can already be generated by means of the high xenon pressure immediately after the ignition of the high-pressure discharge lamp.
- the amount of halides in the interior of the discharge vessel of the high-pressure discharge lamp according to the invention is in the range of 8 milligrams to 15 milligrams per 1 cubic centimeter of the discharge space volume and the discharge space volume has a value in the range of 0.015 cubic centimeters to 0.022 cubic centimeters, as already mentioned above.
- a halide amount in the range of 10 milligrams to 14 milligrams per cubic centimeter of the discharge space volume and a discharge space volume in the range of 0.016 cubic centimeters to 0.019 cubic centimeters for the high pressure discharge lamp of the invention to provide an electrical power consumption in the range of 22 watts to 28 watts in the quasi steady state operating condition To enable high pressure discharge lamp according to the invention.
- the high-pressure discharge lamp according to the invention can be designed such that during its operation a Luminous flux of less than or equal to 2000 lm generated in order to use the high-pressure discharge lamp according to the invention in vehicle headlights, which have no headlight washer.
- the invention is a mercury-free metal halide high-pressure discharge lamp with an electrical power consumption of 25 watts.
- This lamp is intended for use in a vehicle headlight. It has a two-sided sealed discharge vessel 10 made of quartz glass with a volume of the discharge space 106 of 17 mm 3 , in which an ionizable filling is enclosed gas-tight.
- the outer contour of the discharge vessel 10 is ellipsoidal in shape and its inner contour is circular-cylindrical in the region between the electrodes 11, 12 ( Fig. 2 ).
- the wall of the discharge vessel 10 is thus convexly curved in the region of the discharge space 106 and has a greater wall thickness between the electrodes 11, 12 than at the two ends of the discharge space 106, in which the electrodes 11, 12 are arranged.
- the ratio of the wall thicknesses D1 / D2 is in the range of 1.2 to 1.3. That is, it applies the relationship 1 . 2 ⁇ D ⁇ 1 / D ⁇ 2 ⁇ 1 . 3 wherein D1, the wall thickness of the discharge vessel 10 in the region between the electrodes 11, 12 and D2, the wall thickness of the discharge vessel 10 in the end portions of the discharge space 106, in which the electrodes 11, 12 are arranged.
- the inner diameter of the discharge vessel is 2.2 mm and its outer diameter is 5.5 mm there.
- the two ends 101, 102 of the discharge vessel 10 are each sealed by means of a molybdenum foil sealing 103, 104.
- the molybdenum foils 103, 104 each have a length of 7.5 mm, a width of 2 mm and a thickness of 25 microns.
- In the interior of the discharge vessel 10 are two electrodes 11, 12, between which forms during the lamp operation responsible for the light emission discharge arc.
- the electrodes 11, 12 are made of tungsten. Their thickness or their diameter is 0.26 mm.
- the length of the electrodes 11, 12 is in each case 6.5 mm.
- the real that is, measured by means of X-ray recording distance between the electrodes 11, 12 is 3.7 mm, while the optical or optically effective distance between the electrodes 11, 12 is about 3.9 mm.
- This difference between the real and the optical distance of the electrodes 11, 12 is caused by the optical properties (for example, by the convex curvature and the optical refractive index) of the wall of the discharge vessel 10 in the region of the discharge space 106.
- the electrodes 11, 12 are in each case electrically conductively connected to one of the molybdenum foil melts 103, 104 and via the base-remote power supply 13 and the current return 17 or via the socket-side power supply 14 to an electrical connection of the lamp base 15 which consists essentially of plastic.
- the discharge vessel 10 is enveloped by a glass outer bulb 16.
- the outer bulb 16 has an extension 161 anchored in the base 15.
- the discharge vessel 10 has a tube-like extension 105 made of quartz glass on the base side, in which the base-side current supply 14 extends.
- the current return 17 facing surface region of the discharge vessel 10 is provided with a transparent, electrically conductive coating 107.
- This coating 107 extends in the longitudinal direction of the lamp over the entire length of the discharge space 106 and over a part, about 50 percent, of the length of the sealed ends 101, 102 of the discharge vessel 10.
- the coating 107 is mounted on the outside of the discharge vessel 10 and covers about 5 percent to 10 percent of the circumference of the discharge vessel 10.
- the coating 107 may also extend over 50 percent of the circumference of the discharge vessel 10 or even over more than 50 percent of the circumference of the discharge vessel 10.
- Such a wide configuration of the coating 107 has the advantage of increasing the efficiency of the high pressure discharge lamp, as it reflects a portion of the infrared radiation generated by the discharge back into the discharge vessel and thereby for selective heating of the colder areas below the electrodes during lamp operation of the discharge vessel 10, in which collect the metal halides of the ionizable filling.
- the coating 107 consists of doped tin oxide, for example of tin oxide doped with fluorine or antimony or, for example, boron and / or lithium doped tin oxide.
- This high-pressure discharge lamp is operated in a horizontal position, that is, with arranged in a horizontal plane electrodes 11, 12, wherein the lamp is oriented such that the current return path 17 extends below the discharge vessel 30 and the outer bulb 16. Details of this, acting as a priming coating 107 are in the EP 1 632 985 A1 described.
- the outer bulb 16 is made of quartz glass doped with ultraviolet ray absorbing materials such as cerium oxide and titanium oxide. Suitable glass compositions for the outer envelope are in the EP 0 700 579 B1 disclosed.
- the ionizable filling enclosed in the discharge vessel consists of xenon with a cold filling pressure which means a measured at a temperature of 25 ° C filling pressure, of 1.6 megapascals, and the iodides of sodium, scandium, zinc and indium.
- the burning voltage of the lamp is about 40 volts. Its color temperature is around 4500 Kelvin.
