EP2304799B1 - Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant - Google Patents
Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant Download PDFInfo
- Publication number
- EP2304799B1 EP2304799B1 EP09775907.0A EP09775907A EP2304799B1 EP 2304799 B1 EP2304799 B1 EP 2304799B1 EP 09775907 A EP09775907 A EP 09775907A EP 2304799 B1 EP2304799 B1 EP 2304799B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- layer
- semiconductor
- semiconductor layer
- radiation
- semiconductor chip
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004065 semiconductor Substances 0.000 title claims description 281
- 238000004519 manufacturing process Methods 0.000 title claims description 12
- 230000001681 protective effect Effects 0.000 claims description 38
- 230000005855 radiation Effects 0.000 claims description 34
- 238000000034 method Methods 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 12
- 238000004544 sputter deposition Methods 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 2
- 229910052760 oxygen Inorganic materials 0.000 claims description 2
- 239000001301 oxygen Substances 0.000 claims description 2
- 238000009413 insulation Methods 0.000 claims 1
- 239000010410 layer Substances 0.000 description 223
- 230000007704 transition Effects 0.000 description 29
- 239000000463 material Substances 0.000 description 20
- 239000002800 charge carrier Substances 0.000 description 12
- 230000006378 damage Effects 0.000 description 8
- 239000010409 thin film Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000001427 coherent effect Effects 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 229910052709 silver Inorganic materials 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 239000012876 carrier material Substances 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000002310 reflectometry Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- 230000003595 spectral effect Effects 0.000 description 3
- 238000007740 vapor deposition Methods 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000007786 electrostatic charging Methods 0.000 description 2
- 229910052732 germanium Inorganic materials 0.000 description 2
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 229910001092 metal group alloy Inorganic materials 0.000 description 2
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000005693 optoelectronics Effects 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 229910052703 rhodium Inorganic materials 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- 229910000679 solder Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000012790 adhesive layer Substances 0.000 description 1
- 238000004380 ashing Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 238000003486 chemical etching Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000005036 potential barrier Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- -1 silicon nitride Chemical class 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- H01L27/15—
-
- H01L27/0255—
-
- H01L33/02—
-
- H01L33/36—
-
- H01L33/382—
-
- H01L33/62—
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
Definitions
- the present application relates to a radiation-emitting semiconductor chip and to a method for producing a radiation-emitting semiconductor chip.
- Electrostatic discharge can lead to damage or even destruction in the case of radiation-emitting semiconductor chips, for example light-emitting diodes. Such damage can be avoided by an additional diode connected in parallel to the semiconductor chip, wherein the forward direction of the diode and the forward direction of the radiation-emitting semiconductor chip are directed antiparallel to each other.
- Radiation-emitting semiconductor chips are known, for example, from the publications US2006 / 060880 A1 or DE102005043649A1 known.
- This additional diode increases both space requirements and production costs. Furthermore, such an additional diode may result in the absorption of radiation, thereby reducing the useful optical power of the device.
- a radiation-emitting semiconductor chip has a carrier and a semiconductor body with a semiconductor layer sequence.
- the semiconductor layer sequence has an active region provided for generating radiation, a first semiconductor layer and a second semiconductor layer.
- the active region is arranged between the first semiconductor layer and the second semiconductor layer.
- the first semiconductor layer is arranged on the side of the active region facing away from the carrier.
- the semiconductor body has at least one recess which extends through the active region.
- the first semiconductor layer is electrically conductively connected to a first connection layer, wherein the first connection layer extends in the recess from the first semiconductor layer in the direction of the carrier.
- the first connection layer is electrically connected to the second semiconductor layer via a protection diode.
- the protection diode is integrated in the semiconductor chip.
- the risk of damage to the semiconductor chip, for example due to electrostatic discharge is thus reduced.
- the protection diode can fulfill the function of an ESD (Electrostatic Discharge) diode, which protects the semiconductor chip from damage due to electrostatic discharge. In other words, charge carriers can flow away via a current path between the first connection layer and the second semiconductor layer. The risk of damage to the semiconductor chip can thus be reduced.
- ESD Electrostatic Discharge
- the first semiconductor layer and the second semiconductor layer of the semiconductor body are expediently different from one another with respect to their conductivity type.
- the first semiconductor layer may be p-type and the second semiconductor layer may be n-type, or vice versa.
- a diode structure in which the active region is formed is thus realized in a simple manner.
- the protective diode is formed between the first connection layer and the second semiconductor layer.
- the protective diode can thus be arranged in a simple manner in a current path between the first connection layer and the second semiconductor layer.
- the protective diode may be formed outside the carrier.
- the formation of the protective diode can thus be largely independent of the properties of the carrier, in particular the electrical conductivity or the electrical contactability, take place.
- the semiconductor chip further preferably has a first contact and a second contact, which are respectively provided for the external electrical contacting of the semiconductor chip.
- An operating voltage applied between the first contact and the second contact causes an injection of charge carriers from different sides of the active area into the active area.
- the injected charge carriers can recombine while emitting radiation in the active region.
- the diode structure of the semiconductor body and the protective diode are expediently formed antiparallel to each other.
- the protection diode which is operated at the operating voltage of the semiconductor chip in the reverse direction, no or at least no significant current flow takes place in this case.
- an electrical voltage applied in the blocking direction to the diode structure for example due to electrostatic charging, can flow away via the protective diode.
- the semiconductor body in particular the active region, can be protected by the protective diode integrated in the semiconductor chip.
- the protection diode is designed as a Schottky diode.
- a Schottky diode may in particular be formed by means of a metal-semiconductor junction, wherein the current-voltage characteristic of the transition deviates from an ohmic characteristic and in particular runs asymmetrically with respect to the polarity of the applied voltage.
