[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2364494A1 - Method for approximating the time curve of traffic data - Google Patents

Method for approximating the time curve of traffic data

Info

Publication number
EP2364494A1
EP2364494A1 EP09771264A EP09771264A EP2364494A1 EP 2364494 A1 EP2364494 A1 EP 2364494A1 EP 09771264 A EP09771264 A EP 09771264A EP 09771264 A EP09771264 A EP 09771264A EP 2364494 A1 EP2364494 A1 EP 2364494A1
Authority
EP
European Patent Office
Prior art keywords
data
road
measurement
course
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP09771264A
Other languages
German (de)
French (fr)
Other versions
EP2364494B1 (en
Inventor
Bernhard Nowotny
Martin Reinthaler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osterreichisches Forschungs und Pruefzentrum Arsenal Gesselshaft Mbh
Original Assignee
Osterreichisches Forschungs und Pruefzentrum Arsenal Gesselshaft Mbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osterreichisches Forschungs und Pruefzentrum Arsenal Gesselshaft Mbh filed Critical Osterreichisches Forschungs und Pruefzentrum Arsenal Gesselshaft Mbh
Publication of EP2364494A1 publication Critical patent/EP2364494A1/en
Application granted granted Critical
Publication of EP2364494B1 publication Critical patent/EP2364494B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions

Definitions

  • the invention relates to a method for approximating the time course of traffic data according to the preamble of claim 1. Furthermore, the invention relates to a device for approximating the temporal
  • the invention relates to a data carrier, a computer program and a computer program product.
  • the invention in particular the method according to the invention and the device according to the invention, are used in the field of automated traffic detection or traffic prediction.
  • Background of the invention is the determination of traffic data for a plurality of road sections, on which only isolated information is available.
  • Information can be determined for example by means of a stationary measuring device, but also by means of vehicles which are in flowing traffic.
  • the object of the invention is to solve the problems mentioned above and to provide a method and a device that provide continuous traffic information for these road sections even with sparse input data for certain predetermined road sections.
  • the invention solves this problem in a method of the type mentioned above with the features of the characterizing part of claim 1 and in a device having the features of the characterizing part of claim 4.
  • the time profile of traffic data is approximated. From historical data, average group data profiles and average road data profiles are formed. Deviation time series are formed and using the time series analysis, optimal approximation values for these deviations are calculated. This method is applicable, both when complete data histories exist and when data of individual intervals are missing.
  • the group data progressions can be adapted successively to new traffic conditions.
  • the road data courses can be successively adapted to new traffic conditions.
  • Fig. 1 shows schematically the structure of a device according to the invention.
  • FIG. 2 schematically illustrates the formation of a road data history based on a number of measurements and the associated group data history.
  • FIG. 3 shows the formation of an approximated road data course for a given average road data course as well as a multiplicity of measured values.
  • a device for approximating the time course of traffic data is shown.
  • the device comprises a plurality of measuring devices, not shown, which determine or determine traffic data in the form of measured values at different measuring times.
  • This traffic data may concern either traffic flow or speed measurements.
  • a measuring device may, for example, be a permanently mounted sensor, for example located above a road. This sensor measures, for example, traffic flow or speed of passing vehicles and records the measurement data obtained in this way, whereby the measuring device assigns the time of recording or recording to the measurement data.
  • mobile measuring devices whose local position is variable. These data are then provided with a coding of the site, such as the GPS coordinates of the site, as well as with a time stamp. All measurement data records thus comprise the respective measured value, the measurement time of the recording and optionally an identifier and / or the coded position of the recording or recording instrument.
  • the measuring devices it is particularly necessary for the measuring devices to be located in an area immediately above or laterally above the road sections in a vehicle. Stationary measuring devices are fixedly arranged in the area of the road sections and assigned to them.
  • This association and grouping unit 1 comprises a grouping table in which a predetermined mutual association between road sections, groups of road sections and measuring devices or measuring positions is stored.
  • the number of predetermined Road sections divided into groups based on given criteria.
  • each group there are a plurality of road sections, each of the grouped road sections having similar characteristics, for example, similar or identical top speeds, similar geometry, same type of road (highway, freeway, highway, local area), and so forth stationary measuring devices, so the assignment to a road section is unique, since the meter itself is assigned to the road section.
  • the device comprises a unit 2 for forming the measurement data sets and the respective road segments as well as the respective groups to each other in accordance with the allocation table.
  • Each measurement data set is provided in the course of this further processing with an identifier of this group or this road section.
  • the measurement data records are forwarded to the output of the assignment and grouping unit 1 and are present there in the form of, in particular digital, data.
  • the device according to the invention comprises a unit 2 for forming the
  • This group data history formation unit 2 obtains a group time series for each group of road sections by means of the time-series-forming measurement data sets assigned to the respective group. For easy comparability of the individual measurement data sets with each other, it is provided that a periodically recurring measurement interval is predetermined, which is set in particular to a day or a week. All measuring times are recorded relative to the beginning of the respective measuring interval and assigned to the respective measured value or measured data record. For each group is assigned by means of the individual groups
  • Measurement data sets formed by time series a mean group data history of the measured values over time, in particular over the measuring interval.
  • the group data history determined by time series generation is present for each group.
  • the procedure for determining the average road data course 92 is shown in FIG. 2.
  • a typical, mean road data course 92 is formed, in which the deviation between the measured value and the value of the group data profile present at the respective measuring time is first determined for each measured value or measured data record assigned to the respective road section.
  • 2 shows a continuous group data course 91 as well as a multiplicity of deviations 95 between a measured value and the value of the group data profile 91 present at the respective measuring time.
  • a deviation time series is formed from these deviations as well as the time points of their recording.
  • the time-of-flight series is analyzed by a prior-art time-series analysis method, an appropriate time-series model is identified, and the time series based on the time-series model is smoothed or a compensation function is formed.
  • the deviation time series determined in this way is added to the group data course 91 of the group to which the respective road section is assigned, the typical road data course 92, 92 'corresponding to the summation time profile thus formed. Even in those areas in which only fragmentary information about the traffic data of interest are available, a meaningful result can be formed over the typical road data course 92, 92 'by means of time series formation.
  • the typical road data courses 92, 92 'of the individual road sections are applied to the output of the unit 3 for approximating the road data course 92, 92'.
  • the average road data approximation unit 3 is followed by a unit 4 for approximating the interval data waveform.
  • the output of the allocation and grouping unit 1 is connected to the input for approximating the interval data course 4.
  • an approximate interval data history 93 for this predetermined measurement interval is formed by means of the data records recorded in a single predetermined measurement interval, by performing the following steps:
  • the deviation between the measured value and the value of the average road data course 92 present at the respective measuring time is determined or formed.
  • the acquisition of the measurement data is performed in sequential order, so that the calculation of the deviation is performed in sequential order, each including the latest measurement data.
  • a deviation time series is formed by means of the determined deviations 96 and the measuring points 94 assigned to them.
  • the time-of-deviation series is determined by a state-of-the-art time-series analysis method analyzes the technology, identifies a suitable time series model and filters the time series based on the time series model.
  • the thus determined deviation time series is added to the approximated interval data history of the selected road segment.
  • the approximated interval data course thus corresponds approximately to the time profile of the traffic data in the predetermined measurement interval and on the given road section.
  • the approximated interval data course 93, 93 'for the selected road section corresponds to the summation time curve formed and is present at the output of the unit 4 for approximating the interval data course 93, 93'.
  • a particular embodiment of the invention provides that for the determination of the group data courses 91, measurement data from those three to twelve months, which immediately precede the measurement time, are used. This is achieved in a device according to the invention in that in the unit 2 for forming the group data history 91, a group data control unit 21 is provided which deletes those records whose recording date is older than a predetermined period of time.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

