[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2390562B1 - Module d'éclairage pour projecteur de véhicule automobile - Google Patents

Module d'éclairage pour projecteur de véhicule automobile Download PDF

Info

Publication number
EP2390562B1
EP2390562B1 EP11168091.4A EP11168091A EP2390562B1 EP 2390562 B1 EP2390562 B1 EP 2390562B1 EP 11168091 A EP11168091 A EP 11168091A EP 2390562 B1 EP2390562 B1 EP 2390562B1
Authority
EP
European Patent Office
Prior art keywords
emitter
reflector
plane
point
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP11168091.4A
Other languages
German (de)
English (en)
Other versions
EP2390562A2 (fr
EP2390562A3 (fr
Inventor
Pierre Albou
Vanesa Sanchez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP2390562A2 publication Critical patent/EP2390562A2/fr
Publication of EP2390562A3 publication Critical patent/EP2390562A3/fr
Application granted granted Critical
Publication of EP2390562B1 publication Critical patent/EP2390562B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/04Optical design
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/155Surface emitters, e.g. organic light emitting diodes [OLED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/26Elongated lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/60Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution
    • F21S41/65Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources
    • F21S41/663Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by a variable light distribution by acting on light sources by switching light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/36Combinations of two or more separate reflectors
    • F21S41/365Combinations of two or more separate reflectors successively reflecting the light