- the protective diode overlaps in a plan view of the semiconductor chip with the semiconductor body, wherein the active region completely covers the protective diode when viewed from above.
- the protective diode can thus be integrated into the semiconductor chip with the same lateral extent of the semiconductor body. Furthermore, the protective diode can thus be integrated into the semiconductor chip while retaining the surface of the active region that can be used for the generation of radiation.
- a lateral direction is understood to be a direction that runs along a main extension plane of the semiconductor layers of the semiconductor body.
- the protective diode is formed by means of the second semiconductor layer.
- the second semiconductor layer can therefore be provided both for the injection of charge carriers into the active region and for the formation of the protective diode.
- semiconductor region for the formation of the Schottky diode can be dispensed with.
- the protective diode in particular in the form of a Schottky diode, can be integrated into the semiconductor chip with the same lateral extent of the semiconductor chip, without the area of the active region relevant for the generation of radiation being reduced. The integration of the protective diode in the semiconductor chip can thus be carried out without affecting the optoelectronic properties of the semiconductor chip.
- the first connection layer extends at least partially between the carrier and the second semiconductor layer.
- the first semiconductor layer can be electrically contacted from the side of the active region facing the support.
- a second connection layer is arranged at least in regions between the first connection layer and the second semiconductor layer.
- the second connection layer is electrically conductively connected to the second semiconductor layer and further preferably directly adjoins the second semiconductor layer.
- the first connection layer and the second connection layer can be electrically contacted externally via the first and second contact, respectively.
- the first and / or the second contact can each be formed by means of a contact layer which, preferably directly, is arranged on the first or second connection layer. Deviating from this, the first connection layer may form the first contact and / or the second connection layer may form the second contact. In this case, therefore, at least one separate contact layer, which is provided in addition to the connection layers and forms the first or second contact, can be dispensed with.
- the first connection layer and / or the second connection layer preferably each contain a metal, for example Ti, Pt, Ni, Au, Ag, Al, Rh, Pd, Pt or W or a metallic alloy with at least one of said materials.
- the first and / or the second connection layer are preferably arranged outside the semiconductor body and by a non-epitaxial process, such as vapor deposition or sputtering.
- the protective diode is formed by means of a transition layer, which is arranged on the second semiconductor layer and further preferably adjoins the second semiconductor layer.
- the transition layer and the second connection layer are expediently spaced apart in the lateral direction. A direct electrical contact between the transition layer and the second connection layer is thus easily avoidable.
- an insulating layer is formed between the transition layer and the second connection layer. The danger of an electrical short circuit between the transition layer and the second connection layer can thus be further reduced.
- the transition layer is preferably selected such that a Schottky junction, that is to say a metal-semiconductor junction with an asymmetrical current-voltage characteristic, can be implemented in a simplified manner relative to the second semiconductor layer.
- the protective diode is formed by means of the first connection layer, wherein the first connection layer preferably adjoins the second semiconductor layer.
- the first connection layer thus adjoins the first semiconductor layer and the second semiconductor layer, wherein an ohmic or at least approximately ohmic contact and between the first connection layer and the first contact layer the first terminal layer and the second contact layer, a Schottky contact is formed.
- the material for the layer adjacent to the second semiconductor layer is preferably selected such that a Schottky contact with the second semiconductor layer can be formed in a simplified manner.
- the second semiconductor layer has a locally deliberately reduced contact capability, at least in regions, in particular in the region of the protective diode.
- Such an area of reduced contactability can be produced, for example, by incineration, for example in an oxygen-containing plasma, or sputtering. In this way, the electrical conductivity of the second semiconductor layer can be selectively reduced.
- the layer may contain a material or consist of a material which has a high reflectivity for the radiation generated in the active region.
- a material or consist of a material which has a high reflectivity for the radiation generated in the active region For radiation in the visible or in the ultraviolet spectral range, for example, silver or aluminum are characterized by a high reflectivity.
- the first contact and the second contact are formed on different sides of the carrier.
- the carrier is preferably designed to be electrically conductive.
- the first contact and the second contact are arranged on the side of the carrier facing the semiconductor body.
- the carrier can be selected independently of its electrical conductivity and, in particular, be designed to be electrically insulating.
- electrically conductive carrier material for example, one, preferably doped, semiconductor material is suitable.
- the support may include or consist of silicon, germanium, gallium arsenide or gallium nitride.
- a carrier material for example, a ceramic, such as aluminum nitride or boron nitride.
- a carrier can be designed to be electrically insulating.
- the semiconductor body is preferably materially connected to the carrier.
- the carrier is different in particular from a growth substrate for the semiconductor layer sequence of the semiconductor body.
- the carrier preferably stabilizes the semiconductor layer sequence of the semiconductor body mechanically.
- the growth substrate of the semiconductor body is not required for this purpose and can be removed.
- connection partners which are preferably prefabricated by means of atomic and / or molecular forces held together.
- a cohesive connection can be achieved, for example, by means of a bonding layer, for example an adhesive layer or a solder layer.
- a separation of the connection is accompanied by the destruction of the connection layer and / or at least one of the connection partners.
- the growth substrate for the semiconductor layer sequence of the semiconductor body is at least partially removed.
- the growth substrate may be thinned over the entire surface or in regions or may be removed over the whole area or in regions.
- a semiconductor chip with the growth substrate removed is also referred to as a thin-film semiconductor chip.
- a basic principle of a thin-film light-emitting diode chip is, for example, in I. Schnitzer et al., Appl. Phys. Lett. 63 (16), 18 October 1993, 2174-2176 described, the disclosure of which is hereby incorporated by reference into the present application.
- the semiconductor layer sequence of the semiconductor body is preferably epitaxially deposited, for example by means of MOVPE or MBE.
- the semiconductor body in particular the active region, contains a III-V semiconductor material.