- the total amount of the halides or iodides of the metals sodium, scandium, zinc and indium in the filling is 13.83 mg / cm 3 , that is 13.83 milligrams per 1 cubic centimeter of discharge space volume, wherein the weight proportions of the iodides of the metals sodium, scandium , Zinc and indium based on the total amount of halides are as follows: sodium: 43.4% by weight, corresponding to a capacity of 6 mg / cm 3 scandium: 50.6 weight percent, corresponding to a capacity of 7 mg / cm 3 iodide: 5.8% by weight, corresponding to a capacity of 0.8 mg / cm 3 indium: 0.2 weight percent, corresponding to a capacity of 0.03 mg / cm 3
- the color rendering index of the metal halide high pressure discharge lamp is 65 and its luminous efficacy is 90 lm / W.
- the wall load is about 80 W / cm 2 .
- the high-pressure discharge lamp generates a luminous flux of less than or equal to 2000 Im and can therefore be operated in vehicle headlamps without headlight washer, for example, to generate a daytime running light, fog light or continuous running light.
- the metal halide high-pressure discharge lamp is operated immediately after the ignition of the gas discharge in the discharge vessel at three to five times its rated power or rated current, in order to ensure rapid evaporation of the metal halides in the ionizable filling. Immediately after the ignition of the gas discharge, it is almost exclusively carried by the xenon, since only the xenon is present in gaseous form in the discharge vessel at this time.
- the high-pressure discharge lamp operates at this time and during the so-called start-up phase, during which the metal halides of the ionizable filling in the vapor phase, so like a high-pressure xenon discharge lamp, in which both the light emission and the electrical properties of the discharge, in particular the voltage drop across the Discharge range, to be determined solely by the xenon and the electrode distance.
- a quasi-stationary operating state of the lamp is reached, in which the lamp is operated with its rated power of 25 watts and a burning voltage of 40 volts.
- burning voltage therefore refers to the operating voltage of the high-pressure discharge lamp in quasi-stationary operation.
- the filling of the high-pressure discharge lamp according to the invention also contains 10-30 weight percent thulium iodide in addition to the iodides of the metals sodium, scandium, zinc and, for example, indium.
- iodides of the aforementioned metals instead of iodides of the aforementioned metals or in addition to the iodides of these metals, other halides, for example, bromides or chlorides of these metals in the filling can be used.
Landscapes
- Discharge Lamp (AREA)
- Discharge Lamps And Accessories Thereof (AREA)
Description
- Die Erfindung betrifft eine Hochdruckentladungslampe gemäß dem Oberbegriff des Patentanspruchs 1.
- Eine derartige Hochdruckentladungslampe ist beispielweise in der
US 2009/200944 A offenbart. Diese Schrift beschreibt eine Hochdruckentladungslampe für Fahrzeugscheinwerfer mit z.B. ("arc tube group 3-2" in Fig. 4 und 7 und die zugehörige Beschreibung in [0050]ff) einem Volumen des Entladungsraums von 0,0187 cm3, einer Halogenidkonzentration (iodide density) von 10,7 mg/ cm3, einem Zinkhalogenidanteil von 9% [0052], somit 0,96 mg/cm3 des Entladungsraumvolumens, und einem Kaltfülldruck von Xenon von 1,77 Megapascal (17,5 atm. - Ähnliche Hochdruckentladungslampen mit quecksilberfreien Füllungen aus zumindest Xenon, NaI, ScI3, und ZnI2, sind aus den Patentschriften
WO 2008/122912 A ,DE 10 2007 018614 A ,WO 2009/127993 A ,WO 2009/040709 A , sowieEP 2 086 001 A bekannt. - Eine weitere Hochdruckentladungslampe für Fahrzeugscheinwerfer ist in der
EP 1 351 276 A2 offenbart; mit einer quecksilberfreien Füllung, die einen Zinkjodidanteil im Bereich von 2 mg bis 6 mg pro 1 cm3 des Entladungsgefässvolumens besitzt. - Die Patentschrift
US 7,126,281 B1 beschreibt eine Hochdruckentladungslampe für Fahrzeugscheinwerfer mit einer elektrischen Leistungsaufnahme von ca. 35 Watt und einer quecksilberfreien Füllung, die Xenon und Halogenide der Metalle Natrium, Scandium, Indium und Zink enthält. - Die
US 2008/001543 A1 offenbart eine quecksilberfreie Halogenmetalldampf-Hochdruckentladungslampe, deren Füllung ein Halogenid von Thulium enthält. - Die Zinkkomponente der Füllung ersetzt das früher verwendete Quecksilber und wird zur Einstellung der sogenannten Brennspannung der Hochdruckentladungslampe benötigt. Der Begriff Brennspannung bezeichnet die Betriebsspannung der Hochdruckentladungslampe nach Beendigung ihrer Zünd- und Anlaufphase und dem Erreichen ihres quasistationären Betriebszustands, in dem alle Füllungskomponenten im gasförmigen Zustand vorliegen. Die Verwendung der Zinkkomponente in der Füllung hat aber den Nachteil, dass der von der Hochdruckentladungslampe generierte Lichtstrom mit zunehmendem Zinkanteil in der Füllung sinkt.
- Es ist Aufgabe der Erfindung, eine gattungsgemäße Hochdruckentladungslampe bereitzustellen, die den vorgenannten Nachteil nicht aufweist. Insbesondere soll eine Hochdruckentladungslampe mit einer quecksilberfreien Füllung bereitgestellt werden, die eine im Vergleich zum oben zitierten Stand der Technik reduzierte elektrische Leistungsaufnahme und eine vergleichbare Brennspannung besitzt sowie einen für die Verwendung als Lichtquelle im Fahrzeugscheinwerfer ausreichend hohen Lichtstrom generiert.