The invention relates to a method for approximating the time curve of traffic data for a selected road section, wherein a period measurement interval is predetermined, wherein measuring data records comprising the respective measured value and the measurement time at which it was recorded are generated and are associated with the road section in which the measurement was carried out on the basis of a predetermined association between the measurement location and the road sections. According to the invention, the road sections are divided into groups on the basis of predetermined criteria, wherein for each group an average group data curve (91) of the measured values is determined, for each individual road section an average road data curve (92) is formed, and for the selected road section an approximated interval data curve (93) for said predetermined measurement interval is formed, in that for each measured value associated with the predetermined road section and the respective predetermined measurement interval the deviation between the measured value and the mean road data curve (92) is formed, a deviation time series is formed by means of the deviations, and said time series is added to the road data curve (92).

Description

Verfahren zur Approximation des zeitlichen Verlaufs von Verkehrsdaten Method for approximating the time course of traffic data
Die Erfindung betrifft ein Verfahren zur Approximation des zeitlichen Verlaufs von Verkehrsdaten gemäß dem Oberbegriff des Anspruchs 1. Ferner betrifft die Erfindung eine Vorrichtung zur Approximation des zeitlichenThe invention relates to a method for approximating the time course of traffic data according to the preamble of claim 1. Furthermore, the invention relates to a device for approximating the temporal
Verlaufs von Verkehrsdaten gemäß dem Oberbegriff des Anspruchs 4.History of traffic data according to the preamble of claim 4.
Weiters betrifft die Erfindung einen Datenträger, ein Computerprogramm sowie ein Computerprogrammprodukt.Furthermore, the invention relates to a data carrier, a computer program and a computer program product.
Die Erfindung, insbesondere das erfindungsgemäße Verfahren sowie die erfindungsgemäße Vorrichtung, werden im Bereich der automatisierten Verkehrserfassung bzw. Verkehrsvorhersage eingesetzt.The invention, in particular the method according to the invention and the device according to the invention, are used in the field of automated traffic detection or traffic prediction.
Hintergrund der Erfindung ist die Ermittlung von Verkehrsdaten für eine Vielzahl von Straßenabschnitten, auf welchen nur vereinzelt Informationen vorliegen. Informationen können beispielsweise mittels eines stationären Messgeräts, aber auch mittels Fahrzeugen ermittelt werden, welche sich im fließenden Verkehr befinden.Background of the invention is the determination of traffic data for a plurality of road sections, on which only isolated information is available. Information can be determined for example by means of a stationary measuring device, but also by means of vehicles which are in flowing traffic.
Insbesondere bei weniger häufig befahrenen Straßen besteht bei der Erfassung der Daten wie auch bei der Vorhersage der Daten das Problem, dass aufgrund der fehlenden Messdaten für einzelne Zeitintervalle unzureichende Informationen über den aktuellen Verkehrsstand zur Verfügung stehen.Particularly in the case of less frequented roads, when capturing the data as well as during the prediction of the data, there is the problem that due to the missing measurement data for individual time intervals, insufficient information about the current traffic status is available.
Aufgabe der Erfindung ist es, die eingangs genannten Probleme zu lösen und ein Verfahren sowie eine Vorrichtung zur Verfügung zu stellen, welche auch bei spärlichen Eingangsdaten für bestimmte vorgegebene Straßenabschnitte kontinuierliche Verkehrsinformation für diese Straßenabschnitte liefern. Die Erfindung löst diese Aufgabe bei einem Verfahren der eingangs genannten Art mit den Merkmalen des Kennzeichens des Anspruchs 1 sowie bei einer Vorrichtung mit den Merkmalen des Kennzeichens des Anspruchs 4. Erfindungsgemäß wird der um den zeitlichen Verlauf von Verkehrsdaten approximiert. Es werden aus historischen Daten mittlere Gruppen-Datenverläufe und mittlere Straßen-Datenverläufe gebildet. Es werden Abweichungszeitreihen gebildet und mit Hilfe der Zeitreihenanalyse optimale Approximationswerte für diese Abweichungen berechnet. Dieses Verfahren ist anwendbar, sowohl wenn komplette Datenverläufe existieren als auch wenn Daten einzelner Intervalle fehlen.The object of the invention is to solve the problems mentioned above and to provide a method and a device that provide continuous traffic information for these road sections even with sparse input data for certain predetermined road sections. The invention solves this problem in a method of the type mentioned above with the features of the characterizing part of claim 1 and in a device having the features of the characterizing part of claim 4. According to the invention, the time profile of traffic data is approximated. From historical data, average group data profiles and average road data profiles are formed. Deviation time series are formed and using the time series analysis, optimal approximation values for these deviations are calculated. This method is applicable, both when complete data histories exist and when data of individual intervals are missing.
Erfindungsgemäß besteht der Vorteil, dass selbst bei Vorliegen spärlicher Verkehrsinformationen ein kontinuierlicher Verlauf der interessierenden Verkehrsgröße ermittelt werden kann. Somit ist es möglich, selbst auf wenig befahrenen Straßen oder auf Straßen, die nur selten mit mobilen Messfahrzeugen befahren werden, hinreichend genaue Information über die in Betracht stehenden Verkehrsdaten zu erhalten.According to the invention, there is the advantage that even in the presence of sparse traffic information, a continuous course of the traffic variable of interest can be determined. Thus, it is possible even on low-traffic roads or on Roads that are rarely used with mobile measuring vehicles to obtain sufficiently accurate information about the traffic data in question.
Mit den Kennzeichen der Ansprüche 2 und 5 können die Gruppen-Datenverläufe sukzessive an neue Verkehrsgegebenheiten angepasst werden. Mit den Kennzeichen der Ansprüche 3 und 6 können die Straßen-Datenverläufe sukzessive an neue Verkehrsgegebenheiten angepasst werden.With the characteristics of claims 2 and 5, the group data progressions can be adapted successively to new traffic conditions. With the characteristics of claims 3 and 6, the road data courses can be successively adapted to new traffic conditions.
Fig. 1 zeigt schematisch den Aufbau einer erfindungsgemäßen Vorrichtung.Fig. 1 shows schematically the structure of a device according to the invention.
Fig. 2 zeigt schematisch die Bildung eines Straßen-Datenverlaufs basierend auf einer Anzahl von Messwerten und dem zugehörigen Gruppen-Datenverlauf.FIG. 2 schematically illustrates the formation of a road data history based on a number of measurements and the associated group data history.
Fig. 3 zeigt die Bildung eines approximierten Straßen-Datenverlaufs bei vorgegebenem mittleren Straßen-Datenverlauf sowie einer Vielzahl von Messwerten.FIG. 3 shows the formation of an approximated road data course for a given average road data course as well as a multiplicity of measured values.
In Fig. 1 ist eine erfindungsgemäße Vorrichtung zur Approximation des zeitlichen Verlaufs von Verkehrsdaten dargestellt. Die Vorrichtung umfasst eine Vielzahl von nicht dargestellten Messgeräten, welche zu unterschiedlichen Messzeitpunkten Verkehrsdaten in Form von Messwerten bestimmen oder ermitteln. Diese Verkehrsdaten können entweder Messungen des Verkehrsflusses oder der Geschwindigkeit betreffen. Ein Messgerät kann beispielsweise ein fest montierter, beispielsweise oberhalb einer Straße befindlicher Sensor sein. Dieser Sensor misst beispielsweise Verkehrsfluss oder Geschwindigkeit der vorbeifahrenden Fahrzeuge und zeichnet die so gewonnenen Messdaten auf, wobei das Messgerät den Messdaten den Zeitpunkt der Aufzeichnung oder Aufnahme zuordnet.In Fig. 1, a device according to the invention for approximating the time course of traffic data is shown. The device comprises a plurality of measuring devices, not shown, which determine or determine traffic data in the form of measured values at different measuring times. This traffic data may concern either traffic flow or speed measurements. A measuring device may, for example, be a permanently mounted sensor, for example located above a road. This sensor measures, for example, traffic flow or speed of passing vehicles and records the measurement data obtained in this way, whereby the measuring device assigns the time of recording or recording to the measurement data.