- III-V semiconductor materials high internal quantum efficiencies can be achieved in radiation generation.
- the described construction is generally suitable for optoelectronic semiconductor chips, which are provided for the generation of radiation and / or for the detection of radiation.
- the semiconductor chip can be provided for generating incoherent, partially coherent or coherent radiation.
- a structure according to an LED chip is suitable, for the generation of partially coherent radiation, a structure according to an RCLED chip (Resonant Cavity Light Emitting Diode).
- coherent Radiation can be generated for example by means of a semiconductor laser chip, in particular as edge emitting laser or as a surface emitting laser, such as VCSEL (vertical cavity surface emitting laser) or as VECSEL (vertical external cavity surface emitting laser) may be executed.
- the radiation-emitting semiconductor chips are provided with a semiconductor body having a semiconductor layer sequence which has an active region provided for generating radiation, a first semiconductor layer and a second semiconductor layer.
- a recess is formed, which extends through the active region into the first semiconductor layer.
- a first connection layer is formed on the semiconductor body, wherein the first connection layer extends into the recess.
- the first connection layer is electrically connected to the second semiconductor layer via a protection diode.
- the semiconductor chip is completed.
- a method in which a protective diode can be integrated into the semiconductor chip is so simple and realized cost-effective manner. With this method, a multiplicity of semiconductor chips can be produced simultaneously, in particular next to one another on a wafer. In this method, semiconductor chips can emerge by singulation, in which a protective diode is already integrated.
- the integration of the protective diode can thus take place at the wafer level, that is, before the semiconductor chips are separated.
- a transition layer which adjoins the second semiconductor layer is formed on the second semiconductor layer prior to the formation of the first connection layer.
- a Schottky diode can be formed by means of the transition layer.
- the electrical contact capability of the second semiconductor layer is specifically reduced locally. This can be done in particular before the deposition of the transition layer.
- the electrical contact capability can be reduced by ashing and / or by sputtering.
- the second connection layer is exposed by means of removal of the semiconductor body in regions.
- a contact can be formed, which is provided for electrical contacting of the semiconductor chip.
- the method described is particularly suitable for producing a radiation-emitting semiconductor chip described above.
- the features described in connection with the method can therefore also be used for the semiconductor chip and vice versa.
- a first embodiment of a radiation-emitting semiconductor chip is schematically based on a plan view in FIG. 1B and an associated sectional view taken along the line AA 'in FIG Figure 1A shown.
- the radiation-emitting semiconductor chip 1 has a semiconductor body 2, which is fastened to a carrier 5 by means of a connection layer 8.
- the semiconductor layer sequence which forms the semiconductor body 2 is preferably made epitaxially, for example by means of MOVPE or MBE.
- the semiconductor body has an active region 20 provided for generating radiation, which is arranged between a first semiconductor layer 21 and a second semiconductor layer 22.
- the first semiconductor layer 21 and the second semiconductor layer 22 are different from each other in their conductivity type.
- the second semiconductor layer 22 may be p-type and the first semiconductor layer 21 may be n-type, or vice versa.
- the semiconductor body 2 has a plurality of recesses 25, which extend from the carrier 5 through the second semiconductor layer 22 and the active region 20 into the first semiconductor layer 21.
- the recesses 25 are each of circular design in plan view and are arranged in the form of a matrix.
- the recesses may also have another basic shape, such as a polygonal, for example rectangular or square basic shape.
- the recesses are expediently arranged such that charge carriers in the lateral direction can be uniformly injected from the first semiconductor layer 21 into the active region.
- a sufficiently high electrical conductivity of the first semiconductor layer 21 in the lateral direction of the described embodiment may be provided deviating only a single recess.
- the carrier 5 has a first main surface 51 and a further main surface 52.
- the first main surface 51 faces the semiconductor body 2 and is preferably planar. A cohesive attachment of the semiconductor body to the carrier can be realized in a simplified manner.
- the carrier material is, for example, a, preferably doped, semiconductor material.
- the support may include or consist of silicon, germanium, gallium arsenide or gallium nitride.
- the carrier may contain a ceramic, such as AlN or BN.
- a first connection layer 31 is formed, which extends into the recesses 25 inside.
- the first semiconductor layer 21 can be electrically contacted from the side of the active region 20 facing the support.
- a radiation exit surface 10 of the semiconductor body 2 facing away from the carrier 5 can thus be formed freely by an external electrical contact. The risk of shading the radiation exit surface by a contact which is impermeable to the radiation generated in the active region can be avoided.
- the side surfaces of the recesses 25 are provided with an insulating layer 7. An electrical short circuit of the active region 20 through the first connection layer 31 can be easily prevented.
- the insulating layer 7 may contain, for example, a nitride, such as silicon nitride, an oxide, such as silicon oxide or titanium oxide, or an oxynitride, such as silicon oxynitride, or consist of such a material.
- a nitride such as silicon nitride
- an oxide such as silicon oxide or titanium oxide
- an oxynitride such as silicon oxynitride
- the second semiconductor layer 22 is electrically conductively connected to a second connection layer 32.
- the second connection layer extends in regions between the first connection layer 31 and the second semiconductor layer 22.
- the semiconductor chip 1 has a first contact 35 and a second contact 36.
- the contacts are provided for external electrical contacting of the semiconductor chip and serve to inject charge carriers from different sides of the active region 20 into the active region, so that the injected charge carriers can recombine in the active region with the emission of radiation.
- the semiconductor body can be electrically contacted from the same side of the semiconductor body in such a way that charge carriers can be injected into the active region 20 in different directions during operation. In this way, a semiconductor chip can be realized in a simplified manner whose radiation exit surface is free of external electrical contacts.
- the first contact 35 is electrically conductively connected to the first connection layer 31 via the carrier 5 and the connection layer 8.
