[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1762776B1 - Procédé de construction d'un module de projecteur lumineux pour véhicule automobile - Google Patents

Procédé de construction d'un module de projecteur lumineux pour véhicule automobile Download PDF

Info

Publication number
EP1762776B1
EP1762776B1 EP06291391.8A EP06291391A EP1762776B1 EP 1762776 B1 EP1762776 B1 EP 1762776B1 EP 06291391 A EP06291391 A EP 06291391A EP 1762776 B1 EP1762776 B1 EP 1762776B1
Authority
EP
European Patent Office
Prior art keywords
lens
module
light
optical axis
diode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP06291391.8A
Other languages
German (de)
English (en)
Other versions
EP1762776A1 (fr
Inventor
Pierre Albou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Vision SAS
Original Assignee
Valeo Vision SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0509234A external-priority patent/FR2890721B1/fr
Priority claimed from FR0602391A external-priority patent/FR2898662A3/fr
Application filed by Valeo Vision SAS filed Critical Valeo Vision SAS
Publication of EP1762776A1 publication Critical patent/EP1762776A1/fr
Application granted granted Critical
Publication of EP1762776B1 publication Critical patent/EP1762776B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/20Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by refractors, transparent cover plates, light guides or filters
    • F21S41/25Projection lenses
    • F21S41/265Composite lenses; Lenses with a patch-like shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/10Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source
    • F21S41/14Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by the light source characterised by the type of light source
    • F21S41/141Light emitting diodes [LED]
    • F21S41/147Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device
    • F21S41/148Light emitting diodes [LED] the main emission direction of the LED being angled to the optical axis of the illuminating device the main emission direction of the LED being perpendicular to the optical axis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S41/00Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps
    • F21S41/30Illuminating devices specially adapted for vehicle exteriors, e.g. headlamps characterised by reflectors
    • F21S41/32Optical layout thereof
    • F21S41/321Optical layout thereof the reflector being a surface of revolution or a planar surface, e.g. truncated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the invention relates to a method of constructing a light projector module giving at least one cut-off beam, for a motor vehicle, of the kind comprising a lens and a light source disposed behind the lens of which it is separated by air, the light source comprising at least one light emitting diode.
  • LED Light-emitting diodes
  • diodes deliver relatively limited light flux, of the order of 100 lumens.
  • LED Light-emitting diodes
  • the outer surface of the projector may have discontinuities in the junction areas of the juxtaposed modules, which is also not desired. The radii of curvature of this outer surface are generally not adapted to those of neighboring body parts, which is not suitable for the style. The fusion of the light beams of the different modules also needs to be improved.
  • the object of the invention is, in particular, to create a lens light projector module that can be assembled in a continuous manner in an extinct aspect to neighboring modules, and that makes it possible to create controlled light beams without constraint of radius of curvature on the surface. output of the overall part forming the projector.
  • the lens module should be able to provide complex forms of beam splitting.
  • LED module and lens that is adaptable to provide different types of beam, including beams, or flat or oblique cut beam portions, such as code beams or beams.
  • beams called motorway beams (or "motorway" in English).
  • the method of constructing a motor vehicle light projector module is such that the exit surface of the lens is chosen so that it can connect smoothly and continuously with the exit surfaces of similar neighboring modules, and determine the entrance surface of the lens so as to obtain the cutoff of the light beam, without using an occulting cover.
  • the term "concealment mask” is understood to mean a mask that intercepts the light that essentially reaches it by absorption (as opposed to a light reflecting element in particular).
  • modules include modules whose external appearance is similar, and which also comprise a lens and at least one light-emitting diode, but which can generate either a cut-off beam or a beam without cutoff (road type).
  • modules can also be modules as defined above but equipped with at least one light emitting diode emitting essentially in the infra-red and not in the visible, this in particular to allow to emit an infra-red beam. Red uninterrupted road-type distribution for night driving assistance.
  • a method of construction of a light projector module giving a cut-off beam for a motor vehicle comprising a lens and a light source disposed behind the lens of which it is separated by air, the light source being formed by at least one electroluminescent diode.
  • the method is such that the exit surface of the lens is chosen and the entrance surface of the lens is determined by relying on a horizontal generatrix, so as to obtain the breaking of the light beam emitted by the module without using an occulting cover, and with a controlled horizontal distribution of said light beam.
  • the exit surface of the lens is selected as being substantially cylindrical or toroidal, the section of the exit surface of the lens being a vertical plane parallel to the optical axis being convex forward.
  • curvature (s) of the exit surface of the lens substantially equal to the curvature (s) of the walls surrounding the module.
  • the exit surface is advantageously chosen to be that of a cylinder of revolution whose section by a vertical plane passing through the optical axis is a convex circular arc. forward, and the entrance area is constructed to be stigmatic between the second focus of the ellipsoidal reflector and infinity.
  • the output surface is generally chosen toric, vertical axis of revolution, and the input surface is constructed so as to create a horizontal cut.
  • the invention also relates, according to one embodiment of the module, to a motor vehicle headlight module comprising a lens and, behind the lens, a light source separated from the lens by air and formed by minus a light-emitting diode, this module being such that the exit surface of the lens is entirely convex forward and is such that it can be connected in a smooth, continuous surface with the lens exit surfaces of similar neighboring modules , and the input surface of the lens is defined so that the module gives a light beam cut without intervention of an occulting cache, including vertical.
  • a light projector module giving a cut-off beam for a motor vehicle, comprising a lens and a light source disposed behind the lens from which it is separated by air, the light source comprising at least one light-emitting diode, such that the exit surface of the lens is fully convex forward, and the entrance surface (Ae1-Ae5) of the lens is defined based on a generator horizontal, so that the module gives a light beam cut without intervention of an occulting cover, including vertical, and with a horizontal distribution.
  • the entrance surface (Ae6) of the lens is calculated so that a family of light rays, called limit radii, emanating from the emitter of the light source, emerge from the lens so that they are all normal, at the points where they meet, to a surface, said output wave surface, cylindrical, vertical generators and any cross section (the choice of a straight section or more generally, a director of the output waveform makes it possible to control the horizontal distribution of the energy in the beam and here replaces the choice of the "generating curve" of the preceding variant).
  • the limit radii are chosen so that all the other light rays coming from the source reaching the entrance face of the lens at the same point as they emerge from the exit face (As6) with a direction vector of vertical component negative or zero.
  • the generated beam has a horizontal cutoff line and all images of the transmitter meet this limit line at infinity at one point.
  • the lens input surface is generally discontinuous, the points (called foci) of the emitter from which the limit rays are derived being different depending on the point of emergence of the beam. limit on the surface of the source reaches the entrance face of the lens at a point above or below (along the vertical axis z) of it.
  • the physical part comprises a continuous surface made up of the above-mentioned high and low surfaces and a connection surface, ideally set, with generatrices parallel to the optical axis, and, in practice, inclined generatrices. relative to this axis so as to allow demolding of the lens.
  • variant II ⁇ lies in the possibility of calculating the output area (in two parts) directly (one equation for each point, independent of the neighboring points) and not step by step, which causes the propagation of the errors of calculations and possibly numerical oscillations.
  • choice of the output wave surface imposes precisely the direction of the highest radius of each image according to its point of emergence at the exit surface of the lens, while the "generating curve" of the preceding variant constitutes only one of the boundary conditions for a system of partial differential equations and, if it makes it possible to control the horizontal distribution of the energy, can not be directly connected to the horizontal position of a image from a given point of the exit surface.
  • the exit surface of the lens may be cylindrical or toric, the section of the exit surface of the lens by a vertical plane parallel to the optical axis being convex forwards.
  • the curvature (s) of the exit surface of the lens may be substantially equal to the curvature (s) of the walls surrounding the module on the vehicle.
  • the light projector module may comprise an ellipsoidal reflector and a folder, in which case the exit surface is advantageously chosen to be that of a cylinder of revolution whose section by a vertical plane passing through the optical axis is an arc of a circle. convex forward, and the entrance surface is constructed to be stigmatic between the second focus of the ellipsoidal reflector and the infinite.
  • the shape of the edge of the folder may be provided for the beam bright has a V cut.
  • the edge of the folder may have valley deformation to compensate, in part, for the aberrations of the lens.
  • the edge of the folder may have on both sides of the vertical plane passing through the optical axis two bumps connected by a portion in bowl to form an additional module for a highway code, strengthening the light in the axis below from the horizontal.
  • the input surface is such that the optical path is constant from the external focus of the reflector, to a plane tangential to the exit face at its point of intersection with the optical axis of the module.
  • the focus of the lens is offset transversely with respect to the optical axis and the module illuminates in a lateral direction with respect to the optical axis, the input surface of the lens being such that the optical path is constant between the focus of the lens and a vertical plane whose trace on the horizontal plane of the optical axis is inclined relative to this axis.
  • the output surface of the lens is selected toric of vertical axis of revolution, and the input surface is defined to give a beam cutoff horizontal.
  • the light source may consist of a rectangular lambertian emitter placed in a vertical plane, orthogonal to the optical axis, or by a light-emitting diode having a transparent protective dome located above the emitter, itself placed in the light source. 'air.
  • the module comprises a light-emitting diode in direct view of the lens, said diode being disposed in an oblique plane with respect to the optical axis of said module.
  • a light-emitting diode is preferably chosen having a transparent protective dome located above the emitter.
  • the diode is sufficiently inclined so that the angle under which is seen the emitter of the diode from a majority of points (corresponding to at least 75% of the input area for example) of the lens is smaller than what it would be with a lens arranged in a plane perpendicular to the optical axis of the module.
  • Another favorable condition is to choose the inclination of the diode so that the radius most inclined relative to the axis of the emitter of the diode reaching the lens is lower than the limit angle of the distribution of the light beam emitted by the diode. This prevents a zone of the lens from receiving more light from the transmitter.
  • An appropriate inclination is for example an angular deviation with respect to the optical axis of the module of the order of +/- 35 ° to +/- 55 °, in particular from +/- 40 ° to +/- 50 °, by example of + 45 ° or - 45 °.
  • the module by tilting the diode, it is easy to obtain with the module a beam or a portion of the motorway-type beam, in particular having a beam thickness of less than 5%, (corresponding to 2.852 °), in particular less than 3% (which corresponds to 1.718 °), a high intensity, in particular at least 40 lux at 25 meters, and a cut above the horizontal part of the cut of the code beam.
  • This cut is clear and is naturally below the glare limit defined in the relevant regulations.
  • the module may comprise a light source including a light-emitting diode in direct view of the lens, the module being such that, in the mounting position, the emitter of the diode and the lens are inclined both laterally in a vertical plane, in particular to obtain a beam or a portion of obliquely cut light beam.
  • the invention also relates to a light projector giving a cut-off beam, for a motor vehicle, as it is formed by an assembly of several modules as defined above, juxtaposed so that the output surface of the projector optics is smooth, continuous.
  • the luminous headlight is advantageously constituted by several superimposed rows of assembled modules, some of the modules providing a 15 ° cut, other modules being able to illuminate laterally, each extinguished row having the external appearance of a single cylindrical rod or a continuous ring segment.
  • the invention also relates to any module assembly, which assembles a plurality of modules, at least one of which provides an oblique cutoff as described above, with other similar modules capable of emitting an unbroken beam and possibly with similar modules. can illuminate laterally. It is thus possible to insert into a projector one or more rows associating dedicated modules code with dedicated road modules in the visible and / or road in the infra-red, keeping an external appearance unit very interesting for the style of the projector in general.
  • the invention also relates to any unitary module for making a beam or a beam portion with horizontal or oblique cut. If it is intended to emit a beam portion, it may be supplemented by another complementary beam, emitted by a different module and already known, using for example conventional light sources of halogen or xenon type.
  • a light projector module for a motor vehicle comprising a lens La, Lb, Lc, Ld, Le and a light source formed by at least one light emitting diode Da, Db, Dc, Dd, De disposed rearwardly of the lens.
  • An air space separates the diode from the lens.
  • forward and backward are to be considered in the direction of propagation of the luminous flux from the source to the lens, and the module is to be considered in the position it occupies on the vehicle, ie with its horizontal optical axis.
  • the procedure is as follows.
  • the output area As1, As2, As3, As4, As5 of the lens La, Lb, Lc, Ld, Le is chosen so that it can be connected in a smooth, continuous surface with the exit surfaces of adjacent modules. Similar.
  • This outlet surface is furthermore chosen so as to have a curvature adapted, preferably substantially equal, to that of the walls W ( Fig.1 ) that surround it, including the walls of the vehicle body.
  • the exit surface is fully convex forward.
  • the entrance surface Ae1, Ae2, Ae3, Ae4, Ae5 of the lens is determined so as to obtain, without a vertical cover, a light beam with cutoff with spreading of the light.
  • the case of the cylindrical surface can be considered as the case particular of a toric surface whose axis of revolution is at infinity.
  • the exit surface of the lens has a horizontal plane of symmetry passing through the optical axis of the module; the section of the exit surface, cylindrical or toric, by a vertical plane passing the optical axis is a forward convex circular arc.
  • the radii of curvature in a horizontal plane and in a vertical plane of the exit surface of the lens are freely chosen to match the curvatures of the walls W surrounding the module.
  • the module comprises an ellipsoidal reflector Ma, Mb having two foci, namely an internal focal point in the vicinity of which the light source is located and an external focus coinciding with the focus of the lens or neighboring this focus.
  • the light source does not directly illuminate the input face of the lens, but illuminates towards the reflector, substantially at right angles to the optical axis of the module.
  • a folder Na, Nb is located in the horizontal plane passing through or near the optical axis of the module. The front edge of the folder goes through the focus of the lens.
  • the light source is in direct view of the entrance face of the lens, without the intervention of a reflector or a folder.
  • a projector Ea can be seen having a light source constituted by at least one LED Da whose maximum emission point is preferably located at the internal focal point Bi of the ellipsoidal reflector Ma.
  • the external focus Be is located in front of Bi .
  • the reflector Ma corresponds substantially to the upper rear quarter of an ellipsoid of revolution whose geometric axis coincides with the optical axis Oy of the module and the lens La, located in front of the external focus Be.
  • the diode Da is oriented so as to illuminate substantially upwards, substantially at right angles to the optical axis Oy, towards the reflector Ma.
  • the rays from Bi are reflected to converge towards the focus Be confused with the focus of the lens.
  • the module further comprises a folder Na, that is to say a plate whose upper surface is reflective, located in a horizontal plane passing through the optical axis Oy and whose front edge 10 passes through the focus Be, and determines the cutoff line of the light beam.
  • the illumination is below the image of this edge given by the lens La.
  • the outlet area As1 is chosen so that it can be connected in a smooth, continuous surface with adjacent similar module exit surfaces, while having a curvature adapted to the surrounding walls W.
  • the entrance surface Ae1 of the lens is determined so as to obtain a light beam with cut-off of the light.
  • the surface Ae1 is constructed to be stigmatic between the second focus Be of the reflector Ma and the infinite.
  • Ae1 is such that a light ray r1 coming from the focus Be and propagating in the air, after entering the lens La and refraction along r2, leaves the surface As1 along a radius r3 parallel to the optical axis Oy.
  • the optical path is constant between the focus Be and a plane II1 tangent to the output face As1 at its intersection point h1 with the optical axis of the module.
  • the exit surface As1 is chosen to be that of a cylinder of revolution of horizontal geometric axis, orthogonal to the optical axis. (It could also be of substantially toric shape).
  • the section of the surface As1 by the vertical plane of the Figure 4 is an arc having its center at the point ⁇ located on the optical axis Oy, in front of the outer focus Be, the generatrices being perpendicular to the plane of Fig.4 .
  • the three-dimensional construction is then done in all vertical planes parallel to the Oyz optical axis.
  • LEDs may be arranged parallel to the generatrices of the exit surface.
  • the successive front edges 10 of the folders of the different modules are aligned parallel to the generatrices of the cylindrical surface As1.
  • a lens with cylindrical exit surface As1 has aberrations that can be partially offset by a modification of the shape of the edge of the folder 10 by providing a deformation 11 (FIG. Fig.3 ) in the form of a bump, preferably in a vertical plane.
  • Fig. 3 illustrates a form of folder with a branch rising substantially rectilinear to the right, and a branch with breakage of slope on the left.
  • the edge 10a of the folder has on both sides of the vertical plane 12 passing through the optical axis two bumps 13,14 connected by a portion 15 in a bowl.
  • the bumps 13,14 extend on both sides by 16,17 depression areas that go back to reach the edge located in the horizontal plane passing through the optical axis.
  • Such a module can constitute an additional module for a motorway lighting code which makes it possible to reinforce the light in the axis, below the horizontal.
  • Fig. 7 illustrates the isolux network obtained with the module of Fig. 6 which has a maximum of intensity in the axis, the isolux curves being located below the horizontal intersecting the optical axis, being substantially symmetrical with respect to the vertical plane passing through the optical axis.
  • one or more modules are advantageously provided with an output face identical to that of the modules giving a cutoff at "15 ° »( Fig.5 ), But illuminating in a lateral direction to complete the beam with light under the cut, eg left for right-hand drive country vehicles.
  • Fig.8 a module having a stigmatic lens Lb between a focus point 18, abscissa x F and a vertical plane wave, inclined with respect to the optical axis and whose trace 19 on the horizontal plane is shown.
  • the inclination of the plane wave is intended to promote lighting under the cutoff, on the left.
  • the focal point 18 of the lens Lb is shifted to the right with respect to the straight line Oy passing through the center of the exit face As2.
  • the exit surface As2 of the lens is chosen cylindrical of revolution; its horizontal cut on Fig.8 and 9 is a rectilinear generator.
  • the entrance surface Ae2 of the lens is constructed so that the optical path between the focus 18 and the vertical trace plane 19 is constant.
  • the lens Lb whose horizontal section is visible on Fig.9 , is asymmetrical at its input surface Ae2. From a point G, corresponding to a maximum thickness, situated to the right of the optical axis Oy of the reflector Mb, the lens Lb decreases in thickness to the left less rapidly than to the right.
  • the isolux network obtained with a projector in accordance with the Fig. 9 is illustrated on Fig.10 .
  • the Isolux curves are located below the horizontal passing through the optical axis, and essentially to the left of the vertical plane passing through the optical axis.
  • the light source Dc ( Fig.11 ) is considered to consist of a rectangular lambertian emitter placed in a vertical plane, orthogonal to the optical axis, behind a known primary optic, imposed by the manufacturer of the light-emitting diode.
  • the input surface is constructed at the point M so that the rays coming from the source Dc and passing through M are falling, or more horizontal, at the exit of the lens Lc.
  • the input surface element in M is constructed so that the ray emerging from the lens, resulting from this limit radius, is straightened horizontally. Under these conditions, all the other rays coming from the source Dc, which arrive at M with a lower inclination, will come out of the lens while being descendants.
  • the point F of the transmitter on the Fig. 11 lowest and closest to the plane parallel to the plane (Oyz) passing through M, if M is situated in the zone where z is greater than 0, and the furthest from that plane if M is situated in the zone where z is less than 0 ,. is the one that will give the highest inclined radius reaching M, that is to say the limit radius.
  • M is located in the zone where z is negative it is possible, to simplify the construction, to use an approximate construction of choosing the symmetric with respect to (Oyz) of the nearest point of the cited plane.
  • it is possible to link the horizontal deflection of the light rays originating from the origin of the reference and contained in the plane z 0 to the abscissa of their intersection with the input surface of the lens.
  • a first case is illustrated by the figure 12 , with a deviation independent of abscissa x and zero.
  • a second case is illustrated by the figure 14 , with a non-constant and piecewise linear deviation.
  • the module is focused.
  • the input face Ae3 is symmetrical with respect to the optical axis and has a convex vertex facing towards the source with a relatively strong curvature which decreases when one deviates from the optical axis.
  • Fig. 13 illustrates the isolux curve network obtained with a module conforming to Fig.12 .
  • the light beam has a horizontal cut-off line in the plane of the optical axis and is substantially symmetrical with respect to the vertical plane passing through this optical axis.
  • the beam has a maximum of illumination in its central zone corresponding to the focus.
  • Fig.14 is a schematic vertical section similar to that of Fig.12 , of a module with a light source Dd, which corresponds to a vertical wafer, orthogonal to the optical axis, with several electroluminescent chips aligned along the x-axis.
  • the exit face As4 of the lens Ld is toric, identical to the exit face As3 of Fig.12 .
  • the input face Ae4 is less convex towards the light source and the thickness of the lens along the optical axis is smaller.
  • fig.15 illustrates the network of isolux curves obtained with the Fig. 14 .
  • the cutoff line is always horizontal at the optical axis.
  • the isolux curves are substantially symmetrical with respect to the vertical plane passing through the optical axis. The light is more spread out than in the case of Fig. 13 .
  • a light source De constituted by an LED having a transparent protective dome 21 located above the emitter 22, itself placed in the air.
  • the inner face 21a and the outer face 21b of the dome 21, or protective bell, constitute two spherical diopters between the air and the transparent material of the dome 21. The successive deviations of the rays due to these two spherical dioptres are to be taken into account.
  • the method is as follows: for M given, we search for Fs closest to M in projection on Ox (the farthest for z negative, or the symmetric of the quoted point for z positive, within the framework of a simplified construction) such that there exists a point F of the lower edge of the emitter emitting a ray reaching M and passing through Fs: the corresponding emergent radius in Fs is the limit radius for M.
  • the spheres 21a, 21b are centered on the center of the emitter 22 and not on its lower edge where the foci F must be taken. As a result, the height of the light source 22 is to be taken into account. in the construction of the Ae5 surface.
  • Fig. 18 is a schematic vertical section of a module with a diode protected by a dome 21 constructed as set forth above.
  • the input surface Ae5 has a convexity facing the light source De and is symmetrical with respect to the vertical plane passing through the optical axis.
  • Fig.19 illustrates the network of isolux curves obtained with a module according to Fig.18 .
  • the curves are located below the horizontal plane passing through the optical axis.
  • Each curve has a substantially rectangular curvilinear contour whose long sides are substantially horizontal, with a slight concavity turned downwards.
  • Fig.20 illustrates schematically in horizontal section a projector formed by the assembly of three modules whose output surfaces are constituted by cylindrical surfaces of revolution of the same radius of curvature.
  • the input surfaces inside the projector form successive corrugations 23 while the output surface is smooth continuous, formed by a cylindrical surface of which a generator 24 appears on Fig.20 .
  • Fig.21 is a schematic front view of a projector with several superposed rows of assembled modules.
  • the upper row 25 corresponds to two modules ensuring a cut at 15 °.
  • the middle row 26 corresponds to three modules, two of which give a cut at 15 ° and the third lights to the left.
  • the lower row 27 corresponds to three modules illuminating to the right. Each extinguished row has the same exterior appearance of a single cylindrical bar or continuous ring segment.
  • FIGS. Figures 22a and 22b A variant of construction has also been provided in the case of modules, operating in particular but not exclusively with diodes with protective domes as shown in FIGS. Figures 22a and 22b . Take the case of a module as represented in figure 22a , with a protective dome diode as described above and arranged vis-à-vis the lens and perpendicular to the optical axis.
  • Is v o the direction vector of the limit ray reaching the surface in M , (that is to say the radius coming from the source reaching M which must be deflected by the lens so as to emerge parallel to the plane ( O , x , there ), so that all the other rays coming from the source reaching the M- lens are deflected downwards), the direction is easily calculated r corresponding radius, refracted in M by the desired surface, as a function of not , that is, of n z and v o . It is then easy to calculate the emergence point P of this radius out of the lens as a function of n z and v o : we search ⁇ such that P + ⁇ ⁇ r belongs to the torus of the exit surface. The normal P being known (torus), we finally calculate the direction e emerging ray, refracted at P , as a function of n z .
  • F moves along the edge of the emitter to be quickly constant (lower corner of the emitter, on the same side as M with respect to the plane ( O , there , z )), when x is close to or greater than the half width of the emitter).
  • the figure 23a shows the isolux obtained with a diode and a lens thus constructed: the distribution of the beam is well centered and horizontal. This type of beam may advantageously complete a code-type beam.
  • the two modules according to the figure 22b correspond to a variant of the modules according to the figure 22a
  • Each module uses a dome diode which is inclined at approximately 45 ° upwards with respect to the optical axis.
  • the method of construction of the lens is in principle identical to that described in the context of the figure 22a .
  • the figure 23b shows the curves of isolux obtained: we see, in comparison with those of the figure 23a , that the beam is much thinner, less than 3%.
  • the beam is intense (more than 40 lux at 25 meters), and it has a clear horizontal cut, above the horizontal below the glare threshold: this type of beam perfectly meets the requirements for a motorway-type beam regulatory.
  • Fc + designates the lower corner of the next largest coordinate transmitter x and if the components along x and z of v o ( F C + , F S ) are positive, Fc + is a focus and ( F S , v o ( F C + , F S )) is a limit radius.
  • Fc- denotes the lower corner of the smallest coordinate emitter following x and if the components along x and z of v o ( F C- , F S ) are respectively negative and positive, Fc- is a focus and ( F S , v o ( F C- , F S )) is a limit radius. Otherwise, if the Fs coordinate x is greater than the center of the emitter, Fc- is a focus and ( F S , v o ( F C- , F S )) is a limit radius. Otherwise, Fc + is a focus and ( F S , v o ( F C + , F S )) is a limit radius.
  • the figure 24a shows a lens and its diode according to the variant II ⁇ , in a configuration intended to produce a fog beam according to the representation of the isolux of the figure 24b .
  • the figure 25a shows a lens and its diode according to variant II ⁇ , in a configuration intended to produce a motorway complement beam, as represented in the isoluxes of the figure 25b .
  • the figure 26 represents points and angles that were used in the description of the construction method above, including zo and delta and omega angles.
  • the invention makes it possible to control the horizontal distribution of the light and to obtain a cut-off, possibly complex, with an exit surface for each module possibly allowing the assembly of several modules by creating a lens overall single smooth outer face.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Description