Alternativ können auch mobile Messgeräte vorgesehen werden, deren örtliche Position variabel ist. Diese Daten werden anschließend mit einer Codierung des Messorts, beispielsweise den GPS-Koordinaten des Messorts, sowie mit einem Zeitstempel versehen. Alle Messdatensätze umfassen somit den jeweiligen Messwert, den Messzeitpunkt der Aufnahme sowie gegebenenfalls eine Kennung und/oder die codierte Position des aufzeichnenden oder aufnehmenden Messgeräts. Bei mobilen Messgeräten ist es insbesondere erforderlich, dass sich die Messgeräte in einem Bereich unmittelbar oberhalb bzw. seitlich oberhalb der Straßenabschnitte in einem Fahrzeug befinden. Stationäre Messgeräte sind im Bereich der Straßenabschnitte fest angeordnet und diesen zugeordnet.Alternatively, it is also possible to provide mobile measuring devices whose local position is variable. These data are then provided with a coding of the site, such as the GPS coordinates of the site, as well as with a time stamp. All measurement data records thus comprise the respective measured value, the measurement time of the recording and optionally an identifier and / or the coded position of the recording or recording instrument. In the case of mobile measuring devices, it is particularly necessary for the measuring devices to be located in an area immediately above or laterally above the road sections in a vehicle. Stationary measuring devices are fixedly arranged in the area of the road sections and assigned to them.
Die so ermittelten Messdatensätze gelangen zu einer Zuordnungs- und Gruppierungseinheit. Diese Zuordnungs- und Gruppierungseinheit 1 umfasst eine Gruppierungstabelle, in der eine vorgegebene gegenseitige Zuordnung zwischen Straßenabschnitten, Gruppen von Straßenabschnitten und Messgeräten bzw. Messpositionen abgespeichert ist. Hierbei ist die Anzahl der vorgegebenen Straßenabschnitte auf Grund vorgegebener Kriterien in Gruppen unterteilt. In jeder Gruppe befindet sich eine Vielzahl von Straßenabschnitten, wobei jeder der in einer Gruppe befindlichen Straßenabschnitte ähnliche Eigenschaften aufweist, beispielsweise ähnliche oder idente Höchstgeschwindigkeiten, ähnliche Geometrie, gleiche Art von Straße (Autobahn, Schnellstraße, Bundesstraße, Ortsgebiet), usw. Liegen Messdatensätze von stationären Messgeräten vor, so ist die Zuordnung zu einem Straßenabschnitt eindeutig, da das Messgerät selbst dem Straßenabschnitt zugeordnet ist. Liegen hingegen Messdatensätze von mobilen Messgeräten vor, ist für die Zuordnung zu einem bestimmten Straßenabschnitt weiters die Kenntnis der Position des Messgeräts erforderlich. Mittels einer nicht dargestellten ebenfalls von der Gruppierungs- und Zuordnungseinheit 1 umfassten Einheit können die Messpositionen, insbesondere in Form von GPS-Koordinaten, den Straßenabschnitten zugeordnet werden. Die Zuordnungs- und Gruppierungseinheit ordnet in Übereinstimmung mit der Zuordnungstabelle die Messdatensätze und die jeweiligen Straßenabschnitte sowie die jeweiligen Gruppen einander zu. Jeder Messdatensatz wird im Zuge dieser Weiterverarbeitung mit einer Kennung dieser Gruppe bzw. dieses Straßenabschnittes versehen. Die Messdatensätze werden an den Ausgang der Zuordnungs- und Gruppierungseinheit 1 weitergeleitet und liegen dort in Form von, insbesondere digitalen, Daten vor. Ferner umfasst die erfindungsgemäße Vorrichtung eine Einheit 2 zur Bildung desThe measured data records thus obtained arrive at an allocation and grouping unit. This association and grouping unit 1 comprises a grouping table in which a predetermined mutual association between road sections, groups of road sections and measuring devices or measuring positions is stored. Here, the number of predetermined Road sections divided into groups based on given criteria. In each group there are a plurality of road sections, each of the grouped road sections having similar characteristics, for example, similar or identical top speeds, similar geometry, same type of road (highway, freeway, highway, local area), and so forth stationary measuring devices, so the assignment to a road section is unique, since the meter itself is assigned to the road section. If, on the other hand, measurement data sets from mobile measuring instruments are available, it is also necessary to know the position of the measuring instrument in order to be assigned to a specific road segment. The measuring positions, in particular in the form of GPS coordinates, can be assigned to the road sections by means of a unit which is likewise not shown and which is included in the grouping and allocation unit 1. The allocation and grouping unit allocates the measurement data sets and the respective road segments as well as the respective groups to each other in accordance with the allocation table. Each measurement data set is provided in the course of this further processing with an identifier of this group or this road section. The measurement data records are forwarded to the output of the assignment and grouping unit 1 and are present there in the form of, in particular digital, data. Furthermore, the device according to the invention comprises a unit 2 for forming the
Gruppen-Datenverlaufs, deren Eingang an den Ausgang der Zuordnungs- und Gruppierungseinheit angeschlossen ist. Diese Einheit 2 zur Bildung des Gruppen- Datenverlaufs ermittelt für jede Gruppe von Straßenabschnitten mittels der, der jeweiligen Gruppe zugeordneten, Messdatensätze durch Zeitreihenbildung eine Gruppenzeitreihe. Zur einfachen Vergleichbarkeit der einzelnen Messdatensätze untereinander wird vorgesehen, dass ein periodisch wiederkehrendes Messintervall vorgegeben wird, welches insbesondere auf einen Tag oder eine Woche festgesetzt wird. Alle Messzeitpunkte werden bezogen auf den Anfang des jeweiligen Messintervalls aufgezeichnet und dem jeweiligen Messwert bzw. Messdatensatz zugeordnet. Für jede Gruppe wird mittels der den einzelnen Gruppen zugeordnetenGroup data history whose input is connected to the output of the allocation and grouping unit. This group data history formation unit 2 obtains a group time series for each group of road sections by means of the time-series-forming measurement data sets assigned to the respective group. For easy comparability of the individual measurement data sets with each other, it is provided that a periodically recurring measurement interval is predetermined, which is set in particular to a day or a week. All measuring times are recorded relative to the beginning of the respective measuring interval and assigned to the respective measured value or measured data record. For each group is assigned by means of the individual groups
Messdatensätze durch Zeitreihenbildung ein mittlerer Gruppen-Datenverlauf der Messwerte über die Zeit, insbesondere über das Messintervall, gebildet. Am Ausgang der Einheit 2 zur Bildung des Gruppen-Datenverlaufs liegt für jede Gruppe der durch Zeitreihenbildung ermittelte Gruppen-Datenverlauf an. Ferner ist in Fig. 1 eine Einheit 3 zur Approximation des mittleren Straßen-Measurement data sets formed by time series a mean group data history of the measured values over time, in particular over the measuring interval. At the output of the group data formation unit 2, the group data history determined by time series generation is present for each group. Furthermore, in FIG. 1, a unit 3 for approximating the average road surface