- Diese Aufgabe wird erfindungsgemäß durch eine Hochdruckentladungslampe mit den Merkmalen aus dem Patentanspruch 1 gelöst. Besonders vorteilhafte Ausführungen der Erfindung sind in den abhängigen Patentansprüchen beschrieben.
- Die erfindungsgemäße Hochdruckentladungslampe ist als Lichtquelle in Frontscheinwerfern von Kraftfahrzeugen vorgesehen und besitzt ein gasdicht verschlossenes Entladungsgefäß mit einem Entladungsraum, in dem Elektroden und eine Füllung zur Erzeugung einer Gasentladung eingeschlossen sind, wobei die Füllung als quecksilberfreie Füllung ausgebildet ist, die zumindest Xenon und Halogenide von Natrium, Scandium, und Zink enthält. Die Füllung ist als Füllung mit reduziertem Zinkanteil mit einem Zinkhalogenidanteil im Bereich von größer 0 mg bis 1,0 mg pro 1 cm3 des Entladungsraumvolumens ausgebildet, die Menge der Halogenide im Entladungsraum liegt im Bereich von 8 mg bis 15 mg pro 1 cm3 des Entladungsraumvolumens, der Kaltfülldruck von Xenon (das ist der Druck des Xenons im Entladungsraum, gemessen bei einer Temperatur von 25 Grad Celsius) liegt im Bereich von 1,0 Megapascal bis 1,8 Megapascal und das Volumen des Entladungsraums besitzt einen Wert im Bereich von 0,015 cm3 bis 0,022 cm3. Der Begriff quecksilberfreie Füllung bedeutet, dass weder Quecksilber noch eine Quecksilberverbindung in den Entladungsraum des Entladungsgefäßes eingebracht sind.
- Zusätzlich enthält die Füllung der erfindungsgemässen Hochdruckentladungslampe zwecks Einstellung der Brennspannung Thulium in Form von Thuliumhalogenid, wobei der Anteil von Thuliumhalogenid in der Füllung im Bereich von 10 Gewichtsprozent bis 30 Gewichtsprozent der Halogenide liegt.
- Hierbei ist der Effekt des Thuliums ähnlich wie der des Zinks, nämlich die Erhöhung der Brennspannung, die Abnahme des Lichtstroms mit zunehmendem Thuliumanteil ist aber nicht so stark wie beim Zink.
- Durch die vorgenannten Merkmale wird erfindungsgemäß eine Hochdruckentladungslampe ermöglicht, die gegenüber der Hochdruckentladungslampe gemäß dem Stand der Technik eine reduzierte elektrische Leistungsaufnahme bei vergleichbarer Brennspannung besitzt und einen ausreichend hohen Lichtstrom generiert, so dass sie als Lichtquelle in Frontscheinwerfern von Kraftfahrzeugen geeignet ist. Insbesondere durch die Reduzierung von Zink und Halogeniden des Zink in der Füllung kann ein hoher Lichtstrom erreicht werden. Der vergleichsweise hohe Fülldruck des Xenon trägt zusammen mit dem geringen Volumen des Entladungsraums und der Dosierung der Metallhalogenide zu einer ausreichend hohen Brennspannung der Hochdruckentladungslampe bei, so dass auf die Zugabe von Quecksilber bzw. Quecksilberverbindungen zur Füllung der erfindungsgemäßen Hochdruckentladungslampe zwecks Einstellung ihrer Brennspannung verzichtet werden kann.
- Vorteilhafterweise ist der Anteil von Zinkhalogenid in der Füllung im Bereich von 0,1 mg bis 1,0 mg pro 1 cm3 des Entladungsraumvolumens, um eine ausreichend hohe Brennspannung und Lichtstrom der Hochdruckentladungslampe zu gewährleisten. In
Figur 3 ist schematisch der Zusammenhang zwischen dem Zinkhalogenidanteil in Gewichtsprozent an der Halogenidmenge im Entladungsraum und dem Lichtstrom der Hochdruckentladungslampe (Kurve 1) sowie der Brennspannung der Hochdruckentladungslampe (Kurve 2) dargestellt. Auf der horizontalen Achse ist die der Zinkhalogenidanteil in Gewichtsprozent bezogen auf die Gesamtmenge der Halogenide in der Füllung aufgetragen. Auf der vertikalen Achse ist einerseits (linke Seite derFig. 3 ) der Lichtstrom der Hochdruckentladungslampe in Lumen und andererseits (rechte Seite derFig. 3 ) die Brennspannung der Hochdruckentladungslampe in Volt aufgetragen. Kurve 1 (durchgezogene Linie) zeigt die Abhängigkeit des Lichtstroms der Hochdruckentladungslampe von dem Zinkhalogenidanteil in der Füllung, während Kurve 2 (gestrichelte Linie) die Abhängigkeit der Brennspannung der Hochdruckentladungslampe von dem Zinkhalogenidanteil in der Füllung verdeutlicht. Aus den Kurven 1 und 2 wird deutlich, dass mit zunehmendem Zinkhalogenidanteil die Brennspannung der Hochdruckentladungslampe steigt und der Lichtstrom sinkt. - Vorteilhafterweise enthält die Füllung der erfindungsgemäßen Hochdruckentladungslampe zusätzlich Indiumhalogenid, wobei der Anteil von Indiumhalogenid in der Füllung kleiner oder gleich 3,0 Gewichtsprozent der Gesamtmenge der Halogenide ist und damit deutlich geringer als der Anteil von Natrium- und Scandiumhalogenid in der Füllung ist. Der geringe Indiumhalogenidanteil in der Füllung dient zur Einstellung des Farborts des von der Hochdruckentladungslampe emittierten weißen Lichts in der Normfarbtafel gemäß CIE 1931 und DIN 5033. Mittels des vergleichsweise geringen Indiumhalogenidanteils in der Füllung ist gewährleistet, dass die erfindungsgemäße Hochdruckentladungslampe weißes Licht gemäß der Norm ECE Regel 99 erzeugt. Ein höherer Indiumhalogenidanteil würde den Lichtstrom der Hochdruckentladungslampe negativ beeinflussen.