Definitions

  • the invention relates to a lighting module or a lighting unit for a motor vehicle headlight.
  • the lighting modules of the state of the art generate a beam allowing the production of a light beam, allowing the illumination of the road, alone or in combination with the beam or beams of other modules. They generally include a set of optical elements associated to form the beam. Some of these beams are cut-off beams, in particular of the anti-fog or code type. Some modules, generating cutoff beams, use imaging lenses and a bender, i.e. a reflective plate or horizontal reflective cover, to create the cutoff.
  • Dual-function lighting modules are also known, in particular from FR 2 860 280 or after US 7,387,416 .
  • the document EP 1 610 057 A1 also describes such a lighting module.
  • the folding machine is used both for the upper cut-off of the code beam and for the lower cut-off of the additional beam, making it possible, in association with the code beam, to produce a high beam.
  • the image of the leading edge forms a dark separation line between the beams given by the two transmitters to produce the driving beam.
  • it has been planned to make the common cut-off blurry by defocusing the folder or the lens, or by adding patterns to the latter.
  • the merger of the two beams, taking place by means of blurred areas also leaves a darker area between the two beams.
  • the modifications tending to make the cut-off fuzzy reduce the value of the maximum intensity of the high beam.
  • the object of the invention is to produce projectors that are simpler in design.
  • An object of the invention is a lighting module for a motor vehicle headlight, suitable for providing, in particular according to the command applied to it, a first cut-off beam, the lighting module is defined in claim 1.
  • Forward is understood to mean forward according to the direction of propagation of the light, from the light emitter towards the lens.
  • Such a module makes it possible to create a cut-off beam without the aid of a horizontal or vertical cover.
  • the module thus comprises fewer parts.
  • Another advantage of such a module is that it can also be associated with another reflector to create a dual-function module, able to generate a cut-off beam, for example a code or a horizontal cut-off beam, and a second beam. with cut-off, which superimposed on the first produces a high beam.
  • a cut-off beam for example a code or a horizontal cut-off beam
  • a second beam with cut-off, which superimposed on the first produces a high beam.
  • the absence of a cover, in particular horizontal will make it easier to produce a dual-function lighting module giving a high beam not including a dark band between the superimposed beams.
  • the presence of mechanisms necessary when the cache is mobile to pass from the route function to the code function is also avoided.
  • the first reflector is determined in such a way that the images of the first emitter, which it provides in the plane of this emitter, meet the control curve while being entirely on the side of the light spot. This makes it possible to improve the sharpness of the cut-off and to bring the maximum intensity of the first beam closer to the cut-off of this first beam.
  • the cut-off beam is a beam with a higher cut-off, the illuminated zone being located below this cut-off.
  • a variant of the invention relates to a lighting module comprising a lighting unit, as defined in claim 3.
  • the beam obtained by this embodiment also makes it possible to create a cut-off beam without the aid of a horizontal or vertical mask.
  • said given point of the emitter is a point on the front or rear edge of the emitter depending on whether the control curve respectively constitutes the rear edge or the leading edge of the light spot generated by the first reflector and the first emitter.
  • the beam produced by the lighting unit thus also has a cutoff.
  • the given direction may be inclined relative to the plane of the emitter of the lighting unit.
  • the subject of the invention is also a motor vehicle headlight, comprising at least one module according to the invention.
  • the headlamp comprises for example a housing closed by a transparent closing glass, this module being inside the space closed by the housing and the glass.
  • This headlamp can produce a long-range lighting beam, by means of a lighting unit according to the invention, such as a high beam, and also a cut-off lighting beam, by means of the lighting module. according to the invention.
  • the lighting unit and the module can also be separate each having its own lens. These lenses can be, according to the invention, very close and be placed adjacent. A uniform dark appearance is thus obtained.
  • the longitudinal direction corresponds to the direction going from the rear to the front of the vehicle, ie approximately the overall direction of emission of the lighting beam of the module or of the unit according to the invention.
  • the vertical direction is perpendicular to the longitudinal direction and corresponds to the verticality when the unit or module is operating in a vehicle on a horizontal road.
  • the transverse direction corresponds to a direction perpendicular to the longitudinal direction and to the vertical direction.
  • a lighting module including a lighting unit.
  • the lighting module and the lighting unit preferably share the same lens. This not only gains in homogeneous dark appearance, but also in compactness.
  • the invention also relates to a motor vehicle containing such a headlight.
  • a dual-function lighting module M for a motor vehicle headlight comprising a first plane emitter formed by the photoemissive emitter 1 of a first light-emitting diode or LED to give a cut-off beam.
  • a fog light beam is a beam with a top cutoff that is flat and horizontal.
  • the plane ⁇ 1 ( Fig. 2 ) of the LED i.e. the plane containing the light emitting emitter of the LED, is generally horizontal when the module is installed in the vehicle.
  • this plane ⁇ 1 can be inclined 0.57 ° (1%) below the horizontal, when mounted on a vehicle. We can then take the flat cut on the horizontal.
  • a first reflector R1 is associated with the emitter 1.
  • the photoemissive emitter 1 of the first LED emits upwards and the first reflector R1 is arranged above the first LED.
  • the photoemissive emitter 1 of the first LED emits downwards and the reflector R'1 is arranged below the LED.
  • This first reflector R1 is determined so as to create in the horizontal plane of the first emitter 1 a light spot S ( Fig. 2 ) limited by a control curve A which can be chosen arbitrarily.
  • the curve A constitutes the rear edge of the spot S, in particular when the reflector R1 is above the first emitter 1 as in the case of Fig. 1-3 .
  • this curve A can constitute the front edge of the spot S, in particular when the first reflector R'1 is below the emitter as in the case of Fig. 19 .
  • the curve A which is not materialized, is contained in the plane ⁇ 1 of the emitter 1 and is located in front of this emitter.
  • front and rear are to be understood according to the direction of propagation of the light which goes from the reflector R1 towards the front, that is to say towards the lens.
  • the reflector R1 for the code is calculated by considering the reverse path of the light coming from a lens L so that a ray r resting on the control curve A and reflected at a point p of the first reflector R1 arrives on the front corner 1a of the emitter 1 , located on the side opposite to the point of the entry face of the lens L, from which the considered ray r originates, with respect to the vertical plane Q1 passing through the optical axis.
  • ray based on the curve A is meant a ray meeting the curve A and contained in the plane perpendicular to the curve A at the point of intersection of the ray considered and of the curve A.
  • the optical axis is by example, as shown in figure 4 , the axis contained in the plane of the light emitter and passing through the center of the light emitter and substantially perpendicular to the front edge of the light emitter. The same condition is applied to another point p 'of the first reflector R1 which reflects a ray r' also towards the corner 1a.
  • the rays are reflected at points of the first reflector R1 such as the point pb to arrive at the front corner 1b located on the opposite side with respect to the plane Q1.
  • the L lens ( Fig. 1-3 ) is conjugate of the first reflector R1 and is determined such that its cut Lc ( Fig. 2 ) by a plane Vc orthogonal to the control curve A at any point ac is identical to that of a stigmatic reference lens between the point of intersection ac with the plane Vc, and infinity, according to the direction given by the intersection ⁇ c of the plane Vc and the plane ⁇ 1 of the curve A.
  • the draft D which corresponds to the distance between the focus ac of a vertical section of the lens L and the entry face Le of this lens, is constant, and the section of the entry face Le by the plane ⁇ 1 is formed by a curve B parallel to the curve A at the distance D.
  • This draw D, the section of the entry face Le, and the thickness at the center for this section are identical to those of the reference lens.
  • the curve A is located in a horizontal plane which is that of the LED 1.
  • the plane Vc is therefore vertical and orthogonal to the tangent to the curve A at the point ac.
  • the intersection ⁇ c is horizontal and itself orthogonal to the tangent to the curve A at the point ac.
  • a light ray r1 reflected by the first reflector R1 and passing through the point ac leaves the lens L along the ray e1 parallel to ⁇ c.
  • the ray r1 comes from the front edge of the emitter 1.
  • the other light rays of the emitter 1 will come from a point located behind that which provides the ray r1 so that the reflected ray r2 will be above the ray r1 so as to meet the plane ⁇ 1 in front of the line A, in the spot S.
  • This ray r2 will leave the lens L following an emerging ray e2 inclined downwards with respect to the direction ⁇ c and to the horizontal plane ⁇ 1.
  • the lens L makes it possible to spread the beam due to the convex shape of the curve A towards the front; the shape of the lens L is substantially toric with a convex exit face Ls.
  • the beam given by the assembly of the first emitter 1, the first reflector R1 and the lens L is a beam with horizontal cut-off, the cut-off line being determined by the curve A, which has no material thickness, and the beam is located below the cut-off line since the rays such as e2 are inclined downwards with respect to the horizontal plane ⁇ 1.
  • the images such as I1, I2 of LED 1 given by the different points of the first reflector R1 are located in front of curve A.
  • One of the vertices of the rectangular image is in contact with curve A.
  • the device thus formed creates a beam with a flat cut-off, the horizontal distribution (and in particular the width) of which is controlled by the curve of plane control A initially chosen.
  • the light may be above the cut-off line, the first emitter 1 emitting upwards and control curve A constituting the front edge of the spot of light, or the first emitter 1 emitting downwards and control curve A constituting the rear edge of the spot of light, or well below the cut-off line, the first emitter 1 emitting upwards, and control curve A constituting the rear edge of the spot S, or emitter 1 emitting downward and control curve constituting the front edge of the light spot.
  • This second horizontal plane transmitter 2 having a transmission direction opposite to that of the first transmitter 1 and vertically offset with respect to this first transmitter 1 in its own transmission direction.
  • This second emitter 2 can also be offset in top view relative to the first emitter 1 in order to facilitate the physical location of the sources, namely closer to or further from the lens L than the first emitter 1.
  • the second plane emitter 2 is formed by the photoemissive element of a second LED and is intended to contribute to the establishment of a second beam which, in combination with the beam of the first emitter 1, gives a driving beam.
  • the second LED emits downward as shown in Fig. 3 .
  • the LEDs 1, 2 are arranged on the two opposite parallel faces of the same support 3, the second LED 2 being located behind the LED 1.
  • a second reflector R2 is located below the LED 2 to provide the beam which is added to the cut-off beam of the first reflector R1 to produce the driving beam.
  • the second reflector R2 is determined as shown in Fig. 6 so that, following a reverse path of light, light rays r3, r4 parallel to the arbitrary direction chosen in a plane parallel to the parallel planes of the emitters 1, 2, after deflection by the lens L and reflection at a point m3 , m4 of the second reflector R2, meet the second emitter 2 at a point 2a, 2b of its front edge, preferably located at an angle from the second emitter 2. Still considering the reverse path of the light, the ray reflected last by the point m3 of the reflector R2 arrives at the corner 2a of the second emitter 2 situated on the side opposite the point m3 with respect to the vertical plane Q1 passing through the optical axis. For the ray r4 which is on the other side of this plane Q1 with respect to r3, the ray reflected by m4 comes from the corner 2b located at the other end of the front edge of the second emitter 2.
  • the plane ⁇ 2 orthogonal to the rays r3, r4 is a wave surface for the parallel beam leaving the lens L and coming from the reflector R2.
  • the calculation of the second reflector R2 is carried out by expressing that the optical path is constant for rays such as r3, r4 between the plane ⁇ 2 and the point 2a, 2b of the second emitter 2 from which the ray originates.
  • the device thus formed creates a concentrated beam whose light is located on the opposite side (vertically) of the horizontal cut-off of the beam created with the first emitter 1.
  • the parallel to the control curve A initially chosen, at a distance equal to the sum of the draw D of the stigmatic lens of construction and its thickness at the center, has no cusp or double point. This parallel corresponds to the section of the exit surface of the lens by the plane ⁇ 1 of the emitter 1.
  • the second reflector R2 the emitter 2 and the lens L, form variants of the lighting unit according to the invention.
  • a direction of the emerging rays r3, r4 that is not horizontal and in particular inclined upwards is chosen if the beam created by the first emitter 1 is located above its cut-off line, or tilted down if this beam is located below its cut-off line.
  • This arrangement makes it possible to guarantee, already for a low angle of inclination, of a few degrees, a good fusion of the beams created by the two emitters 1, 2.
  • Fig. 10 and 11 show a module of the same type as that of the Fig. 1-3 and which corresponds to the case where the first emitter 1 radiates upwards and creates a beam located below its horizontal cut-off line ( Fig. 1-4 ).
  • Some LEDs may have weakly bright areas near the edges of their emitters 1. If an LED of this type is used to make the first emitter 1, noise appears above the cutoff, which, depending on the function performed ( and in particular the horizontal spread of the beam) can reduce the quality of the beam to a greater or lesser extent (these parasites potentially correspond to glare).
  • a blade made of transparent material 4 can be added to the system ( Fig.11 ) having an upper planar face 4a contained in the plane of the first emitter 1 and a front face consisting of a fraction of a cylinder of vertical generatrices admitting the control curve A for cross section.
  • the rear face, located closer to the transmitter 1 than the front face, can be the result of a translation of the front face or a parallel surface.
  • the upper front edge of the blade 4 coincides with the control curve A, and therefore passes through the focal point of the lens L in a vertical section plane.
  • the input face 4e of the blade 4 is convex towards the front and the output face 4s is parallel to the face 4e, the thickness of the blade being constant.
  • parasitic rays such as 5, shown in dashed lines, reach the upper face 4a of the plate and undergo both partial reflection and refraction.
  • the ray 5r reflected by the reflector R1 from the ray 5, falls on the upper face 4a of the plate 4 behind the front edge and therefore behind the focus of the lens for the plane considered.
  • the part 5r2 reflected by the face 4a reaches the lens L and is returned along the ray 5s in the beam, below the cutoff due to the “folding” phenomenon. If the refractive index of the material of the blade 4 is greater than ⁇ 2, the refracted part is guided towards the bottom of the blade 4 where a means is provided for it to be absorbed.
  • Such a device therefore ensures the absence of parasites above the cutoff.
  • the fraction of energy lost by guidance is negligible. For example 0.58 Im for an LED at 600 Im - with 380 Im in the beam beyond the lens, in one of the exemplary embodiments.
  • the second reflector R2 is determined such that, following a reverse path of the light, light rays r3, r4 parallel to an arbitrary direction, chosen in a plane parallel to the parallel planes of the emitters 1,2, after crossing and deflection by the lens L, after crossing the rear face then the front face of the plate, and reflection on the second reflector R2, meet the second emitter 2 at a point in its center, the front face being considered as an infinite vertical extent and considering a given blade thickness 4.
  • the upper face 4a of the guide 4 then acts as a bender in total reflection and creates a partial low cut in the concentrated beam.
  • the second reflector R2 is constructed by means of the calculations carried out for improvement 2, applied to the case of a guide 4 of zero thickness.
  • the second reflector R2 and the second emitter 2 thus give an intense, un-cut beam which can be used for a road-type function and which has a large overlap with the cut-off beam created by the first emitter 1.
  • this variant results in a sending additional rays of light under the cut-off, it has the advantage of making it possible to obtain a much more intense beam than the image-aligned beam.
  • the second reflector R2, the emitter 2 and the lens L form a variant of the lighting unit according to the invention.
  • Fig. 12 shows in perspective, similar to Fig. 1 , a module M1 according to the invention, in which the control curve A is rectilinear horizontal so that the lens L1 has an entry face L1e which is flat, vertical.
  • the second reflector R2, the emitter 2 and the lens L1 form a variant of the lighting unit according to the invention.
  • Fig. 13 shows, similar to Fig. 12 , an M2 module with a control curve formed by a straight line, and furthermore equipped with a plate 4.1 with parallel vertical plane faces capable of avoiding interference due to rays coming from the edges of the plane emitter 1.
  • the second reflector R2 , the emitter 2 and the lens L1, form a variant of the lighting unit according to the invention.
  • the cut-off beam produced by reflector R1 has an optical axis Y1 different from the optical axis Y2 of the beam produced by reflector R2 for the high beam.
  • the lateral offset angle ⁇ of the high beam of axis Y2 with respect to the axis Y1 of the cut-off beam may be 14 °.
  • the whole of the module M3 is rotated by the same value, in the opposite direction, so that the optical axis Y2 is parallel to the axis of the vehicle.
  • the second emitter 2 is laterally offset in the direction opposite to the offset of the beam. For example -10 mm in the transverse direction of the vehicle, before rotation of the module to optimize the performance of the high beam.
  • the second reflector R2, the emitter 2 and the lens L form a variant of the lighting unit according to the invention.
  • Fig. 15 is a diagram of the isolux curves of the beam F'2 obtained with the second emitter 2 of Fig. 14 , beam which is located on either side of the horizontal cut-off line.
  • Fig. 16 illustrates the isolux curves of the beam F'1 obtained with the first emitter 1 of Fig. 14 , beam which is offset laterally with respect to the beam of Fig. 15 .
  • Fig. 17 illustrates the isolux curves of the beam resulting from the merger of the wide beam F'1 for the code and of the road complement F'2.
  • the additional beam F'2 "driving" should be placed with its maximum located 1% higher than the cut-off line.
  • a module M4 according to the invention in which the LED 1 for the cut-off beam emits downwards and the associated first reflector R'1 is located below the LED 1.
  • the LED 2 for the high beam emits upwards and the associated second reflector R'2 is located above this emitter 2.
  • the second reflector R'2, the emitter 2 and the lens L form a variant of the lighting unit according to the invention.
  • the control curve A '( Fig. 20 ) is concave in the direction of the lens L '.
  • the exit face L's of this lens is also concave as visible on Fig. 18 .
  • the reflector R'1 is determined so as to create a spot of light S '( Fig. 20 ) located behind the control curve A 'and admitting this curve as the front limit.
  • the rays such as 6 coming from the rear edge of the first emitter 1 are reflected at 6a by the reflector R'1 so as to rest on the curve A 'which corresponds to the focus of the stigmatic lens in a vertical section plane, similarly to what has been explained about Fig. 3 .
  • the rays coming from points situated in front of the rear edge of the emitter 1, after passing through the lens L ', will be inclined downwards on the horizontal plane.
  • the beam produced by the first emitter 1 and the first reflector R'1 will be a cut-off beam located below the cut-off line.
  • the rear edge of the second emitter 2 emits rays which, after reflection by the second reflector R'2, rest on the curve A 'or are situated behind this curve.
  • the other points of the second emitter 2 will give rays which, after passing through the lens L ', will be directed upwards with respect to the horizontal.
  • the first reflector R'1 is determined as illustrated on Fig. 21 so that the light rays r'4, r'6 considered following the reverse path of the light, converge towards the rear corners 1c, 1d of the rectangular plane emitter 1, on the same side of the vertical plane Q'1 passing through the optical axis that their point of intersection m'4, m'6 with the reflector R'1, in the case where m'4, m'6 is outside the space between two planes Q2 and Q3 parallel to Q '1 and passing through the rear corners of transmitter 1.
  • cut-off beam located above the cut-off line are possible.
  • the first reflector R1 is determined so that it gives a spot of light located behind the control curve A, instead to be ahead in the example which has been described.
  • the first reflector R'1 is determined so that it gives a spot of light situated in front of the concave control curve A '.
  • a cut-off beam is obtained by only controlling the ignition of the first emitter 1, and a high beam type beam by controlling the ignition of the two emitters 1 and 2.
  • the two beams are merged. then in good conditions, without the presence of a dark band between them since there is no material edge of the folder. This fusion takes place without the need to control a mechanical movement of a folding machine.
  • the invention makes it possible to have a module with a toric lens rather than an elliptical one. It is thus possible to assemble several similar modules with toric lenses, in continuity of tangency of the surfaces of the lenses.
  • the module produces a wide beam with a sharp cut-off, and does not have a complex bender shape to compensate, always partially, for lens aberrations.
  • the lens is non-imaging, that is to say that it does not form the image of an object located at its focus in any real or virtual plane, including when the size of the object tends towards 0. Good yields are obtained for the driving beam and for the coded beam compared to more conventional folding solutions. There are no difficult parts to make.
  • a first lighting module according to the invention with a lighting unit according to the present description, said module and said unit being two sets of distinct optical systems, with a separate lens.
  • This use can be carried out in the same vehicle headlight, the lighting unit and the lighting module being placed in the headlight housing.
  • the housing is preferably closed, preferably by a transparent closing glass.
  • figures 23 to 25 illustrate the lateral juxtaposition of a first lighting module Ma with a lighting unit Mb, each having its own lens, respectively La and Lb.
  • the first lighting module Ma can be a lighting module according to the invention. In the example shown in figures 23 to 25 , this corresponds to a module such as the one illustrated in figure 1 , but without the reflector R2 or the emitter 2.
  • the module Ma comprises a first reflector R1, deflecting the rays emitted by an LED 1 towards the lens La, to create a first beam in an overall direction X1.
  • the first reflector R1 and the lens La have a determined shape and are arranged like the first reflectors and the lenses of the lighting modules according to the present invention described above.
  • Other lighting modules according to the invention could therefore be used, with or without a lighting unit according to the invention, such as for example a module such as that of my figure 4 , with or without the second reflector R2 and the second emitter 2.
  • the lighting unit Mb can be a lighting unit according to the present description. In the example shown in figures 23 to 25 , this corresponds to a lighting unit such as the one illustrated in figure 1 , without a first reflector R1, nor a first emitter 1.
  • the lighting unit Mb comprises a second reflector R2, deflecting the rays emitted by an LED 2 towards the lens Lb, to create a second beam in an overall direction X2.
  • the second reflector R2 and the lens Lb have a determined shape and are arranged like the second reflectors and the lenses of the lighting modules according to the present invention described above. Other lighting units according to the invention could therefore be used.
  • the lighting module can be a module such as that M4 illustrated in figure 18 , without the second reflector and without the second emitter.
  • the lighting unit can then be a unit such as that R'2, 2, L ', illustrated in figure 18 , without the first reflector and without the first emitter.
  • the lighting module Ma and the lighting unit Mb are aligned transversely, but they could also be superimposed.
  • the La and Lb lenses can be side by side with little space between them, as shown. They can also be adjacent; as the lenses are similar in shape, or even identical, it is then possible to have a very homogeneous appearance, or even to place them in continuity with one another transversely, to give an impression of a single lens.
  • the first emitter 1 and the second emitter 2 are mounted on separate supports 3 ′ and 3 ".
  • the first cut-off beam and the second beam can be beams such as previously described and be combined as previously described.
  • the arrangement of the first reflector R1 relative to the second reflector R2 and / or the offset between the first emitter 1 and the second emitter 2 can be as described previously.
  • the invention also covers vehicle headlamps using lighting modules according to the invention but without a lighting unit as defined by claim 3, for example a module such as the lighting module Ma previously described and illustrated, without limitation, in figures 23 to 25 .
  • This module can for example be used to produce a first cut-off beam. It is then possible to have a second module, for example already known, to produce an additional high beam, either in addition to or alternatively to the lighting of the first module which is still according to the invention.
  • the invention does not cover the lighting unit M5, as illustrated in Fig. 26 to Fig. 29 .
  • This lighting unit can however be associated with a lighting module according to the present invention.
  • this unit is similar to the lighting module Mb previously described and illustrated, without limitation, in figures 23 to 25 .
  • this lighting unit M5 is intended to be mounted in the projector by being rotated 90 ° along a longitudinal axis with respect to the mounting of the lighting unit Mb of the figures 23 to 25 .
  • the planes along which the lens section L "is stigmatic, as previously described, are always orthogonal to a vertical plane.
  • the lens L" extends vertically, along its greatest direction. .
  • the directing curve is therefore vertical.
  • this lighting unit M5 is produced so as to generate a beam with a cut-off, as described above for the formation of the complementary driving beam. This allows for a vertically cut beam when placed in the spotlight, since the lighting unit is rotated 90 ° compared to the units described in other modes.
  • this lighting unit M5 is produced so as to be able to generate a beam without cut-off, as described above, while placing the lens vertically.
  • the lens makes it possible to generate a high beam, as illustrated in figure 29 , while the lens L "extends vertically.
  • the reflector R" 2 extends on either side of the horizontal plane passing through the LED 2.
  • the reflector R "2 forms a concavity oriented transversely to the vehicle, for example the reflector R "2 is formed of a half-shell, situated approximately entirely on one side of the vertical and longitudinal plane passing through the LED 2.
  • this M 5 lighting unit allows installation in a projector with a small transverse bulk. It also makes it possible to follow a curve in a vertical plane, and thus to produce high beams with a strong return to the top of the fender of the vehicle. It also allows for a different orientation for stylistic reasons.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

