[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2318672A1 - Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en oeuvre le procédé - Google Patents

Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en oeuvre le procédé

Info

Publication number
EP2318672A1
EP2318672A1 EP09806407A EP09806407A EP2318672A1 EP 2318672 A1 EP2318672 A1 EP 2318672A1 EP 09806407 A EP09806407 A EP 09806407A EP 09806407 A EP09806407 A EP 09806407A EP 2318672 A1 EP2318672 A1 EP 2318672A1
Authority
EP
European Patent Office
Prior art keywords
constriction
resonator
air
axis
helmholtz resonator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP09806407A
Other languages
German (de)
English (en)
Inventor
Bruno Schuermans
Jaan Hellat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ansaldo Energia Switzerland AG
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2318672A1 publication Critical patent/EP2318672A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • F01N1/023Helmholtz resonators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23MCASINGS, LININGS, WALLS OR DOORS SPECIALLY ADAPTED FOR COMBUSTION CHAMBERS, e.g. FIREBRIDGES; DEVICES FOR DEFLECTING AIR, FLAMES OR COMBUSTION PRODUCTS IN COMBUSTION CHAMBERS; SAFETY ARRANGEMENTS SPECIALLY ADAPTED FOR COMBUSTION APPARATUS; DETAILS OF COMBUSTION CHAMBERS, NOT OTHERWISE PROVIDED FOR
    • F23M20/00Details of combustion chambers, not otherwise provided for, e.g. means for storing heat from flames
    • F23M20/005Noise absorbing means
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/16Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/172Methods or devices for protecting against, or for damping, noise or other acoustic waves in general using resonance effects
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N1/00Silencing apparatus characterised by method of silencing
    • F01N1/02Silencing apparatus characterised by method of silencing by using resonance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00013Reducing thermo-acoustic vibrations by active means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R2900/00Special features of, or arrangements for continuous combustion chambers; Combustion processes therefor
    • F23R2900/00014Reducing thermo-acoustic vibrations by passive means, e.g. by Helmholtz resonators