Datenverlaufs vorgesehen. An deren Eingang ist der Ausgang der Zuordnungs- und Gruppierungseinheit 1 sowie der Ausgang der Einheit 2 zur Bildung des Gruppen- Datenverlaufs angeschlossen. Das Vorgehen zur Bestimmung des mittleren Straßen- Datenverlaufs 92 ist in Fig. 2 dargestellt. Für jeden Straßenabschnitt wird ein typischer, mittlerer Straßen-Datenverlauf 92 gebildet, in dem zunächst für jeden, dem jeweiligen Straßenabschnitt zugeordneten Messwert oder Messdatensatz die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des Gruppen- Datenverlaufs ermittelt wird. Fig. 2 zeigt einen durchgehenden Gruppen-Datenverlauf 91 sowie eine Vielzahl von Abweichungen 95 zwischen einem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des Gruppen-Datenverlaufs 91. Aus diesen Abweichungen sowie den Zeitpunkten ihrer Aufnahme wird eine Abweichungszeitreihe gebildet. Die Abweichungszeitreihe wird mit einem Verfahren zur Zeitreihen-Analyse nach dem Stand der Technik analysiert, ein passendes Zeitreihenmodell identifiziert und die Zeitreihe auf Basis des Zeitreihenmodelles geglättet bzw. eine Ausgleichsfunktion gebildet wird. Die so ermittelte Abweichungszeitreihe wird zum Gruppen-Datenverlauf 91 derjenigen Gruppe, welcher der jeweilige Straßenabschnitt zugeordnet ist, addiert, wobei der typische Straßen-Datenverlauf 92, 92' dem so gebildeten Summenzeitverlauf entspricht. Auch in denjenigen Bereichen, in welchen nur bruchstückhaft Informationen über die interessierenden Verkehrsdaten vorhanden sind, kann mittels Zeitreihenbildung ein aussagekräftiges Resultat über den typischen Straßen-Datenverlauf 92, 92' gebildet werden. Die typischen Straßen-Datenverläufe 92, 92' der einzelnen Straßenabschnitte liegen am Ausgang der Einheit 3 zur Approximation des Straßen-Daten Verlaufs 92, 92' an. Der Einheit 3 zur Approximation des mittleren Straßen-Datenverlaufs ist eine Einheit 4 zur Approximation des Intervall-Datenverlaufs nachgeschaltet. Der Ausgang der Zuordnungsund Gruppierungseinheit 1 ist an den Eingang zur Approximation des Intervall- Datenverlaufs 4 angeschlossen. Für einen ausgewählten Straßenabschnitt wird mittels der in einem einzigen vorgegebenen Messintervall aufgezeichneten Datensätze ein approximierter Intervall- Datenverlauf 93 für dieses vorgegebene Messintervall gebildet, indem die folgenden Schritte durchgeführt werden:Data course provided. At its input is the output of the assignment and grouping unit 1 and the output of the unit 2 for forming the group Data history connected. The procedure for determining the average road data course 92 is shown in FIG. 2. For each road section, a typical, mean road data course 92 is formed, in which the deviation between the measured value and the value of the group data profile present at the respective measuring time is first determined for each measured value or measured data record assigned to the respective road section. 2 shows a continuous group data course 91 as well as a multiplicity of deviations 95 between a measured value and the value of the group data profile 91 present at the respective measuring time. A deviation time series is formed from these deviations as well as the time points of their recording. The time-of-flight series is analyzed by a prior-art time-series analysis method, an appropriate time-series model is identified, and the time series based on the time-series model is smoothed or a compensation function is formed. The deviation time series determined in this way is added to the group data course 91 of the group to which the respective road section is assigned, the typical road data course 92, 92 'corresponding to the summation time profile thus formed. Even in those areas in which only fragmentary information about the traffic data of interest are available, a meaningful result can be formed over the typical road data course 92, 92 'by means of time series formation. The typical road data courses 92, 92 'of the individual road sections are applied to the output of the unit 3 for approximating the road data course 92, 92'. The average road data approximation unit 3 is followed by a unit 4 for approximating the interval data waveform. The output of the allocation and grouping unit 1 is connected to the input for approximating the interval data course 4. For a selected road section, an approximate interval data history 93 for this predetermined measurement interval is formed by means of the data records recorded in a single predetermined measurement interval, by performing the following steps:
Für jeden dem ausgewählten Straßenabschnitt sowie dem vorgegebenen Messintervall zugeordneten Messwert oder Messdatensatz wird die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des mittleren Straßen-Datenverlaufs 92 ermittelt bzw. gebildet. Üblicherweise erfolgt die Erfassung der Messdaten in sequentieller Reihenfolge, sodass auch die Berechnung der Abweichung in sequentieller Reihenfolge durchgeführt wird, jeweils einschließlich der neuesten Messdaten. Anschließend wird eine Abweichungszeitreihe mittels der ermittelten Abweichungen 96 sowie der diesen zugeordneten Messpunkte 94 gebildet. Die Abweichungszeitreihe wird mit einem Verfahren zur Zeitreihen-Analyse nach dem Stand der Technik analysiert, ein passendes Zeitreihenmodell identifiziert und die Zeitreihe auf Basis des Zeitreihenmodelles gefiltert bzw. ermittelt. Die so ermittelte Abweichungszeitreihe wird zum approximierten Intervall-Datenverlauf des ausgewählten Straßenabschnitts addiert. Der approximierte Intervall-Datenverlauf entspricht somit näherungsweise dem zeitlichen Verlauf der Verkehrsdaten im vorgegebenen Messintervall sowie auf dem vorgegebenen Straßenabschnitt.For each measured value or measured data record associated with the selected road section and the predetermined measuring interval, the deviation between the measured value and the value of the average road data course 92 present at the respective measuring time is determined or formed. Typically, the acquisition of the measurement data is performed in sequential order, so that the calculation of the deviation is performed in sequential order, each including the latest measurement data. Subsequently, a deviation time series is formed by means of the determined deviations 96 and the measuring points 94 assigned to them. The time-of-deviation series is determined by a state-of-the-art time-series analysis method analyzes the technology, identifies a suitable time series model and filters the time series based on the time series model. The thus determined deviation time series is added to the approximated interval data history of the selected road segment. The approximated interval data course thus corresponds approximately to the time profile of the traffic data in the predetermined measurement interval and on the given road section.
Diese Verfahrensschritte werden bei einer erfindungsgemäßen Vorrichtung von der Einheit 4 zur Approximation des Intervall-Datenverlaufs durchgeführt. Der approximierte Intervall-Datenverlauf 93, 93' für den ausgewählten Straßenabschnitt entspricht dem gebildeten Summenzeitverlauf und liegt am Ausgang der Einheit 4 zur Approximation des Intervall-Datenverlaufs 93, 93' an.These method steps are performed in a device according to the invention of the unit 4 for approximating the interval data history. The approximated interval data course 93, 93 'for the selected road section corresponds to the summation time curve formed and is present at the output of the unit 4 for approximating the interval data course 93, 93'.
Eine besondere Ausführungsform der Erfindung sieht vor, dass für die Ermittlung der Gruppen-Datenverläufe 91 Messdaten aus denjenigen drei bis zwölf Monaten, welche dem Messzeitpunkt unmittelbar vorangehen, herangezogen werden. Dies wird bei einer erfindungsgemäßen Vorrichtung dadurch erreicht, dass in der Einheit 2 zur Bildung des Gruppen-Datenverlaufs 91 eine Gruppendatenstandskontrolleinheit 21 vorgesehen ist, welche diejenigen Datensätze löscht, deren Aufzeichnungsdatum länger als eine vorgegebene Zeitspanne zurückliegt.A particular embodiment of the invention provides that for the determination of the group data courses 91, measurement data from those three to twelve months, which immediately precede the measurement time, are used. This is achieved in a device according to the invention in that in the unit 2 for forming the group data history 91, a group data control unit 21 is provided which deletes those records whose recording date is older than a predetermined period of time.
In Analogie dazu kann vorgesehen werden, dass für die Ermittlung der mittleren Straßen-Datenverläufe 92 Messdaten aus denjenigen drei bis zwölf Monaten herangezogen werden, welche dem Messzeitpunkt unmittelbar vorangehen. Dies wird in analoger Weise dadurch erreicht, dass in der Einheit 3 zur Approximation des mittleren Straßen-Datenverlaufs 92 eine Straßendatenstandskontrolleinheit 31 vorgesehen ist, welche Datensätze löscht, deren Aufzeichnungsdatum länger als eine vorgegebene Zeitspanne zurückliegt. By analogy with this, it can be provided that for the determination of the mean road data courses 92, measurement data from those three to twelve months are used, which immediately precede the measurement instant. This is achieved in an analogous manner by providing in the middle road data approximation unit 3 a road data status control unit 31 which deletes records whose recording date is longer than a predetermined period of time.