  • L'invention est relative à un module d'éclairage ou une unité d'éclairage pour projecteur de véhicule automobile.
  • Les modules d'éclairage de l'état de la technique génèrent un faisceau permettant la réalisation d'un faisceau lumineux, permettant l'éclairage de la route, seuls ou en combinaison avec le ou les faisceaux d'autres modules. Ils comprennent en général un ensemble d'éléments optiques associés pour former le faisceau. Certains de ces faisceaux sont des faisceaux à coupure, notamment de type anti-brouillard ou code. Certains modules, générant des faisceaux à coupure, utilisent des lentilles imageantes et une plieuse, c'est-à-dire une plaque réfléchissante ou cache réfléchissant horizontale, pour créer la coupure.
  • Des modules d'éclairage bi-fonction sont également connus, notamment d'après FR 2 860 280 ou d'après US 7 387 416 . Le document EP 1 610 057 A1 décrit égalment un tel module d'éclairage.
  • Dans certains modules bi-fonction, la plieuse sert à la fois pour la coupure supérieure du faisceau code et pour la coupure inférieure du faisceau complémentaire, permettant en association avec le faisceau code de réaliser un faisceau route. L'image du bord avant forme une ligne de séparation obscure entre les faisceaux donnés par les deux émetteurs pour produire le faisceau route. Pour éviter cette bande sombre, il a été prévu de rendre la coupure commune floue en défocalisant la plieuse ou la lentille, ou en ajoutant des motifs à cette dernière. La fusion des deux faisceaux, s'effectuant grâce à des zones floues, laisse en outre une zone plus sombre entre les deux faisceaux. Les modifications tendant à rendre la coupure floue diminuent la valeur du maximum d'intensité du faisceau route. Ces inconvénients sont présents dans les faisceaux produits avec les dispositifs des deux brevets mentionnés précédemment.
  • L'invention a pour but de réaliser des projecteurs plus simples de conception.
  • Un objet de l'invention est un module d'éclairage pour projecteur de véhicule automobile, propre à fournir, notamment selon la commande qui lui est appliquée, un premier faisceau à coupure, le module d'éclairage est défini dans la revendication 1.
  • Par en avant, on entend en avant selon le sens de propagation de la lumière, depuis l'émetteur de lumière vers la lentille.
  • Un tel module permet de créer un faisceau à coupure sans l'aide d'un cache horizontal ou vertical. Le module comprend ainsi moins de pièces.
  • Un autre avantage d'un tel module est qu'il peut également être associé à un autre réflecteur pour créer un module bi-fonction, pouvant générer un faisceau à coupure, par exemple un code ou un faisceau à coupure horizontal, et un deuxième faisceau à coupure, qui superposé au premier réalise un faisceau route. En effet dans ce cas, l'absence de cache, notamment horizontal, va permettre de réaliser plus facilement un module d'éclairage bi-fonction donnant un faisceau route ne comportant pas de bande sombre entre les faisceaux superposés. On évite également la présence de mécanismes nécessaires lorsque le cache est mobile pour passer de la fonction route à la fonction code.
  • Selon un mode préférentiel de réalisation, le premier réflecteur est déterminé de manière telle que les images du premier émetteur, qu'il fournit dans le plan de cet émetteur, rencontrent la courbe de contrôle tout en se trouvant entièrement du côté de la tache lumineuse. Ceci permet d'améliorer la netteté de la coupure et de rapprocher l'intensité maximum du premier faisceau vers la coupure de ce premier faisceau.
  • Préférentiellement, le faisceau à coupure est un faisceau avec une coupure supérieur, la zone éclairée étant située en dessous de cette coupure.
  • C'est par exemple le cas pour un faisceau code ou faisceau anti-brouillard.
  • Une variante de l'invention a pour objet un module d'éclairage comprenant une unité d'éclairage, tel que défini dans la revendication 3.
  • Le faisceau obtenu par ce mode de réalisation permet de créer également un faisceau à coupure sans l'aide d'un cache horizontal ou vertical.
  • Lorsque cette unité d'éclairage est associée à un module d'éclairage selon l'invention, ledit point donné de l'émetteur est un point du bord avant ou arrière de l'émetteur selon que la courbe de contrôle constitue respectivement le bord arrière ou le bord avant de la tache lumineuse générée par le premier réflecteur et le premier émetteur. Le faisceau produit par l'unité d'éclairage à ainsi également une coupure.
  • La direction donnée peut être inclinée par rapport au plan de l'émetteur de l'unité d'éclairage.
  • Selon une variante de réalisation de l'unité d'éclairage, le réflecteur est déterminé :
    • en considérant que le module comprend une lame d'épaisseur nulle, présentant une face avant confondue avec sa face arrière, consistant en une fraction de cylindre de génératrices orthogonales au plan de la courbe de contrôle (A), la face avant admettant cette courbe de contrôle comme section droite ;
    • en considérant que la face avant comme une étendue verticale infinie ; de manière à ce que suivant un trajet inverse de la lumière, des rayons lumineux parallèles à une direction arbitraire, par exemple choisie dans un plan parallèle au plan de l'émetteur, après traversée et déviation par la lentille, après traversée de la face arrière avant puis de la face avant arrière de la lame, et réflexion sur le réflecteur, rencontrent l'émetteur en un point au voisinage de son centre ;
    cela permet une alternative de réalisation du réflecteur de l'unité d'éclairage, notamment pour réaliser un faisceau sans coupure ; par voisinage du centre de l'émetteur, on entend un point qui est plus proche de son centre que de ses bords ; préférentiellement, la distance au bord est 3 fois plus élevée que la distance centre ; préférentiellement encore, la distance au bord est 10 fois plus élevée que la distance centre.
  • Selon le premier objet de l'invention, le module d'éclairage selon l'invention peut également présenter, outre les caractéristiques principales énoncées dans le paragraphe précédent, une ou plusieurs des caractéristiques complémentaires suivantes, toute combinaison de ces caractéristiques complémentaires, dans la mesure où elles ne s'excluent pas mutuellement, constituant un exemple avantageux de réalisation de l'invention :
    • le module d'éclairage comprend en outre une unité d'éclairage selon l'invention, l'émetteur de cette unité d'éclairage correspondant à un deuxième émetteur du module d'éclairage selon l'invention, le réflecteur de l'unité d'éclairage correspondant à un deuxième réflecteur du module d'éclairage, le premier réflecteur et la lentille étant agencés de manière à former le premier faisceau à coupure, et le deuxième réflecteur et cette lentille étant agencés de manière à former deuxième faisceau lumineux ; la lentille est donc optiquement associée au premier réflecteur et au deuxième réflecteur ; cela permet de diminuer l'encombrement en ayant un module unique pour réaliser deux faisceaux lumineux ; il est ainsi possible de réaliser deux fonctions d'éclairage, par exemple en éclairant le premier faisceau seul, pour une première fonction, et en lui superposant le deuxième faisceau, pour une deuxième fonction.
    • les faces réfléchissantes du premier réflecteur et du deuxième réflecteur sont en vis-à-vis ; un tel module est plus compact ; préférentiellement le premier émetteur émet vers le premier réflecteur et le deuxième émetteur émet vers le deuxième réflecteur ; préférentiellement, le module d'éclairage comprend un support commun pour le premier émetteur et le deuxième émetteur, chacun des émetteurs étant situé de part et d'autre de ce support ;
    • la surface réfléchissante du deuxième réflecteur est déterminée de manière à ce que le deuxième faisceau lumineux s'ajoute au premier faisceau à coupure pour produire ainsi un faisceau route ;
    • le deuxième faisceau présente une coupure basse, de manière à ce que le deuxième faisceau puisse compléter le premier faisceau à coupure, la coupure basse du deuxième faisceau étant adjacente ou parallèle à celle du premier faisceau à coupure, de préférence dans ce cas légèrement en dessous de la coupure du premier faisceau ; comme expliqué plus haut la réalisation de faisceau à coupure sans l'aide de cache permet de superposer ces faisceaux en minimisant leur recouvrement ou en les positionnant de manière adjacente, sans avoir de bande sombre.
    • le deuxième réflecteur est situé soit au-dessus du deuxième émetteur lorsque ce dernier émet vers le haut, soit au-dessous lorsqu'il émet vers le bas
    • le deuxième émetteur émet vers le haut et le premier émetteur émet vers le bas, soit le deuxième émetteur émet vers le bas et le premier émetteur émet vers le haut ; ceci permet d'améliorer la compacité du module en largeur ;
    • le deuxième émetteur est décalé transversalement par rapport au premier émetteur, de manière à ce que le faisceau à coupure produit par le premier réflecteur présente un axe optique différent de l'axe optique du faisceau produit par le second réflecteur ; on peut ainsi rapprocher les émetteurs l'un de l'autre verticalement, sans que la chaleur émise par l'un des émetteurs ne nuise à l'autre émetteur ; lorsque le module d'éclairage comprend un support commun pour le premier émetteur et le deuxième émetteur, chacun des émetteurs étant situé de part et d'autre de ce support, cela permet également de diminuer l'épaisseur de ce support ; de plus un tel mode de réalisation est plus efficace en terme de flux lumineux ;
    • le faisceau à coupure produit par le premier réflecteur présente un axe optique différent de l'axe optique du faisceau produit par le second réflecteur ; ceci va permettre de positionner le spot, ou zone d'intensité maximale de l'un des faisceau, en le décalant latéralement par rapport à l'autre faisceau ; on peut par exemple améliorer le rendement du faisceau résultant de la superposition du premier faisceau et du deuxième faisceau en l'étalant par rapport à son spot ;
    • la lentille du module d'éclairage est également la lentille de l'unité d'éclairage
    • la tache lumineuse se trouve en avant de la courbe de contrôle, laquelle courbe de contrôle est de préférence convexe vue depuis de la lentille, ou rectiligne ; ce mode de réalisation permet de réaliser le module avec une lentille convexe ;
    • le premier réflecteur est calculé de manière à ce que pour tout point de la surface réfléchissante du premier réflecteur, un rayon s'appuyant sur la courbe de contrôle et réfléchi en ce point arrive après réflexion sur le coin avant de l'émetteur, situé du côté opposé à ce point par rapport au plan vertical passant par l'axe optique ; dans la présente demande par « rayon s'appuyant sur la courbe de contrôle », on entend un rayon rencontrant cette courbe et contenu dans le plan perpendiculaire à la courbe de contrôle au point d'intersection du rayon considéré et cette courbe ; l'axe optique est par exemple, comme illustré en figure 4, l'axe contenu dans le plan de l'émetteur de lumière, passant par le centre de l'émetteur de lumière et sensiblement perpendiculaire au bord avant de l'émetteur de lumière;
    • pour tout point donné de la surface réfléchissante du premier réflecteur (R1): d 1 + d 2 = K
      Figure imgb0001
      • d1 est la distance entre d'une part le coin de l'émetteur situé du côté opposé au point donné, par rapport au plan vertical passant par l'axe optique et d'autre part le point donné,
      • d2 est la distance entre le point donné et la courbe de contrôle le long du rayon passant par ce point donné et s'appuyant sur la courbe de contrôle,
      • K est une constante ;
    • le premier émetteur émet vers le haut, et crée avec le premier réflecteur associé un premier faisceau à coupure dont la zone éclairée est située au-dessous de sa ligne de coupure, et en ce que le module comporte une lame en matériau transparent ayant une face plane supérieure contenue dans le plan du premier émetteur, et une face avant consistant en une fraction de cylindre de génératrices orthogonales au plan de la courbe de contrôle, admettant cette courbe de contrôle comme section droite, de manière à ce que la partie réfractée des rayons atteignant la face supérieure entrent dans la lame ; cette variante permet d'absorber les rayons parasites, notamment lorsque l'émetteur lumineux, par exemple l'élément photoémissif d'une LED, n'a pas de bords nets, ou lorsque des rayons parasites sont émis sur le côté de l'émetteur, notamment le bord de l'élément photoémissif de la LED, ;
    • la face arrière de la lame est soit parallèle à la face avant de cette lame, soit correspond à une surface résultant d'une translation de la surface de la face avant de cette lame ; ceci permet de guider les rayons parasites en bas de la lame ;
    • l'indice de réfraction du matériau de la lame est supérieur à √2 ; ceci améliore le guidage des rayons parasites dans la lame par réflexion totale ;
    • le bord supérieur avant de la lame est confondu avec la courbe de contrôle, et passe donc par le foyer de la lentille dans un plan de coupe vertical ;
    • la face d'entrée de la lame est convexe vers l'avant et la face de sortie est parallèle à la face, l'épaisseur de la lame étant constante ;
    • le second réflecteur est déterminé de telle sorte que, suivant un trajet inverse de la lumière, des rayons lumineux parallèles à une direction donnée, après traversée et déviation par la lentille après traversée de la face avant puis de la face arrière de la lame, et réflexion sur le deuxième réflecteur, rencontrent le second émetteur en un point de son centre, les faces avant et arrière étant considérées comme d'étendue verticale infinie ; dans ce cas la coupure dans le deuxième faisceau n'est pas réalisée par la forme du deuxième réflecteur mais par la surface supérieur de la lame, qui renvoie les rayons émis par le deuxième émetteur vers le bas, jouant ainsi le rôle de cache horizontal réfléchissant, c'est-à-dire de plieuse ;
    • la tache lumineuse dans le plan du premier émetteur se trouve en arrière de la courbe de contrôle laquelle est concave vue depuis la lentille, ou rectiligne ;