- Vorteilhafterweise liegt der Anteil von Natriumhalogenid in der Füllung im Bereich von 30 Gewichtsprozent bis 50 Gewichtsprozent der Gesamtmenge der Halogenide und der Anteil von Scandiumhalogenid in der Füllung im Bereich von 30 Gewichtsprozent bis 60 Gewichtsprozent der Gesamtmenge der Halogenide, um weißes Licht gemäß der Norm ECE Regel 99 mit einer Farbtemperatur im Bereich von 4000 Kelvin bis 4500 Kelvin zu erzeugen.
- Vorteilhafterweise ist der Anteil an Zinkhalogenid in der Füllung kleiner oder gleich 6 Gewichtsprozent bezogen auf die Gesamtmenge der Halogenide. Damit lässt sich eine ausreichend hohe Brennspannung (40V) einstellen, ohne dass der Lichtstrom durch die Zugabe von Zink zu gering wird.
- Das Entladungsgefäß der erfindungsgemäßen Hochdruckentladungslampe besitzt vorteilhafterweise im Bereich des Entladungsraums eine ellipsoidförmige Außenkontur und im Bereich zwischen den Elektroden eine kreiszylindrische Innenkontur wobei für das Verhältnis der Wandstärke des Entladungsgefäßes die Beziehung
und vorzugsweise sogar die Beziehung
gilt, worin D1 die Wandstärke des Entladungsgefäßes im Bereich zwischen den Elektroden und D2 die Wandstärke des Entladungsgefäßes in den Endabschnitten des Entladungsraums, in denen die Elektroden angeordnet sind, bezeichnet. - Aufgrund des vorgenannten Wandstärkenverhältnisses besitzt das Entladungsgefäß der erfindungsgemäßen Hochdruckentladungslampe eine geringere konvexe Krümmung als das Entladungsgefäß von Hochdruckentladungslampen gemäß dem Stand der Technik. Daher kann bei der erfindungsgemäßen Hochdruckentladungslampe beispielsweise der für Fahrzeugscheinwerferlampen vorgeschriebene optische bzw. optisch wirksame Elektrodenabstand von 4,2 mm gemäß ECE Regel 99 mit Hilfe eines vergleichsweise größeren realen Elektrodenabstands (gemessen mittels Röntgenaufnahme) erzielt werden als bei Hochdruckentladungslampen gemäß dem Stand der Technik. Beispielsweise liegt der reale Elektrodenabstand bei Hochdruckentladungslampen gemäß dem Stand der Technik bei 3,6 mm, während der reale Elektrodenabstand bei den erfindungsgemäßen Hochdruckentladungslampen vorzugsweise im Bereich von 3,8 mm bis 4,0 mm liegt. Der vergleichsweise größere Elektrodenabstand trägt ebenfalls zu einer höheren Brennspannung der erfindungsgemäßen Hochdruckentladungslampe bei, so dass auch aus diesem Grund trotz Reduktion der Menge der Zinkkomponente und des Verzichts auf Quecksilber in der Füllung eine ausreichend hohe Brennspannung erreicht werden kann.
- Vorzugsweise besitzt das Entladungsgefäß im Bereich zwischen den Elektroden einen Innendurchmesser im Bereich von 2,0 mm bis 2,7 mm, besonders bevorzugt im Bereich von 2,1 mm und 2,4 mm, und einen Außendurchmesser im Bereich von 5,0 mm und 6,0 mm, besonders bevorzugt im Bereich von 5,3 mm und 5,7 mm. Dadurch besitzt das Entladungsgefäß im Bereich zwischen den Elektroden eine vergleichsweise hohe Wandstärke, die zu einem verbesserten Berstschutz und einer guten thermischen Isolierung des Entladungsgefäßes beiträgt.
- Die Elektroden der erfindungsgemäßen Hochdruckentladungslampe sind vorzugsweise stabförmig ausgebildet und besitzen einen Durchmesser, der vorzugsweise im Bereich von 0,20 mm bis 0,30 mm und besonders bevorzugt im Bereich von 0,25 mm bis 0,27 mm liegt, um eine hohe Stromtragfähigkeit der Elektroden zu gewährleisten, so dass die erfindungsgemäße Hochdruckentladungslampe während der sogenannten Anlaufphase, die unmittelbar auf die Zündphase folgt und während der die Halogenide der Füllung verdampfen, mit dem drei- bis fünffachen Wert der Nennleistung betrieben werden kann und dadurch ein möglichst schneller
- Übergang in den quasistationären Betriebszustand der Hochdruckentladungslampe erreicht werden kann.
- Wie bereits oben erwähnt wurde, liegt der Kaltfülldruck von Xenon bei der Füllung der erfindungsgemäßen Hochdruckentladungslampe im Bereich von 1,0 Megapascal bis 1,8 Megapascal. Besonders bevorzugt ist allerdings der Bereich von 1,5 Megapascal bis 1,7 Megapascal, weil durch den vergleichsweise hohen Xenondruck die Brennspannung der erfindungsgemäßen Hochdruckentladungslampe erhöht werden kann und mittels des hohen Xenondrucks bereits unmittelbar nach der Zündung der Hochdruckentladungslampe weißes Licht erzeugt werden kann.