Claims

Patentansprüche: claims:
1. Verfahren zur Approximation des zeitlichen Verlaufs von Verkehrsdaten für einen aus einer Anzahl von vorgegebenen Straßenabschnitten ausgewählten Straßenabschnitt,A method of approximating the time history of traffic data for a road section selected from a number of predetermined road sections,
- wobei in den vorgegebenen Straßenabschnitten zu unterschiedlichen Messzeitpunkten an einer Vielzahl von unterschiedlichen Messorten Verkehrsdaten in Form von Messwerten bestimmt oder ermittelt werden,wherein traffic data in the form of measured values are determined or determined in the given road sections at different measuring times at a plurality of different measuring locations,
- wobei ein periodisch wiederkehrendes Messintervall, insbesondere ein Tag oder eine Woche, vorgegeben wird und alle Messzeitpunkte bezogen auf das Ende des jeweiligen- Given a periodically recurring measurement interval, in particular a day or a week, and all measurement times relative to the end of the respective
Messintervall aufgezeichnet und dem jeweiligen Messwert zugeordnet werden,Measuring interval are recorded and assigned to the respective measured value,
- wobei Messdatensätze umfassend den jeweiligen Messwert, den Messzeitpunkt seiner Aufnahme, sowie gegebenenfalls eine Kennung oder die Position des Messortes, generiert und auf Grund einer vorgegebenen Zuordnung zwischen Messort bzw. Position und Straßenabschnitten dem Straßenabschnitt zugeordnet werden, in dem die Messung erfolgt ist, dadurch gekennzeichnet, a) dass die Anzahl der vorgegebenen Straßenabschnitte auf Grund vorgegebener Kriterien in Gruppen unterteilt wird, - wobei für jede Gruppe mittels der den einzelnen Gruppen zugeordneten Messdatensätze durch Zeitreihenbildung ein mittlerer Gruppen-Datenverlauf (91) der Messwerte über die Zeit ermittelt wird, b) dass für jeden einzelnen Straßenabschnitt ein mittlerer Straßen-Datenverlauf (92) gebildet wird, indem - für jeden diesem einzelnen Straßenabschnitt zugeordneten Messwert oder Messdatensatz die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des Gruppen-Datenverlaufs (91) gebildet wird,- Wherein measurement data sets comprising the respective measured value, the measuring time of its recording, and optionally an identifier or the position of the measuring location, generated and assigned due to a predetermined assignment between the measuring location or position and road sections the road section in which the measurement is carried out by characterized in that a) that the number of predetermined road sections is subdivided into groups on the basis of predetermined criteria, wherein a mean group data course (91) of the measured values over time is determined for each group by means of time series formation, b in that for each individual road section a mean road data course (92) is formed by the deviation between the measured value and the value of the group data profile (91) present for each measured road segment or measurement dataset. is formed,
- eine Abweichungs-Zeitreihe mittels der ermittelten Abweichungen sowie der zugeordneten Messzeitpunkte gebildet wird, und - die so ermittelte Abweichungs-Zeitreihe zum Gruppen-Datenverlauf (91) derjenigen Gruppe, welcher dieser einzelne Straßenabschnitt zugeordnet ist, addiert wird, wobei der mittlere Straßen-Datenverlauf (92) dem so gebildeten Summenzeitverlauf entspricht, und c) dass für den ausgewählten Straßenabschnitt mittels der in einem einzigen vorgegebenen Messintervall aufgezeichneten Datensätze ein approximierter Intervall- Datenverlauf (93) für dieses vorgegebene Messintervall gebildet wird, indema deviation time series is formed by means of the determined deviations and the associated measurement times, and the thus determined deviation time series is added to the group data course of the group to which this individual road segment is assigned, the average road data course (92) corresponds to the cumulative time profile thus formed, and c) that an approximated interval data curve (93) for this predetermined measurement interval is formed for the selected road section by means of the data records recorded in a single predetermined measurement interval, by
- für jeden dem vorgegebenen Straßenabschnitt sowie dem jeweiligen vorgegebenen Messintervall zugeordneten Messwert oder Messdatensatz die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des mittleren Straßen-Datenverlaufs (92) gebildet wird,- For each of the given road section and the respective predetermined measurement interval associated measured value or measurement data set the deviation between the measured value and the value of the average road data course (92) present at the respective measuring time is formed,
- eine Abweichungs-Zeitreihe mittels der ermittelten Abweichungen sowie der zugeordneten Messzeitpunkte gebildet wird, und - die so ermittelte Abweichungs-Zeitreihe zum approximierten Straßen-Datenverlauf (92) des ausgewählten Straßenabschnitts addiert wird, sodass der approximierte Intervall-Datenverlauf (93) näherungsweise dem Verlauf der Verkehrsdaten und dem so gebildeten Summenzeitverlauf entspricht.a deviation time series is formed by means of the determined deviations and the associated measurement times, and the thus determined deviation time series is added to the approximated road data curve 92 of the selected road segment so that the approximated interval data profile approximately follows the course the traffic data and the sum time curve thus formed corresponds.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass für die Ermittlung der mittleren Gruppen-Datenverläufe (91) Messdaten aus denjenigen drei bis zwölf Monaten, welche dem Messzeitpunkt unmittelbar vorangehen, herangezogen werden.2. The method according to claim 1, characterized in that for the determination of the average group data profiles (91) measurement data from those three to twelve months, which immediately precede the measurement time, are used.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass für die Ermittlung der mittleren Straßen-Datenverläufe Messdaten aus denjenigen drei bis zwölf Monaten, welche dem Messzeitpunkt unmittelbar vorangehen, herangezogen werden.3. The method according to claim 1 or 2, characterized in that for the determination of the mean road data traces measurement data from those three to twelve months, which immediately precede the measurement time, are used.