  • L'invention est relative à un procédé de construction d'un module de projecteur lumineux donnant au moins un faisceau à coupure, pour véhicule automobile, du genre de ceux qui comportent une lentille et une source lumineuse disposée en arrière de la lentille dont elle est séparée par de l'air, la source lumineuse comprenant au moins une diode électroluminescente.
  • Les diodes électroluminescentes, désignées par la suite en abrégé par « LED » ou « diode », délivrent des flux lumineux relativement limités, de l'ordre de 100 lumens. Aussi, pour réaliser des fonctions d'éclairage pour véhicule automobile et obtenir le flux lumineux nécessaire, il faut utiliser plusieurs diodes : par exemple, pour un projecteur de type code, il est fréquent de prévoir une dizaine de diodes, ou plus, et autant de modules à une seule diode. Il en résulte un aspect pixellisé ou pointilliste du projecteur, qui n'est pas souhaité. La surface externe du projecteur peut présenter des discontinuités dans les zones de jonction des modules juxtaposés, ce qui n'est pas non plus souhaité. Les rayons de courbure de cette surface externe ne sont généralement pas adaptés à ceux des parties de carrosserie voisines, ce qui ne convient pas au style. La fusion des faisceaux lumineux des différents modules demande en outre à être améliorée.
  • L'invention a pour but, notamment, de créer un module de projecteur lumineux à lentille pouvant être assemblé de manière continue en aspect éteint à des modules voisins, et permettant de créer des faisceaux lumineux contrôlés, sans contrainte de rayon de courbure sur la surface de sortie de la pièce globale formant le projecteur. De préférence, le module à lentille doit pouvoir fournir des formes complexes de coupure du faisceau.
  • Elle a également pour but l'obtention d'un module à LED et lentille qui soit adaptable en vue de fournir différents types de faisceau, notamment des faisceaux, ou des portions de faisceau à coupure plate ou oblique, comme les faisceaux de code ou les faisceaux dits faisceaux autoroute (ou « motorway » en anglais).
  • Selon un mode de réalisation de l'invention, le procédé de construction d'un module de projecteur lumineux pour véhicule automobile, du genre défini précédemment, est tel que l'on choisit la surface de sortie de la lentille de manière qu'elle puisse se raccorder suivant une surface lisse et continue avec les surfaces de sortie de modules voisins similaires, et que l'on détermine la surface d'entrée de la lentille de manière à obtenir la coupure du faisceau lumineux, sans utiliser un cache occultant.
  • On comprend dans le cadre de l'invention par « cache occultant » un cache qui intercepte la lumière qui l'atteint pour l'essentiel par absorption (par opposition à un élément réfléchissant la lumière notamment).
  • On comprend dans le cadre de l'invention par « modules similaires » des modules dont l'aspect extérieur est similaire, et qui comprennent également une lentille et au moins une diode électroluminescente, mais qui peuvent générer soit un faisceau à coupure soit un faisceau sans coupure (de type route).
  • Ces modules similaires peuvent aussi être des modules comme définis plus haut mais équipés d'au moins une diode électroluminescente émettant pour l'essentiel dans l'infra-rouge et non pas dans le visible, ceci notamment pour permettre d'émettre un faisceau infra-rouge de distribution sans coupure de type route pour une aide à la conduite de nuit.
  • Selon un exemple qui ne fait pas partie de l'invention, on utilise un procédé de construction d'un module de projecteur lumineux donnant un faisceau à coupure, pour véhicule automobile, comportant une lentille et une source lumineuse disposée en arrière de la lentille dont elle est séparée par de l'air, la source lumineuse étant formée par au moins une diode électroluminescente. Le procédé est tel qu'on choisit la surface de sortie de la lentille et on détermine la surface d'entrée de la lentille en s'appuyant sur une génératrice horizontale, de manière à obtenir la coupure du faisceau lumineux émis par le module sans utiliser un cache occultant, et avec une répartition horizontale contrôlée dudit faisceau lumineux.
  • On comprend, dans tout le reste du texte, les termes bas, haut, horizontaux, verticaux comme faisant référence aux positionnements du module ou du projecteur dans leur position de montage dans le véhicule.
  • De préférence, on choisit la surface de sortie de la lentille comme étant substantiellement cylindrique ou torique, la section de la surface de sortie de la lentille par un plan vertical parallèle à l'axe optique étant convexe vers l'avant.
  • On peut choisir la ou les courbure(s) de la surface de sortie de la lentille sensiblement égale à la ou aux courbure(s) des parois qui entourent le module.
  • Pour la construction d'un module comportant un réflecteur ellipsoïdal et une plieuse, la surface de sortie est avantageusement choisie comme étant celle d'un cylindre de révolution dont la section par un plan vertical passant par l'axe optique est un arc de cercle convexe vers l'avant, et la surface d'entrée est construite pour être stigmatique entre le second foyer du réflecteur ellipsoïdal et l'infini.
  • Pour la construction d'un module avec diode en vue directe de la lentille, la surface de sortie est généralement choisie torique, d'axe de révolution vertical, et on construit la surface d'entrée de manière à créer une coupure horizontale.
  • L'invention est également relative, selon un mode de réalisation du module, à un module de projecteur pour véhicule automobile comportant une lentille et, en arrière de la lentille, une source lumineuse séparée de la lentille par de l'air et formée par au moins une diode électroluminescente, ce module étant tel que la surface de sortie de la lentille est entièrement convexe vers l'avant et est telle qu'elle peut se raccorder suivant une surface lisse et continue avec les surfaces de sortie de lentilles de modules voisins similaires, et la surface d'entrée de la lentille est définie de manière que le module donne un faisceau lumineux à coupure sans intervention d'un cache occultant, notamment vertical.
  • Comme exemple ne faisant pas partie de l'invention est présenté un module de projecteur lumineux donnant un faisceau à coupure, pour véhicule automobile, comportant une lentille et une source lumineuse disposée en arrière de la lentille dont elle est séparée par de l'air, la source lumineuse comprenant au moins une diode électroluminescente, tel que la surface de sortie de la lentille est entièrement convexe vers l'avant, et la surface d'entrée (Ae1-Ae5) de la lentille est définie en s'appuyant sur une génératrice horizontale, de manière à ce que le module donne un faisceau lumineux à coupure sans intervention d'un cache occultant, notamment vertical, et avec une répartition horizontale.
  • Selon une variante de ce mode de réalisation, la surface d'entrée (Ae6) de la lentille est calculée de manière à ce qu'une famille de rayons lumineux, dits rayons limites, issus de l'émetteur de la source lumineuse, émergent de la lentille de sorte qu'ils soient tous normaux, aux points où ils la rencontrent, à une surface, dite surface d'onde de sortie, cylindrique, de génératrices verticales et de section droite quelconque (le choix d'une section droite ou plus généralement d'une directrice de la surface d'onde de sortie permet contrôler la répartition horizontale de l'énergie dans le faisceau et remplace ici le choix de la « courbe génératrice » de la variante précédente). Les rayons limites sont choisis de manière à ce que tous les autres rayons lumineux issus de la source atteignant la face d'entrée de la lentille au même point qu'eux émergent de la face de sortie (As6) avec un vecteur directeur de composante verticale négative ou nulle. De cette façon, le faisceau engendré possède une ligne de coupure horizontale et toutes les images de l'émetteur rencontrent cette ligne limite à l'infini en un point. Dans cette seconde variante (désignée ultérieurement par IIβ), la surface d'entrée de lentille est en général discontinue, les points (nommés foyers) de l'émetteur dont sont issus les rayons limites étant différents selon que le point d'émergence du rayon limite à la surface de la source atteint la face d'entrée de la lentille en un point situé au dessus ou au dessous (suivant l'axe vertical z) de lui. Il va de soi que la pièce physique comporte une surface continue constituée des surfaces hautes et basses mentionnées ci-dessus et d'une surface de liaison, idéalement réglée, à génératrices parallèles à l'axe optique, et, en pratique, aux génératrices inclinées par rapport à cet axe de manière à permettre le démoulage de la lentille.
  • L'avantage de la variante IIβ réside dans la possibilité de calculer la surface de sortie (en deux parties) directement (une équation pour chaque point, indépendante des points voisins) et non de proche en proche, ce qui provoque la propagation des erreurs de calculs et éventuellement des oscillations numériques. En outre, le choix de la surface d'onde de sortie impose précisément la direction du rayon le plus montant de chaque image en fonction de son point d'émergence à la surface de sortie de la lentille, alors que la « courbe génératrice » de la variante précédente ne constitue qu'une des conditions aux limites pour un système d'équations aux dérivées partielles et, si elle permet en effet de contrôler la répartition horizontale de l'énergie, ne peut être directement reliée à la position horizontale d'une image issue d'un point donné de la surface de sortie.
  • La surface de sortie de la lentille peut être cylindrique ou torique, la section de la surface de sortie de la lentille par un plan vertical parallèle à l'axe optique étant convexe vers l'avant.
  • La ou les courbure(s) de la surface de sortie de la lentille peut être sensiblement égale à la ou aux courbure(s) des parois qui entourent le module sur le véhicule.
  • Le module de projecteur lumineux peut comporter un réflecteur ellipsoïdal et une plieuse, auquel cas la surface de sortie est avantageusement choisie comme étant celle d'un cylindre de révolution dont la section par un plan vertical passant par l'axe optique est un arc de cercle convexe vers l'avant, et la surface d'entrée est construite pour être stigmatique entre le second foyer du réflecteur ellipsoïdal et l'infini.
  • La forme du bord de la plieuse peut être prévue pour que le faisceau lumineux présente une coupure en V.
  • Le bord de la plieuse peut présenter une déformation en vallée pour compenser, en partie, les aberrations de la lentille.
  • Le bord de la plieuse peut présenter de part et d'autre du plan vertical passant par l'axe optique deux bosses reliées par une partie en cuvette pour constituer un module additionnel pour un code autoroute, renforçant la lumière dans l'axe au-dessous de l'horizontale.
  • Avantageusement, la surface d'entrée est telle que le chemin optique est constant du foyer externe du réflecteur, jusqu'à un plan tangent à la face de sortie en son point d'intersection avec l'axe optique du module.
  • Selon une autre possibilité, le foyer de la lentille est décalé transversalement par rapport à l'axe optique et le module éclaire dans une direction latérale par rapport à l'axe optique, la surface d'entrée de la lentille étant telle que le chemin optique est constant entre le foyer de la lentille et un plan vertical dont la trace sur le plan horizontal de l'axe optique est inclinée par rapport à cet axe.
  • Dans le cas d'un module dont la source lumineuse est en vue directe de la lentille, la surface de sortie de la lentille est choisie torique d'axe de révolution vertical, et la surface d'entrée est définie pour donner un faisceau à coupure horizontale. La source lumineuse peut être constituée d'un émetteur lambertien rectangulaire placé dans un plan vertical, orthogonal à l'axe optique, ou par une diode électroluminescente comportant un dôme protecteur transparent situé au-dessus de l'émetteur , lui-même placé dans l'air.
  • Selon une variante le module comprend une diode électroluminescente en vue directe de la lentille, ladite diode étant disposée selon un plan oblique par rapport à l'axe optique dudit module. Dans ce cas, on choisit de préférence une diode électroluminescente comportant un dôme protecteur transparent situé au-dessus de l'émetteur. Incliner ainsi la diode modifie la forme et la répartition du faisceau complémentaire au faisceau code émis par le module : quand on souhaite obtenir un faisceau dit faisceau autoroute (ou « motorway » en anglais) qui soit réglementaire, on a besoin d'une portion de faisceau qui soit de forte intensité et peu épais.
  • Avec une diode disposée de façon à émettre perpendiculairement à la lentille, on tend en effet à obtenir un faisceau globalement de forme rectangulaire mais généralement assez « épais » et peu intense. Pour rendre le faisceau moins « épais », il serait possible d'augmenter la focale de la lentille, mais on doit alors augmenter la distance diode/lentille, donc augmenter les dimensions du module, ce qui n'est pas toujours possible et complique l'intégration du module dans le projecteur.
  • Une autre solution très efficace pour maîtriser/diminuer l'épaisseur du faisceau a donc consisté à incliner la diode par rapport à la lentille : elles se retrouvent ainsi plus tout à fait en vis-à-vis l'une de l'autre. A noter que cette inclinaison peut être choisie selon un angle positif ou négatif par rapport à l'axe optique, les deux types d'inclinaison permettant d'ajuster l'épaisseur du faisceau de façon comparable.
  • Avantageusement, la diode est suffisamment inclinée pour que l'angle sous lequel est vu l'émetteur de la diode depuis une majorité de points (correspondant à au moins 75% de la surface d'entré par exemple) de la lentille est plus petit que ce qu'il serait avec une lentille disposée selon un plan perpendiculaire à l'axe optique du module.
  • Une autre condition favorable consiste à choisir l'inclinaison de la diode de façon à ce que le rayon le plus incliné par rapport à l'axe de l'émetteur de la diode atteignant la lentille soit plus faible que l'angle limite de la distribution du faisceau lumineux émis par la diode. Ceci permet d'éviter qu'une zone de la lentille ne reçoive plus de lumière de l'émetteur.
  • Une inclinaison appropriée est par exemple un écart angulaire par rapport à l'axe optique du module de l'ordre de +/- 35° à +/- 55°, notamment de +/- 40° à +/- 50°, par exemple de + 45° ou - 45°.
  • Comme évoqué plus haut, en inclinant la diode, on peut facilement obtenir avec le module un faisceau ou une portion de faisceau de type autoroute, présentant notamment une épaisseur de faisceau de moins de 5%, (ce qui correspond à 2.852°), notamment moins de 3% (ce qui correspond à 1.718°), une forte intensité, de notamment au moins 40 lux à 25 mètres, et une coupure au dessus de la partie horizontale de la coupure du faisceau code. Cette coupure est nette et se trouve naturellement en dessous de la limite d'éblouissement définie dans les réglementations concernées.