    • le premier réflecteur comprend une première portion de surface réfléchissante calculée de manière à ce que pour tout point de la première portion de surface réfléchissante du réflecteur située en dehors de l'espace compris entre deux plans passant par les coins arrières de l'émetteur et parallèles à un plan vertical passant par l'axe optique, un rayon s'appuyant sur la courbe de contrôle et réfléchi en ce point arrive après réflexion sur le coin arrière de l'émetteur, situé du même côté que le point donné par rapport au plan vertical passant par l'axe optique ; ce mode de réalisation est particulièrement adapté lorsque le premier émetteur émet vers le bas ; préférentiellement, le premier réflecteur comprend une deuxième portion de surface réfléchissante calculée de manière à ce que pour tout point donné de ladite deuxième portion de surface réfléchissante située à l'intérieur de l'espace compris entre deux plans passant par les coins arrières de l'émetteur et parallèles à un plan vertical passant par l'axe optique, un rayon s'appuyant sur la courbe de contrôle et réfléchi en ce point de ladite deuxième portion de surface réfléchissante, arrive, après réflexion, sur le point du bord arrière de l'émetteur situé dans le plan qui d'une part contient ce point donné de ladite deuxième portion de surface réfléchissante, et d'autre part est parallèle au plan vertical passant par l'axe optique.
    • le premier réflecteur est situé soit au-dessus du premier émetteur lorsque ce dernier émet vers le haut, soit au-dessous lorsqu'il émet vers le bas.
  • L'invention a également pour objet un projecteur de véhicule automobile, comprenant au moins un module selon l'invention. Le projecteur comprend par exemple un boîtier fermé par une glace de fermeture transparente, ce module étant à l'intérieur de l'espace fermé par le boîtier et la glace.
  • Ce projecteur peut réaliser un faisceau d'éclairage longue portée, au moyen d'une unité d'éclairage selon l'invention, tel qu'un faisceau route, et également un faisceau d'éclairage à coupure, au moyen du module d'éclairage selon l'invention.
  • L'unité d'éclairage et le module peuvent également être distincts chacun ayant sa propre lentille. Ces lentilles peuvent être, selon l'invention, très proches et être placées de façon adjacente. On obtient ainsi un aspect éteint uniforme.
  • Selon une variante de réalisation non revendiquée, le module d'éclairage selon l'invention peut être associée à une unité d'éclairage destinée à être agencée dans le projecteur de véhicule automobile et propre à fournir un faisceau lumineux, de tel sorte que :
    • l'émetteur est agencé pour émettre un faisceau de rayons lumineux globalement selon une direction transversale,
    • le réflecteur est agencé pour collecter l'ensemble de ce dit faisceau de rayons,
    • ledit plan orthogonal est orthogonal à un plan vertical, de préférence contenant la direction longitudinale ; par exemple la lentille s'étend verticalement selon sa plus grande direction ; on peut ainsi avoir un agencement d'unité d'éclairage avec un encombrement limité en largeur ; de préférence le faisceau lumineux formé est un faisceau route.
  • Dans la présente demande, la direction longitudinale correspond à la direction allant de l'arrière à l'avant du véhicule, soit environ la direction globale d'émission du faisceau d'éclairage du module ou de l'unité selon l'invention. La direction verticale est perpendiculaire à la direction longitudinale et correspond à la verticalité quand l'unité ou le module fonctionne dans un véhicule sur une route horizontale. La direction transversale correspond à une direction perpendiculaire à la direction longitudinale et à la direction verticale.
  • Selon une variante de réalisation, l'unité d'éclairage selon l'invention est destinée à être agencée dans le projecteur de véhicule automobile, propre à fournir un faisceau lumineux, de tel sorte que :
    • l'émetteur est agencé pour émettre un faisceau de rayons lumineux globalement selon une direction environ verticale,
    • le réflecteur est agencé pour collecter l'ensemble de ce faisceau de rayons,
    • ledit plan orthogonal est orthogonal à un plan horizontal ; par exemple la lentille s'étend horizontalement selon sa plus grande direction ; on peut ainsi avoir un agencement d'unité d'éclairage avec un encombrement limité en hauteur.
  • On peut avoir selon la revendication 3 un module d'éclairage incluant une unité d'éclairage. Dans ce cas, le module d'éclairage et l'unité d'éclairage partagent de préférence la même lentille. On gagne ainsi non seulement en aspect éteint homogène, mais encore en compacité.
  • L'invention est également relative à un véhicule automobile contenant un tel projecteur.
  • L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec références aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins :
    • Fig. 1 est une vue schématique en perspective de trois-quarts arrière et d'en haut d'un module d'éclairage selon l'invention, dans cet exemple un module bi-fonction.
    • Fig. 2 est un schéma en perspective, avec parties arrachées, du module en coupe par un plan vertical orthogonal en un point de la courbe de contrôle, pour illustrer la construction de la lentille.
    • Fig. 3 est un schéma en coupe verticale d'un module d'éclairage semblable à celui de Fig. 1, avec une section verticale de lentille légèrement différente.
    • Fig. 4 est un schéma en plan illustrant le calcul du réflecteur pour l'émetteur code.
    • Fig. 5 est un schéma, en plan, illustrant des images de l'émetteur code données par le réflecteur associé.
    • Fig. 6 est un schéma en plan illustrant le calcul du réflecteur associé au deuxième émetteur pour le faisceau route.
    • Fig. 7 est une illustration de la tache lumineuse produite par le réflecteur code dans le plan horizontal de l'émetteur.
    • Fig. 8 est un schéma des courbes isolux du faisceau code dans un plan vertical orthogonal à l'axe du faisceau.
    • Fig. 9 illustre les courbes isolux du faisceau produit par le deuxième émetteur pour le faisceau route.
    • Fig. 10 est une vue en perspective de trois-quarts arrière et d'en haut d'un module semblable à celui de Fig. 1 mais équipé en outre d'une lame pour éviter la lumière parasite provenant de l'émetteur.
    • Fig. 11 est un schéma en coupe verticale illustrant le module de Fig. 10.
    • Fig. 12 est une vue en perspective, semblable à Fig. 1, d'un module selon l'invention avec courbe de contrôle rectiligne.
    • Fig. 13 est également un schéma en perspective d'un module à courbe de contrôle rectiligne, équipé en outre d'une lame pour éviter la lumière parasite provenant de l'émetteur.
    • Fig. 14 est une vue de dessus d'un module selon l'invention avec le faisceau du deuxième émetteur décalé latéralement par rapport au faisceau code.
    • Fig. 15 est un schéma des courbes isolux produites par le deuxième émetteur avec le deuxième réflecteur de Fig.14.
    • Fig. 16 est un schéma des courbes isolux données par le faisceau code de Fig.14.
    • Fig. 17 est un schéma des courbes isolux obtenues par fusion des faisceaux des Fig. 15 et 16.
    • Fig. 18 est une vue en perspective schématique, de l'avant et de côté d'un module à lentille concave.
    • Fig. 19 est un schéma du module bi-fonction de Fig.18 selon lequel l'émetteur code émet vers le bas tandis que l'émetteur complémentaire pour la route émet vers le haut.
    • Fig. 20 est un schéma en coupe horizontale du module de Fig. 19, avec courbe de contrôle concave orientée vers l'avant.
    • Fig. 21 est un schéma illustrant le calcul du réflecteur dans le cas d'une courbe de contrôle concave selon Fig. 19, et
    • Fig. 22 est un schéma complémentaire du calcul du réflecteur de Fig. 21.
    • Fig. 23 est un mode de réalisation particulier selon l'invention vu en perspective.
    • Fig. 24 est une vue de face du mode de réalisation de la figure 23.
    • Fig. 25 est une vue de dessus du mode de réalisation de la figure 23.
    • Fig. 26 est une vue en perspective schématique, de l'avant et de côté d'une unité d'éclairage qui n'est pas celle revendiquée à partir de la revendication 3 mais qui pourrait être combiné à un module d'éclairage selon la revendication 1, avec une lentille de l'unité d'éclairage s'étendant verticalement.
    • Fig. 27 est une vue de face de l'unité d'éclairage selon la Fig. 26.
    • Fig. 28 est une vue de côté de l'unité d'éclairage selon la Fig. 26.
    • Fig. 29 est un faisceau lumineux réalisé par l'unité d'éclairage illustré en Fig. 26.
  • En se reportant aux Fig. 1-3 des dessins, on peut voir un module d'éclairage bi-fonction M pour projecteur de véhicule automobile comprenant un premier émetteur plan formé par l'émetteur photoémissif 1 d'une première diode électroluminescente ou LED pour donner un faisceau à coupure. Par exemple, un faisceau antibrouillard est un faisceau avec une coupure supérieure qui est plane et horizontale. Le plan Π1 (Fig. 2) de la LED, à savoir le plan contenant l'émetteur photoémissif de la DEL, est généralement horizontal lorsque le module est installé dans le véhicule. Par exemple, ce plan Π1 peut être incliné de 0.57° (1%) sous l'horizontale, une fois monté sur un véhicule. On peut prendre alors la coupure plate sur l'horizontale.
  • Un premier réflecteur R1 est associé à l'émetteur 1. Dans l'exemple des Figs. 1-3, l'émetteur photoémissif 1 de la première LED émet vers le haut et le premier réflecteur R1 est disposé au-dessus de la première LED. Selon la variante de Fig.18-19 qui sera décrite plus loin, l'émetteur photoémissif 1 de la première LED émet vers le bas et le réflecteur R'1 est disposé au-dessous de la LED.
  • Ce premier réflecteur R1 est déterminé de manière à créer dans le plan horizontal du premier émetteur 1 une tache lumineuse S (Fig. 2) limitée par une courbe de contrôle A qui peut être choisie arbitrairement. La courbe A constitue le bord arrière de la tache S, notamment lorsque le réflecteur R1 est au-dessus du premier émetteur 1 comme dans le cas de Fig. 1-3. En variante, cette courbe A peut constituer le bord avant de la tache S, notamment lorsque le premier réflecteur R'1 est au-dessous de l'émetteur comme dans le cas de Fig. 19.
  • La courbe A, qui n'est pas matérialisée, est contenue dans le plan Π1 de l'émetteur 1 et est située en avant de cet émetteur.
  • Les termes "avant" et "arrière" sont à comprendre suivant le sens de propagation de la lumière qui va du réflecteur R1 vers l'avant, c'est-à-dire vers la lentille.
  • Comme illustré sur Fig. 4, le réflecteur R1 pour le code est calculé en considérant le trajet inverse de la lumière provenant d'une lentille L pour qu'un rayon r s'appuyant sur la courbe de contrôle A et réfléchi en un point p du premier réflecteur R1 arrive sur le coin avant 1a de la l'émetteur 1, situé du côté opposé au point de la face d'entrée de la lentille L, d'où provient le rayon considéré r, par rapport au plan vertical Q1 passant par l'axe optique. Par « rayon s'appuyant sur la courbe A », on entend un rayon rencontrant la courbe A et contenu dans le plan perpendiculaire à la courbe A au point d'intersection du rayon considéré et de la courbe A. L'axe optique est par exemple, comme illustré en figure 4, l'axe contenu dans le plan de l'émetteur de lumière et passant par le centre de l'émetteur de lumière et sensiblement perpendiculaire au bord avant de l'émetteur de lumière. La même condition est appliquée à un autre point p' du premier réflecteur R1 qui réfléchit un rayon r' également vers le coin 1a.
  • La constance du chemin optique est prise en compte pour le calcul du premier réflecteur R1 avec pour tout point donné (p, pb) de la surface réfléchissante du premier réflecteur (R1): d 1 + d 2 = K
    Figure imgb0002
    • d1 est la distance entre d'une part le coin (1a, 1b) de l'émetteur situé du côté opposé au point donné (p, pb), par rapport au plan vertical (Q1) passant par l'axe optique et d'autre part le point donné (p, pb),
    • d2 est la distance entre le point donné (p, pb) et la courbe de contrôle (A) le long du rayon (r, rb) passant par ce point donné (p, pb) et s'appuyant sur la courbe de contrôle (A),
    • K est une constante.
  • Pour la partie de la courbe A située du côté gauche du plan Q1 selon Fig. 4, les rayons sont réfléchis en des points du premier réflecteur R1 tels que le point pb pour arriver sur le coin avant 1b situé du côté opposé par rapport au plan Q1.
  • La lentille L (Fig. 1-3) est conjuguée du premier réflecteur R1 et est déterminée de telle sorte que sa coupe Lc (Fig.2) par un plan Vc orthogonal à la courbe de contrôle A en un point quelconque ac soit identique à celle d'une lentille de référence stigmatique entre le point d'intersection ac avec le plan Vc, et l'infini, suivant la direction donnée par l'intersection Δc du plan Vc et du plan Π1 de la courbe A.
  • La lentille de référence peut être facilement calculée par l'homme du métier en choisissant pour cette lentille de référence :
    • un matériau de même indice de réfraction que celui de la lentille L selon la présente invention,
    • un tirage D d'une valeur quelconque,
    • une face d'entrée quelconque, par exemple plane,
    • une épaisseur au centre d'une valeur quelconque.
  • Le tirage D, qui correspond à la distance entre le foyer ac d'une coupe verticale de la lentille L et la face d'entrée Le de cette lentille, est constant, et la section de la face d'entrée Le par le plan Π1 est constituée par une courbe B parallèle à la courbe A à la distance D. Ce tirage D, la section de la face d'entrée Le, et l'épaisseur au centre pour cette section sont identiques à ceux de la lentille de référence.
  • Dans l'exemple représenté, la courbe A est située dans un plan horizontal qui est celui de la LED 1. Le plan Vc est donc vertical et orthogonal à la tangente à la courbe A au point ac. L'intersection Δc est horizontale et elle-même orthogonale à la tangente à la courbe A au point ac. Un rayon lumineux r1 réfléchi par le premier réflecteur R1 et passant par le point ac sort de la lentille L suivant le rayon e1 parallèle à Δc. Le rayon r1 provient du bord avant de l'émetteur 1. Les autres rayons lumineux de l'émetteur 1 proviendront d'un point situé en arrière de celui qui fournit le rayon r1 de sorte que le rayon réfléchi r2 se trouvera au-dessus du rayon r1 de manière à rencontrer le plan Π1 en avant de la ligne A, dans la tache S. Ce rayon r2 sortira de la lentille L suivant un rayon émergent e2 incliné vers le bas par rapport à la direction Δc et au plan horizontal Π1.