4. Vorrichtung zur Approximation des zeitlichen Verlaufs von Verkehrsdaten für einen aus einer Anzahl von vorgegebenen Straßenabschnitten ausgewählten Straßenabschnitt, mit4. Apparatus for approximating the time course of traffic data for a road section selected from a number of predetermined road sections, with
- einer Vielzahl von Messgeräten, welche zu unterschiedlichen Messzeitpunkten Verkehrsdaten in Form von Messwerten bestimmten oder ermitteln,a plurality of measuring devices which determine or determine traffic data in the form of measured values at different measuring times,
- wobei sich die Messgeräte im Bereich der vorgegebenen Straßenabschnitte befinden und/oder diesen zugeordnet sind, und- Where the meters are located in the range of the given road sections and / or associated with these, and
- wobei die jeweiligen Messgeräte den Messwerten einen Messzeitpunkt zuordnen, und das Messgerät den Messzeitpunkt bezogen auf das Ende eines periodisch wiederkehrenden Messintervalls, insbesondere ein Tag oder eine Woche, aufzeichnet und dem Messwert zugeordnet, und - wobei die Messgeräte Messdatensätze umfassend den jeweiligen Messwert, den Messzeitpunkt seiner Aufnahme, sowie gegebenenfalls eine Kennung und/oder codierte Position des aufzeichnenden oder aufnehmenden Messgeräts generieren, gekennzeichnet durch a) eine Zuordnungs- und Gruppierungseinheit (1), der die von den Messgeräten erzeugten Messdatensätze zugeführt sind,- wherein the respective measuring devices assign a measuring time to the measured values, and the measuring device records the measuring time based on the end of a periodically recurring measuring interval, in particular a day or a week, and assigns it to the measured value, and - the measuring devices comprising measuring data sets comprising the respective measured value Generate measuring time of its recording, and optionally an identifier and / or encoded position of the recording or receiving measuring device, characterized by a) an assignment and grouping unit (1), which are supplied to the measured data sets generated by the measuring devices,
- wobei die Zuordnungs- und Gruppierungseinheit (1) eine Gruppierungstabelle umfasst, in der eine vorgegebene gegenseitige Zuordnung zwischen vorgegebenen Straßenabschnitten, Gruppen von Straßenabschnitten und Messpositionen abgespeichert ist, und- wherein the assignment and grouping unit (1) comprises a grouping table in which a predetermined mutual association between predetermined Road sections, groups of road sections and measurement positions is stored, and
- wobei die Zuordnungs- und Gruppierungseinheit (1) in Übereinstimmung mit der Zuordnungstabelle die Messdatensätze den vorgegebenen Straßenabschnitten sowie den Gruppen zuordnet und mit einer der Gruppe bzw. dem Straßenabschnitt entsprechenden Kennung versieht, wobei die so bearbeiteten Messdatensätze am Ausgang der Zuordnungs- und Gruppierungseinheit (1) abgegeben werden, b) eine Einheit (2) zur Bildung eines mittleren Gruppen-Datenverlaufs, die an die Zuordnungs- und Gruppierungseinheit (1) angeschlossen ist, - wobei die Einheit (2) zur Bildung des mittleren Gruppen-Datenverlaufs (91) für jede Gruppe von Straßenabschnitten mittels der der jeweiligen Gruppe zugeordneten Messdatensätze durch Zeitreihenbildung einen mittleren Gruppen-Datenverlauf (91) ermittelt, und die den Gruppen zugeordneten mittleren Gruppen-Datenverläufe (91) zur Verfügung stellt, c) eine Einheit (3) zur Approximation des mittleren Straßen-Datenverlaufes (92) eines Straßenabschnittes, an deren Eingang der Ausgang der Zuordnungs- und Gruppierungseinheit (1) sowie der Ausgang der Einheit (2) zur Bildung des Gruppen- Datenverlaufs (91) angeschlossen ist,in which the assignment and grouping unit (1) assigns the measurement data sets to the predetermined road sections and the groups in accordance with the assignment table and provides them with an identifier corresponding to the group or the road section, the measurement data records thus processed being provided at the output of the assignment and grouping unit ( 1), b) a unit (2) for forming an average group data course which is connected to the allocation and grouping unit (1), - wherein the unit (2) for forming the average group data course (91) for each group of road sections by means of the measurement data sets assigned to the respective group, determines by means of time series a mean group data course (91) and makes available the group average data courses (91), c) a unit (3) for approximating the middle road data course (92) of a road section, at the entrance the output of the allocation and grouping unit (1) and the output of the unit (2) for forming the group data history (91) is connected,
- wobei die Einheit (3) zur Approximation des mittleren Straßen-Datenverlaufes (92) für jeden einzelnen Straßenabschnitt einen mittleren Straßen-Datenverlauf (92) bildet, indem- wherein the unit (3) for approximation of the average road data course (92) for each individual road section forms a mean road data course (92) by
- die Einheit (3) zur Approximation des Straßen-Datenverlaufes (92) für jeden diesem Straßenabschnitt zugeordneten Messwert und/oder Messdatensatz die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des Gruppen-Datenverlaufs (91) bildet, - die Einheit (3) zur Approximation des mittleren Straßen-Datenverlaufes (92) eine Abweichungs-Zeitreihe mittels der ermittelten Abweichungen sowie der zugeordneten Messzeitpunkte bildet, undthe unit (3) for approximating the road data course (92) for each measured value and / or measured data record associated with this road section forms the deviation between the measured value and the value of the group data profile (91) present at the respective measuring time, - the unit ( 3) for the approximation of the mean road data course (92) forms a deviation time series by means of the determined deviations and the associated measurement times, and