  • Selon une autre variante, le module peut comprendre une source lumineuse dont une diode électroluminescente en vue directe de la lentille, le module étant tel que, en position de montage, l'émetteur de la diode et la lentille sont inclinés tous les deux latéralement dans un plan vertical, notamment afin d'obtenir un faisceau ou une portion de faisceau lumineux à coupure oblique.
  • On comprend donc que dans ces variantes se trouvent des modules à diodes électroluminescentes qui sont en vue directe de lentilles associées, et dans ce cas, il n'y a ni réflecteur ni « plieuse », et des modules à diodes électroluminescentes qui sont associées à réflecteur et plieuse, outre la lentille.
  • L'invention est également relative à un projecteur lumineux donnant un faisceau à coupure, pour véhicule automobile, tel qu'il est formé par un assemblage de plusieurs modules tels que définis précédemment, juxtaposés de sorte que la surface de sortie de l'optique du projecteur est lisse, continue.
  • Le projecteur lumineux est avantageusement constitué de plusieurs rangées superposées de modules assemblés, certains des modules assurant une coupure à 15°, d'autres modules pouvant éclairer latéralement, chaque rangée éteinte ayant l'aspect extérieur d'un unique barreau cylindrique ou d'un segment torique continu.
  • L'invention concerne aussi tout assemblage de modules, qui assemble une pluralité de modules dont au moins une partie assure une coupure oblique tels que décrits plus haut, avec d'autres modules similaires aptes à émettre un faisceau sans coupure et éventuellement avec des modules similaires pouvant éclairer latéralement. On peut ainsi insérer dans un projecteur une ou plusieurs rangées associant des modules dédiés code avec des modules dédiés route dans le visible et/ou route dans l'infra-rouge, en gardant une unité d'aspect extérieure très intéressante pour le style du projecteur dans son ensemble.
  • L'invention concerne aussi tout module unitaire pour faire un faisceau ou une portion de faisceau à coupure horizontale ou oblique. S'il est destiné à émettre une portion de faisceau, on peut la compléter par un autre faisceau complémentaire, émis par un module différent et déjà connu, utilisant par exemple des sources lumineuses conventionnelles de type halogène ou xénon.
  • L'invention consiste, mises à part les dispositions exposées ci-dessus, en un certain nombre d'autres dispositions dont il sera plus explicitement question ci-après à propos d'exemples de réalisation décrits avec références aux dessins annexés, mais qui ne sont nullement limitatifs. Sur ces dessins :
    • Fig. 1 est une vue schématique en coupe verticale d'un premier mode de réalisation d'un module avec réflecteur ellipsoïdal selon l'invention.
    • Fig. 2 est une vue schématique en coupe horizontale selon la ligne II-II de Fig.1.
    • Fig.3 est une vue schématique de gauche par rapport à Fig.1 du réflecteur ellipsoïdal du module et de la plieuse.
    • Fig.4 est un schéma illustrant, en coupe verticale, la construction de la surface d'entrée de la lentille du module de Fig. 1.
    • Fig.5 est une représentation des courbes isolux du faisceau lumineux obtenu avec le module de Fig.1.
    • Fig.6 est une vue schématique de face, semblable à Fig.3, du réflecteur ellipsoïdal et de la plieuse d'un module donnant un faisceau de type « motorway lighting » (code pour autoroute).
    • Fig.7 est une représentation du réseau de courbes isolux du faisceau obtenu avec le module de Fig.6.
    • Fig. 8 est un schéma en plan illustrant une construction de module éclairant dans une direction latérale.
    • Fig. 9 est une vue schématique en coupe horizontale d'un module selon Fig.8.
    • Fig. 10 représente le réseau de courbes isolux obtenu avec le module de Fig.9.
    • Fig.11 est un schéma en perspective illustrant le procédé de construction d'un deuxième mode de réalisation de module selon l'invention dans lequel la source lumineuse éclaire directement la face d'entrée de la lentille.
    • Fig.12 est une coupe verticale schématique d'un premier exemple de lentille construite selon Fig. 11.
    • Fig.13 représente le réseau de courbes isolux d'un module comportant la lentille de Fig. 12.
    • Fig.14 est une coupe verticale schématique d'un autre exemple de lentille construite selon Fig. 11.
    • Fig.15 représente le réseau de courbes isolux obtenu avec un module équipé de la lentille de Fig.14.
    • Fig.16 est une coupe schématique par un plan vertical d'une diode électroluminescente dont l'émetteur est protégé par un dôme.
    • Fig.17 est une coupe schématique par un plan horizontal de la diode de Fig.16.
    • Fig.18 est une coupe verticale schématique d'un module selon le deuxième mode de réalisation avec une diode éclairant directement la face d'entrée d'une lentille.
    • Fig.19 représente le réseau de courbes Isolux obtenu avec le module de Fig.18.
    • Fig.20 est une coupe schématique horizontale d'un assemblage de plusieurs modules selon l'invention, et
    • Fig.21 est une vue schématique de face d'un projecteur avec assemblages superposés de modules.
    • Fig.22a, 22b est une vue schématique en perspective de deux modules adjacents selon l'invention, Fig.22a avec des diodes disposées perpendiculairement à l'axe optique des modules, Fig.22b avec des diodes inclinées par rapport à l'axe optique des modules,
    • Fig.23a,23b sont des réseaux de courbes isolux obtenus avec les modules selon les figures 22a et 22b.
    • Fig.24a,24b concernent une variante de réalisation, avec une vue de la diode et de la lentille et les courbes d'isolux correspondantes en vue de l'obtention d'un faisceau de type anti brouillard.
    • Fig.25a,25b concernent une variante de réalisation, avec une vue de la diode et de la lentille et les courbes d'isolux correspondantes en vue de l'obtention d'un faisceau de type autoroute (« motorway »).
    • Fig.26 concerne une représentation d'une diode permettant d'illustrer une méthode de construction de surface explicitée plus loin.
  • En se reportant aux dessins, notamment aux Fig.1 et 2, Fig. 9, Fig.12 et 14, Fig.18 on peut voir, schématiquement représenté, un module de projecteur lumineux pour véhicule automobile comportant une lentille La, Lb, Lc, Ld, Le et une source lumineuse formée par au moins une diode électroluminescente Da, Db, Dc, Dd, De disposée en arrière de la lentille. Un espace d'air sépare la diode de la lentille.
  • Dans la description et les revendications, les termes « avant » et « arrière » sont à considérer suivant la direction de propagation du flux lumineux à partir de la source vers la lentille, et le module est à considérer dans la position qu'il occupe sur le véhicule, c'est à dire avec son axe optique horizontal.
  • Selon l'invention, pour construire le module de projecteur lumineux on procède comme suit.
  • On choisit la surface de sortie As1, As2, As3, As4, As5 de la lentille La, Lb, Lc, Ld, Le de manière qu'elle puisse se raccorder suivant une surface lisse, continue, avec les surfaces de sortie de modules voisins similaires. Cette surface de sortie est en outre choisie de manière à présenter une courbure adaptée, de préférence sensiblement égale, à celle des parois W (Fig.1) qui l'entourent, notamment les parois de la carrosserie du véhicule. La surface de sortie est entièrement convexe vers l'avant.
  • On détermine la surface d'entrée Ae1, Ae2, Ae3, Ae4, Ae5 de la lentille de manière à obtenir, sans cache vertical, un faisceau lumineux à coupure avec étalement de la lumière.
  • De préférence, la surface de sortie As1-As5 de la lentille est choisie comme étant :
    • une portion de surface cylindrique de révolution dont les génératrices sont horizontales, orthogonales à l'axe optique du module,
    • ou une portion de surface torique d'axe de révolution vertical.
  • Le cas de la surface cylindrique peut être considéré comme le cas particulier d'une surface torique dont l'axe de révolution est à l'infini.
  • La surface de sortie de la lentille admet un plan de symétrie horizontal passant par l'axe optique du module ; la section de la surface de sortie, cylindrique ou torique, par un plan vertical passant l'axe optique est un arc de cercle convexe vers l'avant.
  • Les rayons de courbure dans un plan horizontal et dans un plan vertical de la surface de sortie de la lentille sont librement choisis pour s'accorder aux courbures des parois W entourant le module.
  • Deux modes de construction du module sont prévus.
  • Selon un premier mode selon l'invention, correspondant aux Fig. 1 à 10, le module comporte un réflecteur ellipsoïdal Ma, Mb ayant deux foyers à savoir un foyer interne au voisinage duquel est placé la source lumineuse et un foyer externe confondu avec le foyer de la lentille ou voisin de ce foyer. La source lumineuse n'éclaire pas directement la face d'entrée de la lentille, mais éclaire vers le réflecteur, sensiblement à angle droit par rapport à l'axe optique du module. Une plieuse Na, Nb est située dans le plan horizontal passant par, ou voisin de, l'axe optique du module. Le bord avant de la plieuse passe par le foyer de la lentille.
  • Selon un autre mode ne faisant pas partie de l'invention et correspondant aux Fig.11 à 19, la source lumineuse est en vue directe de la face d'entrée de la lentille, sans intervention d'un réflecteur ni d'une plieuse.
  • Ces modes de réalisation seront décrits successivement.
  • I. Module avec réflecteur ellipsoïdal et plieuse.
  • En se reportant aux Fig. 1 et 2, on peut voir un projecteur Ea comportant une source lumineuse constituée par au moins une LED Da dont le point d'émission maximum est, de préférence, situé au foyer interne Bi du réflecteur ellipsoïdal Ma. Le foyer externe Be est situé en avant de Bi. Le réflecteur Ma correspond sensiblement au quart supérieur arrière d'un ellipsoïde de révolution dont l'axe géométrique est confondu avec l'axe optique Oy du module et de la lentille La, située en avant du foyer externe Be.
  • Pour repérer les points dans l'espace, on utilise un trièdre trirectangle de référence dont l'axe Oy correspond à l'axe optique du module, l'axe Ox est orthogonal à Oy dans le plan horizontal, et l'axe Oz est vertical.
  • La diode Da est orientée de manière à éclairer essentiellement vers le haut, sensiblement à angle droit par rapport à l'axe optique Oy, en direction du réflecteur Ma. Les rayons issus de Bi sont réfléchis pour converger vers le foyer Be confondu avec le foyer de la lentille La.
  • Le module comporte en outre une plieuse Na, c'est-à-dire une plaque dont la surface supérieure est réfléchissante, située dans un plan horizontal passant par l'axe optique Oy et dont le bord avant 10 passe par le foyer Be, et détermine la ligne de coupure du faisceau lumineux. L'éclairement se situe au-dessous de l'image de ce bord donnée par la lentille La.
  • On choisit la surface de sortie As1 de manière qu'elle puisse se raccorder suivant une surface lisse et continue avec des surfaces de sortie de modules similaires voisins, tout en ayant une courbure adaptée aux parois environnante W.
  • On détermine la surface d'entrée Ae1 de la lentille de manière à obtenir un faisceau lumineux à coupure avec étalement de la lumière. La surface Ae1 est construite pour être stigmatique entre le second foyer Be du réflecteur Ma et l'infini.
  • Autrement dit, comme illustré sur Fig. 4, Ae1 est telle qu'un rayon lumineux r1 provenant du foyer Be et se propageant dans l'air, après entrée dans la lentille La et réfraction selon r2, sort de la surface As1 suivant un rayon r3 parallèle à l'axe optique Oy. Le chemin optique est constant entre le foyer Be et un plan II1 tangent à la face de sortie As1 en son point d'intersection h1 avec l'axe optique du module.
  • Dans le cas des Fig. 1, 2 et 4, la surface de sortie As1 est choisie comme étant celle d'un cylindre de révolution d'axe géométrique horizontal, orthogonal à l'axe optique. (Elle pourrait aussi être de forme sensiblement torique). La section de la surface As1 par le plan vertical de la Figure 4 est un arc de cercle ayant son centre au point ω situé sur l'axe optique Oy, en avant du foyer externe Be, les génératrices étant perpendiculaires au plan de Fig.4. La construction en trois dimensions se fait ensuite dans tous les plans verticaux et parallèles à l'axe optique Oyz.
  • On désigne par P le point courant de la surface d'entréeAe1, par Q le point de sortie du rayon r2, par U le point d'entrée du rayon suivant l'axe optique, et par K l'intersection avec le plan II1 de la parallèle à l'axe optique passant par le point Q. En désignant par n l'indice de réfraction de la matière de la lentille, la constance du chemin optique à partir du foyer externe Be jusqu'au plan Π1 s'exprime par : BeP + n . PQ + QK = constante = BeU + n . Uh 1
    Figure imgb0001
  • Dans la construction en trois dimensions, selon les autres plans, w, P, Q, r2 et r3 restent identiques à ceux représentés en figure 4. En revanche, O et r1 sont alors des points de l'espace qui n'appartiennent plus au plan de coupe selon la figure 4.
  • En juxtaposant des modules suivant la direction des génératrices de la surface de sortie As1 on obtient un barreau dont la surface extérieure est cylindrique, lisse et continue.
  • Plusieurs LED peuvent être disposées parallèlement aux génératrices de la surface de sortie. Les bords avant 10 successifs des plieuses des différents modules sont alignés parallèlement aux génératrices de la surface cylindrique As1.
  • Il est possible de réaliser une coupure en V notamment avec une branche horizontale à gauche et une branche montant sous un angle de 15° à droite (code européen) en prévoyant un bord approprié de la plieuse. Les lignes de coupure des différents modules sont alignées ce qui se retrouve au niveau de l'image sur un écran. Fig. 5 donne le schéma des courbes isolux obtenues avec un module tel que défini précédemment.
  • Une lentille avec surface de sortie As1 cylindrique présente des aberrations que l'on peut compenser, en partie, par une modification de la forme du bord de la plieuse 10 en prévoyant une déformation 11 (Fig.3) en forme de bosse, de préférence dans un plan vertical. Fig. 3 illustre une forme de plieuse avec une branche montante sensiblement rectiligne vers la droite, et une branche avec cassure de pente sur la gauche.
  • En changeant la forme de la plieuse et de son bord passant par le foyer Be, tout en tenant compte des aberrations, il est possible de créer d'autres types de faisceaux lumineux.
  • Par exemple, selon Fig. 6, le bord 10a de la plieuse présente de part et d'autre du plan vertical 12 passant par l'axe optique deux bosses 13,14 reliées par une partie 15 en cuvette. Les bosses 13,14 se prolongent de part et d'autre par des zones en dépression 16,17 qui remontent pour rejoindre le bord situé dans le plan horizontal passant par l'axe optique.
  • Un tel module peut constituer un module additionnel pour un code autoroute (motorway lighting) qui permet de renforcer la lumière dans l'axe, au-dessous de l'horizontale.