- Die Menge der Halogenide im Innenraum des Entladungsgefäßes der erfindungsgemäßen Hochdruckentladungslampe liegt im Bereich von 8 Milligramm bis 15 Milligramm pro 1 Kubikzentimeter des Entladungsraumvolumens und das Entladungsraumvolumen besitzt einen Wert im Bereich von 0,015 Kubikzentimeter bis 0,022 Kubikzentimeter, wie bereits oben erwähnt wurde. Besonders bevorzugt ist eine Halogenidmenge im Bereich von 10 Milligramm bis 14 Milligramm pro 1 Kubikzentimeter des Entladungsraumvolumens und ein Entladungsraumvolumen im Bereich von 0,016 Kubikzentimeter bis 0,019 Kubikzentimeter für die erfindungsgemäße Hochdruckentladungslampe, um eine elektrische Leistungsaufnahme im Bereich von 22 Watt bis 28 Watt im quasistationären Betriebszustand der erfindungsgemäßen Hochdruckentladungslampe zu ermöglichen.
- Die erfindungsgemäße Hochdruckentladungslampe kann derart ausgebildet sein, dass sie während ihres Betriebs einen Lichtstrom von kleiner oder gleich 2000 lm erzeugt, um die erfindungsgemäße Hochdruckentladungslampe in Fahrzeugscheinwerfer einsetzen zu können, die keine Scheinwerferwaschanlage besitzen.
- Nachstehend wird die Erfindung anhand eines bevorzugten Ausführungsbeispiels näher erläutert. Es zeigen:
- Figur 1
- Eine Seitenansicht einer Hochdruckentladungslampe gemäß dem bevorzugten Ausführungsbeispiel der Erfindung in schematischer Darstellung
- Figur 2
- Eine vergrößerte Darstellung des Entladungsraums des Entladungsgefäßes, der in
Figur 1 abgebildeten Hochdruckentladungslampe in schematischer und geschnittener Darstellung - Figur 3
- Eine Darstellung der Abhängigkeit des Lichtstroms und der Brennspannung der Hochdruckentladungslampe von dem Zinkhalogenidanteil in der Füllung
- Bei dem bevorzugten Ausführungsbeispiel der Erfindung handelt es sich um eine quecksilberfreie Halogen-Metalldampf-Hochdruckentladungslampe mit einer elektrischen Leistungsaufnahme von 25 Watt. Diese Lampe ist für den Einsatz in einem Fahrzeugfrontscheinwerfer vorgesehen. Sie besitzt ein zweiseitig abgedichtetes Entladungsgefäß 10 aus Quarzglas mit einem Volumen des Entladungsraums 106 von 17 mm3, in dem eine ionisierbare Füllung gasdicht eingeschlossen ist. Im Bereich des Entladungsraumes 106 ist die Außenkontur des Entladungsgefäßes 10 ellipsoidförmig ausgebildet und seine Innenkontur ist im Bereich zwischen den Elektroden 11, 12 kreiszylindrisch ausgebildet (
Fig. 2 ). Die Wand des Entladungsgefäßes 10 ist im Bereich des Entladungsraums 106 somit konvex gewölbt und besitzt zwischen den Elektroden 11, 12 eine größere Wandstärke als an den beiden Enden des Entladungsraums 106, in denen die Elektroden 11, 12 angeordnet sind. Das Verhältnis der Wandstärken D1/D2 liegt im Bereich von 1,2 bis 1,3. Das heißt, es gilt die Beziehung
worin D1 die Wandstärke des Entladungsgefäßes 10 im Bereich zwischen den Elektroden 11, 12 und D2 die Wandstärke des Entladungsgefäßes 10 in den Endabschnitten des Entladungsraums 106, in denen die Elektroden 11, 12 angeordnet sind, bezeichnet. - In der Mitte des Entladungsraumes 106 beträgt der Innendurchmesser des Entladungsgefäßes 2,2 mm und sein Außendurchmesser beträgt dort 5,5 mm. Die beiden Enden 101, 102 des Entladungsgefäßes 10 sind jeweils mittels einer Molybdänfolien-Einschmelzung 103, 104 abgedichtet. Die Molybdänfolien 103, 104 besitzen jeweils eine Länge von 7,5 mm, eine Breite von 2 mm und eine Dicke von 25 µm. Im Innenraum des Entladungsgefäßes 10 befinden sich zwei Elektroden 11, 12, zwischen denen sich während des Lampenbetriebes der für die Lichtemission verantwortliche Entladungsbogen ausbildet. Die Elektroden 11, 12 bestehen aus Wolfram. Ihre Dicke bzw. ihr Durchmesser beträgt 0,26 mm. Die Länge der Elektroden 11, 12 beträgt jeweils 6,5 mm. Der reale, das heißt mittels Röntgenaufnahme gemessene Abstand zwischen den Elektroden 11, 12 beträgt 3,7 mm, während der optische bzw. optisch wirksame Abstand zwischen den Elektroden 11, 12 ca. 3,9 mm beträgt. Dieser Unterschied zwischen dem realen und dem optischen Abstand der Elektroden 11, 12 wird durch die optischen Eigenschaften (beispielsweise durch die konvexe Krümmung und den optischen Brechungsindex) der Wand des Entladungsgefäßes 10 im Bereich des Entladungsraums 106 verursacht. Die Elektroden 11, 12 sind jeweils über eine der Molybdänfolien-Einschmelzungen 103, 104 und über die sockelferne Stromzuführung 13 und die Stromrückführung 17 bzw. über die sockelseitige Stromzuführung 14 elektrisch leitend mit einem elektrischen Anschluss des im wesentlichen aus Kunststoff bestehenden Lampensockels 15 verbunden. Das Entladungsgefäß 10 wird von einem gläsernen Außenkolben 16 umhüllt. Der Außenkolben 16 besitzt einen im Sockel 15 verankerten Fortsatz 161. Das Entladungsgefäß 10 weist sockelseitig eine rohrartige Verlängerung 105 aus Quarzglas auf, in der die sockelseitige Stromzuführung 14 verläuft.
