[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2280383B1 - Method for determining traffic information for a section of a road network and traffic calculator to implement the method - Google Patents

Method for determining traffic information for a section of a road network and traffic calculator to implement the method Download PDF

Info

Publication number
EP2280383B1
EP2280383B1 EP09167020A EP09167020A EP2280383B1 EP 2280383 B1 EP2280383 B1 EP 2280383B1 EP 09167020 A EP09167020 A EP 09167020A EP 09167020 A EP09167020 A EP 09167020A EP 2280383 B1 EP2280383 B1 EP 2280383B1
Authority
EP
European Patent Office
Prior art keywords
traffic
model
section
entering
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP09167020A
Other languages
German (de)
French (fr)
Other versions
EP2280383A1 (en
Inventor
Jürgen Mück
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Priority to EP09167020A priority Critical patent/EP2280383B1/en
Priority to PL09167020T priority patent/PL2280383T3/en
Publication of EP2280383A1 publication Critical patent/EP2280383A1/en
Application granted granted Critical
Publication of EP2280383B1 publication Critical patent/EP2280383B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • G08G1/0104Measuring and analyzing of parameters relative to traffic conditions
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/07Controlling traffic signals
    • G08G1/081Plural intersections under common control

Definitions

  • the invention relates to a method for determining traffic information for a road section of a road network and to a traffic computer for carrying out the method, to a machine-readable program code for the traffic computer and to a storage medium with program code stored thereon.
  • the determination of traffic information for traffic signal controlled roads is possible with high manual effort by observation.
  • the measurement data of the commonly used vehicle detectors for traffic control usually 10 to 40 m in front of a traffic signal arranged induction loops, can not or only partially be used to accurate traffic information on the number of stopping vehicles, waiting times or in the manual for the design of Road traffic facilities, known by the short name HBS, defined levels of traffic quality to win.
  • HBS Road traffic facilities
  • a method for determining a travel time for a vehicle in a route network that can be subdivided into sections is known.
  • the route network is subdivided into route sections such that a route section ends downstream on a traffic light system controlling the traffic flow on this route section.
  • the traffic flow characterizing traffic data is detected by means of a road-side measuring device. From the temporal behavior of the continuously recorded traffic data and the derived current traffic situation on this section, a travel time for this section is calculated.
  • the data collected for jam lengths and travel times are accurate enough to be used for control measures in a traffic management system, they are not used for expert opinions.
  • the method does not provide any information about the coordination quality of successive traffic signal systems.
  • EP 0 501 193 A1 is a method for automatic traffic coordination of an independent node control unit of a road traffic signaling system with adjacent nodes known.
  • the traffic flowing in from there is detected and analyzed, wherein the number of vehicles per time interval is determined and stored for a given measurement period with a plurality of time intervals.
  • the measuring period is divided into test cycles with the same cycle time. Within the test cycles, the number of vehicles per respective time interval is added up.
  • Such a mapping of the entire measurement period to a test cycle allows averaging and variance formation. For further test cycles, each with different cycle times, such mappings and variance calculations are made. Since the magnitude of the variance is a measure of the cyclic property of the incoming traffic, an existing vehicle cycle and its cycle time for the coordinated control of the signaling system is determined from the calculated variances.
  • the European patent application EP 1 276 085 A1 shows a method for determining a congestion indicator and for determining tailback lengths.
  • a method for determining a congestion number at operator stations for handling individually moved units is disclosed.
  • two methods for estimating the back-up length at the operating station are obtained.
  • the first method exploits a linear relationship between backpressure length and smoothed congestion figure.
  • the slope of the queue length function is calibrated by comparing the current traffic jam number with a lower limit for the traffic jam length.
  • the backlog length is calculated from the traffic jam count and the saturation time requirement using a macroscopic queuing model.
  • the publication DE 101 08 611 A1 shows a method for simulating and predicting the movement of individual vehicles on a network of traffic routes with network nodes and these connecting sections by microscopic quantities using currently measured and historical traffic data.
  • macroscopic traffic variables are determined and in a further step, the microscopic individual vehicle sizes are generated separately for each vehicle.
  • a fuzzy expert system makes it possible to linguistically formulate complex relationships. For the present problem, this approach is very well suited, since the traffic-technical relationships between the characteristic quantities and the loss time can be linguistically formulated, and processed as expert knowledge.
  • the online evaluation method of coordination quality can be used to verify the quality of existing green waves.
  • a use in the context of traffic-dependent controls of traffic lights is basically conceivable, since the method works under real-time conditions.
  • the method does not provide any information about the compositions of the vehicle spool in the inflow.
  • the method is complex and contains a lot of heuristics. It does not include a historical history of the data and thus omits information. Finally, the accuracy of the procedure is not suitable for expert opinion and quality assurance.
  • the EP 1 480 183 A1 1 shows, according to the preamble of claim 1, a method for determining traffic parameters at operator stations for handling individually moving units with alternating blocking and transmission phases and with a detector located in front of the operating station, with the steps of providing the points of a basic diagram for the operating station using the Detector data and determining at least a subset of points of the fundamental diagram corresponding to a traffic condition.
  • the invention is therefore based on the object to provide a method for determining traffic information and a traffic computer for performing the method, which in an automated manner an accurate determination of traffic information, such as waiting times and stops of individual vehicles, quality characteristics, and the like, is possible.
  • the object is achieved by a method for the determination of traffic information for a road section of a road network, the road section an entry cross section, through which a road route inquiring traffic flows, an exit cross section through which flows a controlled by a traffic signal traffic flow, and at least one between Entry and exit cross-section arranged measuring cross section at which a vehicle detector detected by passing vehicles generated measurement data, wherein the traffic flow along the road route simulated by means of a traffic model and, depending on an incoming model traffic flow, model measurement data associated with the measurement data is generated, wherein the incoming model traffic flow is varied with respect to the time distribution of model vehicles entering the model road route and with respect to a match of the respectively generated model measurement data is optimized with the corresponding measurement data acquired by the vehicle detector, and wherein the traffic information is determined from the simulated model traffic flow resulting from the optimized model traffic stream.
  • the simulation of the traffic flow takes place, for example, on the basis of a macroscopic traffic model which is known per se, wherein the modeling of the traffic flow can take place, for example, over surfaces of constant traffic density moving along the modeled road route.
  • the method according to the invention is therefore based on a simulative simulation of the real traffic flow and the resulting measurement data by means of a suitable traffic model.
  • the simulated model traffic flow is modified in its generation characteristic at the entrance cross-section - ie the time distribution of vehicles entering through the entry cross section - until the modeled measurement data generated by it are as similar as possible to the measured data actually measured.