- the second contact 36 is on arranged the second connection layer 32 and connected to this electrically conductive.
- a protection diode 4 is formed.
- the protection diode 4 is formed by means of a transition layer 40 which extends from the second semiconductor layer 22 in the vertical direction to the first connection layer 31.
- the protection diode 4 is implemented as a Schottky diode, in which the transition layer 40 and the second semiconductor layer 22 form a metal-semiconductor junction.
- the semiconductor body 2 in particular the active region 20, completely covers the protective diode 4.
- the protective diode is thus integrated into the semiconductor body in such a way that both the area which can be used for generating the radiation and the lateral extent of the semiconductor chip can be maintained.
- the transition layer is preferably selected such that an operating voltage applied in the forward direction during operation of the semiconductor chip 1 results in no or at least no substantial current flow between the first connection layer 31 and the second semiconductor layer 22.
- the current paths within the semiconductor chip are associated with FIG. 2 explained in more detail.
- a semiconductor body which is In x Ga y Al 1-xy N with 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x + y ⁇ 1, in particular with x ⁇ 1, y ⁇ 1, x ⁇ 0 and / or y ⁇ 0, for example, is a transition layer containing TiWN or consists of such a material composition.
- the transition layer 40 may be formed as a highly reflective metal layer.
- silver and aluminum have a high reflectivity in the visible and ultraviolet spectral range. Radiation generated in the active region and radiated in the direction of the carrier 5 can thus be deflected in an efficient manner in the direction of the radiation exit surface.
- a recess 41 is formed in the second connection layer 32. Through this recess, the transition layer 40 extends. The side surfaces of the recess 41 are covered with the insulating layer 7. An electrical short circuit between the transition layer 40 and the second connection layer 32 can thus be avoided.
- the terminal layers 31 and 32 preferably each contain a metal, such as Ti, Pt, Ni, Au, Ag, Al, Rh, Pd, Pt or W or a metallic alloy with at least one of said metals.
- a metal such as Ti, Pt, Ni, Au, Ag, Al, Rh, Pd, Pt or W or a metallic alloy with at least one of said metals.
- the first connection layer 35 and / or the second connection layer 36 can also be configured as a multilayer.
- first connection layer 31 and / or the second connection layer 32 may also contain a TCO (transparent conductive oxide) material, for example zinc oxide, indium oxide or indium tin oxide (ITO).
- TCO transparent conductive oxide
- ITO indium tin oxide
- the semiconductor body 2, in particular the active region 20, preferably contains a III-V semiconductor material.
- III-V semiconductor materials are used for generating radiation in the ultraviolet (In x Ga y Al 1-xy N) over the visible (In x Ga y Al 1-xy N, in particular for blue to green radiation, or In x Ga y Al 1- xy P, in particular for yellow to red radiation) to the infrared (In x Ga y Al 1-xy As) spectral range is particularly suitable.
- In each case 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1 and x + y ⁇ 1, in particular with x ⁇ 1, y ⁇ 1, x ⁇ 0 and / or y ⁇ 0.
- III-V semiconductor materials in particular from the mentioned material systems, high internal quantum efficiencies can continue to be achieved in the radiation generation.
- the protective diode 4 of the exemplary embodiment shown can also be formed by means of the first connection layer 31, wherein the first connection layer adjoins the second semiconductor layer 22.
- the first connection layer 31 can therefore form an ohmic contact with the first semiconductor layer 21 for the semiconductor body 2 and can be electrically connected to the second semiconductor layer 22 via a Schottky contact.
- connection layer and the transition layer are designed to be spaced apart, provided that the connection layer and the transition layer are electrically conductively connected, for example via the carrier or via the connection layer.
- the electrical contact capability of the second semiconductor layer can be selectively locally reduced in regions, in particular in the region of the protective diode 4 (in FIG Figure 1A not explicitly shown).
- the freedom in the choice of material for the layer adjacent to the second semiconductor layer 22, ie the transition layer 40 or the first connection layer 31, is thus increased.
- the contacts 35 and 36 can also be arranged on the same side of the carrier 5, in particular on the first main surface 51.
- the carrier 5 can also be made electrically insulating.
- the semiconductor chip 1 is embodied as a thin-film semiconductor chip, in which the growth substrate the semiconductor layer sequence of the semiconductor body 2 is removed. Deviating from this, however, the growth substrate can also be removed only in certain regions or be thinned over the whole area or in areas.
- the semiconductor chip can also be embodied as RCLED or as a semiconductor laser chip, in particular as a VCSEL or as a VECSEL.
- the current paths in the semiconductor chip 1 are in FIG. 2 shown schematically.
- the first semiconductor layer 21 and the carrier 5 are doped n-type by way of example, and the second semiconductor layer 22 is doped p-type.
- the diode structure of the semiconductor body 2 provided for generating radiation is operated in the forward direction, so that Charge carriers can be injected into the active region 20 and recombine there under emissions of radiation.
- the protective diode 4 is connected in this polarity, however, in the reverse direction. Thus, no or at least no significant portion of the operating current flows between the contacts 35, 36 of the semiconductor chip through the transition layer 40.
- the risk of damage to the semiconductor chip 1 can be reduced.
- the semiconductor chip can be operated accordingly such that a first contact 35 with respect to the second contact 36 positive voltage is applied.
- FIGS. 3A to 3E An exemplary embodiment of a method for producing a radiation-emitting semiconductor chip is disclosed in US Pat FIGS. 3A to 3E shown by intermediate steps shown schematically in sectional view.
- the semiconductor layer sequence that forms the semiconductor body 2 is preferably deposited epitaxially on a growth substrate 200.
- a second connection layer is formed on the second semiconductor layer 22. This can be done for example by means of vapor deposition or sputtering.