  • Fig. 7 illustre le réseau d'isolux obtenu avec le module de Fig. 6 qui présente un maximum d'intensité dans l'axe, les courbes isolux étant situées au-dessous de l'horizontale coupant l'axe optique, en étant sensiblement symétriques par rapport au plan vertical passant par l'axe optique.
  • Pour la composition d'un faisceau lumineux complet, obtenu à partir des faisceaux lumineux produits par chacun des modules d'un projecteur, on prévoit avantageusement un ou plusieurs modules ayant une face de sortie identique à celle des modules donnant une coupure à « 15° » (Fig.5), mais éclairant dans une direction latérale pour compléter le faisceau avec de la lumière sous la coupure, par exemple à gauche pour les véhicules de pays à conduite à droite.
  • A cet effet, on construit selon Fig.8 un module ayant une lentille Lb stigmatique entre un point foyer 18, d'abscisse xF et une onde plane verticale, inclinée par rapport à l'axe optique et dont la trace 19 sur le plan horizontal est représentée. L'inclinaison de l'onde plane est prévue pour favoriser l'éclairage sous la coupure, à gauche. Le foyer 18 de la lentille Lb est décalé sur la droite par rapport à la droite Oy passant par le centre de la face de sortie As2.La surface de sortie As2 de la lentille est choisie cylindrique de révolution ; sa coupe horizontale sur Fig.8 et 9 est une génératrice rectiligne. La surface d'entrée Ae2 de la lentille est construite de manière que le chemin optique entre le foyer 18 et le plan vertical de trace 19 soit constant.
  • La lentille Lb, dont une coupe horizontale est visible sur Fig.9, est dissymétrique au niveau de sa surface d'entrée Ae2. A partir d'un point G, correspondant à une épaisseur maximale, situé à droite de l'axe optique Oy du réflecteur Mb, la lentille Lb diminue d'épaisseur vers la gauche moins rapidement que vers la droite.
  • Le réseau d'isolux obtenu avec un projecteur conforme au schéma de Fig. 9 est illustré sur Fig.10. Les courbes Isolux sont situées au-dessous de l'horizontale passant par l'axe optique, et essentiellement à gauche du plan vertical passant par l'axe optique.
  • Ce résultat est obtenu avec un module dont la face de sortie est semblable à celle des modules donnant une coupure à 15°. Les faces de sortie des différents modules peuvent ainsi se raccorder de manière continue pour donner une surface globale lisse vue de face.
  • II. Module avec diode en vue directe de la lentille II.a Emetteur rectangulaire dans un plan vertical
  • Pour la construction du module, la source lumineuse Dc (Fig.11) est considérée comme constituée d'un émetteur lambertien rectangulaire placé dans un plan vertical, orthogonal à l'axe optique, derrière une optique primaire connue, imposée par le fabricant de la diode électroluminescente.
  • On choisit la surface de sortie As3 (Fig. 12) ou As4 (Fig.14) de la lentille et on construit la surface d'entrée Ae3 ou Ae4 de manière à créer une coupure horizontale pour des déviations données en vue de dessus. Pratiquement on choisit pour les surfaces de sortie As3 ou As4 des surfaces toriques d'axe de révolution vertical, tandis que l'optique primaire de la source lumineuse Dc est constituée d'un seul plan, ce qui correspond au cas d'un émetteur lambertien immergé dans une résine, derrière une face de sortie plane.
  • Comme illustré sur Fig. 11, pour construire la surface d'entrée Ae3 on considère un point inconnu M, de coordonnées x,y,z de la surface recherchée. On suppose x et z connus et y inconnu (maillage en coordonnées cartésiennes, en vue arrière).
  • Pour une source lumineuse Dc rectangulaire, plane, se trouvant dans l'air et sans optique primaire, on construit la surface d'entrée au point M de telle sorte que les rayons issus de la source Dc et passant par M soient descendants, ou au plus horizontaux, à la sortie de la lentille Lc. Pour cela, on prend en compte un rayon limite provenant de la source Dc et qui, en arrivant au point M, présente l'inclinaison montante la plus forte. L'élément de surface d'entrée en M est construit pour que le rayon sortant de la lentille, issu de ce rayon limite, soit redressé à l'horizontale. Dans ces conditions, tous les autres rayons issus de la source Dc, qui arrivent en M avec une inclinaison montante moins forte, sortiront de la lentille en étant descendants.
  • Le point F de l'émetteur sur la Fig. 11 situé le plus bas et le plus proche du plan parallèle au plan (Oyz) passant par M, si M est situé dans la zone où z est supérieur à 0, et le plus lointain de ce plan si M est situé dans la zone où z est inférieur à 0,. est celui qui donnera le rayon montant le plus incliné atteignant M, c'est-à-dire le rayon limite. (Dans Le cas où M est situé dans la zone où z est négatif il est possible, pour simplifier la construction, d'utiliser une construction approximative consistant à choisir le symétrique par rapport à (Oyz) du point le plus proche du plan cité.) Dans le cas où une optique de sortie intervient sur la source lumineuse, ce qui en pratique correspond à tous les cas, il faut en tenir compte et considérer le point de sortie Fs sur cette optique et non sur l'émetteur. Dans le cas où l'optique de sortie est constituée par un plan unique, à faible distance de l'émetteur, le choix du point F indiqué précédemment reste acceptable. On détermine le point de sortie Fs sur le plan de sortie afin d'en déduire la direction du rayon limite en M. On établit la condition finale pour un point M donné de la surface d'entrée (horizontalité du rayon limite en M lorsqu'il émerge de la surface torique de sortie) de manière analytique en fonction d'une unique inconnue (y), de paramètres de conception et deux points très voisins déjà connus M1 et M2.
  • La recherche d'un point voisin de deux points connus peut être faite de manière efficace et précise : elle se ramène à la résolution d'une équation non linéaire à une seule inconnue
  • La construction s'appuie sur deux conditions aux limites définies par les coupes de la surface à construire par les plans z = 0 et x = 0. La première coupe de la surface par le plan z = 0 est arbitraire et constitue le paramètre de contrôle de la répartition horizontale de la lumière. Avantageusement, on peut lier la déviation horizontale des rayons lumineux issus de l'origine du repère et contenus dans le plan z = 0 à l'abscisse de leur intersection avec la surface d'entrée de la lentille. Un premier cas est illustré par la figure 12, avec une déviation indépendante de l'abscisse x et nulle. Un second cas est illustré par la figure 14, avec une déviation non constante et linéaire par morceaux.
  • La seconde condition aux limites correspond à la coupe par le plan x = 0, c'est-à-dire par le plan vertical passant par l'axe optique. La courbe correspondant à cette coupe est construite selon la méthode exposée précédemment de manière que tous les rayons sortants soient descendants ou, au plus, horizontaux. Dans ces conditions, il suffit de connaître un seul point voisin pour construire un nouveau point de la courbe. En effet, la symétrie gauche/droite du faisceau recherché et de l'émetteur implique que les normales aux surfaces le long des coupes passant par x = 0 soient contenues dans ce même plan. Cette coupe par x = 0 peut être construite point à point moyennant la donnée d'un point initial, avantageusement formé par l'intersection de la surface avec l'axe des y. Ce point constitue également la condition initiale pour la coupe par le plan z = 0 et est déterminé par l'épaisseur au centre de la lentille.
  • Fig. 12 et 14 représentent schématiquement les sections par un plan vertical passant par l'axe optique de deux lentilles d'un module selon l'invention, pour lesquelles la surface de sortie As3 et As4 est une surface torique, avec un rayon de révolution R= 300mm et un rayon de courbure de la section r = 50mm.
  • Dans le Fig. 12, Le module est focalisé. La face d'entrée Ae3 est symétrique par rapport à l'axe optique et présente un sommet convexe 20 tourné vers la source avec une courbure relativement forte qui diminue lorsque l'on s'écarte de l'axe optique.
  • Fig. 13 illustre le réseau de courbes isolux obtenu avec un module conforme à Fig.12. Le faisceau lumineux présente une ligne de coupure horizontale dans le plan de l'axe optique et est sensiblement symétrique par rapport au plan vertical passant par cet axe optique. Le faisceau présente un maximum d'éclairement dans sa zone centrale correspondant à la focalisation.
  • Fig.14 est une coupe verticale schématique semblable à celle de Fig.12, d'un module avec une source lumineuse Dd, qui correspond à une plaquette verticale, orthogonale à l'axe optique, avec plusieurs puces électroluminescentes alignées suivant l'axe des x.
  • Les figures 12 et 14 utilisent la même source lumineuse, les figures 13 et 15 sont différentes car elles choisissent des conditions limites différentes en z = 0.
  • La face de sortie As4 de la lentille Ld est torique, identique à la face de sortie As3 de Fig.12. Par contre, la face d'entrée Ae4 est moins bombée en direction de la source lumineuse et l'épaisseur de la lentille suivant l'axe optique est plus faible.
  • Fig.15 illustre le réseau de courbes isolux obtenu avec le module de Fig. 14. La ligne de coupure est toujours horizontale au niveau de l'axe optique. Les courbes isolux sont sensiblement symétriques par rapport au plan vertical passant par l'axe optique. La lumière est plus étalée que dans le cas des courbes de Fig. 13.
  • II.b - Cas des diodes avec dômes protecteurs
  • En se reportant aux Fig. 16 et 17, on peut voir une source lumineuse De constituée par une LED comportant un dôme 21 protecteur transparent situé au-dessus de l'émetteur 22, lui-même placé dans l'air. La face intérieure 21 a et la face extérieure 21 b du dôme 21, ou cloche protectrice, constituent deux dioptres sphériques entre l'air et la matière transparente du dôme 21. Les déviations successives des rayons dues à ces deux dioptres sphériques sont à prendre en compte en raison, d'une part, de la faible valeur des diamètres des dioptres sphériques qui sont du même ordre de grandeur que la grande dimension de l'émetteur, et d'autre part de l'épaisseur relativement importante du dôme 21, par exemple environ 0,5 mm, qui est du même ordre de grandeur que la petite dimension de la source 22.
  • La méthode est la suivante : pour M donné, on cherche Fs le plus proche de M en projection sur Ox (le plus éloigné pour z négatif, ou le symétrique du point cité pour z positif, dans le cadre d'une construction simplifée) tel qu'il existe un point F du bord inférieur de l'émetteur émettant un rayon atteignant M et passant par Fs : le rayon émergeant correspondant en Fs est le rayon limite pour M.
  • On notera que les sphères 21 a, 21 b sont centrées sur le centre de l'émetteur 22 et non sur son bord inférieur où doivent être pris les foyers F. Il en résulte que la hauteur de la source lumineuse 22 est à prendre en compte dans la construction de la surface Ae5.
  • Fig. 18 est une coupe verticale schématique d'un module avec diode protégée par un dôme 21 construit comme exposé ci-dessus. La surface de sortie As5 de la lentille Le est constituée par une surface torique librement choisie, par exemple ayant un rayon de révolution R = 300mm et un rayon de courbure r = 50 mm. La surface d'entrée Ae5 présente une convexité tournée vers la source lumineuse De et est symétrique par rapport au plan vertical passant par l'axe optique.
  • Fig.19 illustre le réseau de courbes isolux obtenu avec un module selon Fig.18. Les courbes sont situées au-dessous du plan horizontal passant par l'axe optique. Chaque courbe a un contour sensiblement rectangulaire curviligne dont les grands côtés sont sensiblement horizontaux, avec une légère concavité tournée vers le bas.
  • Fig.20 illustre schématiquement en coupe horizontale un projecteur formé par l'assemblage de trois modules dont les surfaces de sortie sont constituées par des surfaces cylindriques de révolution de même rayon de courbure. Les surfaces d'entrée, situées à l'intérieur du projecteur forment des ondulations successives 23 tandis que la surface de sortie est lisse continue, formée par une surface cylindrique dont une génératrice 24 apparaît sur Fig.20.
  • Fig.21 est une vue schématique de face d'un projecteur avec plusieurs rangées superposées de modules assemblés. La rangée supérieure 25 correspond à deux modules assurant une coupure à 15°. La rangée du milieu 26 correspond à trois modules dont deux donnent une coupure à 15° et le troisième éclaire vers la gauche. La rangée inférieure 27 correspond à trois modules éclairant vers la droite. Chaque rangée éteinte a le même aspect extérieur d'un unique barreau cylindrique ou segment torique continu.
  • II.c - Cas des diodes avec dômes protecteurs : variante de construction
  • Une variante de construction a été également prévue dans le cas de modules, fonctionnant notamment mais non exclusivement avec des diodes à dômes protecteurs comme représentés aux figures 22a et 22b. Prenons le cas d'un module tel que représenté à la figure 22a, avec une diode à dôme protecteur telle que décrite plus haut et disposée en vis-à-vis de la lentille et perpendiculairement à l'axe optique.
  • La méthode de construction de la face d'entrée de la lentille est un peu différente de celle décrite plus haut: On considère connu un point M1 de la surface d'entrée de la lentille et la normale n 1 à cette surface en M1 . On suppose également connu un point voisin M0 et on cherche un nouveau point M de la surface (par exemple, M = x M 0 + δx y z M 0
    Figure imgb0002
    ), où delta x et delta z sont les pas d'un maillage en vue arrière de la surface, en coordonnées cartésiennes.
    En écrivant que M1M·n 1 = 0, on détermine facilement y, d'où M : y = - n 1 z n 1 y δz + y M 1 .
    Figure imgb0003
  • Afin de pouvoir calculer toute la surface de proche en proche, il suffit de déterminer la normale n en M.
  • Pour cela, on écrit d'abord que M0M·n = 0 Comme n = 1 n x 2 + n y 2 + n z 2 = 1 ,
    Figure imgb0004
    avec ny ≥ 0, on en déduit que n x = - y - y 0 δx n y
    Figure imgb0005
    et n y = 1 - n z 2 1 + y - y 0 δx 2 .
    Figure imgb0006
  • Soit v o le vecteur directeur du rayon limite atteignant la surface en M, (c'est-à-dire le rayon issu de la source atteignant M qui doit être dévié par la lentille de façon à en émerger parallèle au plan (O, x , y ), de sorte que tous les autres rayons issus de la source atteignant la lentille en M soient déviés vers le bas), on calcule facilement la direction r du rayon correspondant, réfracté en M par la surface recherchée, en fonction de n , c'est à dire de nz et de v o . Il est alors facile de calculer le point d'émergence P de ce rayon hors de la lentille en fonction de nz et v o : on cherche λ tel que P+λ· r appartienne au tore de la surface de sortie. La normale en P étant connue (tore), on calcule finalement la direction e du rayon émergeant, réfracté en P, en fonction de nz.
  • On écrit alors que ez = 0, ce qui est ( v o étant connu) une équation analytique à une seule inconnue (nz ) qui peut être résolue numériquement de manière fiable.
    Détermination de v o : v o = F s M F s M ,
    Figure imgb0007