  • the optimized incoming model traffic flow, or the resulting simulated model traffic flow then serves to derive the sought-after parameters, which are customary in practice, as traffic information.
  • a count of detected vehicles per time interval and an occupancy value of the vehicle detector per time interval are detected, with count and occupancy values are determined from raw data of the vehicle detector.
  • An essential point here is the initial systematic evaluation of the raw data of the vehicle detector in the form of time data of its rising and falling edges or in the form of finely resolved count and occupancy values every second for the determination of the coordination quality.
  • the detector edge data these are evaluated in a suitable, derived from the physics of traffic flow manner by the distance behavior and the transit time via the vehicle detector for each vehicle in macroscopic characteristics that may be finer in time than the time intervals of the investigation period, converted and possibly smoothed.
  • the use of the raw data enables, in comparison to the previously known methods, the exact determination of results in examination periods which are considerably shorter than hitherto customary, for example 10 to 30 minutes.
  • this method in contrast to comparing direct edge data from the model and the measurement, no further smoothing is needed to calculate the goodness of the match. By avoiding smoothing, the process becomes considerably more accurate.
  • the measurement data generated in this way in accordance with the count and occupancy values determined by macroscopic models, are significantly better than directly smoothed raw data.
  • the inflowing model traffic flow is respectively related to a circulation time of a signal time schedule running in a traffic light system controlling the incoming traffic flow.
  • the fact is taken into account that a light signal-controlled incoming traffic flow, the vehicles enter in orbital periodic pulses through the entrance cross section in the road section.
  • the inflowing model traffic flow based on the real orbital period of the inflow controlling traffic signal system.
  • the measurement data acquired during the time intervals of the examination period are allocated correspondingly to the individual signal cycles of the signal time schedule. If the time intervals of the examination period are already adapted to the signal cycles of the signal time schedule, the measurement data can be used directly. If the signal circulations overlap the time intervals with different time durations and / or starting times, then the measured data of a time interval must be divided up in relation to its overlap with the signal circulations. Thus, the measurement data are tuned to the signal circulations of the incoming traffic flow stamping traffic signal.
  • the model traffic flow flowing in during a circulation time is formed by multiplying the sum of the counted values (z i ) associated with circulation with detected vehicles (F) having a normalized pulse profile (p ') which has a time distribution of Vehicle proportions of an inflowing vehicle pulse within a cycle time indicates, wherein the inflowing model traffic flow is varied by varying the underlying pulp profile.
  • the pulk profile as a central, to be estimated characteristic of the erfindungsgemä ⁇ en method is based.
  • the pulse profile includes the duration of a round trip time of the signal time schedule of the inflow controlling traffic signal system.
  • the pulse profile is normalized, for example, to a unit area and indicates in which time periods of a circulation time of the incoming traffic flow controlling traffic signal, which proportion of the total number of vehicles retracted during the orbital period through the entrance cross section into the stretch of vehicles.
  • the formation of the model traffic flow flowing in during the investigation period is based on the same pulse profile for each revolution time. This assumption is justified for sufficiently short examination periods, for example up to one hour, and simplifies the method by using a constant pulse profile for all signal circulations.
  • the traffic flow is simulated by simulating movements of model vehicles of the incoming model traffic flow along a model roadway, which generate model measurement data when passing a model measurement cross section and which by a light signal controlled model exit cross section flow away.
  • a microscopic traffic model based on a targeted insertion of individual model vehicles at the model entrance cross section provides detailed traffic information.
  • the inflowing model traffic flow is formed from model vehicles of different vehicle classes, each with a mean vehicle length, wherein a composition of the model traffic flow from vehicle classes and their average vehicle lengths are predetermined or varied.
  • the incoming model traffic flow can be examined not only in terms of its time distribution during a round trip time, but also in its composition with respect to different vehicle classes, such as passenger cars, trucks or buses, which have different acceleration and cruising speed values.
  • characteristic values for different vehicle classes are also available.
  • the traffic model used for the simulation can be calibrated.
  • the repetitive cycle time or a sequence of changing cycle times of the signal time schedule which takes place in the light traffic system controlling the incoming traffic flow, is varied, the acquired measurement data being correspondingly associated with the repetitive cycle time or the changing cycle times become.
  • This method can be used with advantage in uncertainty with respect to the coincidence of the transit times of the transmitting and considered traffic signal system.
  • a simple pulp profile composed of, for example, a main direction pulp and a pitching pulse may be presumed so that the optimization is limited to determining the revolutions of the transmitting traffic signal.
  • a distance between the respectively generated model measurement data and the corresponding measurement data acquired by the vehicle detector is calculated for at least a portion of the time intervals and an average value of the distances for the portion of the time intervals of Examination period minimized. If the traffic volume in the units of vehicles per hour and the occupancy rate in percent are present as measurement data per time interval, the square root could be formed as the distance measure for a specific time interval from the sum of the squares of the differences between the real measurement data and the model measurement data. From all distance measures of the time intervals of an examination period, an arithmetic mean value is now formed which is minimized iteratively by varying the pulse profile generating the model measurement data.
  • the pulse profile on which the incoming model traffic stream is based is varied by using genetic algorithms.
  • This method which is known per se, is particularly suitable for the present application, iteratively adapting a normalized burst profile.
  • a degree of correspondence of the model measured data generated by the latter with the corresponding measured data recorded by the vehicle detector is determined, wherein the variants exceeding a predetermined threshold for the quality measure Bandwidth of possible variation parameters is determined.
  • movement lines and / or holding and / or waiting times of the model vehicles are determined from the optimized incoming model traffic flow by statistical evaluation of the model vehicle movements as traffic information.
  • the statistical evaluation of the simulated traffic flow makes it possible to determine waiting times and stops of all vehicles, possibly differentiated according to vehicles which have flowed in from the main direction or from a secondary direction. From the shape of the found pulp profile, the Pulehenile the main direction and the bending secondary directions can be assigned. If it is noted in the simulation which vehicles were generated from the main directional part of the pulp profile, their travel profiles can be evaluated separately after the simulation. It is even a distinction of vehicles of the main direction in those who are in the road section possible at green start or during a later time of the green time.
  • a quality value for the road route is calculated as traffic information.
  • This may be the so-called “level-of-service” quality score set out in the Road Safety Assessment Manual (HBS).
  • HBS Road Safety Assessment Manual
  • an optimal coordination of the traffic light system at the exit cross section to the traffic light system at the entrance cross section is determined.