Definitions

  • the present invention relates to the field of combustion technology, especially in the context of gas turbines. It relates to a method for adjusting a Helmholtz resonator according to the preamble of claim 1 and a Helmholtz resonator for carrying out the method.
  • Helmholtz resonators for damping pulsations in the combustion chambers of gas turbines has already been proposed in many cases (see, for example, the document DE-B4-196 40 980). There are also already Helmholtz resonators with several resonator volumes connected in series has been disclosed, with which multiple frequencies can be attenuated (see, for example, DE-A1-10 2005 062 284).
  • the effectiveness of such damping systems is limited to a narrow frequency range around the resonant frequency of the individual dampers.
  • the damping characteristic of such systems is a function of the acoustic resistance of the constriction, via which the respective resonator volume is coupled to the space to be damped, in particular the combustion chamber of a gas turbine.
  • the acoustic resistance of the constriction is a function of the flow rate and the pressure loss coefficient in the constriction.
  • the resonance frequency has only a weak dependence on the acoustic resistance in the constriction.
  • the resonance frequency depends very strongly on this resistance.
  • a Helmholtz resonator that is tunable to the pulsations actually occurring in a combustor to achieve the greatest possible damping effect.
  • a tunability is achieved, for example, by arranging an adjustable piston in the resonator volume.
  • such a mechanical adjustment is complex in construction and unsuitable for active control.
  • the object is solved by the entirety of the features of claims 1 and 6. It is essential for the invention that, for adjusting the Helmholtz resonator, the acoustic resistance of the constriction is changed, via which the resonator volume is connected to the room to be damped. The adjustment of the acoustic resistance of the constriction allows:
  • Helmholtz resonators with two resonator volumes Helmholtz resonators with two resonator volumes.
  • the acoustic resistance of the constriction can be adjusted in two ways: 1) By injecting purge air through two air inlets (air jets) into the
  • Resonator system via an axial air inlet through which the air is injected in the direction of the (longitudinal) axis of the resonator arrangement, and via a Tangentiallufteinlass over which the air - relative to the axis - is injected in the circumferential direction.
  • the ratio of the pulses of the tangentially injected air and the axially injected air defines the
  • Constriction followed by a sudden expansion at the outlet of the constriction, is known to produce a so-called "vortex breakdown.” It is known that the mechanism of vortex shedding indicates a strong dependence of the pressure loss coefficient on the swirl number a small proportion of injected into the constriction axial air can be adjusted.
  • An embodiment of the method according to the invention is therefore characterized in that the acoustic resistance of the constriction is changed by changing the swirl number in the resonator volume and in the constriction.
  • axial air in the direction of the axis and Tangential Kunststoff is injected in the circumferential direction to the axis, and changed the ratio of the mass flows of axial air and Tangentialluft to change the swirl number.
  • Another embodiment of the method according to the invention is characterized in that axial air in the direction of the axis and tangential air in the circumferential direction to the axis is injected into the at least one resonator volume, that the axial air acts on a vortex generator arranged at the upstream end of the constriction, and that for alteration the swirl number of the mass flow of the axial clearance is changed.
  • the relationship between the mass flows of the axial air and the tangential air can be controlled in three different ways: 1) By changing the flow cross sections of the axial air and
  • Fluidix element is the fluid dynamic equivalent of a transistor: it uses a small amount of air to control the main airflow.
  • a Fluidix element can be an integral part of the Helmholtz resonator or of the vortex generator used there.
  • the given according to the invention possibility to tune the frequency and the resistance of the Helmholtz resonator can in a closed Control loop can be used to control the pulsation in the combustion chamber of the gas turbine.
  • a closed Control loop can be used to control the pulsation in the combustion chamber of the gas turbine.
  • Such a system would include a tunable Helmholtz resonator and a controller that specifies the ratio of tangential air to radial clearance. The controller sets this ratio according to a measured pulsation frequency and amplitude.
  • Another embodiment of the method according to the invention is therefore characterized in that the change in the acoustic resistance of the constriction takes place in accordance with a pulsation signal measured in the room to be damped.
  • the Helmholtz resonator according to the invention comprises at least one resonator volume which can be connected along an axis via a constriction to the space to be damped, in particular the combustion chamber, wherein the constriction has a predetermined acoustic resistance and the Helmholtz resonator means for adjusting the acoustic resistance of Constriction includes.
  • a first embodiment of the Helmholtz resonator according to the invention is characterized in that the means for adjusting the acoustic resistance of the constriction comprises an axial air inlet for injecting air in the direction of the axis and a tangential air inlet for injecting air in the circumferential direction to the axis.
  • the acoustic resistance of the restriction over the swirl number is variable by changing the ratio of the air injected through the axial air inlet and the air injected through the tangential air inlet.
  • Flow cross-section of Axiallufteinlasses and / or Tangentiallufteinlasses is changeable.
  • Another development is characterized in that at least one control valve is provided for varying the ratio of the air injected through the axial air inlet and the air injected through the tangential air inlet.
  • a further development is characterized in that a fluidic control device is provided for changing the ratio of the air injected through the axial air inlet and the air injected through the tangential air inlet.
  • a control is provided which can be acted upon at an input with a pulsation signal measured in the space to be damped, in particular in the combustion chamber.