    Fs est le point d'émergence du rayon limite hors du dôme sphérique de protection.
  • Supposons Fs connu : on propage un rayon (Fs, - v o ) à travers le dôme (d'indice de réfraction connu et supposé sphérique, centré sur l'origine du repère) en appliquant les lois de Descartes de la réfraction (la normale au dôme en Fs est OF s r 2
    Figure imgb0008
    ). Soit r ' la direction du rayon réfracté trouvée, on cherche µ tel que F s ʹ = F s + μ r ʹ
    Figure imgb0009
    appartienne à la surface intérieure du dôme (sphère de rayon r1 ). Il s'agit d'une équation polynomiale de degré 2, de solution évidemment analytique. On peut alors calculer la direction i du rayon émergent en F s ʹ
    Figure imgb0010
    (la normale au dôme en F s ʹ
    Figure imgb0011
    étant OF s ʹ r 1
    Figure imgb0012
    ). On calcule alors l'intersection F de la droite F s ʹ i
    Figure imgb0013
    avec le plan (incliné) de l'émetteur.
    Fs est bien choisi lorsque F appartient au bord inférieur de l'émetteur (1ère équation) et lorsque (2nde équation) |x-xFs | est:
    • Pour la partie supérieure de la lentille : minimum
    • Pour la partie inférieure de la lentille : maximum (ce qui revient à prendre pour F le coin inférieur de l'émetteur, du côté opposé latéralement à M par rapport au plan (O, y , z )).
  • Dans le cas de la partie de la lentille à z>0, F se déplace le long du bord de l'émetteur pour être rapidement constant (coin inférieur de l'émetteur, du même côté que M par rapport au plan (O, y , z )), lorsque x est voisin de ou supérieur à la demi largeur de l'émetteur).
  • Fs appartenant à une sphère centrée de rayon donné, sa détermination revient à la recherche de 2 inconnues, qui est facilement réalisée numériquement à partir de l'expression analytique des deux conditions ci-dessus.
  • On remarquera que dans notre nouvelle méthode, la détermination de F n'est pas couplée à celle de M comme c'était précédemment le cas, ce qui permet une stabilité améliorée des calculs.
  • La figure 23a montre les isolux obtenus avec une diode et une lentille ainsi construite : la répartition du faisceau est bien centrée et horizontale. Ce type de faisceau peut avantageusement compléter un faisceau de type code.
  • Les deux modules selon la figure 22b correspondent à une variante des modules selon la figure 22a : chaque module utilise une diode à dôme qui est inclinée d'environ 45° vers le haut par rapport à l'axe optique.
  • La méthode de construction de la lentille est dans son principe identique à celle décrite dans le contexte de la figure 22a.
  • La figure 23b montre les courbes d'isolux obtenus : on voit, en comparaison avec celles de la figure 23a, que le faisceau est beaucoup moins épais, de moins de 3%. Le faisceau est intense (plus de 40 lux à 25 mètres), et il présente une coupure horizontale nette, au dessus de l'horizontale sous le seuil d'éblouissement : ce type de faisceau remplit parfaitement les conditions requises pour un faisceau de type autoroute réglementaire.
  • Il.d Méthode de construction pour la variante IIβ
  • On notera que cette méthode s'applique à tous les types de sources (avec dôme protecteur ou à émetteur immergé dans un matériau protecteur et à face de sortie connue, notamment plane).
  • Choisissons un point Fs arbitraire à la surface de la source.
  • Considérons un point f situé sur le bord inférieur de l'émetteur (supposé rectangulaire, de grand côtés perpendiculaires au vecteur directeur de l'axe optique y du système). Par l'application des lois de Descartes de la réfraction, on calcule facilement la direction v o (f,Fs ) du rayon lumineux issu de f passant par Fs lorsqu'il sort de la source.
  • Si il existe F tel que la composante suivant x (axe horizontal perpendiculaire à l'axe optique) de v o (F,Fs ) soit nulle et sa composante suivant z positive, alors F est un foyer et (Fs,v o (F,Fs )) est un rayon limite. Dans le cas contraire, si Fc+ désigne le coin inférieur de l'émetteur de coordonnée la plus grande suivant x et si les composantes suivant x et z de v o (F C+,FS ) sont positives, Fc+ est un foyer et (FS,v o (F C+,FS )) est un rayon limite. Dans le cas contraire, si Fc- désigne le coin inférieur de l'émetteur de coordonnée la plus petite suivant x et si les composantes suivant x et z de v o (FC- ,FS ) sont respectivement négative et positive, Fc- est un foyer et (FS , v o (FC- ,FS )) est un rayon limite. Sinon, si la coordonnées de Fs suivant x est supérieure à celle du centre de l'émetteur, Fc- est un foyer et (FS , v o (FC- ,FS )) est un rayon limite. Sinon, Fc+ est un foyer et (FS , v o (F C+,FS )) est un rayon limite.
  • Les règles énoncées au paragraphe précédent décrivent complètement les fonctions liant le foyer et le rayon limite correspondant au point d'émergence Fs de ce rayon hors de la source.
  • Dans le cas d'un émetteur immergé dans un matériau (source de surface de sortie plane, inclinée d'un angle ω par rapport à la verticale, avec un émetteur parallèle à la face de sortie, situé à une distance δ en dessous de celle-ci, cf. fig. d), si on pose i = arcsin sin ω n s ,
    Figure imgb0014