  • Essential here is the offset of the two signal time schedules to achieve a green wave. If waiting times and stops of the main and secondary direction vehicles are weighted, a recommendation for an optimal shaft position or coordination on this road section can be given via a downstream optimization algorithm; it can also be determined by what percentage the current situation is away from the optimum.
  • threshold values are specified for holding and / or waiting times and / or coordination deviations, whose overshoots or undershoots are determined during an analysis period and reported after the analysis period as quality analysis.
  • the evaluation it is possible to identify from several access roads those in which the controls of the traffic signals should be checked for their quality.
  • automated mechanisms can be used to perform a quality check in the background and, for example, generate a quality and abnormality analysis with a report on traffic quality and abnormalities after one day.
  • the road section has a plurality of lanes, wherein at least one lane at least one lane-related vehicle detector, wherein the inflowing model traffic flow with respect to the temporal distribution of entering into the respective model lanes of the model road route model vehicles varies and is optimized with respect to a match of the respectively generated model measurement data with the corresponding measured by the at least one lane-related vehicle detector measurement data.
  • the method can also be used for more complex node topologies, wherein the estimate may include several lanes per road section. The individual lanes may have none, one or more consecutive vehicle detectors.
  • a traffic computer for determining traffic information for a road section of a road network, which is provided with a program code containing control commands that cause the traffic computer to carry out a method according to one of claims 1 to 16.
  • the traffic computer has correspondingly designed data processing means, interfaces for data input and output as well as a visualization unit for displaying the traffic information.
  • the invention relates to a machine-readable program code for a traffic computer, which contains control commands that cause the traffic computer to carry out a method according to one of claims 1 to 16.
  • the invention also relates to a storage medium having a machine-readable program code stored thereon according to claim 18.
  • FIG. 1 shows a road S 12 a road network that connects, for example, two nodes not shown.
  • the road S 12 has an entrance cross-section 1 at the Vorknoten, an exit cross-section 2 at the main node and an intermediate measuring cross-section 3.
  • the entrance cross-section 1 flows a the route S 12 querying traffic flow, formed by vehicles F to.
  • the incoming traffic flow is controlled by a traffic signal 10 at the Vorknoten.
  • the traffic signal system 10 has signal transmitters 11 for the main traffic flow and the secondary traffic flows whose signal times are switched according to a signal schedule SP 1 running in the control device 12.
  • the inflowing traffic flow takes place in vehicle pulse per revolution time of the signal time schedule SP 1 .
  • detector raw data in the form of count values z i and occupancy values b i are detected at the measuring cross-section 3 by a vehicle detector 30, which is designed as an induction loop, for example, at equidistant time intervals i.
  • edge data ie those times at which the occupancy state of the vehicle detector 30 of "occupied (value 1)” to “not busy (value 0)” changes and vice versa.
  • edge data ie those times at which the occupancy state of the vehicle detector 30 of "occupied (value 1)" to "not busy (value 0)” changes and vice versa.
  • a vehicle F leaves the detection range of the vehicle detector 30.
  • a time gap h 1 , h 2 or h 3 arises until the next vehicle F enters the detection range of Vehicle detector 30 retracts.
  • the subsequent occupancy time O 1 , O 2 or O 3 then ends at the next falling edge t 2 , t 3 or t 4 .
  • edge data 30 and every second resolution occupancy states of the vehicle can be used as raw data detector may be used, out of which also the time data t i, h i, O i arise.
  • the count value (dash-dotted line) and the occupancy value (solid line) are assigned to a discrete time axis with equidistant time intervals i of, for example, one second.
  • the count value of z i is the number of vehicles per second, in the time interval i, while the occupancy value b i indicating the holding time per second in the time interval i.
  • the detector raw data are summarized according to the signal positions circulating for the incoming traffic flow, wherein the cycle time of the signal time schedule SP 1 can be for example 60 s or 90 s.
  • the cycle time of the signal time schedule SP 1 can be for example 60 s or 90 s.
  • a traffic signal 20 which has a signal generator 21 and a controller 22, in which emitted by the signal generator 21 light signals are switched according to an expiring signal time plan SP 2 .
  • the traffic signal systems 10 and 20 at the entrance cross-section 1 and exit cross-section 2 by adjustment the same cycle times of the signal time schedules SP 1 and SP 2 coordinated;
  • the signal cycles of the signal time schedules SP 1 and SP 2 are offset in time according to the length of the road S 12 and the typical driving speeds on the road S 12 .
  • the choice of the offset time is decisive for the quality of the coordination of the two traffic signal systems 10 and 20, respectively.
  • a traffic control computer 40 is now a simulation of the traffic flow of the road section runs along S 12 by means of a traffic model VM off by a Pulkprofil p 'of the incoming traffic flow model to z' is estimated iteratively.
  • a pulp profile p ' is in FIG. 6 shown.
  • the pulp profile p ' indicates over a cycle time of, for example, 90 s, the time course of the proportion of vehicles F, which retract per period of time through the inlet cross-section 1.
  • the entire pulp profile p ' is normalized by dividing by the total number of vehicles F passing the entrance cross section 1 during the circulation time. Over an examination period of, for example, one hour, it can be assumed that the pulse profile p 'is constant for every 40 time intervals or circulation times of 90 s in each case.
  • the optimization with the help of the traffic model VM now follows as follows:
  • the movements of model vehicles of the incoming model traffic flow z are now simulated to 'along a model road route, which generate model measurement data z i ' or b i 'when passing a model measurement cross section and which by a Departure light signal controlled model exit cross section.
  • the traffic model VM the real signal cycles of the signal time schedule SP 2 of the traffic light control system 20 controlling the outflow enter.
  • traffic models VM are known to those skilled in the art.
  • microscopic traffic models aimed at tracking individual model vehicles are in use here.
  • the traffic model VM provides model measurement data in the form of model counts z i 'and model occupancy values b i ', which are now compared to the measurement data z i and b i actually generated by the vehicle detector 30 in the respective time intervals i.
  • the distance measure d i used is the Euclidean distance between the corresponding real and model-generated points in the fundamental diagram, in which for each time interval i the traffic volume q in vehicles per hour is plotted over the occupancy rate b in percent.
  • the mean value d of the distance measures d i is now compared with a threshold value D. As long as the mean value d exceeds the threshold value D, the pulse profile p 'is adapted using genetic algorithms GA and new model measurement data z i ' or b i 'is generated by means of the traffic model VM until the mean value d of the distance measures d i reaches the threshold value D reaches or falls below.
  • the iteration procedure can also be aborted if a predefined runtime is exceeded or if the mean value d only changed by small values. In this case, the optimized model traffic flow z to 'was determined, which best simulates the real measured data z i or b i .
  • FIG. 7 a diagram of how the mean d of the distance measures d i changes as a function of the change in the offset time between the signal time schedules SP 1 us SP 2 .
  • the fictitious example assumes a given coordination of 60 s offset time.
  • the coordination was varied over one revolution in steps of 10 s, whereby a clear minimum of the mean distance d at an offset of 60 s modeled in the traffic model VM is recognized.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Traffic Control Systems (AREA)