- the second connection layer 32 is formed in a locally structured manner, for example by means of lithographic techniques, such that the second semiconductor layer 22 is exposed in regions.
- recesses 25 are formed in the semiconductor body 2 which extend through the second semiconductor layer 22 and the active region 20 into the first semiconductor layer 21. Subsequently, the semiconductor body 2 is provided with an insulating layer 7, which covers the second terminal layer 32 and in particular the side surfaces of the recess 41 and the recesses 25.
- a transition layer 40 is formed in the recess 41.
- the transition layer 40 may be, for example vapor-deposited or sputtered on. As in Figure 3D is shown, is subsequently deposited on the insulating layer 7, a first connection layer 31 which extends into the recesses 25 in and further adjacent to the transition layer 40 immediately.
- the semiconductor body 2 can be materially connected to a carrier 5. This can be done by means of a bonding layer 8, which may contain, for example, a solder or an electrically conductive adhesive.
- the semiconductor layer sequence of the semiconductor body 2 can be mechanically stabilized.
- the growth substrate 200 is no longer necessary for this purpose and can be removed.
- the removal of the growth substrate can be effected, for example, mechanically, for example by means of grinding, polishing or lapping and / or chemically, for example by wet-chemical or dry-chemical etching.
- a laser stripping method laser lift-off
- laser lift-off can also be used.
- Material of the semiconductor body 2 is partially removed, so as to expose the second connection layer 32 in areas.
- a first contact 35 and a second contact 36 are deposited on the semiconductor body 2 remote from the second main surface 52 of the carrier 5 and on the second connection layer 32. This can be done for example by means of vapor deposition or sputtering.
- the finished semiconductor chip, as in the Related to the Figures 1A and 1B is described in is FIG. 3F shown.
- the integration of the protective diode 4 in the semiconductor chip 1 can be realized in the described method without a significant overhead.
- the electrical contact capability of the semiconductor body 2, in particular of the second semiconductor layer 22, can be locally reduced in a targeted manner before the deposition of the transition layer 40. This preferably takes place before the deposition of the first connection layer.
- the reduction of the contact ability can be carried out, for example, by means of incineration, for example in an O 2 plasma, or sputtering.
- the electrical conductivity can be selectively reduced locally in the region of the recess 41.
- the described method for the production has been shown only by way of example for the production of a semiconductor chip.
- the semiconductor layer sequence can be provided on a wafer, wherein a plurality of semiconductor bodies can emerge from the semiconductor layer sequence by singulation.
- the separation can be done for example by sawing, breaking, cutting or etching.
Landscapes
- Led Devices (AREA)
- Electrodes Of Semiconductors (AREA)
- Semiconductor Lasers (AREA)
Claims (15)
- Puce en semiconducteur (1) émettrice de rayonnement, laquelle possède un support (5) et un corps en semiconducteur (2) ayant une suite de couches en semiconducteur,- la suite de couches en semiconducteur possédant une zone active (20) destinée à générer un rayonnement, une première couche en semiconducteur (21) et une deuxième couche en semiconducteur (22) ;- la zone active (20) étant disposée entre la première couche en semiconducteur (21) et la deuxième couche en semiconducteur (22) ;- la première couche en semiconducteur (21) étant disposée sur le côté de la couche active (20) à l'opposé du support (5) ;- le corps en semiconducteur (2) possédant au moins une cavité (25) qui s'étend à travers la zone active (20) ;- la première couche en semiconducteur (21) étant reliée électriquement à une première couche de raccordement (31), la première couche de raccordement (31) s'étendant dans la cavité (25) de la première couche en semiconducteur (21) en direction du support (5) ;- la première couche de raccordement (31) étant reliée électriquement à la deuxième couche en semiconducteur (22) par le biais d'une diode de protection (4), caractérisée en ce quela zone active (20) recouvre entièrement la diode de protection (4) dans une vue de dessus de la puce en semiconducteur (1).
- Puce en semiconducteur émettrice de rayonnement selon la revendication 1, avec laquelle la première couche de raccordement (31) s'étend au moins dans certaines zones entre le support (5) et la deuxième couche en semiconducteur (22).
- Puce en semiconducteur émettrice de rayonnement selon la revendication 1 ou 2, avec laquelle la diode de protection (4) est réalisée sous la forme d'une diode Schottky.
- Puce en semiconducteur émettrice de rayonnement selon l'une des revendications 1 à 3, avec laquelle la diode de protection (4) est formée au moyen de la deuxième couche en semiconducteur.
- Puce en semiconducteur émettrice de rayonnement selon l'une des revendications 1 à 4, avec laquelle une deuxième couche de raccordement (32) est disposée au moins dans certaines zones entre la première couche de raccordement (31) et la deuxième couche en semiconducteur (22), laquelle est reliée de manière électriquement conductrice à la deuxième couche en semiconducteur (22).
- Puce en semiconducteur émettrice de rayonnement selon la revendication 5, avec laquelle la diode de protection (4) est formée au moyen d'une couche de transition (40) qui est adjacente à la deuxième couche en semiconducteur (22), une couche isolante (7) étant formée entre la couche de transition (40) et la deuxième couche de raccordement (32).
- Puce en semiconducteur émettrice de rayonnement selon l'une des revendications 1 à 5, avec laquelle la diode de protection (4) est formée au moyen de la première couche de raccordement (31).
- Puce en semiconducteur émettrice de rayonnement selon l'une des revendications 1 à 7, avec laquelle un substrat de croissance (200) pour la suite de couches en semiconducteur du corps en semiconducteur (2) est enlevé au moins dans certaines zones.