  • Helmholtz resonator is characterized in that the acoustic resistance of the constriction via the swirl number is variable by a vortex generator arranged at the upstream end of the constriction, which can be acted upon by the axial air inlet with axially deflated air.
  • a variant of the Helmholtz resonator according to the invention is characterized in that the Helmholtz resonator has a single resonator volume, in that the axial air inlet is arranged on the side of the resonator volume opposite to the constriction, and in that the tangential air inlet has air approximately in the middle between the constriction and the axial air inlet injected into the resonator volume.
  • Helmholtz resonator in the axis connected in series comprises at least two resonator volumes with two associated constrictions, and that at least the first resonator volume a Axial air inlet for injecting air in the direction of the axis and a Tangentiallufteinlass for injecting air in the circumferential direction to the axis.
  • the second resonator volume may also have an axial air inlet for the injection of air in the direction of the axis and a tangential air inlet for the injection of air in the circumferential direction to the axis.
  • both resonator volumes may include a vortex generator located at the upstream end of the throat.
  • FIG. 1 shows in a greatly simplified schematic representation of an adjustable Helmholtz resonator according to a first embodiment of the invention with only one resonator volume in the plan view in the axial direction (a) and in the side view (b).
  • FIG. 2 shows in a representation comparable to FIG. 1 (b) an adjustable Helmholtz resonator according to a second exemplary embodiment of the invention with two resonator volumes arranged one behind the other in the axial direction, wherein only the properties of the first resonator volume are adjustable;
  • FIG. 3 in a comparable to Fig. 2 representation of an adjustable
  • Helmholtz resonator according to a third embodiment of the invention with two in the axial direction one behind the other arranged resonator, wherein at the constriction of the first resonator volume is acted upon with axial air vortex generator is arranged;
  • FIG. 4 shows an analogous to FIG. 3 fourth embodiment of the invention, in which the axial clearance for the vortex generator is controlled by a control valve in accordance with a Pulsationssignals and
  • Fig. 5 is a to Fig. 2 analogous fifth embodiment, in which the axial air and the tangential air via a fluidic
  • Control device is controlled in accordance with a pulsation signal.
  • FIG. 1 shows a highly simplified schematic representation of an adjustable Helmholtz resonator according to a first exemplary embodiment of the invention as viewed along the axis 29 of the system (FIG. 1 (a)) and in a side view (FIG. 1 (b)).
  • the Helmholtz resonator 10 has a
  • Resonator volume 11 which is connected via a constriction 12 to a space to be damped, in this case the combustion chamber 13 of a gas turbine (not shown).
  • the Helmholtz resonator 10 extends along the axis 29.
  • the resonator volume 11 and the constriction 12 may have a cylindrical shape. Other designs are also conceivable.
  • the constriction can be designed as a diffuser in order to amplify a possible vortex breakdown . The dimensions depend on the pulsation frequencies occurring in the combustion chamber.
  • two air inlets 14 and 15 are provided on the resonator volume 11.
  • Axiallufteinlass 14 is in axial Directed air into the resonator 11.
  • the tangential air inlet 15 which is arranged laterally between the axial air inlet 14 and the constriction 12 approximately in the middle, air is injected into the resonator volume 11 in the tangential direction.
  • the ratio of the impulses of the injected axial air and tangential air determines the swirl number in the resonator volume 11 and in the constriction 12 and thus the swirl number-dependent acoustic resistance in the constriction 12.
  • the momentum ratio of axial air and tangential air can be changed, for example, by the flow cross-section in FIG Axiallufteinlass 14 and / or in Tangentiallufteinlass 15 is changed. This can be done for example by inserting apertures with different aperture diameter or by variable in diameter (iris) aperture.
  • FIG. 1 A first embodiment of a Helmholtz resonator according to the invention with two resonator volumes is shown in FIG.
  • a second resonator volume 16 with a second constriction 17 is arranged between the first resonator volume 11 with the following first constriction 12 and the combustion chamber 13.
  • the tuning takes place here again by an axial air inlet 14 and a tangential air inlet 15 at the first resonator volume 11.
  • the two resonator volumes 11, 16 and constrictions 12, 17 can be identical in size and shape.
  • the resonator volume 16 can also be equipped with an axial air inlet and a tangential air inlet, as indicated in FIG. 3 by the dashed lines with the reference numerals 15 'and 18'.
  • the Helmholtz resonator 20a reproduced in FIG. 3 represents a modification of the Helmholtz resonator 20 shown in FIG. 2. It likewise comprises two resonant volumes 11 and 16 connected in series with the corresponding resonator volumes Constrictions 12 and 17. Unlike in the arrangement according to Fig. 2, here at the upstream end of the first constriction 12 a swirl generator 19 is provided, which is supplied with axial air via a comparatively narrow axial air inlet 18. About the effect of The second resonator volume 16 can also be equipped with an axial air inlet 18 'and a tangential air inlet 15' and / or with a vortex generator 19 '.
  • the Helmholtz resonator according to the invention may be part of a closed loop, as shown in Fig. 4 and 5.
  • the Helmholtz resonator 20b in turn has two resonator volumes 11 and 16 connected in series with the associated constrictions 12 and 17.
  • a vortex generator 19 with axial air inlet 18 and a tangential air inlet 15 are provided.
  • the mass flow of the axial air can be controlled by a control valve 21 arranged in front of the axial air inlet 18.
  • the control valve 21 is controlled by a controller 22, which receives on the input side a recorded in the combustion chamber 13 pulsation signal.
  • the algorithm of the controller 22 tries to reduce the size of the pulsations.
  • the mass flows of the axial air and the tangential air are controlled by a fluidic control device (fluidic element) 24 in response to a small flow of control air 26.
  • the air is supplied via an air supply 28 and divided accordingly.
  • the control air 26 is controlled by means of a control valve 25, which in turn is controlled by a controller 27 in accordance with a pulsation signal 23 from the combustion chamber 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Soundproofing, Sound Blocking, And Sound Damping (AREA)
  • Exhaust Silencers (AREA)