Description

Die Erfindung bezieht sich auf ein Verfahren zur Ermittlung von Verkehrsinformationen für eine Straßenstrecke eines Straβennetzes sowie auf einen Verkehrsrechner zur Durchführung des Verfahrens, auf einen maschinenlesbaren Programmcode für den Verkehrsrechner und auf ein Speichermedium mit darauf gespeichertem Programmcode.The invention relates to a method for determining traffic information for a road section of a road network and to a traffic computer for carrying out the method, to a machine-readable program code for the traffic computer and to a storage medium with program code stored thereon.

Die Ermittlung von Verkehrsinformationen für lichtsignalgesteuerte Straßenstrecken, insbesondere die genaue Erfassung der Verkehrslage an einer Lichtsignalanlage, ist mit hohem manuellen Aufwand durch Beobachtung möglich. Die Messdaten der üblicherweise eingesetzten Fahrzeugdetektoren zur Verkehrssteuerung, in der Regel 10 bis 40 m vor einer Lichtsignalanlage angeordnete Induktionsschleifen, können nicht oder nur eingeschränkt verwendet werden, um genaue Verkehrsinformationen über die Anzahl an haltenden Fahrzeugen, die Wartezeiten oder die im Handbuch für die Bemessung von Straßenverkehrsanlagen, bekannt unter der Kurzbezeichnung HBS, definierten Stufen der Verkehrsqualität zu gewinnen. Gerade die Erfassung der Koordinierungsqualität aufeinanderfolgender Lichtsignalanlagen über den Anteil der haltenden Fahrzeuge, idealer noch aus Kenntnissen der Ankunftsverteilungen der Fahrzeuge, ist aber eine wesentliche Kenngröße zur Beurteilung der Verkehrsflussqualität an Lichtsignalanlagen.The determination of traffic information for traffic signal controlled roads, especially the accurate detection of the traffic situation on a traffic signal system, is possible with high manual effort by observation. The measurement data of the commonly used vehicle detectors for traffic control, usually 10 to 40 m in front of a traffic signal arranged induction loops, can not or only partially be used to accurate traffic information on the number of stopping vehicles, waiting times or in the manual for the design of Road traffic facilities, known by the short name HBS, defined levels of traffic quality to win. However, it is precisely the recording of the coordination quality of successive traffic signal systems over the proportion of stopping vehicles, ideally even knowledge of the arrival distributions of the vehicles, that is an essential parameter for assessing the traffic flow quality at traffic light installations.

Bei der Offline-Ermittlung der Verkehrslage, z.B. für Gutachten, ist es zur genauen Ermittlung der Verkehrsqualität bekannt, ortsfeste Beobachtungen durchzuführen. Dies erfolgt beispielsweise durch manuelles Zählen des Anteils an zum Halt kommenden Fahrzeugen an einer Zufahrt zu einer Lichtsignalanlage für einen gewissen Zeitraum oder aber durch die nachträgliche Auswertung von Videoaufzeichnungen der Zufahrten. Wartezeiten können auf diese Weise nur qualitativ ermittelt werden. Eine Unterscheidung, ob die Straßenstrecke befahrende Fahrzeuge am vorgelagerten Knotenpunkt über die Hauptrichtung kommen oder aus einer der Nebenrichtungen eingebogen sind, ist in der Regel nicht möglich.In the case of the offline determination of the traffic situation, for example for expert reports, it is known for precise determination of the traffic quality to carry out fixed observations. This is done, for example, by manually counting the proportion of vehicles coming to a stop at a driveway to a traffic signal for a certain period or by the subsequent evaluation of video recordings of the driveways. Waiting times can only be determined qualitatively in this way. A distinction as to whether the vehicles traveling on the road route arrive at the upstream node point via the main direction or are inflected from one of the secondary directions is generally not possible.