- Puce en semiconducteur émettrice de rayonnement selon la revendication 1, avec laquelle- la première couche de raccordement (31) s'étend au moins dans certaines zones entre le support (5) et la deuxième couche en semiconducteur (22) ;- un substrat de croissance (200) pour la suite de couches en semiconducteur du corps en semiconducteur (2) est enlevé au moins dans certaines zones ; et- le support (5) stabilise mécaniquement la suite de couches en semiconducteur.
- Puce en semiconducteur émettrice de rayonnement selon l'une des revendications 1 à 9, laquelle est réalisée sous la forme d'une puce de LED, d'une puce de RCLED ou d'une puce de diode laser.
- Procédé de fabrication d'une puce en semiconducteur émettrice de rayonnement, comprenant les étapes suivantes :a) fourniture d'un corps en semiconducteur (2) ayant une suite de couches en semiconducteur, laquelle possède une zone active (20) destinée à générer un rayonnement, une première couche en semiconducteur (21) et une deuxième couche en semiconducteur (22) ;b) formation d'une cavité (25) dans le corps en semiconducteur (2), laquelle s'étend à travers la zone active (20) pour pénétrer à l'intérieur de la première couche en semiconducteur (21) ;- formation d'une première couche de raccordement (31) sur le corps en semiconducteur (2), la première couche de raccordement (31) s'étendant à l'intérieur de la cavité (25) et la première couche de raccordement (31) étant reliée électriquement à la deuxième couche en semiconducteur (22) par le biais d'une diode de protection (4) ; etd) fabrication de la puce en semiconducteur, caractérisée en ce quela zone active (22) recouvre entièrement la diode de protection (4) dans une vue de dessus de la puce en semiconducteur (1).
- Procédé selon la revendication 11, avec lequel une couche de transition (40) est formée sur la deuxième couche en semiconducteur (22) avant l'étape c), laquelle est adjacente à la deuxième couche en semiconducteur (22).
- Procédé selon la revendication 12, avec lequel une aptitude au contact électrique de la deuxième couche en semiconducteur (22) est réduite localement de manière ciblée.
- Procédé selon la revendication 13, avec lequel l'aptitude au contact électrique est réduite dans un plasma contenant de l'oxygène et/ou par pulvérisation cathodique.
- Procédé selon l'une des revendications 11 à 14, avec lequel une deuxième couche de raccordement (32) est disposée au moins dans certaines zones entre la première couche de raccordement (31) et la deuxième couche en semiconducteur (22), laquelle est reliée électriquement à la deuxième couche en semiconducteur (22), et avec lequel la deuxième couche de raccordement (32) est dégagée par un enlèvement du corps en semiconducteur (2) au moins dans certaines zones.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP16187828.5A EP3128555B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice émettant de lumière avec protection integrée contre décharges électrostatiques et procédé de fabrication correspondant |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102008034560.1A DE102008034560B4 (de) | 2008-07-24 | 2008-07-24 | Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips |
PCT/DE2009/000885 WO2010009690A1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16187828.5A Division-Into EP3128555B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice émettant de lumière avec protection integrée contre décharges électrostatiques et procédé de fabrication correspondant |
EP16187828.5A Division EP3128555B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice émettant de lumière avec protection integrée contre décharges électrostatiques et procédé de fabrication correspondant |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2304799A1 EP2304799A1 (fr) | 2011-04-06 |
EP2304799B1 true EP2304799B1 (fr) | 2016-10-26 |
Family
ID=41254639
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16187828.5A Active EP3128555B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice émettant de lumière avec protection integrée contre décharges électrostatiques et procédé de fabrication correspondant |
EP09775907.0A Active EP2304799B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP16187828.5A Active EP3128555B1 (fr) | 2008-07-24 | 2009-06-25 | Puce semi-conductrice émettant de lumière avec protection integrée contre décharges électrostatiques et procédé de fabrication correspondant |
Country Status (7)
Country | Link |
---|---|
US (1) | US8710537B2 (fr) |
EP (2) | EP3128555B1 (fr) |
JP (1) | JP5511813B2 (fr) |
KR (2) | KR101710849B1 (fr) |
CN (1) | CN101971344B (fr) |
DE (1) | DE102008034560B4 (fr) |
WO (1) | WO2010009690A1 (fr) |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102008034560B4 (de) | 2008-07-24 | 2022-10-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips |
DE102009006177A1 (de) * | 2008-11-28 | 2010-06-02 | Osram Opto Semiconductors Gmbh | Strahlungsemittierender Halbleiterchip |
DE102009032486A1 (de) | 2009-07-09 | 2011-01-13 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
DE102010013494A1 (de) | 2010-03-31 | 2011-10-06 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
DE102010027679A1 (de) * | 2010-07-20 | 2012-01-26 | Osram Opto Semiconductors Gmbh | Optoelektronisches Bauelement |
KR101692410B1 (ko) * | 2010-07-26 | 2017-01-03 | 삼성전자 주식회사 | 발광소자 및 그 제조방법 |