  • La lentille L permet d'étaler le faisceau du fait de la forme convexe de la courbe A vers l'avant ; l'allure de la lentille L est sensiblement torique avec une face de sortie Ls convexe.
  • Le faisceau donné par l'ensemble de du premier émetteur 1, du premier réflecteur R1 et de la lentille L est un faisceau à coupure horizontale, la ligne de coupure étant déterminée par la courbe A, qui n'a pas d'épaisseur matérielle, et le faisceau est situé au-dessous de la ligne de coupure puisque les rayons tels que e2 sont inclinés vers le bas par rapport au plan horizontal Π1.
  • Comme illustré sur Fig. 5, les images telles que I1, I2 de la LED 1 données par les différents points du premier réflecteur R1 sont situées en avant de la courbe A. Un des sommets de l'image rectangulaire est au contact de la courbe A.
  • Le dispositif ainsi formé crée un faisceau à coupure plate dont la répartition horizontale (et notamment la largeur) est contrôlée par la courbe de contrôle plane A choisie initialement. Suivant la configuration considérée, la lumière peut être au-dessus de la ligne de coupure, le premier émetteur 1 émettant vers le haut et courbe de contrôle A constituant le bord avant de la tache de lumière, ou premier émetteur 1 émettant vers le bas et courbe de contrôle A constituant le bord arrière de la tache de lumière, ou bien au-dessous de la ligne de coupure, le premier émetteur 1 émettant vers le haut, et courbe de contrôle A constituant le bord arrière de la tache S, ou émetteur 1 émettant vers le bas et courbe de contrôle constituant le bord avant de la tache de lumière.
  • On considère ensuite un second émetteur plan horizontal 2 ayant une direction d'émission opposée à celle du premier émetteur 1 et décalé verticalement par rapport à ce premier émetteur 1 dans sa propre direction d'émission. Ce second émetteur 2 peut également être décalé en vue de dessus par rapport au premier émetteur 1 afin de faciliter l'implantation physique des sources, à savoir plus proche ou plus éloigné de la lentille L que le premier émetteur 1.
  • Le deuxième émetteur 2 plan est formé par l'élément photoémissif d'une deuxième LED et est prévu pour contribuer à l'établissement d'un deuxième faisceau qui, en combinaison avec le faisceau du premier émetteur 1, donne un faisceau route.
  • Dans le cas des Fig. 1-3 où la première LED émet vers le haut, la deuxième LED émet vers le bas comme illustré sur Fig. 3. Les LEDs 1, 2 sont disposées sur les deux faces parallèles opposées d'un même support 3, la deuxième LED 2 étant située en arrière de la LED 1.
  • Un second réflecteur R2 est situé au-dessous de la LED 2 pour fournir le faisceau qui s'ajoute au faisceau à coupure du premier réflecteur R1 afin de produire le faisceau route. Le second réflecteur R2, l'émetteur 2 et la lentille L, forment une variante d'unité d'éclairage selon l'invention.
  • On choisit une direction horizontale arbitraire.
  • On considère tous les rayons lumineux parallèles à la direction choisie (Fig. 6) atteignant la face de sortie Ls de la lentille L calculée précédemment, et on détermine un réflecteur R2 situé en dessous ou au-dessus du second émetteur 2, suivant sa direction d'émission, tel que les rayons considérés, après déviation par la lentille L et réflexion sur le second réflecteur R2, rencontrent le second émetteur 2 en un point de son bord, avant ou arrière, suivant la configuration du système. On utilise le bord situé du même côté que dans le cas du premier émetteur 1, à savoir dans cet exemple le bord avant dans le sens de propagation de la lumière en dehors du module.
  • Le second réflecteur R2 est déterminé comme illustré sur Fig. 6 de telle sorte que, suivant un trajet inverse de la lumière, des rayons lumineux r3, r4 parallèles à la direction arbitraire choisie dans un plan parallèle aux plans parallèles des émetteurs 1, 2, après déviation par la lentille L et réflexion en un point m3, m4 du deuxième réflecteur R2, rencontrent le second émetteur 2 en un point 2a, 2b de son bord avant, de préférence situé à un angle du second émetteur 2. Toujours en considérant le trajet inverse de la lumière, le rayon réfléchi en dernier par le point m3 du réflecteur R2 arrive sur le coin 2a du second émetteur 2 situé du côté opposé au point m3 par rapport au plan vertical Q1 passant par l'axe optique. Pour le rayon r4 qui se trouve de l'autre côté de ce plan Q1 par rapport à r3, le rayon réfléchi par m4 provient du coin 2b situé à l'autre extrémité du bord avant du second émetteur 2.
  • Le plan Π2 orthogonal aux rayons r3, r4 est une surface d'onde pour le faisceau parallèle sortant de la lentille L et provenant du réflecteur R2. Le calcul du second réflecteur R2 est effectué en exprimant que le chemin optique est constant pour des rayons tels que r3, r4 entre le plan Π2 et le point 2a, 2b du second émetteur 2 d'où provient le rayon.
  • Le dispositif ainsi formé crée un faisceau concentré dont la lumière est située du côté opposé (verticalement) de la coupure horizontale du faisceau créé avec le premier émetteur 1.
  • LIa parallèle à la courbe de contrôle A choisie initialement, à une distance égale à la somme du tirage D de la lentille stigmatique de construction et de son épaisseur au centre, n'a aucun point de rebroussement ni point double. Cette parallèle correspond à la coupe de la surface de sortie de la lentille par le plan Π1 de l'émetteur 1.
  • Selon une variante de réalisation:
    • dans le cas où la tache de lumière dans le plan du premier émetteur 1 est située derrière la courbe de contrôle A, celle-ci ne doit pas être convexe dans la direction de la lentille pour obtenir une coupure plate ;
    • dans le cas où la tache de lumière dans le plan du premier émetteur 1 est située en avant de la courbe de contrôle A, celle-ci ne doit pas être concave dans la direction.
  • Les propriétés énoncées ci-dessus permettent d'établir les équations des surfaces des réflecteurs R1, R2 et de la lentille L, en fonction des grandeurs de contrôle : courbe, tirage, épaisseur au centre, et indice de réfraction du matériau de la lentille stigmatique de construction, et de deux grandeurs arbitraires supplémentaires du type chemin optique, tel que la distance du fond du réflecteur à la source. Les calculs sont fondés sur des considérations de constance du chemin optique entre les points de la courbe de contrôle A et les points appropriés du bord du premier émetteur 1 et, pour le second émetteur 2, entre les points appropriés de son bord et une surface d'onde plane de sortie, de direction choisie préalablement.
    • Fig. 7 est une illustration de la tache lumineuse S qui est produite dans le plan horizontal du premier émetteur 1. Cette tache lumineuse S pourrait être observée après retrait de la lentille L et mise en place d'un écran horizontal dans le plan du premier émetteur 1. La limite arrière de la tache S est formée par la courbe A, tandis que la limite avant B correspond à l'intersection de la face d'entrée de la lentille Le par le plan horizontal de la tache S.
    • Fig. 8 illustre les courbes isolux du premier faisceau à coupure horizontale obtenu avec la première LED (premier émetteur 1), le réflecteur R1 et la lentille L. L'ensemble des lignes isolux du faisceau F1, c'est-à-dire sa zone éclairée, est situé sous la coupure horizontale, au-dessous de la ligne horizontale H de coupure.
    • Fig. 9 illustre les courbes isolux du faisceau F2 obtenues avec la seconde LED 2, le réflecteur R2 et la lentille L, cet ensemble correspondant à l'unité d'éclairage précédemment décrite. Les courbes isolux du faisceau F2 sont situées au-dessus de la ligne H de coupure.
  • Deux améliorations possibles sont maintenant envisagées. Dans ces deux améliorations, le second réflecteur R2, l'émetteur 2 et la lentille L, forment des variantes d'unité d'éclairage selon l'invention.
  • Amélioration 1
  • On choisit pour la construction du second réflecteur R2 associé au second émetteur 2 une direction des rayons émergeants r3, r4 non horizontale et notamment inclinée vers le haut si le faisceau créé par le premier émetteur 1 est situé au-dessus de sa ligne de coupure, ou inclinée vers le bas si ce faisceau est situé en dessous de sa ligne de coupure. Cette disposition permet de garantir, déjà pour un angle d'inclinaison faible, de quelques degrés, une bonne fusion des faisceaux créés par les deux émetteurs 1, 2.
  • Amélioration 2
  • Fig. 10 et 11 montrent un module du même type que celui des Fig. 1-3 et qui correspond au cas où le premier émetteur 1 rayonne vers le haut et crée un faisceau situé au-dessous de sa ligne de coupure horizontale (Fig. 1-4).
  • Certaines LEDs peuvent présenter des zones faiblement brillantes au voisinage des bords de leurs émetteurs 1. Si une LED de ce type est employée pour réaliser le premier émetteur 1, des parasites apparaissent au-dessus de la coupure, parasites qui, suivant la fonction réalisée (et notamment l'étalement horizontal du faisceau) peuvent diminuer plus ou moins fortement la qualité du faisceau (ces parasites correspondent potentiellement à des éblouissements).
  • Dans le cas où la LED ne peut pas être changée pour un modèle mieux adapté, on peut ajouter au système une lame en matériau transparent 4 (Fig.11) ayant une face plane supérieure 4a contenue dans le plan du premier émetteur 1 et une face avant consistant en une fraction de cylindre de génératrices verticales admettant la courbe de contrôle A pour section droite. La face arrière, située plus près de l'émetteur 1 que la face avant, peut être le résultat d'une translation de la face avant ou une surface parallèle.
  • Le bord supérieur avant de la lame 4 est confondu avec la courbe de contrôle A, et passe donc par le foyer de la lentille L dans un plan de coupe vertical. La face d'entrée 4e de la lame 4 est convexe vers l'avant et la face de sortie 4s est parallèle à la face 4e, l'épaisseur de la lame étant constante.
  • En l'absence de parasites, aucun rayon émis par le premier émetteur 1 et réfléchi par le réflecteur associé R1 n'atteint cette lame 4.
  • En revanche les rayons parasites tels que 5, représenté en tirets, atteignent la face supérieure 4a de la lame et subissent à la fois une réflexion partielle et une réfraction. Le rayon 5r, réfléchi par le réflecteur R1 à partir du rayon 5, tombe sur la face supérieure 4a de la lame 4 en arrière du bord avant et donc en arrière du foyer de la lentille pour le plan considéré. La partie 5r2 réfléchie par la face 4a atteint la lentille L et est renvoyée selon le rayon 5s dans le faisceau, au-dessous de la coupure du fait du phénomène de "pliage". Si l'indice de réfraction du matériau de la lame 4 est supérieur à √2, la partie réfractée est guidée vers le bas de la lame 4 où on prévoit un moyen pour qu'elle soit absorbée.
  • Un tel dispositif assure donc l'absence de parasites au-dessus de la coupure. La fraction d'énergie perdue par guidage est négligeable. Par exemple 0.58 Im pour une LED à 600 Im - avec 380 Im dans le faisceau au-delà de la lentille, dans un des exemples de réalisation.
  • Dans cette variante, une grande partie des rayons réfléchis sur le second réflecteur R2 associé au second émetteur 2 rencontre la lame transparente 4. Il est alors préférable, lors du calcul du second réflecteur R2 de tenir compte des déviations (ou, ce qui est équivalent, de la modification du chemin optique) introduites par cette lame 4. Dans ce calcul, on néglige la face supérieure du guide et on considère sa face avant comme étendue verticale infinie ; en outre, on considère un seul point source que doivent rencontrer les rayons de construction, situé au centre du second émetteur 2.
  • Le second réflecteur R2 est déterminé de telle sorte que, suivant un trajet inverse de la lumière, des rayons lumineux r3, r4 parallèles à une direction arbitraire, choisie dans un plan parallèle aux plans parallèles des émetteurs 1,2, après traversée et déviation par la lentille L, après traversée de la face arrière puis de la face avant de la lame, et réflexion sur le deuxième réflecteur R2, rencontrent le second émetteur 2 en un point de son centre, la face avant étant considérée comme une étendue verticale infinie et en considérant une épaisseur donnée de lame 4.
  • La face supérieure 4a du guide 4 agit alors comme une plieuse en réflexion totale et crée une coupure basse partielle dans le faisceau concentré. Plus le guide 4 est épais, moins il y a de rayons passant au-dessus du guide, donc de lumière au-dessous de cette coupure basse partielle, mais moins le second réflecteur R2 est étendu, puisqu'il est physiquement limité par la face arrière du guide 4.
  • Variante
  • Il est possible d'obtenir une variante avec les deux réflecteurs R1, R2 sans lame transparente, où le second réflecteur R2 est construit au moyen des calculs effectués pour l'amélioration 2, appliqués au cas d'un guide 4 d'épaisseur nulle. Le second réflecteur R2 et le second émetteur 2 donnent ainsi un faisceau intense sans coupure qui peut être utilisé pour une fonction de type route et qui a un grand recouvrement avec le faisceau à coupure créé par le premier émetteur 1. Bien que cette variante entraîne un envoi de rayons de lumière supplémentaires sous la coupure, elle présente pour avantage de permettre l'obtention d'un faisceau beaucoup plus intense que le faisceau à alignement d'images. De plus, on peut limiter cette quantité de rayons envoyés sous la coupure par le second réflecteur R2 en décalant le deuxième émetteur 2 vers l'arrière.
  • Cette variante est compatible avec l'amélioration 1 ci-dessus. Le second réflecteur R2, l'émetteur 2 et la lentille L, forment une variante d'unité d'éclairage selon l'invention.
  • Fig. 12 montre en perspective, de manière semblable à Fig. 1, un module M1 selon l'invention, dans lequel la courbe de contrôle A est rectiligne horizontale de sorte que la lentille L1 présente une face d'entrée L1e qui est plane, verticale. Le second réflecteur R2, l'émetteur 2 et la lentille L1, forment une variante d'unité d'éclairage selon l'invention.
  • Fig. 13 montre, semblablement à Fig. 12, un module M2 avec courbe de contrôle constituée par une droite, et en outre équipé d'une lame 4.1 à faces planes verticales parallèles propre à éviter les parasites dus à des rayons provenant des bords de l'émetteur plan 1. Le second réflecteur R2, l'émetteur 2 et la lentille L1, forment une variante d'unité d'éclairage selon l'invention.