    et si on désigne par Z0 une cote (coordonnée suivant z) située δ cos i sin ω - i
    Figure imgb0015
    au dessus de la cote du grand côté inférieur de l'émetteur, alors :
    • si la coordonnée suivant z de Fs est supérieure à z0,
      • ∘ si la coordonnée xFS suivant x de de Fs est comprise entre les coordonnées suivant x de Fc- et Fc+, alors F est le point du bord inférieur de l'émetteur de coordonnée xF=xFS.
      • ∘ Si xFs est supérieur à la coordonnée suivant x de Fc+, le foyer est Fc+
      • ∘ Si xFs est inférieur à la coordonnée suivant x de Fc-, le foyer est Fc-
    • si la coordonnée suivant z de Fs est inférieure à z0,
      • ∘ si xFs est supérieur à la coordonnée suivant x du centre de l'émetteur, Fc- est le foyer
      • ∘ si xFs est inférieur à la coordonnée suivant x du centre de l'émetteur, Fc+ est le foyer
  • Afin de déterminer Ae6, on écrit la constance du chemin optique du foyer à la surface d'onde de sortie, le long des rayons limites.
  • En pratique on procède en sens inverse de la propagation de la lumière : soit P' un point de la surface d'onde de sortie et soit n la normale à cette surface en P'. On détermine analytiquement l'intersection P de la surface de sortie torique As6 et de la droite (P', n ), qui est le support d'un rayon limite (équation polynomiale de degré 4). On calcule ensuite la normale au tore en P et on en déduit, connaissant l'indice de réfraction de son matériau (nl), la direction r du rayon réfracté à l'intérieur de la lentille (lois de Descartes). On cherche alors µ et Fs tels que P'P + nlµ + MFS + CS = K (eqO)M = P + µ·r, où Cs est le chemin optique parcouru dans la source de Fs au foyer correspondant et où K est une constante qui détermine l'épaisseur de la lentille et tels que la droite (Fs, M) porte le rayon limite passant par Fs. Dans le cas le plus général, on obtient un système de trois équations (l'équation optique exprimée plus haut et l'appartenance de M à la droite portant le rayon limite en Fs) à trois inconnues (µ et deux paramètres pour Fs, qui est situé à la surface - connue- de la source).
  • Dans le cas d'un émetteur immergé dans un matériau (source de surface de sortie plane, avec un émetteur rectangulaire parallèle à celle-ci), si zM, coordonnée de M suivant z, est supérieur à z0, si xM, coordonnée de M suivant x est comprise entre entre les coordonnées suivant x de Fc- et Fc+, alors xF = xFs = xM, sinon F est situé au coin inférieur de l'émetteur situé du même côté que M (suivant x) par rapport au centre de l'émetteur, sinon (zM < z0), F est situé au coin inférieur de l'émetteur situé du côté opposé à M (suivant x) par rapport au centre de l'émetteur.
  • Dans le cas particulier précédent, on vient d'établir une loi liant directement F à M (c'est-à-dire à l'inconnue µ). En raison de la première loi de Descartes (coplanarité des rayons et de la normale au dioptre traversé), on sait que ( FSF FsM v = 0 (équation polynomiale de degré 2 liant les coordonnées de Fs à celles de F et de M et donc à µ), où v est la normale à la face de sortie de la diode. En outre, Fs appartient au plan de sortie de la diode, ce qui constitue une relation linéaire entre les coordonnées de Fs. Enfin n s 2 1 - FF S ν 2 = 1 - F S M ν 2
    Figure imgb0016
    où ∥ v ∥=1 (conséquence de la seconde loi de Descartes de la réfraction), ce qui constitue, en y substituant l'expression d'une des coordonnées de Fs (par exemple suivant z) en fonction des autres (expression tirées des deux relations précédentes) une équation polynomiale de degré 4, de solution analytique, donnant zFs (dont on déduit les autres coordonnées) en fonction de µ. Dans le cas particulier considéré, CS = ns · FFS et on peut donc exprimer l'équation optique eqO sous forme d'une équation à une seule inconnue : µ. Une telle équation se résout aisément numériquement à l'aide de plusieurs méthodes connues de l'homme de l'art. µ détermine M et en faisant varier P' on détermine l'intégralité de Ae6.
  • La figure 24a montre une lentille et sa diode selon la variante IIβ, dans une configuration destinée à produire un faisceau de brouillard selon la représentation des isolux de la figure 24b. La figure 25a montre une lentille et sa diode selon la variante IIβ, dans une configuration destinée à produire un faisceau de complément d'autoroute, comme représenté dans les isolux de la figure 25b. La figure 26 représente des points et angles qui ont été utilisés dans la description de la méthode de construction ci-dessus, notamment zo et les angles delta et oméga.
  • En conclusion, l'invention permet un contrôle de la répartition horizontale de la lumière et l'obtention d'une coupure, éventuellement complexe, avec une surface de sortie pour chaque module permettant éventuellement l'assemblage de plusieurs modules en créant une lentille globale unique à face externe lisse.
  • Elle permet d'obtenir des modules optiques, par différentes méthodes de construction de face d'entrée de lentille, différents types de diodes, et différents type de positionnement de ces diodes, d'ajuste au mieux les paramètres du faisceau lumineux, notamment son épaisseur, le positionnement de sa coupure...., les modules ayant un style remarquable très original et une grande compacité, notamment en profondeur.