- die Einheit (3) zur Approximation des Straßen-Datenverlaufes (92) die so ermittelte Abweichungs-Zeitreihe zum Gruppen-Datenverlauf (91) derjenigen Gruppe, welcher dieser Straßenabschnitt zugeordnet ist, addiert, wobei der mittlere Straßen-Datenverlauf (92) dem so gebildeten Summenzeitverlauf entspricht und die Straßen-Datenverläufe (92) der einzelnen Straßenabschnitte am Ausgang der Einheit (3) zur Approximation des Straßen-Datenverlaufes (92) anliegen, d) eine Einheit (4) zur Approximation des Intervall-Datenverlaufes (93) für den ausgewählten Straßenabschnitt, an welcher der Ausgang der Einheit (3) zur Approximation des mittleren Straßen-Datenverlaufes (92) und der Ausgang der Zuordnungs- und Gruppierungseinheit (1) angeschlossen ist, - wobei die Einheit (4) zur Approximation des Intervall-Datenverlaufs (93) die für den ausgewählten Straßenabschnitt mittels der in einem einzigen vorgegebenen Messintervall aufgezeichneten Datensätze einen approximierter Straßen-Datenverlauf (92) für dieses gegebene Messintervall bildet, indem - die Einheit (4) zur Approximation des Intervall-Datenverlaufs (93) für jeden dem jeweiligen Straßenabschnitt sowie dem jeweiligen vorgegebenen Messintervall zugeordneten Messwert und/oder Messdatensatz die Abweichung zwischen dem Messwert und dem zum jeweiligen Messzeitpunkt vorliegenden Wert des Straßen- Datenverlaufs (92) bildet, - wobei die Einheit (4) zur Approximation des Intervall-Datenverlaufs (93) eine Abweichungs-Zeitreihe mittels der ermittelten Abweichungen sowie der zugeordneten Messzeitpunkte bildet,- the road data course approximation unit (92) adds the thus determined deviation time series to the group data history (91) of the group to which this road segment is assigned, the average road data history (92) corresponding to corresponds formed summation time course and the road data traces (92) of the individual road sections at the output of the unit (3) for approximating the road data course (92) abut, d) a unit (4) for approximating the interval data course (93) for the selected road section to which the output of the average road data approximation unit (3) and the output of the allocation and grouping unit (1) are connected, - wherein the unit (4) for approximating the interval data course (93) forms an approximated road data course (92) for the given measurement interval for the selected road section by means of the data records recorded in a single predetermined measurement interval, by - the unit (4 ) for approximating the interval data course (93) for each of the respective road section and the respective predetermined measurement interval associated measured value and / or measured data sets the deviation between the measured value and present at the respective measurement time value of the road data course (92), - Unit (4) for approximating the interval data history (93) forms a deviation time series by means of the determined deviations and the associated measuring times,
- wobei die Einheit (4) zur Approximation des Intervall-Datenverlaufs (93) die so ermittelte Abweichungs-Zeitreihe zum Straßen-Datenverlauf (92) des ausgewählten Straßenabschnitts addiert, und- wherein the unit (4) for approximating the interval data history (93) adds the thus determined deviation time series to the road data history (92) of the selected road segment, and
- wobei der approximierte Intervall-Datenverlauf (93) für den ausgewählten Straßenabschnitt dem so gebildeten Summenzeitverlauf entspricht und am Ausgang der Einheit (4) zur Approximation des Intervall-Datenverlaufs (93) anliegt.- Wherein the approximated interval data course (93) for the selected road section corresponds to the sum time curve thus formed and at the output of the unit (4) for approximating the interval data waveform (93) is applied.
5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, dass in der Einheit (2) zur Bildung des Gruppen-Datenverlaufs (91) eine Gruppendatenstandskontrolleinheit (21) vorgesehen ist, welche diejenigen Datensätze löscht, deren Aufzeichnungsdatum länger als eine vorgegebene Zeitspanne zurückliegt.5. The device according to claim 4, characterized in that in the unit (2) for forming the group data history (91) a group data control unit (21) is provided which deletes those records whose recording date is older than a predetermined period of time.
6. Vorrichtung gemäß Anspruch 4 oder 5, dadurch gekennzeichnet, dass in der Einheit (3) zur Approximation des mittleren Straßen-Datenverlaufes (92) eine Straßendatenstandkontrolleinheit (31) vorgesehen ist, welche Datensätze löscht, deren Aufzeichnungsdatum länger als eine vorgegebene Zeitspanne zurückliegt.6. Apparatus according to claim 4 or 5, characterized in that in the unit (3) for approximating the mean road data course (92) a road data status control unit (31) is provided which deletes records whose recording date is older than a predetermined period of time.
7. Datenträger, auf dem ein Programm zur Durchführung eines Verfahrens gemäß einem der Ansprüche 1 bis 3 abgespeichert ist.7. data carrier on which a program for carrying out a method according to one of claims 1 to 3 is stored.
8. Computerprogramm mit Programmcode-Mitteln, eingerichtet zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 3, wenn das Programm auf einem Computer ausgeführt wird,8. Computer program with program code means, arranged for carrying out a method according to one of claims 1 to 3, when the program is executed on a computer,
9. Computerprogramm nach Anspruch 8, gespeichert auf einem Datenträger. 9. Computer program according to claim 8, stored on a data carrier.
10. Datenträger mit elektronisch auslesbaren Steuersignalen, die so mit einem programmierbaren Computersystem zusammenwirken können, dass ein Verfahren nach einem der Ansprüche 1 bis 3 ausgeführt wird.10. Data carrier with electronically readable control signals, which can cooperate with a programmable computer system that a method according to one of claims 1 to 3 is executed.
11. Computerprogrammprodukt mit Programmcode zur Ausführung des Verfahrens nach einem der Ansprüche 1 bis 3, wenn das Programm auf einem Computer ausgeführt wird. A computer program product with program code for carrying out the method according to one of claims 1 to 3, when the program is executed on a computer.
EP09771264A 2008-12-05 2009-12-04 Method for approximating the time curve of traffic data Not-in-force EP2364494B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
AT19052008A AT507619B1 (en) 2008-12-05 2008-12-05 PROCESS FOR APPROXIMATING THE TIMELY OF TRAFFIC DATA
PCT/AT2009/000473 WO2010063054A1 (en) 2008-12-05 2009-12-04 Method for approximating the time curve of traffic data