Sehr aufwendig ist hingegen die Befahrung der betreffenden Straßenstrecke durch Fahrzeuge und die Messung des Fahrtverlaufs, um beispielsweise einen Wirkungsnachweis einer Netzsteuerungsmaßnahme zu führen. Dies erfolgt entweder über die Aufzeichnung der Ankunftszeitpunkte am Ende einer Warteschlange oder an einer Haltelinie oder aber über die Protokollierung mittels GPS-Empfängern (GPS, kurz für Global Positioning System, zu Deutsch Globales Positionserkennungssystem). Die Auswertung der aufgezeichneten Messdaten erlaubt dann Aussagen über die Reisezeiten bzw. Wartezeiten, über den Anteil der Halte für die durch die Messfahrzeuge befahrenen Routen, und damit auch über die Qualität gemäß HBS. Aussagen über die Verkehrsqualität für Einbieger, deren Routen nicht befahren wurden, sind nicht möglich.Very expensive, however, is the driving of the road in question by vehicles and the measurement of the course of the journey, for example, to lead a proof of a network control measure. This is done either by recording the arrival times at the end of a queue or at a stop line or by logging using GPS receivers (GPS, short for Global Positioning System, to German Global Positioning System). The evaluation of the recorded measurement data then allows statements about the travel times or waiting times, about the proportion of stops for the routes traveled by the measuring vehicles, and thus also about the quality according to HBS. Statements about the traffic quality for non-drivers whose routes were not used are not possible.

Aus der Offenlegungsschrift DE 103 59 977 A1 ist ein Verfahren zum Ermitteln einer Reisezeit für ein Fahrzeug in einem in Streckenabschnitte unterteilbaren Streckennetz bekannt. Das Streckennetz wird dabei derart in Streckenabschnitte unterteilt, dass ein Streckenabschnitt stromab an einer den Verkehrsstrom auf diesem Streckenabschnitt steuernden Lichtsignalanlage endet. An einer Messstelle längs des Streckenabschnitts werden mittels einer straßenseitigen Messeinrichtung den Verkehrsstrom charakterisierende Verkehrsdaten erfasst. Aus dem zeitlichen Verhalten der laufend erfassten Verkehrsdaten und der daraus abgeleiteten aktuellen Verkehrssituation auf diesem Streckenabschnitt wird eine Reisezeit für diesen Streckenabschnitt berechnet. Die gewonnenen Daten für Staulängen und Reisezeiten sind zwar genau genug, um für Steuerungsmaßnahmen in einem Verkehrsmanagementsystem verwendet zu werden, jedoch nicht für gutachterliche Zwecke. Dieses bekannte Verfahren liefert außerdem keine Aussage über die Koordinierungsqualität aufeinanderfolgender Lichtsignalanlagen.From the publication DE 103 59 977 A1 For example, a method for determining a travel time for a vehicle in a route network that can be subdivided into sections is known. In this case, the route network is subdivided into route sections such that a route section ends downstream on a traffic light system controlling the traffic flow on this route section. At a measuring point along the route section, the traffic flow characterizing traffic data is detected by means of a road-side measuring device. From the temporal behavior of the continuously recorded traffic data and the derived current traffic situation on this section, a travel time for this section is calculated. Although the data collected for jam lengths and travel times are accurate enough to be used for control measures in a traffic management system, they are not used for expert opinions. This known Furthermore, the method does not provide any information about the coordination quality of successive traffic signal systems.

Aus der europäischen Patentanmeldung EP 0 501 193 A1 ist ein Verfahren für eine selbsttätige verkehrstechnische Koordinierung eines unabhängigen Knotenpunkt-Steuergerätes einer Straβenverkehrs-Signalanlage mit Nachbarknoten bekannt. Der von dort zufließende Verkehr wird erfasst und analysiert, wobei für einen vorgegebenen Messzeitraum mit einer Vielzahl von Zeitintervallen die Anzahl der Fahrzeuge pro Zeitintervall ermittelt und gespeichert wird. Der Messzeitraum wird in Testzyklen mit gleichlanger Zykluszeit unterteilt. Innerhalb der Testzyklen wird die Fahrzeuganzahl je zugehörigem Zeitintervall aufsummiert. Eine derartige Abbildung des gesamten Messzeitraumes auf einen Testzyklus erlaubt hierfür eine Mittelwert- und Varianzbildung. Für weitere Testzyklen mit jeweils anderen Zykluszeiten werden derartige Abbildungen und Varianzberechnungen vorgenommen. Da die Größe der Varianz ein Maß für die zyklische Eigenschaft des zufließenden Verkehrs ist, wird aus den berechneten Varianzen ein vorhandener Fahrzeugzyklus und dessen Zykluszeit für die koordinierte Steuerung der Signalanlage festgestellt.From the European patent application EP 0 501 193 A1 is a method for automatic traffic coordination of an independent node control unit of a road traffic signaling system with adjacent nodes known. The traffic flowing in from there is detected and analyzed, wherein the number of vehicles per time interval is determined and stored for a given measurement period with a plurality of time intervals. The measuring period is divided into test cycles with the same cycle time. Within the test cycles, the number of vehicles per respective time interval is added up. Such a mapping of the entire measurement period to a test cycle allows averaging and variance formation. For further test cycles, each with different cycle times, such mappings and variance calculations are made. Since the magnitude of the variance is a measure of the cyclic property of the incoming traffic, an existing vehicle cycle and its cycle time for the coordinated control of the signaling system is determined from the calculated variances.