- Der der Stromrückführung 17 zugewandte Oberflächenbereich des Entladungsgefäßes 10 ist mit einer lichtdurchlässigen, elektrisch leitfähigen Beschichtung 107 versehen. Diese Beschichtung 107 erstreckt sich in Längsrichtung der Lampe über die gesamte Länge des Entladungsraumes 106 und über einen Teil, ca. 50 Prozent, der Länge der abgedichteten Enden 101, 102 des Entladungsgefäßes 10. Die Beschichtung 107 ist auf der Außenseite des Entladungsgefäßes 10 angebracht und erstreckt sich über ca. 5 Prozent bis 10 Prozent des Umfangs des Entladungsgefäßes 10. Die Beschichtung 107 kann sich aber auch über 50 Prozent des Umfangs des Entladungsgefäßes 10 oder sogar über mehr als 50 Prozent des Umfangs des Entladungsgefäßes 10 erstrecken. Eine derartig breite Ausführung der Beschichtung 107 hat den Vorteil, dass sie die Effizienz der Hochdruckentladungslampe steigert, da sie einen Teil der von der Entladung erzeugten Infrarotstrahlung in das Entladungsgefäß zurückreflektiert und dadurch für eine selektive Erwärmung der kälteren, während des Lampenbetriebs unterhalb der Elektroden liegenden Bereiche des Entladungsgefäßes 10 sorgt, in denen sich die Metallhalogenide der ionisierbaren Füllung sammeln. Die Beschichtung 107 besteht aus dotiertem Zinnoxid, beispielsweise aus mit Fluor oder Antimon dotiertem Zinnoxid oder beispielsweise aus mit Bor und beziehungsweise oder Lithium dotiertem Zinnoxid. Diese Hochdruckentladungslampe wird in horizontaler Lage betrieben, das heißt, mit in einer horizontalen Ebene angeordneten Elektroden 11, 12, wobei die Lampe derart ausgerichtet ist, dass die Stromrückführung 17 unterhalb des Entladungsgefäßes 30 und des Außenkolbens 16 verläuft. Details dieser, als Zündhilfe wirkenden Beschichtung 107 sind in der
EP 1 632 985 A1 beschrieben. Der Außenkolben 16 besteht aus Quarzglas, das mit Ultraviolettstrahlen absorbierenden Stoffen dotiert ist, wie zum Beispiel Ceroxid und Titanoxid. Geeignete Glaszusammensetzungen für das Außenkolbenglas sind in derEP 0 700 579 B1 offenbart. - Gemäß einem Beispiel, das nicht Bestandteil der Erfindung ist, besteht die in dem Entladungsgefäß eingeschlossene ionisierbare Füllung aus Xenon mit einem Kaltfülldruck, das heißt einem bei einer Temperatur von 25°C gemessenen Fülldruck, von 1,6 Megapascal, und den Jodiden von Natrium, Scandium, Zink und Indium. Die Brennspannung der Lampe beträgt ca. 40 Volt. Ihre Farbtemperatur liegt bei ca. 4500 Kelvin. Die Gesamtmenge der Halogenide bzw. Jodide der Metalle Natrium, Scandium, Zink und Indium in der Füllung beträgt 13,83 mg/cm3, das heißt 13,83 Milligramm pro 1 Kubikzentimeter Entladungsraumvolumen, wobei die Gewichtsanteile der Jodide der Metalle Natrium-, Scandium, Zink und Indium bezogen auf die gesamte Menge der Halogenide wie folgt lauten:
Natriumjodid: 43,4 Gewichtsprozent, entsprechend einer Füllmenge von 6 mg/cm3 Scandiumjodid: 50,6 Gewichtsprozent, entsprechend einer Füllmenge von 7 mg/cm3 Zinkjodid: 5,8 Gewichtsprozent, entsprechend einer Füllmenge von 0,8 mg/cm3 Indiumjodid: 0,2 Gewichtsprozent, entsprechend einer Füllmenge von 0,03 mg/cm3 - Dies entspricht einem molaren Natrium zu Scandiumverhältnis von 2,5:1. Der Farbwiedergabeindex der Halogen-Metalldampf-Hochdruckentladungslampe beträgt 65 und ihre Lichtausbeute beträgt 90 lm/W. Die Wandbelastung beträgt ca. 80 W/cm2. Die Hochdruckentladungslampe erzeugt einen Lichtstrom von kleiner oder gleich 2000 Im und kann daher in Fahrzeugscheinwerfern ohne Scheinwerferwaschanlage betrieben werden, um beispielsweise ein Tagfahrlicht, Nebellicht oder Dauerfahrlicht zu generieren.
- Die Halogen-Metalldampf-Hochdruckentladungslampe wird unmittelbar nach der Zündung der Gasentladung im Entladungsgefäß mit dem drei- bis fünffachen ihrer Nennleistung bzw. ihres Nennstroms betrieben, um ein schnelles Verdampfen der Metallhalogenide in der ionisierbaren Füllung zu gewährleisten. Unmittelbar nach dem Zünden der Gasentladung wird diese fast ausschließlich vom Xenon getragen, da nur das Xenon zu diesem Zeitpunkt gasförmig im Entladungsgefäß vorliegt. Die Hochdruckentladungslampe arbeitet zu diesem Zeitpunkt und während der so genannten Anlaufphase, während der die Metallhalogenide der ionisierbaren Füllung in die Dampfphase übergehen, daher wie eine Xenon-Höchstdruckentladungslampe, bei der sowohl die Lichtemission als auch die elektrische Eigenschaften der Entladung, insbesondere der Spannungsabfall über der Entladungsstrecke, allein vom Xenon und dem Elektrodenabstand bestimmt werden. Erst wenn die oben genannten Jodide der ionisierbaren Füllung verdampft sind und diese an der Entladung teilnehmen, ist ein quasistationärer Betriebszustand der Lampe erreicht, in dem die Lampe mit ihrer Nennleistung von 25 Watt und einer Brennspannung von 40 Volt betrieben wird. Der Begriff Brennspannung bezeichnet demzufolge die Betriebsspannung der Hochdruckentladungslampe im quasistationären Betrieb.