Abstract

L’invention concerne un procédé pour régler un résonateur de Helmholtz (10), lequel inclut au moins un volume résonateur (11) qui est raccordé à un espace (13) à amortir le long d’un axe (29) par le biais d’un rétrécissement (12) qui présente une résistance acoustique. Selon l’invention, la résistance acoustique du rétrécissement (12) est modifiée pour régler le résonateur de Helmholtz (10).
EP09806407A 2008-08-14 2009-07-30 Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en oeuvre le procédé Withdrawn EP2318672A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH01279/08A CH699322A1 (de) 2008-08-14 2008-08-14 Verfahren zum einstellen eines helmholtz-resonators sowie helmholtz-resonator zur durchführung des verfahrens.
PCT/EP2009/059872 WO2010018069A1 (fr) 2008-08-14 2009-07-30 Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en œuvre le procédé

Publications (1)

Publication Number Publication Date
EP2318672A1 true EP2318672A1 (fr) 2011-05-11

Family

ID=40010991

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09806407A Withdrawn EP2318672A1 (fr) 2008-08-14 2009-07-30 Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en oeuvre le procédé

Country Status (5)

Country Link
US (1) US8205714B2 (fr)
EP (1) EP2318672A1 (fr)
JP (1) JP5528447B2 (fr)
CH (1) CH699322A1 (fr)
WO (1) WO2010018069A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763914A (zh) * 2021-09-27 2021-12-07 哈尔滨理工大学 一种螺旋型亥姆霍兹共振器