  • En se reportant à Fig. 14, on peut voir, en plan, un module M3 avec faisceau décalé latéralement. Le faisceau à coupure produit par le réflecteur R1 présente un axe optique Y1 différent de l'axe optique Y2 du faisceau produit par le réflecteur R2 pour le faisceau route. L'angle α de décalage latéral du faisceau route d'axe Y2 par rapport à l'axe Y1 du faisceau à coupure peut être de 14°. L'ensemble du module M3 est tourné de la même valeur, dans le sens contraire, de telle sorte que l'axe optique Y2 soit parallèle à l'axe du véhicule. Le second émetteur 2 est décalé latéralement dans le sens opposé au décalage du faisceau. Par exemple -10 mm suivant la direction transversale du véhicule, avant rotation du module pour optimiser le rendement du faisceau route. Le second réflecteur R2, l'émetteur 2 et la lentille L, forment une variante d'unité d'éclairage selon l'invention.
  • Fig. 15 est un schéma des courbes isolux du faisceau F'2 obtenu avec le second émetteur 2 de Fig. 14, faisceau qui est situé de part et d'autre de la ligne horizontale de coupure.
  • Fig. 16 illustre les courbes isolux du faisceau F'1 obtenu avec le premier émetteur 1 de Fig. 14, faisceau qui est décalé latéralement par rapport au faisceau de Fig. 15.
  • Fig. 17 illustre les courbes isolux du faisceau résultant de la fusion du faisceau F'1 grande largeur pour le code et du complément route F'2.
  • Pour améliorer le faisceau obtenu par fusion des deux faisceaux élémentaires, le faisceau F'2 complément "route" devrait être placé avec son maximum situé à 1 % plus haut que la ligne de coupure.
  • En se reportant à Figs. 18 et 19, on peut voir un module M4 selon l'invention dans lequel la LED 1 pour le faisceau à coupure émet vers le bas et le premier réflecteur associé R'1 est situé au-dessous de la LED 1. La LED 2 pour le faisceau route émet vers le haut et le deuxième réflecteur associé R'2 est situé au-dessus de cet émetteur 2. Le deuxième réflecteur R'2, l'émetteur 2 et la lentille L, forment une variante d'unité d'éclairage selon l'invention.
  • La courbe de contrôle A' (Fig. 20) est concave en direction de la lentille L'. La face de sortie L's de cette lentille est également concave comme visible sur Fig. 18.
  • Le réflecteur R'1 est déterminé de manière à créer une tache de lumière S' (Fig. 20) située en arrière de la courbe de contrôle A' et admettant cette courbe comme limite avant. Les rayons tels que 6 provenant du bord arrière de du premier émetteur 1 sont réfléchis en 6a par le réflecteur R'1 de manière à s'appuyer sur la courbe A' qui correspond au foyer de la lentille stigmatique dans un plan de coupe vertical, de manière similaire à ce qui a été expliqué à propos de Fig. 3.
  • Dans ces conditions, les rayons provenant de points situés en avant du bord arrière de l'émetteur 1, après traversée de la lentille L', seront inclinés vers le bas sur le plan horizontal. Le faisceau produit par le premier émetteur 1 et le premier réflecteur R'1 sera un faisceau à coupure situé au-dessous de la ligne de coupure.
  • Le bord arrière du second émetteur 2 émet des rayons qui, après réflexion par le second réflecteur R'2, s'appuient sur la courbe A' ou sont situés en arrière de cette courbe. Les autres points du second émetteur 2 donneront des rayons qui, après traversée de la lentille L', seront dirigés vers le haut par rapport à l'horizontale.
  • Dans le cas où la lentille L' est concave, comme illustré sur Fig. 18, avec l'émetteur code 1 émettant vers le bas, le premier réflecteur R'1 est déterminé comme illustré sur Fig. 21 pour que les rayons lumineux r'4, r'6 considérés suivant le trajet inverse de la lumière, convergent vers les coins arrière 1c, 1d de l'émetteur rectangulaire plan 1, du même côté du plan vertical Q'1 passant par l'axe optique que leur point d'intersection m'4, m'6 avec le réflecteur R'1, dans le cas où m'4, m'6 est en dehors de l'espace compris entre deux plans Q2 et Q3 parallèles à Q'1 et passant par les coins arrières de l'émetteur 1.
  • Lorsque l'intersection m'5 d'un rayon r'5, considéré suivant le trajet inverse de la lumière, avec le réflecteur R'1 est située entre les plans Q2 et Q3 de la figure 22, il atteint le point 1e du bord arrière de l'émetteur situé dans le plan parallèle à Q'1 contenant m'5.
  • Pour déterminer un point du réflecteur, on résout l'équation décrivant la constance du chemin optique (selon le théorème de Fermât) de la courbe A' au point source correspondant de l'émetteur pour trois cas possibles de points sources hypothétiques :
    • les deux extrémités du segment arrière de l'émetteur, et
    • le point de la droite support de ce segment de même projection sur cette droite que le point du réflecteur recherché.
  • Une seule des trois solutions trouvées respecte alors les conditions posées ci-dessus (par rapport aux rayons r'4 et r'5).
  • D'autres variantes avec faisceau à coupure situé au-dessus de la ligne de coupure sont possibles.
  • Dans le cas des Figs. 1-3, pour que le premier émetteur 1 donne un faisceau à coupure situé au-dessus de la ligne de coupure, on détermine le premier réflecteur R1 de manière qu'il donne une tache de lumière située en arrière de la courbe de contrôle A, au lieu de se trouver en avant dans l'exemple qui a été décrit.
  • Dans le cas des Figs. 18 et 19, pour obtenir un faisceau à coupure situé au-dessus de la coupure, on détermine le premier réflecteur R'1 de manière qu'il donne une tache de lumière située en avant de la courbe de contrôle concave A'.
  • Quelle que soit la solution adoptée, on obtient un faisceau à coupure en commandant seulement l'allumage du premier émetteur 1, et un faisceau de type route en commandant l'allumage des deux émetteurs 1 et 2. La fusion de deux faisceaux s'effectue alors dans de bonnes conditions, sans présence d'une bande sombre entre eux puisqu'il n'y a pas de bord matériel de plieuse. Cette fusion s'effectue sans avoir besoin de commander un mouvement mécanique d'une plieuse.
  • L'invention permet de disposer d'un module avec une lentille torique plutôt qu'elliptique. Il est ainsi possible d'assembler plusieurs modules similaires à lentilles toriques, en continuité de tangence des surfaces des lentilles.
  • Le module produit un faisceau large à coupure nette, et ne comporte pas de forme de plieuse complexe pour compenser, toujours partiellement, les aberrations de la lentille.
  • Il n'y a pas de risque de d'une focalisation de rayons solaires sur la surface du réflecteur ou des LEDs, entraînant une dégradation de ces éléments. En effet, la lentille est non imageante, c'est-à-dire qu'elle ne forme l'image d'un objet situé à son foyer dans aucun plan réel ou virtuel, y compris lorsque la taille de l'objet tend vers 0. On obtient de bons rendements pour le faisceau route et pour le faisceau code par rapport aux solutions à plieuse plus classiques. Il n'y a pas de pièces difficiles à réaliser.
  • Selon la présente invention, il est possible d'utiliser un premier module d'éclairage selon l'invention avec une unité d'éclairage selon la présente description, ledit module et ladite unité étant deux ensembles de systèmes optiques distincts, avec une lentille distincte. Cette utilisation peut être réalisée dans un même projecteur de véhicule, l'unité d'éclairage et le module d'éclairage étant placé dans le boîtier du projecteur. Le boîtier est de préférence fermé, de préférence par une glace de fermeture transparente.
  • Par exemple, les figures 23 à 25 illustrent la juxtaposition latérale de d'un premier module d'éclairage Ma avec une unité d'éclairage Mb, chacun ayant sa propre lentille, respectivement La et Lb.
  • Le premier module d'éclairage Ma peut être un module d'éclairage selon l'invention. Dans l'exemple illustré en figures 23 à 25, celui-ci correspond à un module tel que celui illustré en figure 1, mais sans le réflecteur R2, ni l'émetteur 2. Le module Ma comprend un premier réflecteur R1, déviant les rayons émis par une LED 1 vers la lentille La, pour créer un premier faisceau selon une direction globale X1.
  • Le premier réflecteur R1 et la lentille La ont une forme déterminée et sont agencés comme les premiers réflecteurs et les lentilles des modules d'éclairage selon la présente invention précédemment décrits. D'autres modules d'éclairage selon l'invention pourraient donc être utilisés, avec ou sans unité d'éclairage selon l'invention, comme par exemple un module tel que celui de ma figure 4, avec ou sans le deuxième réflecteur R2 et le deuxième émetteur 2.
  • L'unité d'éclairage Mb peut être une unité d'éclairage selon la présente description. Dans l'exemple illustré en figures 23 à 25, celle-ci correspond à une unité d'éclairage telle que celle illustrée en figure 1, sans premier réflecteur R1, ni premier émetteur 1. L'unité d'éclairage Mb comprend un deuxième réflecteur R2, déviant les rayons émis par une LED 2 vers la lentille Lb, pour créer un deuxième faisceau selon une direction globale X2.
  • Le deuxième réflecteur R2 et la lentille Lb ont une forme déterminée et sont agencés comme les deuxièmes réflecteurs et les lentilles des modules d'éclairage selon la présente invention précédemment décrits. D'autres unités d'éclairage selon l'invention pourraient donc être utilisées.
  • Alternativement, le module d'éclairage peut être un module tel que celui M4 illustré en figure 18, sans le deuxième réflecteur et sans le deuxième émetteur. L'unité d'éclairage peut être alors une unité telle que celle R'2, 2, L', illustrée en figure 18, sans le premier réflecteur et sans le premier émetteur.
  • Dans les figures 23 à 25 le module d'éclairage Ma et l'unité d'éclairage Mb sont alignés transversalement, mais ils pourraient également être superposés. Les lentilles La et Lb peuvent être côte à côte avec peu d'espace entre elle, tel qu'illustré. Elles peuvent également être adjacentes ; comme les lentilles sont proches en forme, voire identiques, il est alors possible d'avoir un aspect très homogène, voire de les placer dans la continuité l'une de l'autre transversalement, pour donner une impression de lentille unique.
  • Dans l'exemple illustré en figures 23 à 25, de manière non limitative, le premier émetteur 1 et le deuxième émetteur 2 sont montés sur des supports distinctes 3' et 3". Le premier faisceau à coupure et le deuxième faisceau peuvent être des faisceaux tels que précédemment décrits et être combinés tels précédemment décrit. L'agencement du premier réflecteur R1 par rapport au deuxième réflecteur R2 et/ou le décalage entre le premier émetteur 1 et le deuxième émetteur 2 peuvent être comme décrit précédemment.
  • L'invention couvre également des projecteurs de véhicule utilisant des modules d'éclairage selon l'invention mais sans unité d'éclairage telle que définie par la revendication 3, par exemple un module tel que le module d'éclairage Ma précédemment décrit et illustré, de manière non limitative, en figures 23 à 25. Ce module peut par exemple être utilisé pour réaliser un premier faisceau à coupure. Il est alors possible d'avoir un deuxième module, par exemple déjà connu, pour réaliser un faisceau route additionnel, soit en complément, soit alternativement à l'éclairage du premier module qui lui est toujours selon l'invention.
  • L'invention ne couvre pas l'unité d'éclairage M5, telle qu'illustrée en Fig. 26 à Fig. 29. Cette unité d'éclairage peut être cependant associée à un module d'éclairage selon la présente invention. Par exemple, cette unité est semblable au module d'éclairage Mb précédemment décrit et illustré, de manière non limitative, en figures 23 à 25. Cependant, cette unité d'éclairage M5 est destinée à être montée dans le projecteur en étant tournée de 90° selon un axe longitudinal par rapport au montage de l'unité d'éclairage Mb des figures 23 à 25.
  • Ainsi, l'unité d'éclairage M5 est destinée à être agencée dans le projecteur de véhicule automobile, propre à fournir un faisceau lumineux, de tel sorte que :
    • l'émetteur 2 est agencé pour émettre un faisceau de rayons lumineux globalement selon une direction transversale,
    • le réflecteur R"2 est agencé pour collecter l'ensemble de ce faisceau de rayons,
    • ledit plan orthogonal Vc est orthogonal à un plan vertical, de préférence contenant la direction longitudinale.
  • Sur la figure 26, un repère orthonormé a été placé pour représenter schématiquement la verticale « V », une direction transversale « T », et une direction longitudinal « L ».
  • On observe donc que les plans selon lesquels la section de lentille L" est stigmatique, tel que précédemment décrit, sont toujours orthogonaux à un plan vertical. En d'autre terme, la lentille L" s'étend verticalement, selon sa plus grande direction. Dans le cas d'une lentille torique, la courbe directrice est donc verticale.
  • Selon une variante de réalisation, cette unité d'éclairage M5 est réalisée de manière à générer un faisceau avec une coupure, tel que précédemment décrit pour la formation du faisceau route complémentaire. Cela permet d'avoir un faisceau à coupure verticale lorsqu'elle est placée dans le projecteur, puisque l'unité d'éclairage est tournée de 90° comparativement aux unités décrites dans les autres modes.
  • Selon une autre variante de réalisation, cette unité d'éclairage M5 est réalisée de manière à être apte à générer un faisceau sans coupure, tel que précédemment décrit, tout en disposant la lentille verticalement. D'une manière surprenante, la lentille permet de générer un faisceau route, tel qu'illustré en figure 29, alors que la lentille L" s'étend verticalement. Le réflecteur R"2 s'étend de part et d'autre du plan horizontal passant par la LED 2. Le réflecteur R"2 forme une concavité orientée transversalement au véhicule, par exemple le réflecteur R"2 est formé d'une demi coque, située environ intégralement d'un côté du plan vertical et longitudinal passant par la LED 2.
  • L'avantage de cette unité d'éclairage M 5, est qu'elle permet une implantation dans un projecteur avec un faible encombrement transversal. Elle permet également de suivre une courbe dans un plan vertical, et de réaliser ainsi des feux route avec un fort retour sur le dessus de l'aile du véhicule. Elle permet également une orientation différente pour des raisons de style.