Die europäische Patentanmeldung EP 1 276 085 A1 zeigt ein Verfahren zur Bestimmung einer Staukennzahl und zur Ermittlung von Rückstaulängen. Es wird ein Verfahren zur Ermittlung einer Staukennzahl an Bedienstationen zur Abfertigung einzeln bewegter Einheiten offenbart. Mit Hilfe der Staukennzahl erhält man zwei Verfahren zur Schätzung der Rückstaulänge an der Bedienstation. Das erste Verfahren nutzt einen linearen Zusammenhang zwischen Rückstaulänge und geglätteter Staukennzahl aus. In jeder Abfertigungsphase wird die Steigung der Staulängenfunktion kalibriert, indem man die aktuelle Staukennzahl mit einer unteren Schranke für die Staulänge vergleicht. Im zweiten Verfahren wird die Rückstaulänge aus der Staukennzahl und dem Sättigungszeitbedarf mit Hilfe eines makroskopischen Warteschlangenmodells berechnet. Dieses bekannte Verfahren ist zwar für den online-Einsatz geeignet, liefert jedoch keine Aussagen über die Koordinierungsqualität aufeinanderfolgender Lichtsignalanlagen.The European patent application EP 1 276 085 A1 shows a method for determining a congestion indicator and for determining tailback lengths. A method for determining a congestion number at operator stations for handling individually moved units is disclosed. With the aid of the traffic jam number, two methods for estimating the back-up length at the operating station are obtained. The first method exploits a linear relationship between backpressure length and smoothed congestion figure. In each dispatch phase, the slope of the queue length function is calibrated by comparing the current traffic jam number with a lower limit for the traffic jam length. In the second method, the backlog length is calculated from the traffic jam count and the saturation time requirement using a macroscopic queuing model. Although this known method is suitable for online use, However, it does not provide any information about the coordination quality of successive traffic signals.

Die Offenlegungsschrift DE 101 08 611 A1 zeigt ein Verfahren zur Simulation und Prognose der Bewegung von Einzelfahrzeugen auf einem Verkehrswegenetz mit Netzknotenpunkten und diese verbindende Streckenabschnitte durch mikroskopische Größen unter Verwendung von aktuell gemessenen und historischen Verkehrsdaten. In einem ersten Schritt werden makroskopische Verkehrsgrößen bestimmt und in einem weiteren Schritt werden daraus die mikroskopischen Einzelfahrzeuggrößen getrennt für jedes Fahrzeug erzeugt.The publication DE 101 08 611 A1 shows a method for simulating and predicting the movement of individual vehicles on a network of traffic routes with network nodes and these connecting sections by microscopic quantities using currently measured and historical traffic data. In a first step, macroscopic traffic variables are determined and in a further step, the microscopic individual vehicle sizes are generated separately for each vehicle.

Aus der US-Veröffentlichung " Configuring Micro-Genetic Algorithms for Solving Traffic Control Problems: The Case of Number of Generations", veröffentlicht von Abu-Lebdeh und Al-Omari in IEEE Proceedings of the Fourth International Symposium on Uncertainty Modeling and Analysis, 2003, Seiten 1 bis 8 , ist die Verwendung von genetischen Algorithmen bei Optimierungsaufgaben in Verkehrsnetzen bekannt.From the US publication " Configuring Micro-Genetic Algorithms for Solving Traffic Control Problems: The Case of Numbers of Generations, published by Abu-Lebdeh and Al-Omari in IEEE Proceedings of the Fourth International Symposium on Uncertainty Modeling and Analysis, 2003, pages 1-8 , the use of genetic algorithms in optimization tasks in transport networks is known.

Aus der DE-Veröffentlichung "Online-Bewertung grüner Wellen: Ein Fuzzy-Expertensystem zur Schätzung der Verlustzeit vor Lichtsignalanlagen mittels halteliniennaher Detektoren", veröffentlicht 2004 in Straßenverkehrstechnik, Verfasser: Braun, Mück, offenbart ein Verfahren zur Online-Bewertung der Koordinierungsqualität zwischen zwei Lichtsignalanlagen. Es benötigt einen halteliniennahen Detektor vor der stromabwärts gelegenen Lichtsignalanlage, der sekündlich den Belegungsgrad misst und die Zahl der Fahrzeuge zählt. Außerdem muss die jeweils aktuelle Signalstellung dieser Lichtsignalanlage bekannt sein. Aus den Detektordaten und der Signalstellung werden für jeden Umlauf sechs charakteristische Größen ermittelt. Um die Koordinierungsqualität zwischen zwei Lichtsignalanlagen zu bewerten, wurde ein Fuzzy-Expertensystem entwickelt, das aus diesen Größen pro Umlauf die durchschnittliche Verlustzeit schätzt. Daraus kann für nicht überlastete ungestörte Verkehrsverhältnisse auf die Koordinierungsqualität zwischen dieser und der stromaufwärts gelegenen Lichtsignalanlage geschlossen werden. Ein Fuzzy-Expertensystem ermöglicht es, komplexe Zusammenhänge linguistisch zu formulieren. Für das vorliegende Problem ist dieser Ansatz sehr gut geeignet, da die verkehrstechnischen Zusammenhänge zwischen den charakteristischen Größen und der Verlustzeit linguistisch formuliert, und als Expertenwissen verarbeitet werden können. Das Verfahren zur Online-Bewertung der Koordinierungsqualität kann zur Überprüfung der Qualität bestehender grüner Wellen eingesetzt werden. Ein Einsatz im Rahmen verkehrsabhängiger Steuerungen von Lichtsignalanlagen ist grundsätzlich denkbar, da das Verfahren unter Echtzeitbedingungen funktioniert. Das Verfahren liefert jedoch keinerlei Informationen über die Zusammensetzungen der Fahrzeugpulks im Zufluss. Außerdem ist das Verfahren komplex und enthält viel Heuristik. Es bezieht keinen historischen Verlauf der Daten ein und verzichtet auf diese Weise auf Information. Schließlich ist die Genauigkeit des Verfahrens für Gutachten und Qualitätssicherung nicht geeignet.From the DE-publication "Online evaluation of green waves: A fuzzy expert system for estimating the loss time before light signals by means of near-line detectors", published in 2004 in traffic engineering, author: Braun, Mück, discloses a method for online evaluation of the coordination quality between two traffic lights , It needs a stop near detector in front of the downstream traffic signal system, which measures the occupancy rate every second and counts the number of vehicles. In addition, the current signal position of this traffic light system must be known. From the detector data and the signal position six characteristic quantities are determined for each circulation. In order to evaluate the coordination quality between two traffic light systems, a fuzzy expert system was developed, which estimates the average loss time from these quantities per revolution. This can be used for unconstrained undisturbed traffic conditions on the coordination quality be closed between this and the upstream traffic signal system. A fuzzy expert system makes it possible to linguistically formulate complex relationships. For the present problem, this approach is very well suited, since the traffic-technical relationships between the characteristic quantities and the loss time can be linguistically formulated, and processed as expert knowledge. The online evaluation method of coordination quality can be used to verify the quality of existing green waves. A use in the context of traffic-dependent controls of traffic lights is basically conceivable, since the method works under real-time conditions. However, the method does not provide any information about the compositions of the vehicle spool in the inflow. In addition, the method is complex and contains a lot of heuristics. It does not include a historical history of the data and thus omits information. Finally, the accuracy of the procedure is not suitable for expert opinion and quality assurance.