- Die Füllung der erfindungsgemäßen Hochdruckentladungslampe enthält auch 10-30 Gewichtsprozent Thuliumjodid zusätzlich zu den Jodiden der Metalle Natrium, Scandium, Zink und beispielsweise auch Indium.
- Ferner können anstelle von Jodiden der vorgenannten Metalle oder zusätzlich zu den Jodiden dieser Metalle auch andere Halogenide, beispielsweise Bromide oder Chloride dieser Metalle in der Füllung verwendet werden.
Claims (6)
- Hochdruckentladungslampe für Fahrzeugscheinwerfer mit einem gasdicht verschlossenen Entladungsgefäß (10), das einen Entladungsraum (106) besitzt, in dem Elektroden (11, 12) und eine Füllung zur Erzeugung einer Gasentladung eingeschlossen sind, wobei die Füllung als quecksilberfreie Füllung ausgebildet ist, die zumindest Xenon und Halogenide von Natrium, Scandium, und Zink enthält, wobei
die Menge der Halogenide, die im Entladungsraum (106) des Entladungsgefäßes (10) vorhanden ist, im Bereich von 8 mg bis 15 mg pro 1 cm3 des Entladungsraumvolumens liegt, wobei
der Kaltfülldruck von Xenon im Bereich von 1,0 Megapascal bis 1,8 Megapascal liegt, und
das Volumen des Entladungsraums (106) des Entladungsgefäßes (10) einen Wert im Bereich von 0,015 cm3 bis 0,022 cm3 besitzt,
wobei
die Füllung einen Zinkhalogenidanteil im Bereich von größer als 0 mg bis 1 mg pro 1 cm3 des Entladungsraumvolumens besitzt dadurch gekennzeichnet, dass
die Füllung zusätzlich Thuliumhalogenid enthält, wobei der Anteil von Thuliumhalogenid in der Füllung im Bereich von 10 Gewichtsprozent bis 30 Gewichtsprozent der gesamten Menge der Halogenide liegt. - Hochdruckentladungslampe nach Anspruch 1, wobei die Füllung zusätzlich Indiumhalogenid enthält und der Anteil von Indiumhalogenid in der Füllung kleiner oder gleich 3,0 Gewichtsprozent der Menge der Halogenide ist.
- Hochdruckentladungslampe nach Anspruch 1 oder 2, wobei der Anteil von Natriumhalogenid in der Füllung im Bereich von 30 Gewichtsprozent bis 50 Gewichtsprozent der gesamten Menge der Halogenide liegt.
- Hochdruckentladungslampe nach einem der Ansprüche 1 bis 3, wobei der Anteil von Scandiumhalogenid in der Füllung im Bereich von 30 Gewichtsprozent bis 60 Gewichtsprozent der gesamten Menge der Halogenide liegt.
- Hochdruckentladungslampe nach einem der Ansprüche 1 bis 4, wobei die Menge der Halogenide im Entladungsraum (106) des Entladungsgefäßes (10) im Bereich von 10 mg bis 14 mg pro 1 cm3 des Entladungsraumvolumens liegt.
- Hochdruckentladungslampe nach einem der Ansprüche 1 bis 5, wobei der Kaltfülldruck von Xenon im Bereich von 1,6 Megapascal bis 1,8 Megapascal liegt.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200910052999 DE102009052999A1 (de) | 2009-11-12 | 2009-11-12 | Hochdruckentladungslampe |
PCT/EP2010/066472 WO2011057903A1 (de) | 2009-11-12 | 2010-10-29 | Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2499657A1 EP2499657A1 (de) | 2012-09-19 |
EP2499657B1 true EP2499657B1 (de) | 2014-12-03 |
Family
ID=43334513
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP10775785.8A Not-in-force EP2499657B1 (de) | 2009-11-12 | 2010-10-29 | Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP2499657B1 (de) |
JP (1) | JP2013511117A (de) |
CN (1) | CN102687235B (de) |
DE (1) | DE102009052999A1 (de) |
WO (1) | WO2011057903A1 (de) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011082323A1 (de) * | 2011-09-08 | 2013-03-14 | Osram Ag | Hochdruckentladungslampe für Kraftfahrzeugscheinwerfer |
DE102014204932A1 (de) * | 2014-03-17 | 2015-09-17 | Osram Gmbh | Hochdruckentladungslampe |
DE102015200162A1 (de) | 2015-01-08 | 2016-07-14 | Osram Gmbh | Hochdruckentladungslampe |
JP2016181381A (ja) * | 2015-03-24 | 2016-10-13 | 東芝ライテック株式会社 | 放電ランプ |
JP2017098009A (ja) * | 2015-11-20 | 2017-06-01 | 東芝ライテック株式会社 | 放電ランプ |
JP6850434B2 (ja) * | 2017-04-26 | 2021-03-31 | 東芝ライテック株式会社 | 放電ランプ |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2086001A1 (de) * | 2006-11-09 | 2009-08-05 | Harison Toshiba Lighting Corp. | Metallhalogenidlampe |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4317369A1 (de) | 1993-05-25 | 1994-12-01 | Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh | Hochdruckentladungslampe und Herstellungsverfahren für eine Hochdruckentladungslampe |
US6853140B2 (en) | 2002-04-04 | 2005-02-08 | Osram Sylvania Inc. | Mercury free discharge lamp with zinc iodide |
JP2004172056A (ja) * | 2002-11-22 | 2004-06-17 | Koito Mfg Co Ltd | 放電ランプ装置用水銀フリーアークチューブ |
DE10312290A1 (de) | 2003-03-19 | 2004-09-30 | Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH | Hochdruckentladungslampe für Fahrzeugscheinwerfer |
EP1632985B1 (de) | 2004-09-07 | 2014-06-25 | OSRAM GmbH | Hochdruckentladungslampe |
CN101053059A (zh) * | 2004-10-29 | 2007-10-10 | 东芝照明技术株式会社 | 金属卤化物灯以及照明装置 |
EP1806766A1 (de) * | 2004-10-29 | 2007-07-11 | Toshiba Lighting & Technology Corporation | Metallhalogenlampe und beleuchtungsvorrichtung |
US20090129070A1 (en) * | 2005-07-05 | 2009-05-21 | Harison Toshiba Lighting Corporation | Metal halide lamp and lighting device using therewith |
JP5335701B2 (ja) * | 2007-03-12 | 2013-11-06 | コーニンクレッカ フィリップス エヌ ヴェ | 高効率の低電力放電ランプ |