Claims (15)

  1. Module d'éclairage pour projecteur de véhicule automobile, propre à fournir un premier faisceau à coupure, ledit module d'éclairage comprenant :
    - un premier émetteur (1) de lumière plan, pour donner le premier faisceau ;
    - une lentille (L,L1,L', La) disposée en avant de l'émetteur,
    - un premier réflecteur (R1,R'1),
    caractérisé en ce que :
    - le premier réflecteur (R1,R'1) est déterminé de manière à créer dans un plan comprenant le premier émetteur (1), une tache lumineuse (S,S') par déviation des rayons émis par le premier émetteur, ladite tache lumineuse étant limitée par une courbe de contrôle (A,A') constituant le bord avant ou le bord arrière de la tache, la courbe étant contenue dans le plan comprenant le premier émetteur et située en avant du premier émetteur,
    - la lentille (L,L1,L',La) est déterminée de telle sorte que sa coupe (Lc), par un plan (Vc) orthogonal à ladite courbe de contrôle (A) en un point quelconque, soit identique à celle d'une lentille de référence stigmatique entre le point d'intersection de la courbe de contrôle avec le plan orthogonal, et l'infini suivant la direction donnée par l'intersection du plan orthogonal et du plan de la courbe, le matériau de la lentille (L,L1,L',La) dudit module et de ladite lentille de référence ayant le même indice de réfraction, le premier réflecteur et la lentille étant agencés de manière à former le premier faisceau à coupure après réfraction par la lentille des rayons déviés par le premier réflecteur, la ligne de coupure du premier faisceau à coupure étant déterminée par la courbe de contrôle.
  2. Module selon l'une des revendications précédentes, caractérisé en ce que le premier réflecteur (R1, R'1) est déterminé de manière telle que les images (I1,I2) du premier émetteur (1), qu'il fournit dans le plan de cet émetteur, rencontrent la courbe de contrôle (A, A'), tout en se trouvant entièrement du côté de la tache lumineuse.
  3. Module selon l'une des revendications précédentes, comprenant en outre une unité d'éclairage pour projecteur de véhicule automobile, propre à fournir un faisceau lumineux, ladite unité d'éclairage comprenant :
    - un deuxième émetteur (2) de lumière plan, pour donner le deuxième faisceau ;
    - un deuxième réflecteur (R2,R'2) pour dévier les rayons émis par le deuxième émetteur lumineux,
    caractérisé en ce que :
    - la surface réfléchissante du réflecteur (R2, R'2) est déterminée de telle sorte que, suivant un trajet inverse de la lumière, les rayons lumineux (r3, r4) parallèles à une direction donnée, après traversée et déviation par la lentille (L,Lb) et réflexion sur le deuxième réflecteur (R2, R'2), rencontrent le deuxième émetteur (2) en des points donnés de l'émetteur,
    le deuxième réflecteur (R2, R'2) et cette lentille (L,L1,L') étant agencés de manière à former un deuxième faisceau lumineux.
  4. Module selon la revendication 3, dans lequel l'unité d'éclairage est caractérisée en ce que lesdits points donnés du deuxième émetteur (2) sont soit des points du bord avant soit des points du bord arrière de l'émetteur.
  5. Module selon l'une des revendications 3 ou 4, caractérisé en ce que la surface réfléchissante du deuxième réflecteur (R2, R'2) est déterminée de manière à ce que le deuxième faisceau lumineux s'ajoute au premier faisceau à coupure pour produire ainsi un faisceau route.
  6. Module selon la revendication 5, caractérisé en ce que soit le deuxième émetteur (2) émet vers le haut et le premier émetteur (1) émet vers le bas, soit le deuxième émetteur (2) émet vers le bas et le premier émetteur (1) émet vers le haut.
  7. Module selon l'une quelconque des revendications 5 à 6, caractérisé en ce que le second émetteur (2) est décalé transversalement par rapport au premier émetteur (1), de manière à ce que le faisceau à coupure produit par le premier réflecteur (R1) présente un axe optique (Y1) différent de l'axe optique (Y2) du faisceau produit par le second réflecteur (R2).
  8. Module selon l'une des revendications 1 à 2 ou 3 à 4 ou 5 à 7, caractérisé en ce que la tache lumineuse (S) se trouve en avant de la courbe de contrôle (A), laquelle courbe de contrôle (A) est convexe vue depuis de la lentille, ou rectiligne.
  9. Module selon l'une des revendications 1 à 2 ou 3 à 4 ou 5 à 8, caractérisé en ce que le premier réflecteur (R1) est calculé de manière à ce que pour tout point (p, pb) de la surface réfléchissante du premier réflecteur, un rayon (r, rb) s'appuyant sur la courbe de contrôle (A), et contenu dans le plan perpendiculaire à la courbe de contrôle au point d'intersection du rayon considéré et de cette courbe, et réfléchi en ce point (p, pb) arrive après réflexion sur le coin avant (1a, 1b) de l'émetteur (1), situé du côté opposé à ce point (p, pb), par rapport au plan vertical (Q1) passant par l'axe optique.
  10. Module selon l'une quelconque des revendications 1 à 2 ou 3 à 4 ou 5 à 9, caractérisé en ce que le premier émetteur (1) émet vers le haut, et crée avec le premier réflecteur associé (R1) un premier faisceau à coupure dont la zone éclairée est située au-dessous de sa ligne de coupure, et en ce que le module comporte une lame (4) en matériau transparent ayant une face plane supérieure (4a) contenue dans le plan du premier émetteur, et une face avant (4s) consistant en une fraction de cylindre de génératrices orthogonales au plan de la courbe de contrôle (A), admettant cette courbe de contrôle comme section droite, de manière à ce que la partie réfractée des rayons (5r), venant de rayons parasites émis sur le côté de l'émetteur, et atteignant la face supérieure entrent dans la lame (4).
  11. Module selon l'une des revendications 3 à 4 pris en combinaison avec l'une des revendications 8 à 10, caractérisé en ce que le second réflecteur (R2) est déterminé de telle sorte que, suivant un trajet inverse de la lumière, les rayons lumineux (r3, r4) parallèles à une direction donnée, après traversée et déviation par la lentille (L), après traversée de la face avant (4s) puis de la face arrière (4e) de la lame, et réflexion sur le deuxième réflecteur (R2), rencontrent le second émetteur (2) en un point de son centre, les faces avant et arrière étant considérées comme d'étendue verticale infinie.
  12. Module selon l'une quelconque des revendications 1 à 2 ou 3 à 4 ou 5 à 7, caractérisé en ce que la tache lumineuse (S') dans le plan du premier émetteur se trouve en arrière de la courbe de contrôle (A') laquelle est concave vue depuis la lentille, ou rectiligne.
  13. Module selon l'une quelconque des revendications 1 à 2, 3 à 4 ou 5 à 7 ou selon la revendication 12, caractérisé en ce que le premier réflecteur (R'1) comprend une première portion de surface réfléchissante calculée de manière à ce que pour tout point (m'4, m'6) de la première portion de surface réfléchissante du réflecteur située en dehors de l'espace compris entre deux plans (Q2 et Q3) passant par les coins arrières (1c, 1d) de l'émetteur (1) et parallèles à un plan vertical (Q'1) passant par l'axe optique, un rayon (r'4, r'6) s'appuyant sur la courbe de contrôle (A'), et contenu dans le plan perpendiculaire à la courbe de contrôle au point d'intersection du rayon considéré et de cette courbe, et réfléchi en ce point (m'4, m'6) arrive après réflexion sur le coin arrière (1c, 1d) de l'émetteur (1), situé du même côté que le point donné (m'4, m'6) par rapport au plan vertical (Q'1) passant par l'axe optique.
  14. Module selon la revendication 13, caractérisé en ce que le premier réflecteur (R'1) comprend une deuxième portion de surface réfléchissante calculée de manière à ce que pour tout point donné (m'5) de ladite deuxième portion de surface réfléchissante située à l'intérieur de l'espace compris entre deux plans (Q2 et Q3) passant par les coins arrières (1c, 1d) de l'émetteur (1) et parallèles à un plan vertical (Q'1) passant par l'axe optique, un rayon (r'5) s'appuyant sur la courbe de contrôle (A'), et contenu dans le plan perpendiculaire à la courbe de contrôle au point d'intersection du rayon considéré et de cette courbe, et réfléchi en ce point (m'5) de ladite deuxième portion de surface réfléchissante, arrive, après réflexion, sur le point (1e) du bord arrière de l'émetteur (1) situé dans le plan qui d'une part contient ce point donné (m'5) de ladite deuxième portion de surface réfléchissante, et d'autre part est parallèle au plan vertical (Q'1) passant par l'axe optique.
  15. Projecteur de véhicule automobile, comprenant au moins un module d'éclairage selon l'une des revendications précédentes.
EP11168091.4A 2010-05-31 2011-05-30 Module d'éclairage pour projecteur de véhicule automobile Active EP2390562B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR1002279A FR2960497B1 (fr) 2010-05-31 2010-05-31 Module d'eclairage pour projecteur de vehicule automobile