Die EP 1 480 183 A1 zeigt der Präambel des Anspruchs 1 entsprechend ein Verfahren zur Bestimmung von Verkehrskenngrößen an Bedienstationen zur Abfertigung einzeln bewegter Einheiten mit sich abwechselnden Sperr- und Durchlassphasen und mit einem vor der Bedienstation angeordneten Detektor mit den Schritten eines Bereitstellens der Punkte eines Fundamentaldiagramms für die Bedienstation unter Verwendung der Detektordaten und eines Bestimmens wenigstens einer Untermenge von Punkten des Fundamentaldiagramms, die einem Verkehrszustand entspricht.The EP 1 480 183 A1 1 shows, according to the preamble of claim 1, a method for determining traffic parameters at operator stations for handling individually moving units with alternating blocking and transmission phases and with a detector located in front of the operating station, with the steps of providing the points of a basic diagram for the operating station using the Detector data and determining at least a subset of points of the fundamental diagram corresponding to a traffic condition.

Aus der europäischen Patentanmeldung EP 1 480 184 A2 ist ein Verfahren zur Bestimmung von Verkehrskenngrößen an Bedienstationen zur Abfertigung einzeln bewegter Einheiten bekannt. Die Bedienstationen weisen sich abwechselnde Sperr- und Durchlassphasen auf sowie einen vor der Bedienstation angeordneten Detektor. Zunächst werden Punkte einer Mehrzahl von Vergleichsfundamentaldiagrammen und Punkte eines Kenngrößendiagramms, das zu jedem Punkt eines Vergleichsfundamentaldiagramms einen Verkehrskenngrößenwert umfasst, bereitgestellt. Des Weiteren werden unter Verwendung von Detektordaten Punkte eines Fundamentaldiagramms für die Bedienstation bereitgestellt. Schließlich werden Punkte des Fundamentaldiagramms mit Punkten jeweils eines der Vergleichsfundamentaldiagramme nach einem vorbestimmten Kriterium automatisch verglichen, bis eine vorbestimmte Ähnlichkeitsbedingung erfüllt ist.From the European patent application EP 1 480 184 A2 A method is known for determining traffic parameters at operating stations for handling individually moving units. The operating stations have alternating blocking and passage phases and a detector arranged in front of the operating station. First, points of a plurality of comparison basis aliagrams and points of a characteristic diagram are added to each point of a comparison foundation alias a traffic characteristic value. Further, using detector data, points of a fundamental diagram are provided for the operator station. Finally, points of the fundamental diagram are automatically compared with points of each one of the comparison foundation balance diagrams according to a predetermined criterion until a predetermined similarity condition is satisfied.

Allen bekannten Verfahren ist gemeinsam, dass sie entweder keine oder nur eine grobe Aussage über die Verteilung der Fahrzeugankünfte an einer Lichtsignalzufahrt ermöglichen. Jedenfalls sind die erreichten Genauigkeiten nicht zufriedenstellend. Den Verfahren ist ferner gemeinsam, dass sie aufgrund des hohen Kalibrieraufwands oder der fehlenden Genauigkeit bzw. Kenndaten nicht als Verfahren im Rahmen einer automatisierten Qualitätssicherung der Koordinierung aufeinanderfolgender Lichtsignalanlagen, z.B. durch eine täglich rückwirkende Auswertung, geeignet sind.All known methods have in common that they allow either no or only a rough statement about the distribution of vehicle arrivals at a light signal approach. In any case, the achieved accuracies are not satisfactory. It is also common to the method that, because of the high calibration effort or the missing accuracy or characteristic data, they are not used as methods in the context of an automated quality assurance of the coordination of successive traffic signal installations, e.g. by a daily retrospective evaluation, are suitable.

Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zur Ermittlung von Verkehrsinformationen sowie einen Verkehrsrechner zur Durchführung des Verfahrens bereitzustellen, womit auf automatisierte Weise eine genaue Ermittlung der Verkehrsinformationen, wie Wartezeiten und Halte von einzelnen Fahrzeugen, Qualitätskennwerte, und dergleichen, ermöglicht wird.The invention is therefore based on the object to provide a method for determining traffic information and a traffic computer for performing the method, which in an automated manner an accurate determination of traffic information, such as waiting times and stops of individual vehicles, quality characteristics, and the like, is possible.