KR101154320B1 (ko) * | 2010-12-20 | 2012-06-13 | 엘지이노텍 주식회사 | 발광소자, 발광소자 패키지 및 이를 포함하는 조명 장치 |
TWI435477B (zh) * | 2010-12-29 | 2014-04-21 | Lextar Electronics Corp | 高亮度發光二極體 |
DE102011011378A1 (de) * | 2011-02-16 | 2012-08-16 | Osram Opto Semiconductors Gmbh | Trägersubstrat und Verfahren zur Herstellung von Halbleiterchips |
TW201240146A (en) * | 2011-03-16 | 2012-10-01 | Hon Hai Prec Ind Co Ltd | Light-emitting semiconductor chip |
TW201240147A (en) * | 2011-03-22 | 2012-10-01 | Hon Hai Prec Ind Co Ltd | Light-emitting semiconductor chip |
CN102694098A (zh) * | 2011-03-25 | 2012-09-26 | 鸿富锦精密工业(深圳)有限公司 | 半导体发光芯片 |
JP5887638B2 (ja) * | 2011-05-30 | 2016-03-16 | 億光電子工業股▲ふん▼有限公司Everlight Electronics Co.,Ltd. | 発光ダイオード |
KR101973608B1 (ko) * | 2011-06-30 | 2019-04-29 | 엘지이노텍 주식회사 | 발광소자 |
US8809897B2 (en) * | 2011-08-31 | 2014-08-19 | Micron Technology, Inc. | Solid state transducer devices, including devices having integrated electrostatic discharge protection, and associated systems and methods |
KR101868537B1 (ko) * | 2011-11-07 | 2018-06-19 | 엘지이노텍 주식회사 | 발광소자 및 이를 포함하는 발광 소자 패키지 |
CN102522400B (zh) * | 2011-11-30 | 2014-11-26 | 晶科电子(广州)有限公司 | 一种防静电损伤的垂直发光器件及其制造方法 |
DE102011056888A1 (de) | 2011-12-22 | 2013-06-27 | Osram Opto Semiconductors Gmbh | Anzeigevorrichtung und Verfahren zur Herstellung einer Anzeigevorrichtung |
DE102012105176B4 (de) * | 2012-06-14 | 2021-08-12 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronischer Halbleiterchip |
DE102012108627B4 (de) * | 2012-09-14 | 2021-06-10 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronische Halbleitervorrichtung und Trägerverbund |
TWI661578B (zh) | 2013-06-20 | 2019-06-01 | 晶元光電股份有限公司 | 發光裝置及發光陣列 |
TWI536605B (zh) * | 2013-08-20 | 2016-06-01 | 隆達電子股份有限公司 | 發光二極體 |
DE102013112881A1 (de) * | 2013-11-21 | 2015-05-21 | Osram Opto Semiconductors Gmbh | Optoelektronischer Halbleiterchip |
JP6351531B2 (ja) | 2015-03-23 | 2018-07-04 | 株式会社東芝 | 半導体発光素子 |
DE102015108532A1 (de) | 2015-05-29 | 2016-12-01 | Osram Opto Semiconductors Gmbh | Anzeigevorrichtung mit einer Mehrzahl getrennt voneinander betreibbarer Bildpunkte |
DE102015111485A1 (de) | 2015-07-15 | 2017-01-19 | Osram Opto Semiconductors Gmbh | Optoelektronisches Halbleiterbauelement |
DE102015111487A1 (de) | 2015-07-15 | 2017-01-19 | Osram Opto Semiconductors Gmbh | Verfahren zur Herstellung eines optoelektronischen Halbleiterchips und optoelektronischer Halbleiterchip |
DE102017104735B4 (de) | 2017-03-07 | 2021-09-02 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierender Halbleiterchip |
DE102017112223A1 (de) * | 2017-06-02 | 2018-12-06 | Osram Opto Semiconductors Gmbh | Halbleiterlaser-Bauteil und Verfahren zur Herstellung eines Halbleiterlaser-Bauteils |
DE102018119688B4 (de) * | 2018-08-14 | 2024-06-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Optoelektronisches Halbleiterbauelement mit einem ersten Kontaktelement, welches einen ersten und einen zweiten Abschnitt aufweist sowie Verfahren zur Herstellung des optoelektronischen Halbleiterbauelements |
US20220246693A1 (en) * | 2019-08-23 | 2022-08-04 | Sharp Kabushiki Kaisha | Light-emitting device, display device, and method of manufacturing light-emitting device |
EP4328985A1 (fr) | 2022-08-24 | 2024-02-28 | Albert-Ludwigs-Universität Freiburg | Micro del, implant neural et procédé de fabrication d'une micro del |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19945134C2 (de) * | 1999-09-21 | 2003-08-14 | Osram Opto Semiconductors Gmbh | Lichtemittierendes Halbleiterbauelement hoher ESD-Festigkeit und Verfahren zu seiner Herstellung |
TW492202B (en) | 2001-06-05 | 2002-06-21 | South Epitaxy Corp | Structure of III-V light emitting diode (LED) arranged in flip chip configuration having structure for preventing electrostatic discharge |
DE10147886B4 (de) | 2001-09-28 | 2006-07-13 | Osram Opto Semiconductors Gmbh | Lumineszenzdiode mit vergrabenem Kontakt und Herstellungsverfahren |
TWI220578B (en) | 2003-09-16 | 2004-08-21 | Opto Tech Corp | Light-emitting device capable of increasing light-emitting active region |
DE102004005269B4 (de) * | 2003-11-28 | 2005-09-29 | Osram Opto Semiconductors Gmbh | Lichtemittierendes Halbleiterbauelement mit einer Schutzdiode |
TWI223457B (en) * | 2004-01-20 | 2004-11-01 | Opto Tech Corp | Light-emitting device to increase the area of active region |
US7064353B2 (en) | 2004-05-26 | 2006-06-20 | Philips Lumileds Lighting Company, Llc | LED chip with integrated fast switching diode for ESD protection |
CN100386891C (zh) | 2004-07-02 | 2008-05-07 | 北京工业大学 | 高抗静电高效发光二极管及制作方法 |
JP2006086300A (ja) | 2004-09-15 | 2006-03-30 | Sanken Electric Co Ltd | 保護素子を有する半導体発光装置及びその製造方法 |
KR100576872B1 (ko) | 2004-09-17 | 2006-05-10 | 삼성전기주식회사 | 정전기 방전 방지기능을 갖는 질화물 반도체 발광소자 |
TWI244748B (en) * | 2004-10-08 | 2005-12-01 | Epistar Corp | A light-emitting device with a protecting structure |
KR20060062715A (ko) * | 2004-12-06 | 2006-06-12 | 삼성전기주식회사 | 정전방전 보호 다이오드를 구비한 GaN 계열 반도체발광 소자 |
US7754507B2 (en) * | 2005-06-09 | 2010-07-13 | Philips Lumileds Lighting Company, Llc | Method of removing the growth substrate of a semiconductor light emitting device |
TWI257186B (en) | 2005-09-29 | 2006-06-21 | Formosa Epitaxy Inc | Light-emitting diode chip |
US7994514B2 (en) * | 2006-04-21 | 2011-08-09 | Koninklijke Philips Electronics N.V. | Semiconductor light emitting device with integrated electronic components |
JP5044986B2 (ja) | 2006-05-17 | 2012-10-10 | サンケン電気株式会社 | 半導体発光装置 |