Publications (3)

Publication Number Publication Date
EP2390562A2 EP2390562A2 (fr) 2011-11-30
EP2390562A3 EP2390562A3 (fr) 2014-12-03
EP2390562B1 true EP2390562B1 (fr) 2021-08-18

Family

ID=43466918

Family Applications (1)

Application Number Title Priority Date Filing Date
EP11168091.4A Active EP2390562B1 (fr) 2010-05-31 2011-05-30 Module d'éclairage pour projecteur de véhicule automobile

Country Status (4)

Country Link
US (1) US8651716B2 (fr)
EP (1) EP2390562B1 (fr)
JP (1) JP6062619B2 (fr)
FR (1) FR2960497B1 (fr)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2984456B1 (fr) * 2011-12-19 2015-08-21 Valeo Vision Systeme d'eclairage pour projecteur notamment de vehicule automobile
FR3003521B1 (fr) 2013-03-21 2016-10-07 Valeo Vision Module d'eclairage et/ou de signalisation pour vehicule automobile
JP6120063B2 (ja) * 2013-03-25 2017-04-26 スタンレー電気株式会社 車両用前照灯の灯具ユニット
CZ305372B6 (cs) 2013-11-22 2015-08-19 Varroc Lighting Systems, s.r.o. Světlomet motorového vozidla
EP3057067B1 (fr) * 2015-02-16 2017-08-23 Thomson Licensing Dispositif et procédé pour estimer une partie brillante de rayonnement
FR3056485B1 (fr) * 2016-09-29 2018-10-12 Valeo Vision Systeme d'eclairage de vehicule automobile et vehicule automobile
FR3056486B1 (fr) * 2016-09-29 2018-10-12 Valeo Vision Systeme d'eclairage de vehicule automobile et vehicule automobile
EP3301500B1 (fr) 2016-09-29 2023-09-06 Valeo Vision Système d'éclairage de véhicule automobile et véhicule automobile
JP7084929B2 (ja) 2016-12-21 2022-06-15 ルミレッズ ホールディング ベーフェー プロジェクタ型車両ヘッドランプ
FR3062457B1 (fr) * 2017-02-01 2020-08-28 Valeo Vision Module d'eclairage d'un faisceau lumineux pour projecteur de vehicule automobile
WO2019109675A1 (fr) * 2017-12-07 2019-06-13 华域视觉科技(上海)有限公司 Feu avant automobile de type à projection et unité de projection de son système d'éclairage à faisceau bas
CN108050482A (zh) * 2017-12-07 2018-05-18 上海小糸车灯有限公司 一种投射式汽车大灯及其近光照明系统的投射单元
JP7016257B2 (ja) * 2017-12-28 2022-02-21 スタンレー電気株式会社 車両用灯具
FR3077365B1 (fr) * 2018-01-30 2021-06-25 Valeo Vision Dispositif d'eclairage de la route a surface generatrice de caustique controlee formant un faisceau d'eclairage
CZ201853A3 (cs) * 2018-01-31 2019-09-18 Varroc Lighting Systems, s.r.o. Optický systém
EP3527875A1 (fr) * 2018-02-15 2019-08-21 ZKW Group GmbH Phare de véhicule automobile pourvu d'un condensateur plan
KR20220010227A (ko) 2020-07-17 2022-01-25 현대자동차주식회사 가변 이미지 생성 확장형 그릴 라이팅 램프 시스템 및 차량
US11435050B2 (en) 2020-07-17 2022-09-06 J.W. Speaker Corporation Bi-functional optical systems and methods
KR20220010226A (ko) 2020-07-17 2022-01-25 현대자동차주식회사 확장형 그릴 라이팅 램프 시스템 및 차량
FR3134871B1 (fr) * 2022-04-20 2024-07-05 Valeo Vision Dispositif lumineux d’un véhicule automobile comportant au moins un diaphragme

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4335621B2 (ja) * 2003-04-25 2009-09-30 スタンレー電気株式会社 車両用灯具
JP4044024B2 (ja) * 2003-09-29 2008-02-06 株式会社小糸製作所 車両用前照灯
FR2866413B1 (fr) * 2004-02-13 2006-06-30 Valeo Vision Projecteur elliptique equipe d'un ecran d'occultation en matiere transparente.
FR2866412B1 (fr) * 2004-02-13 2007-01-19 Valeo Vision Module de projecteur lumineux pour vehicule automobile, reflecteur pour un tel module, et projecteur equipe de de module
JP4391870B2 (ja) * 2004-04-02 2009-12-24 株式会社小糸製作所 車両用照明灯具
FR2872257B1 (fr) * 2004-06-24 2006-08-18 Valeo Vision Sa Module d'eclairage pour vehicule automobile et projecteur comportant un tel module
JP4258465B2 (ja) * 2004-12-01 2009-04-30 市光工業株式会社 車両用前照灯ユニット
JP4413762B2 (ja) 2004-12-07 2010-02-10 株式会社小糸製作所 車両用照明灯具
EP1762776B1 (fr) * 2005-09-09 2015-04-15 Valeo Vision Procédé de construction d'un module de projecteur lumineux pour véhicule automobile
FR2904091B1 (fr) * 2006-07-21 2009-03-06 Valeo Vision Sa Module optique pour projecteur de vehicule automobile
FR2910592B1 (fr) * 2006-12-20 2012-07-20 Valeo Vision Module de projecteur lumineux de vehicule automobile pour un faisceau a coupure
FR2917811B1 (fr) 2007-06-25 2009-10-02 Valeo Vision Sa Module d'eclairage pour projecteur de vehicule automobile
FR2923890A1 (fr) * 2007-11-16 2009-05-22 Valeo Vision Sa Dispositif d'eclairage pour vehicule automobile
JP2009184410A (ja) * 2008-02-04 2009-08-20 Koito Mfg Co Ltd 車両用照明灯具
FR2932245B1 (fr) * 2008-06-06 2010-09-10 Valeo Vision Sas Module d'eclairage pour projecteur de vehicule automobile

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP6062619B2 (ja) 2017-01-18
FR2960497B1 (fr) 2012-07-13
EP2390562A2 (fr) 2011-11-30
JP2011253814A (ja) 2011-12-15
FR2960497A1 (fr) 2011-12-02
US20110292669A1 (en) 2011-12-01
EP2390562A3 (fr) 2014-12-03
US8651716B2 (en) 2014-02-18

Similar Documents

Publication Publication Date Title
EP2390562B1 (fr) Module d'éclairage pour projecteur de véhicule automobile
EP3708904B1 (fr) Dispositif lumineux imageant les surfaces eclairees d'au moins deux collecteurs
EP3232118B1 (fr) Module d'émission d'un faisceau lumineux pour projecteur de véhicule automobile
EP1762776B1 (fr) Procédé de construction d'un module de projecteur lumineux pour véhicule automobile
WO2020025171A1 (fr) Module lumineux imageant la surface eclairee d'un collecteur
FR3024762A1 (fr) Feu de vehicule
EP3246620B1 (fr) Projecteur à led à dioptre créant coupure pour véhicules
EP1500869A1 (fr) Module d'éclairage elliptique sans cache réalisant un faisceau d'éclairage à coupure et projecteur comportant un tel module
FR2995967B1 (fr) Module d'eclairage, notamment pour vehicule automobile
EP3027961B1 (fr) Système d'éclairage pour véhicule automobile
EP1610057A1 (fr) Module d'éclairage pour véhicule automobile et projecteur comportant un tel module
FR3026461A1 (fr) Module lumineux pour l'eclairage et/ou la signalisation d'un vehicule automobile
FR2963589A1 (fr) Systeme d'eclairage pour vehicule
EP2019258A1 (fr) Module optique à source lumineuse pour projecteur automobile
FR2863038A1 (fr) Phare de vehicule a trois reflecteurs
EP3708905B1 (fr) Dispositif lumineux imageant une surface eclairee virtuelle d'un collecteur
EP2597360A1 (fr) Dispositif d'émission de lumière pour projecteur de véhicule automobile
EP1855051B1 (fr) Module optique de projecteur pour véhicule automobile
EP2436968B1 (fr) Dispositif d'émission de lumière pour projecteur de véhicule automobile
FR2755210A1 (fr) Projecteur a conduit de lumiere pour vehicules automobiles
EP1600689A1 (fr) Projecteur lumineux multifonction pour véhicule automobile
EP2131098B1 (fr) Module d'éclairage pour projecteur de véhicule automobile
FR2970061A1 (fr) Dispositif d'eclairage et/ou de signalisation, notamment pour vehicule automobile
EP2366941A2 (fr) Module d'éclairage avec deux réflecteurs de distances focales différentes
WO2024061970A1 (fr) Module lumineux

Legal Events

Date Code Title Description
AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

RIC1 Information provided on ipc code assigned before grant

Ipc: F21S 8/10 20060101ALI20141029BHEP

Ipc: F21V 5/00 20060101ALI20141029BHEP

Ipc: F21V 7/00 20060101ALI20141029BHEP

Ipc: F21V 7/04 20060101ALI20141029BHEP

Ipc: F21S 8/12 20060101AFI20141029BHEP

17P Request for examination filed

Effective date: 20150325

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20180713

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602011071582

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: F21S0008120000

Ipc: F21S0041260000

RIC1 Information provided on ipc code assigned before grant

Ipc: F21V 7/04 20060101ALI20200821BHEP

Ipc: F21S 41/36 20180101ALI20200821BHEP

Ipc: F21V 7/00 20060101ALI20200821BHEP

Ipc: F21S 41/663 20180101ALI20200821BHEP

Ipc: F21S 41/32 20180101ALI20200821BHEP

Ipc: F21V 5/00 20180101ALI20200821BHEP

Ipc: F21S 41/26 20180101AFI20200821BHEP

Ipc: F21S 41/148 20180101ALI20200821BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20201012

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAL Information related to payment of fee for publishing/printing deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20210318

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602011071582

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

Ref country code: AT

Ref legal event code: REF

Ref document number: 1421962

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210818

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1421962

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211220

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211118

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211119

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602011071582

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20220519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20220531

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220530

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220530

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220531

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20110530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240513

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240524

Year of fee payment: 14

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210818