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH699322A1 (de) 2008-08-14 2010-02-15 Alstom Technology Ltd Verfahren zum einstellen eines helmholtz-resonators sowie helmholtz-resonator zur durchführung des verfahrens.
EP2378199A1 (fr) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Dispositif résonateur pour amortir la variation de pression dans une chambre de combustion et procédé d'opération d'un agencement de combustion
US8469141B2 (en) * 2011-08-10 2013-06-25 General Electric Company Acoustic damping device for use in gas turbine engine
EP2816289B1 (fr) * 2013-05-24 2020-10-07 Ansaldo Energia IP UK Limited Amortisseur pour turbines à gaz
EP2848865A1 (fr) 2013-09-12 2015-03-18 Alstom Technology Ltd Procédé de stabilisation thermoacoustique
CN104676646B (zh) * 2013-10-25 2019-08-13 安萨尔多能源瑞士股份公司 用于燃气涡轮的燃烧器的阻尼装置
US10513984B2 (en) 2015-08-25 2019-12-24 General Electric Company System for suppressing acoustic noise within a gas turbine combustor
US10197275B2 (en) 2016-05-03 2019-02-05 General Electric Company High frequency acoustic damper for combustor liners
EP3695620B1 (fr) * 2017-10-11 2023-07-05 Institut für Rundfunktechnik GmbH Transducteur acoustique amélioré
EP3887657A4 (fr) * 2018-11-27 2022-07-20 Smith & Burgess Process Safety Consulting Résonateur pour un système de fluide sous pression
US11156164B2 (en) 2019-05-21 2021-10-26 General Electric Company System and method for high frequency accoustic dampers with caps
US11174792B2 (en) 2019-05-21 2021-11-16 General Electric Company System and method for high frequency acoustic dampers with baffles
CN110751938A (zh) * 2019-10-12 2020-02-04 江苏科技大学 一种亥姆霍兹共振器及其工作方法
US11909042B2 (en) 2020-12-10 2024-02-20 Medtronic, Inc. Positive electrode enabling fast charging

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6123603Y2 (fr) * 1981-04-06 1986-07-15
US4539947A (en) * 1982-12-09 1985-09-10 Nippondenso Co., Ltd. Resonator for internal combustion engines
JPS59105958A (ja) * 1982-12-09 1984-06-19 Nippon Denso Co Ltd 共鳴器
DE4414232A1 (de) * 1994-04-23 1995-10-26 Abb Management Ag Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
US5861600A (en) * 1996-08-21 1999-01-19 Jensen; Donald C. Fuel plasma vortex combustion system
DE19640980B4 (de) * 1996-10-04 2008-06-19 Alstom Vorrichtung zur Dämpfung von thermoakustischen Schwingungen in einer Brennkammer
DE19811051B4 (de) * 1998-03-13 2014-01-02 Mann + Hummel Gmbh Luftansaugeinrichtung für einen Verbrennungsmotor
DE19851636A1 (de) * 1998-11-10 2000-05-11 Asea Brown Boveri Dämpfungsvorrichtung zur Reduzierung der Schwingungsamplitude akustischer Wellen für einen Brenner
DE10026121A1 (de) * 2000-05-26 2001-11-29 Alstom Power Nv Vorrichtung zur Dämpfung akustischer Schwingungen in einer Brennkammer
DE10040869A1 (de) * 2000-08-21 2002-03-07 Alstom Power Nv Verfahren und Vorrichtung zur Unterdrückung von Strömungswirbeln innerhalb einer Strömungskraftmaschine
EP1213538B1 (fr) * 2000-12-08 2006-09-06 Alstom Technology Ltd Dispositif pour gaz d'échappement comprenant un résonateur de Helmholtz
EP1342952A1 (fr) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Brûleur, procédé de fonctionnement d'un brûleur et turbine à gaz
EP1342953A1 (fr) * 2002-03-07 2003-09-10 Siemens Aktiengesellschaft Turbine à gaz
GB2390150A (en) * 2002-06-26 2003-12-31 Alstom Reheat combustion system for a gas turbine including an accoustic screen
US6792907B1 (en) * 2003-03-04 2004-09-21 Visteon Global Technologies, Inc. Helmholtz resonator
JP4177728B2 (ja) * 2003-07-31 2008-11-05 東京電力株式会社 燃焼振動抑制装置および燃焼振動抑制方法
JP2005048638A (ja) * 2003-07-31 2005-02-24 Tokyo Electric Power Co Inc:The 燃焼振動解析方法、燃焼振動解析装置およびこれら解析手法を用いた解析プログラム
EP1624250A1 (fr) * 2004-08-03 2006-02-08 Siemens Aktiengesellschaft Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion
EP1624251B1 (fr) * 2004-08-03 2012-02-29 Siemens Aktiengesellschaft Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion avec fréquence de résonance ajustable
DE102005062284B4 (de) * 2005-12-24 2019-02-28 Ansaldo Energia Ip Uk Limited Brennkammer für eine Gasturbine
US7891464B2 (en) * 2006-06-15 2011-02-22 Hewlett-Packard Development, L.P. System and method for noise suppression
JP2008008253A (ja) * 2006-06-30 2008-01-17 Toyoda Gosei Co Ltd 消音ダクト
CH699322A1 (de) 2008-08-14 2010-02-15 Alstom Technology Ltd Verfahren zum einstellen eines helmholtz-resonators sowie helmholtz-resonator zur durchführung des verfahrens.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113763914A (zh) * 2021-09-27 2021-12-07 哈尔滨理工大学 一种螺旋型亥姆霍兹共振器