CN100530622C (zh) * | 2007-05-14 | 2009-08-19 | 金芃 | 垂直结构的半导体芯片或器件及制造方法 |
DE102008034560B4 (de) | 2008-07-24 | 2022-10-27 | OSRAM Opto Semiconductors Gesellschaft mit beschränkter Haftung | Strahlungsemittierender Halbleiterchip und Verfahren zur Herstellung eines strahlungsemittierenden Halbleiterchips |
-
2008
- 2008-07-24 DE DE102008034560.1A patent/DE102008034560B4/de active Active
-
2009
- 2009-06-25 KR KR1020167015687A patent/KR101710849B1/ko active IP Right Grant
- 2009-06-25 JP JP2011519023A patent/JP5511813B2/ja active Active
- 2009-06-25 KR KR1020107020375A patent/KR101632082B1/ko active IP Right Grant
- 2009-06-25 US US12/922,736 patent/US8710537B2/en active Active
- 2009-06-25 EP EP16187828.5A patent/EP3128555B1/fr active Active
- 2009-06-25 EP EP09775907.0A patent/EP2304799B1/fr active Active
- 2009-06-25 CN CN2009801090394A patent/CN101971344B/zh active Active
- 2009-06-25 WO PCT/DE2009/000885 patent/WO2010009690A1/fr active Application Filing
Also Published As
Publication number | Publication date |
---|---|
KR20110031897A (ko) | 2011-03-29 |
DE102008034560B4 (de) | 2022-10-27 |
WO2010009690A1 (fr) | 2010-01-28 |
JP5511813B2 (ja) | 2014-06-04 |
CN101971344A (zh) | 2011-02-09 |
EP3128555A1 (fr) | 2017-02-08 |
KR20160075810A (ko) | 2016-06-29 |
US8710537B2 (en) | 2014-04-29 |
KR101632082B1 (ko) | 2016-06-20 |
CN101971344B (zh) | 2012-10-17 |
EP2304799A1 (fr) | 2011-04-06 |
US20120018763A1 (en) | 2012-01-26 |
EP3128555B1 (fr) | 2021-08-18 |
JP2011528855A (ja) | 2011-11-24 |
DE102008034560A1 (de) | 2010-02-04 |
KR101710849B1 (ko) | 2017-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2304799B1 (fr) | Puce semi-conductrice qui émet un rayonnement et est protégée contre les décharges électrostatiques et procédé de fabrication correspondant | |
EP2274774B1 (fr) | Puce semi-conductrice émettant un rayonnement | |
EP2351079B1 (fr) | Puce semi-conductrice émettant un rayonnement | |
DE102010034665B4 (de) | Optoelektronischer Halbleiterchip und Verfahren zur Herstellung von optoelektronischen Halbleiterchips | |
EP2015372B1 (fr) | Puce semi-conductrice et procédé de fabrication d'une puce semi-conductrice | |
EP2583305B1 (fr) | Procédé de fabrication d'une puce à semi-conducteur optoélectronique, et puce à semi-conducteur optoélectronique | |
DE102006057747B4 (de) | Halbleiterkörper und Halbleiterchip mit einem Halbleiterkörper | |
EP2499668B1 (fr) | Composant semi-conducteur à couche mince pourvu d'une structure à diodes de protection, et procédé de production d'un composant semi-conducteur à couche mince | |
EP2011160B1 (fr) | Puce à semi-conducteur optoélectronique | |
WO2008131735A1 (fr) | Corps semi-conducteur opto-électronique et son procédé de réalisation | |
EP3381061B1 (fr) | Puce de diode électroluminescente avec une séquence de couches réfléchissantes | |
EP2057696B1 (fr) | Puce de semiconducteur optoélectronique et procédé de sa fabrication | |
WO2012110364A1 (fr) | Puce semi-conductrice optoélectronique et procédé de fabrication d'une puce semi-conductrice optoélectronique | |
WO2012110365A1 (fr) | Substrat porteur et procédé de fabrication de puces semi-conductrices | |
DE112016003142B4 (de) | Verfahren zur Herstellung von optoelektronischen Halbleiterchips und optoelektronische Halbleiterchips | |
EP1592070A2 (fr) | Dispositif électroluminescent ou détection de lumière semiconducteur et procédé de deposition structuré d'un contact sur une puce semiconducteur |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100906 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: STREUBEL, KLAUS Inventor name: HAHN, BERTHOLD Inventor name: KLEIN, MARKUS Inventor name: ENGL, KARL |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: H01L 27/15 20060101AFI20151110BHEP Ipc: H01L 33/38 20100101ALI20151110BHEP |
|
INTG | Intention to grant announced |
Effective date: 20151123 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160520 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 840564 Country of ref document: AT Kind code of ref document: T Effective date: 20161115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502009013282 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: FP |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170127 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170126 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170226 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170227 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502009013282 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20170126 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170727 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20170625 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170625 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170625 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170625 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20170630 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090625 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20161026 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230825 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240619 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20240619 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20240620 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20240628 Year of fee payment: 16 |