Publications (2)

Publication Number Publication Date
EP2364494A1 true EP2364494A1 (en) 2011-09-14
EP2364494B1 EP2364494B1 (en) 2012-09-05

Family

ID=41600339

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09771264A Not-in-force EP2364494B1 (en) 2008-12-05 2009-12-04 Method for approximating the time curve of traffic data

Country Status (3)

Country Link
EP (1) EP2364494B1 (en)
AT (1) AT507619B1 (en)
WO (1) WO2010063054A1 (en)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587781B2 (en) 2000-08-28 2003-07-01 Estimotion, Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
US7620402B2 (en) 2004-07-09 2009-11-17 Itis Uk Limited System and method for geographically locating a mobile device
GB0420722D0 (en) 2004-09-17 2004-10-20 Addex Pharmaceuticals Sa Novel allosteric modulators
TWI417095B (en) 2006-03-15 2013-12-01 Janssen Pharmaceuticals Inc 1,4-disubstituted 3-cyano-pyridone derivatives and their use as positive allosteric modulators of mglur2-receptors
TW200845978A (en) 2007-03-07 2008-12-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-tetrahydropyran-phenyl)-pyridin-2-one derivatives
TW200900065A (en) 2007-03-07 2009-01-01 Janssen Pharmaceutica Nv 3-cyano-4-(4-pyridinyloxy-phenyl)-pyridin-2-one derivatives
AU2008297877C1 (en) 2007-09-14 2013-11-07 Addex Pharma S.A. 1,3-disubstituted-4-phenyl-1 H-pyridin-2-ones
NZ584152A (en) 2007-09-14 2011-11-25 Ortho Mcneil Janssen Pharm 1,3-disubstituted 4-(aryl-x-phenyl)-1h-pyridin-2-ones
ES2356032T3 (en) 2007-09-14 2011-04-04 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. 4-PHENYL-3,4,5,6-TETRAHIDRO-2H, 1'H- [1,4 '] BIPIRIDINIL-2'-ONAS 1,3'-DISUSTITUTED.
CA2704436C (en) 2007-11-14 2016-01-05 Ortho-Mcneil-Janssen Pharmaceuticals, Inc. Imidazo[1,2-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
JP5547194B2 (en) 2008-09-02 2014-07-09 ジャンセン ファーマシューティカルズ, インコーポレイテッド. 3-Azabicyclo [3.1.0] hexyl derivatives as modulators of metabotropic glutamate receptors
RU2517181C2 (en) 2008-10-16 2014-05-27 Орто-Макнейл-Янссен Фармасьютикалз, Инк. Indole and benzomorpholine derivatives as modulator of metabotropic glutamate receptors
CN102232074B (en) 2008-11-28 2014-12-03 奥梅-杨森制药有限公司 Indole and benzoxazine derivatives as modulators of metabotropic glutamate receptors
MY153913A (en) 2009-05-12 2015-04-15 Janssen Pharmaceuticals Inc 7-aryl-1,2,4-triazolo[4,3-a]pyridine derivatives and their use as positive allosteric modulators of mglur2 receptors
MY161325A (en) 2009-05-12 2017-04-14 Janssen Pharmaceuticals Inc 1, 2, 4-triazolo[4,3-a]pyridine derivatives and their use for the treatment or prevention of neurological and psychiatric disorders
BRPI1010831A2 (en) 2009-05-12 2016-04-05 Addex Pharmaceuticals Sa 1,2,4-triazolo [4,3-a] pyridine derivatives and their as positive allosteric modulators of mglur2 receptors
ES2552455T3 (en) 2010-11-08 2015-11-30 Janssen Pharmaceuticals, Inc. 1,2,4-Triazolo [4,3-a] pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
WO2012062751A1 (en) 2010-11-08 2012-05-18 Janssen Pharmaceuticals, Inc. 1,2,4-TRIAZOLO[4,3-a]PYRIDINE DERIVATIVES AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
ES2552879T3 (en) 2010-11-08 2015-12-02 Janssen Pharmaceuticals, Inc. 1,2,4-Triazolo [4,3-a] pyridine derivatives and their use as positive allosteric modulators of mGluR2 receptors
GB2492369B (en) 2011-06-29 2014-04-02 Itis Holdings Plc Method and system for collecting traffic data
JO3368B1 (en) 2013-06-04 2019-03-13 Janssen Pharmaceutica Nv 6,7-DIHYDROPYRAZOLO[1,5-a]PYRAZIN-4(5H)-ONE COMPOUNDS AND THEIR USE AS NEGATIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
JO3367B1 (en) 2013-09-06 2019-03-13 Janssen Pharmaceutica Nv 1,2,4-TRIAZOLO[4,3-a]PYRIDINE COMPOUNDS AND THEIR USE AS POSITIVE ALLOSTERIC MODULATORS OF MGLUR2 RECEPTORS
KR20200126026A (en) 2014-01-21 2020-11-05 얀센 파마슈티카 엔.브이. Combinations comprising positive allosteric modulators or orthosteric agonists of metabotropic glutamatergic receptor subtype 2 and their use
EP3431106B1 (en) 2014-01-21 2020-12-30 Janssen Pharmaceutica NV Combinations comprising positive allosteric modulators of metabotropic glutamatergic receptor subtype 2 and their use
CN108021687B (en) * 2017-12-15 2022-08-26 宁波三星医疗电气股份有限公司 Method for rapidly recording and searching curve data of power acquisition terminal

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587781B2 (en) * 2000-08-28 2003-07-01 Estimotion, Inc. Method and system for modeling and processing vehicular traffic data and information and applying thereof
AT412594B (en) * 2002-07-24 2005-04-25 Oesterreichisches Forschungs U METHOD AND SYSTEM FOR DETERMINING TRAFFIC DATA
US7912628B2 (en) * 2006-03-03 2011-03-22 Inrix, Inc. Determining road traffic conditions using data from multiple data sources

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2010063054A1 *

Also Published As

Publication number Publication date
WO2010063054A1 (en) 2010-06-10
EP2364494B1 (en) 2012-09-05
AT507619B1 (en) 2011-11-15
AT507619A1 (en) 2010-06-15

Similar Documents

Publication Publication Date Title
EP2364494B1 (en) Method for approximating the time curve of traffic data
EP2280383B1 (en) Method for determining traffic information for a section of a road network and traffic calculator to implement the method
EP1298620B1 (en) Controlsystem for lightsignal devices at intersections
EP2224212A1 (en) Method and navigation device for determining probable journey times
EP3665036B1 (en) Method for determining condition of at least one railway line along a travel route
DE102011107663B4 (en) Method and device for the dynamic control of a signaling system
DE102008022349A1 (en) Method and device for determining tailback lengths at traffic lights
DE102020128166A1 (en) Management device, management system and management method for automated valet parking
EP3329332B1 (en) Method for determining supporting points of a test plan
EP0501193B1 (en) Method for the automatic coordination of an independent intersection traffic light control device with one or more neighbouring intersections
AT412594B (en) METHOD AND SYSTEM FOR DETERMINING TRAFFIC DATA
EP3991145A1 (en) Method, computer program, and device for processing data detected by a motor vehicle
EP2743836A2 (en) Method for monitoring system states with a device and correspondingly equipped device
EP2945032B1 (en) Method for determining the switching times and/or the heating characteristic curve of a heating system
DE102007049509A1 (en) Motor vehicle navigation system for calculating route between starting point and destination, has processor device for calculating expected arrival time or travel time, where arrival time or travel time is determined based on average speed
EP3398828B1 (en) Driver assistance system and method for supporting a driver of a rail vehicle
DE102008024781A1 (en) Estimated travel time determining method for car, involves predicting estimated travel time of motor vehicle based on actual detected travel characteristics datum and average travel time associated to actual detected characteristics datum
DE102004039283A1 (en) Forecasting journey time in road network, by taking into account time-space associations and/or patterns when selecting proportion of measured data as predicted parameter
EP2887332A1 (en) Method and system for detection of a traffic situation on a stretch of road
EP3903292B1 (en) Tailback detection on the basis of movement data
AT524688B1 (en) METHOD OF PREDICTIVE ESTIMATING A HISTORY
EP4361748A1 (en) Method and device for determining a health score of a machine
EP2104784A2 (en) Method for determining a rotational speed value
DE102013202255A1 (en) Method for determining vehicle traffic volumes on road portions, involves determining cruising speed of road user on road portions, and determining portion-specific traffic volume based on cruising speed of road user on road portion
DD212128A1 (en) METHOD AND DEVICE FOR REGISTERING ROAD TRANSPORT

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20110604

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 574417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120915

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009004650

Country of ref document: DE

Effective date: 20121031

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130107

BERE Be: lapsed

Owner name: OSTERREICHISCHES FORSCHUNGS UND PRUFZENTRUM ARSEN

Effective date: 20121231

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121205

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

26N No opposition filed

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009004650

Country of ref document: DE

Effective date: 20130606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121216

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130702

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009004650

Country of ref document: DE

Effective date: 20130702

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121204

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091204

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120905

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 574417

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141204