Claims (14)

  1. Module de projecteur lumineux donnant un faisceau à coupure, pour véhicule automobile, comportant :
    - une lentille (La)
    - un réflecteur (Ma) ayant un foyer interne et un foyer externe confondu avec ou voisin du foyer de la lentille,
    - une plieuse (Na) et
    - une source lumineuse (Da) disposée en arrière de la lentille dont elle est séparée par de l'air et placée au voisinage du foyer interne du réflecteur, la source lumineuse comprenant au moins une diode électroluminescente,
    caractérisé en ce que la surface de sortie (As1-) de la lentille est entièrement convexe vers l'avant et est telle qu'elle peut se raccorder suivant une surface lisse et continue avec les surfaces de sortie de lentilles de modules voisins similaires, et la surface d'entrée (Ae1-) de la lentille est définie de manière que le module donne un faisceau lumineux à coupure sans intervention d'un cache occultant, et en ce que la surface d'entrée (Ae1) est telle que le chemin optique est constant du foyer externe (Be) du réflecteur, jusqu'à un plan (Π1) tangent à la face de sortie (As1) en son point d'intersection (h1) avec l'axe optique du module.
  2. Module selon la revendication précédente, caractérisé en ce que la surface d'entrée (Ae6) de la lentille est calculée de manière à ce qu'une famille de rayons lumineux, dits rayons limites, issus de l'émetteur de la source lumineuse, émergent de la lentille de sorte qu'ils soient tous normaux, aux points où ils la rencontrent, à une surface donnée dite surface d'onde de sortie.
  3. Module selon la revendication précédente, caractérisé en ce que la surface d'onde de sortie est cylindrique, de génératrices verticales et de section droite quelconque.
  4. Module selon la revendication 2 ou 3, caractérisé en ce que la diode est suffisamment inclinée pour que l'angle sous lequel est vu l'émetteur de la diode depuis une majorité de points de la lentille est plus petit que ce qu'il serait avec une lentille disposée selon un plan perpendiculaire à l'axe optique du module.
  5. Module selon l'une des revendications précédentes 2 à 4, caractérisé en ce que la diode est suffisamment inclinée pour que le rayon le plus incliné par rapport à l'axe de l'émetteur de la diode atteignant la lentille soit plus faible que l'angle limite de la distribution du faisceau lumineux émis par la diode.
  6. Module selon l'une des revendications précédentes 2 à 5, caractérisé en ce que la diode est inclinée par rapport à l'axe optique du module de +/- 35° à +/- 55°, notamment de +/- 40° à +/- 50°.
  7. Module selon l'une des revendications précédentes 2 à 6, caractérisé en ce qu'il est apte à émettre un faisceau ou une portion de faisceau de type autoroute, présentant notamment une épaisseur de faisceau de moins de 5%, notamment moins de 3%, une forte intensité, de notamment au moins 40 lux à 25 mètres, et une coupure au dessus de l'horizontale.
  8. Module de projecteur lumineux selon l'une des revendications précédentes, caractérisé en ce que la surface de sortie (As1-As5) de la lentille est cylindrique ou torique, la section de la surface de sortie de la lentille par un plan vertical parallèle à l'axe optique étant convexe vers l'avant.
  9. Module de projecteur lumineux selon la revendication 1 , comportant un réflecteur ellipsoïdal (Ma) et une plieuse (Na), caractérisé en ce que la surface de sortie (As1) est choisie comme étant celle d'un cylindre de révolution dont la section par un plan vertical passant par l'axe optique est un arc de cercle convexe vers l'avant, et la surface d'entrée (Ae1) est telle qu'un rayon lumineux (r1) provenant du foyer (Be) et se propageant dans l'air, après entrée dans la lentille (La) et réfraction selon (r2), sort de la surface (As1) suivant un rayon (r3) parallèle à l'axe optique (Oy)..
  10. Module selon la revendication précédente, caractérisé en ce que la forme du bord (10) de la plieuse est prévue pour que le faisceau lumineux présente une coupure en V.
  11. Module selon la revendication 9 ou 10, caractérisé en ce que le bord de la plieuse présente une déformation (11) en bosse pour compenser, en partie, les aberrations de la lentille.
  12. Module selon la revendication 9 ou 10, caractérisé en ce que le bord (10a) de la plieuse présente de part et d'autre du plan vertical passant par l'axe optique deux bosses (13, 14) reliées par une partie en cuvette (15) pour constituer un module additionnel pour un code autoroute, renforçant la lumière dans l'axe au-dessous de l'horizontale.
  13. Projecteur lumineux donnant un faisceau à coupure, pour véhicule automobile, tel qu'il est formé par un assemblage de plusieurs modules tels que définis selon l'une des revendications précédentes, juxtaposés de sorte que la surface de sortie de l'optique du projecteur est lisse, continue.
  14. Projecteur lumineux selon la revendication précédente, constitué de plusieurs rangées superposées de modules assemblés, certains des modules assurant une coupure à 15°, d'autres modules pouvant éclairer latéralement, chaque rangée éteinte ayant l'aspect extérieur d'un unique barreau cylindrique ou d'un segment torique continu.
EP06291391.8A 2005-09-09 2006-09-01 Procédé de construction d'un module de projecteur lumineux pour véhicule automobile Active EP1762776B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0509234A FR2890721B1 (fr) 2005-09-09 2005-09-09 Procede de construction d'un module de projecteur lumineux pour vehicule automobile, module et projecteur.
FR0602391A FR2898662A3 (fr) 2006-03-17 2006-03-17 Procede de construction d'un module de projecteur lumineux pour vehicule automobile, module et projecteur