Also Published As

Publication number Publication date
US8205714B2 (en) 2012-06-26
JP2011530689A (ja) 2011-12-22
CH699322A1 (de) 2010-02-15
WO2010018069A1 (fr) 2010-02-18
JP5528447B2 (ja) 2014-06-25
US20110139541A1 (en) 2011-06-16

Similar Documents

Publication Publication Date Title
WO2010018069A1 (fr) Procédé pour régler un résonateur de helmholtz et résonateur de helmholtz destiné à mettre en œuvre le procédé
EP1476699B1 (fr) Chambre de combustion et dispositif d'amortissement destiné a reduire des pulsations de chambre de combustion dans un système de turbines a gaz
DE102005022824A1 (de) Elektronisch gesteuerter variabler Zweikammer-Resonator
CH701544B1 (de) Brennstoffdüse für eine Gasturbine.
EP2354659A1 (fr) Amortisseur de Helmholtz pour l'intégration dans la chambre de combustion d'une turbine à gaz et procédé d'intégration d'un tel amortisseur de Helmholtz
DE102009029875A1 (de) Strömungsbegrenzer und Verwendung eines Strömungsbegrenzers in einem Luftverteilungssystem eines Klimatisierungssystems eines Flugzeugs
WO2010089283A1 (fr) Silencieux présentant des éléments encastrés hélicoïdaux
EP3311009A1 (fr) Système d'échappement
DE19948674B4 (de) Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
DE102004041272B4 (de) Hybridbrennerlanze
EP0990851B1 (fr) Chambre de combustion pour une turbine à gaz
EP1010939B1 (fr) Chambre de combustion avec système d'alimentation en carburant amorti acoustiquement
EP1051562B1 (fr) Silencieux avec resonateur en derivation
DE10130287B4 (de) Rückprallverhindernde Öffnungsscheibe
EP1624251B1 (fr) Dispositif pour atténuer les oscillations acoustiques dans les chambres combustion avec fréquence de résonance ajustable
WO2016055293A1 (fr) Système d'injection d'accumulateur pour moteurs a combustion interne
DE69501560T2 (de) Einlasskrümmer mit variabler Impedanz und geringer Einschränkung
DE10247955A1 (de) Brenner
EP2156047B1 (fr) Injecteur de carburant à faible niveau d'usure
DE3047110C2 (fr)
EP3431880B1 (fr) Module buse pour une chambre de combustion d'un propulseur
DE102017130346A1 (de) Durchflussmesseinrichtung sowie Laminar-Strömungselement
EP1512920B1 (fr) Dispositif d'humidification d'air
DE102004009226A1 (de) Brennraum, insbesondere für eine Gasturbinenanlage, sowie Verfahren zum Betrieb
EP1851600B1 (fr) Procede et dispositif pour regler la pression et/ou l'ecoulement d'un volume d'un liquide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HELLAT, JAAN

Inventor name: SCHUERMANS, BRUNO

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ANSALDO ENERGIA SWITZERLAND AG

17Q First examination report despatched

Effective date: 20180222

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20180705