CN101657877A (zh) * | 2007-04-05 | 2010-02-24 | 皇家飞利浦电子股份有限公司 | 无汞高亮度气体放电灯 |
DE102007018614A1 (de) * | 2007-04-19 | 2008-10-23 | Osram Gesellschaft mit beschränkter Haftung | Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe |
US8436539B2 (en) * | 2007-09-24 | 2013-05-07 | Koninklijke Philips Electronics N.V. | Thorium-free discharge lamp with reduced halides and increased relative amount of Sc |
JP5313710B2 (ja) * | 2008-02-12 | 2013-10-09 | 株式会社小糸製作所 | 放電ランプ装置用水銀フリーアークチューブ |
CN102007567B (zh) * | 2008-04-14 | 2013-06-19 | 皇家飞利浦电子股份有限公司 | 高效率放电灯 |
-
2009
- 2009-11-12 DE DE200910052999 patent/DE102009052999A1/de not_active Withdrawn
-
2010
- 2010-10-29 EP EP10775785.8A patent/EP2499657B1/de not_active Not-in-force
- 2010-10-29 CN CN201080051543.6A patent/CN102687235B/zh not_active Expired - Fee Related
- 2010-10-29 JP JP2012538272A patent/JP2013511117A/ja active Pending
- 2010-10-29 WO PCT/EP2010/066472 patent/WO2011057903A1/de active Application Filing
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2086001A1 (de) * | 2006-11-09 | 2009-08-05 | Harison Toshiba Lighting Corp. | Metallhalogenidlampe |
Also Published As
Publication number | Publication date |
---|---|
DE102009052999A1 (de) | 2011-05-19 |
JP2013511117A (ja) | 2013-03-28 |
WO2011057903A1 (de) | 2011-05-19 |
CN102687235A (zh) | 2012-09-19 |
CN102687235B (zh) | 2015-07-08 |
EP2499657A1 (de) | 2012-09-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE10354868B4 (de) | Quecksilber-freie Bogenentladungsröhre für eine Entladungslampeneinheit | |
EP1465237B1 (de) | Hochdruckentladungslampe für Fahrzeugscheinwerfer | |
EP0903770B1 (de) | Metallhalogenidlampe | |
EP2499657B1 (de) | Quecksilberfreie hochdruckentladungslampe mit reduziertem zinkhalogenidanteil | |
EP1632985B1 (de) | Hochdruckentladungslampe | |
DE3341846A1 (de) | Gasentladungslampe | |
EP1984936B1 (de) | Hochdruckentladungslampe | |
DE10243867A1 (de) | Quecksilberfreie Bogenentladungsröhre für Entladungslampeneinheit | |
EP0453893A1 (de) | Hochdruckentladungslampe | |
DE10245000B4 (de) | Quecksilberfreie Lichtbogenröhre für Entladungslampeneinheit | |
DE3038993C2 (de) | Metalldampfentladungslampe | |
EP2147456B1 (de) | Hochdruckentladungslampe und fahrzeugscheinwerfer mit hochdruckentlaudungslampe | |
EP2347430B1 (de) | Quecksilberfreie entladungslampe | |
DE10204691C1 (de) | Quecksilberfreie Hochdruckgasentladungslampe und Beleuchtungseinheit mit einer solchen Hochdruckgasentladungslampe | |
EP1754245A2 (de) | Hochdruckentladungslampe | |
DE2422576A1 (de) | Entladungslampe | |
EP3031071B1 (de) | Hochdruckentladungslampe für fahrzeugscheinwerfer | |
EP2529391B1 (de) | Hochdruckentladungslampe | |
EP3072146B1 (de) | Hochdruckentladungslampe für kraftfahrzeugscheinwerfer | |
DE102007043165A1 (de) | Hochdruckentladungslampe und Fahrzeugscheinwerfer mit Hochdruckentladungslampe | |
WO2009109566A1 (de) | Wolframelektrode für hochdruckentladungslampen und hochdruckentladungslampe mit einer wolframelektrode | |
WO2009147041A2 (de) | Thoriumfreie hochdruckentladungslampe für hochfrequenzbetrieb | |
DE102015200162A1 (de) | Hochdruckentladungslampe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20120416 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GMBH |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: OSRAM GMBH |
|
17Q | First examination report despatched |
Effective date: 20130807 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
GRAJ | Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted |
Free format text: ORIGINAL CODE: EPIDOSDIGR1 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140703 |
|
INTG | Intention to grant announced |
Effective date: 20140716 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 699794 Country of ref document: AT Kind code of ref document: T Effective date: 20141215 Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502010008417 Country of ref document: DE Effective date: 20150108 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150303 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150304 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150403 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20150403 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502010008417 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 6 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
26N | No opposition filed |
Effective date: 20150904 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20151029 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 7 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 699794 Country of ref document: AT Kind code of ref document: T Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20101029 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20151031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141203 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20181019 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20181023 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502010008417 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20200501 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20191031 |