Publications (2)

Publication Number Publication Date
EP1762776A1 EP1762776A1 (fr) 2007-03-14
EP1762776B1 true EP1762776B1 (fr) 2015-04-15

Family

ID=37232939

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06291391.8A Active EP1762776B1 (fr) 2005-09-09 2006-09-01 Procédé de construction d'un module de projecteur lumineux pour véhicule automobile

Country Status (3)

Country Link
US (1) US20070058386A1 (fr)
EP (1) EP1762776B1 (fr)
JP (1) JP5049539B2 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2913095B1 (fr) 2007-02-28 2013-07-05 Valeo Vision Projecteur pour vehicule automobile
FR2913750A1 (fr) 2007-03-14 2008-09-19 Valeo Vision Sa Module optique pour projecteur de vehicule automobile
FR2928717B1 (fr) 2008-03-11 2010-03-26 Valeo Vision Dispositif d'eclairage pour vehicule automobile.
FR2936458B1 (fr) 2008-09-26 2011-08-05 Valeo Vision Sas Systeme d'eclairage pour vehicule automobile apte a modifier l'emission d'un faisceau lumineux de type code
CN101825256B (zh) * 2010-03-08 2011-06-22 安徽师范大学 一种汽车led近光灯、远光灯的设计方法
FR2960497B1 (fr) * 2010-05-31 2012-07-13 Valeo Vision Module d'eclairage pour projecteur de vehicule automobile
JP5618721B2 (ja) 2010-09-13 2014-11-05 株式会社小糸製作所 レンズの製造方法
FR2971464B1 (fr) 2011-02-15 2014-11-28 Valeo Vision Unite optique pour dispositif de signalisation et/ou d'eclairage
CN102644899B (zh) * 2011-02-18 2013-07-31 上海三思电子工程有限公司 一种led照明用透镜的设计方法
JP5897898B2 (ja) * 2011-03-23 2016-04-06 株式会社小糸製作所 車両用照明灯具
RU2472338C1 (ru) * 2011-06-06 2013-01-20 Сергей Владимирович Долгов Состав среды для культивирования растений семейства рясковые (wolffia arrhiza) в условиях in vitro
FR2979594B1 (fr) 2011-09-05 2013-09-13 Valeo Vision Projecteur pour vehicule automobile
FR2984456B1 (fr) * 2011-12-19 2015-08-21 Valeo Vision Systeme d'eclairage pour projecteur notamment de vehicule automobile
DE102012206397B4 (de) 2012-04-18 2021-04-15 Osram Gmbh Leuchtvorrichtung mit einer Blende, deren eine Seite von einer ersten Lichtquelle über einen Reflektor bestrahlt wird und deren andere, mit einem Leuchtstoff belegte Seite von einer zweiten Lichtquelle bestrahlt wird
FR2992711B1 (fr) * 2012-06-28 2018-08-10 Valeo Vision Dispositif optique de vehicule automobile a elements dioptriques integres au conduit de lumiere
FR2993632B1 (fr) 2012-07-19 2018-07-13 Valeo Vision Belgique Dispositif d'emission d'un faisceau lumineux et projecteur, notamment de vehicule automobile, comprenant ledit dispositif
JP6322931B2 (ja) * 2013-08-29 2018-05-16 市光工業株式会社 車両用灯具
FR3026462B1 (fr) 2014-09-30 2019-06-28 Valeo Vision Belgique Dispositif lumineux de vehicule avec un element optique plaque avec le support de source lumineuse
FR3026820B1 (fr) 2014-10-02 2016-12-09 Valeo Vision Module d'eclairage pour un dispositif d'eclairage en bandes d'un projecteur pour vehicule automobile
US11230225B1 (en) 2015-04-06 2022-01-25 Apple Inc. Exterior lighting
FR3039630A1 (fr) * 2015-07-28 2017-02-03 Valeo Vision Systeme d'eclairage pour projecteur de vehicule automobile
FR3093789B1 (fr) * 2019-03-14 2022-05-27 Valeo Vision Dispositif lumineux imageant les surfaces eclairees d’au moins deux collecteurs

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3522424A (en) * 1968-04-12 1970-08-04 Itt Searchlight apparatus
US5779341A (en) * 1996-03-01 1998-07-14 Ford Global Technologies, Inc. Reduced package depth low-profile lamp with smoothly shaped lenses
JP3677720B2 (ja) * 1998-10-27 2005-08-03 スタンレー電気株式会社 プロジェクター型ヘッドランプ
JP2002216514A (ja) * 2001-01-22 2002-08-02 Ichikoh Ind Ltd 車両用前照灯
JP2002236307A (ja) * 2001-02-09 2002-08-23 Asahi Optical Co Ltd ズームストロボ装置
FR2822550B1 (fr) * 2001-03-21 2003-05-16 Valeo Vision Projecteur de vehicule automobile a miroir et element de deviation conjugues
JP2003123519A (ja) * 2001-10-15 2003-04-25 Honda Motor Co Ltd プロジェクタ型ヘッドランプ
FR2839139B1 (fr) * 2002-04-25 2005-01-14 Valeo Vision Module d'eclairage elliptique sans cache realisant un faisceau d'eclairage a coupure et projecteur comportant un tel module
DE10231326A1 (de) * 2002-07-11 2004-02-19 Hella Kg Hueck & Co. Leuchteinheit für Fahrzeuge
JP4070190B2 (ja) * 2002-08-19 2008-04-02 株式会社小糸製作所 車両用ヘッドランプ
JP4002159B2 (ja) * 2002-09-03 2007-10-31 株式会社小糸製作所 車両用前照灯
JP4047185B2 (ja) * 2003-02-06 2008-02-13 株式会社小糸製作所 車両用前照灯及び発光モジュール
DE10318952A1 (de) * 2003-04-26 2004-11-25 Hella Kgaa Hueck & Co. Fahrzeugleuchte
FR2858042B1 (fr) * 2003-07-24 2005-09-23 Valeo Vision Module d'eclairage elliptique sans cache realisant un faisceau d'eclairage a coupure et projecteur comportant un tel module
JP4387783B2 (ja) * 2003-12-17 2009-12-24 株式会社小糸製作所 プロジェクタ型前照灯
FR2872257B1 (fr) * 2004-06-24 2006-08-18 Valeo Vision Sa Module d'eclairage pour vehicule automobile et projecteur comportant un tel module

Also Published As

Publication number Publication date
US20070058386A1 (en) 2007-03-15
EP1762776A1 (fr) 2007-03-14
JP5049539B2 (ja) 2012-10-17
JP2007080817A (ja) 2007-03-29

Similar Documents

Publication Publication Date Title
EP1762776B1 (fr) Procédé de construction d&#39;un module de projecteur lumineux pour véhicule automobile
EP3124854B1 (fr) Système d&#39;éclairage pour projecteur de véhicule automobile
EP1936260B1 (fr) Module de projecteur lumineux de véhicule automobile pour un faisceau à coupure
EP0373065B1 (fr) Projecteur de véhicule automobile, comportant un réflecteur à surface complexe à zones intermédiaires modifiées
EP0466605B1 (fr) Réflecteur pour un dispositif d&#39;éclairage de véhicule automobile, et projecteur et feu de signalisation incorporant un tel réflecteur
EP3167226B1 (fr) Module lumineux d&#39;un véhicule automobile
EP3147557A1 (fr) Element optique primaire pour module lumineux de vehicule automobile
EP1881264A1 (fr) Module optique pour projecteur de véhicule automobile
EP1500869A1 (fr) Module d&#39;éclairage elliptique sans cache réalisant un faisceau d&#39;éclairage à coupure et projecteur comportant un tel module
EP3315851B1 (fr) Module optique pour projeter un faisceau lumineux à coupure comportant des moyens de focalisation horizontale
FR2913095A1 (fr) Projecteur pour vehicule automobile
EP2230446A1 (fr) Dispositif d&#39;éclairage ou de signalisation pour véhicule automobile
EP2607778A1 (fr) Système d&#39;éclairage pour projecteur notamment de véhicule automobile
EP1870633A1 (fr) Module de projecteur avec diode électroluminescente
EP3604904B1 (fr) Module lumineux comportant une matrice de sources lumineuses et un système optique bifocal
FR2919377A1 (fr) Module optique a source lumineuse transverse pour projecteur automobile
EP0838628B1 (fr) Projecteur à conduit de lumière pour véhicules automobiles
EP1703198B1 (fr) Projecteur lumineux pour véhicule automobile de faible encombrement
EP2199662B1 (fr) Module d&#39;éclairage perfectionné pour véhicule automobile
FR2898662A1 (fr) Procede de construction d&#39;un module de projecteur lumineux pour vehicule automobile, module et projecteur
EP1400748B1 (fr) Dispositif projecteur de véhicule automobile à miroir et élément de déviation conjugués avec coupure non plate
WO2023030808A1 (fr) Module lumineux pour vehicule automobile
FR2890721A1 (fr) Procede de construction d&#39;un module de projecteur lumineux pour vehicule automobile, module et projecteur.
EP4416015A1 (fr) Système de projection de plusieurs faisceaux lumineux
EP2944514A1 (fr) Système d&#39;éclairage pour projecteur de véhicule automobile comprenant plusieurs modules d&#39;éclairage

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20070905

17Q First examination report despatched

Effective date: 20071009

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141106

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 722203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006045110

Country of ref document: DE

Effective date: 20150528

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150415

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 722203

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150415

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150817

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150815

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150716

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006045110

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150415

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

26N No opposition filed

Effective date: 20160118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150901

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150901

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150930

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150415

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240912

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240925

Year of fee payment: 19