Die Aufgabe wird erfindungsgemäß gelöst durch ein Verfahren zur Ermittlung von Verkehrsinformationen für eine Straßenstrecke eines Straßennetzes, wobei die Straßenstrecke einen Einfahrtquerschnitt, durch den ein die Straßenstrecke nachfragender Verkehrsstrom zufließt, einen Ausfahrtquerschnitt, durch den ein mittels einer Lichtsignalanlage gesteuerter Verkehrsstrom abfließt, und wenigstens einen zwischen Ein-und Ausfahrtquerschnitt eingeordneten Messquerschnitt, an dem ein Fahrzeugdetektor durch passierende Fahrzeuge erzeugte Messdaten erfasst, aufweist, wobei der Verkehrsfluss längs der Straßenstrecke mittels eines Verkehrsmodells simuliert wird und in Abhängigkeit eines zufließenden Modell-Verkehrsstroms den Messdaten zugeordnete Modell-Messdaten erzeugt werden, wobei der zufließende Modell-Verkehrsstrom bezüglich der zeitlichen Verteilung von in die Modell-Straßenstrecke einfahrenden Modell-Fahrzeugen variiert wird und hinsichtlich einer Übereinstimmung der jeweils erzeugten Modell-Messdaten mit den entsprechenden vom Fahrzeugdetektor erfassten Messdaten optimiert wird, und wobei die Verkehrsinformationen aus dem simulierten Modell-Verkehrsfluss, der sich aus dem optimierten Modell-Verkehrsstrom ergibt, ermittelt werden. Die Simulation des Verkehrsflusses erfolgt beispielsweise anhand eines an sich bekannten makroskopischen Verkehrsmodells, wobei die Modellierung des Verkehrsflusses zum Beispiel über sich längs der modellierten Straßenstrecke bewegende Flächen konstanter Verkehrsdichte erfolgen kann. Das erfindungsgemäße Verfahren basiert demnach auf einer simulativen Nachbildung des realen Verkehrsflusses und der daraus entstehenden Messdaten durch ein geeignetes Verkehrsmodell. Der simulierte Modell-Verkehrsfluss wird in seiner Erzeugungscharakteristik am Einfahrtquerschnitt - d.h. die zeitliche Verteilung der durch den Einfahrtquerschnitt einfahrenden Fahrzeuge - so lange verändert, bis die durch ihn generierten, nachgebildeten Modell-Messdaten den real gemessenen Messdaten möglichst ähnlich sind. Der optimierte zufließende Modell-Verkehrsstrom, bzw. der sich daraus ergebende simulierte Modellverkehrsfluss dient dann zur Ableitung der gesuchten, in der Praxis üblichen Kenngrößen als Verkehrsinformationen. Wesentlich für das erfindungsgemäße Verfahren ist es, den zufließenden Verkehrsstrom nicht über eine vorgelagerte Lichtsignalanlage zu modellieren, sondern über ein gezieltes Modellieren des zuflieβenden Verkehrsstromes. Mit den gewonnenen Verkehrsinformationen ist es möglich, automatisiert Verkehrskenngrößen sowie die Qualität von Lichtsignalsteuerungen und grünen Wellen mit geringem Aufwand und ohne Durchführung von Messfahrten zu ermitteln bzw. evaluieren.The object is achieved by a method for the determination of traffic information for a road section of a road network, the road section an entry cross section, through which a road route inquiring traffic flows, an exit cross section through which flows a controlled by a traffic signal traffic flow, and at least one between Entry and exit cross-section arranged measuring cross section at which a vehicle detector detected by passing vehicles generated measurement data, wherein the traffic flow along the road route simulated by means of a traffic model and, depending on an incoming model traffic flow, model measurement data associated with the measurement data is generated, wherein the incoming model traffic flow is varied with respect to the time distribution of model vehicles entering the model road route and with respect to a match of the respectively generated model measurement data is optimized with the corresponding measurement data acquired by the vehicle detector, and wherein the traffic information is determined from the simulated model traffic flow resulting from the optimized model traffic stream. The simulation of the traffic flow takes place, for example, on the basis of a macroscopic traffic model which is known per se, wherein the modeling of the traffic flow can take place, for example, over surfaces of constant traffic density moving along the modeled road route. The method according to the invention is therefore based on a simulative simulation of the real traffic flow and the resulting measurement data by means of a suitable traffic model. The simulated model traffic flow is modified in its generation characteristic at the entrance cross-section - ie the time distribution of vehicles entering through the entry cross section - until the modeled measurement data generated by it are as similar as possible to the measured data actually measured. The optimized incoming model traffic flow, or the resulting simulated model traffic flow then serves to derive the sought-after parameters, which are customary in practice, as traffic information. It is essential for the method according to the invention not to model the inflowing traffic flow via an upstream traffic signal system, but rather via a targeted modeling of the inflowing traffic flow. With the obtained traffic information, it is possible to automatically determine or evaluate traffic parameters as well as the quality of traffic signal controls and green waves with little effort and without carrying out test drives.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden über einen in Zeitintervalle unterteilten Untersuchungszeitraum als Messdaten ein Zählwert an detektierten Fahrzeugen je Zeitintervall und ein Belegungswert des Fahrzeugdetektors je Zeitintervall erfasst werden, wobei Zähl- und Belegungswerte aus Rohdaten des Fahrzeugdetektors ermittelt werden. Ein wesentlicher Punkt ist hier die erstmalige systematische Auswertung der Rohdaten des Fahrzeugdetektors in Form von Zeitdaten seiner steigenden und fallenden Flanken oder in Form von sekündlich fein aufgelösten Zähl-und Belegungswerten für die Ermittlung der Koordinierungsqualität. Im Falle der Detektor-Flankendaten werden diese auf eine geeignete, aus der Physik des Verkehrsflusses abgeleitete Weise ausgewertet, indem das Abstandsverhalten und die Überfahrdauer über den Fahrzeugdetektor für jedes Fahrzeug in makroskopische Kenngrößen, die zeitlich feiner sein können als die Zeitintervalle des Untersuchungszeitraums, umgewandelt und eventuell geglättet. Die Verwendung der Rohdaten ermöglicht im Vergleich zu den bisher bekannten Verfahren die genaue Ermittlung von Ergebnissen bei Untersuchungszeiträumen, die wesentlich kürzer als bislang üblich sind, beispielsweise 10 bis 30 Minuten. Durch die Verwendung dieses Verfahrens ist im Gegensatz zum Vergleich direkter Flankendaten aus dem Modell und der Messung keine weitere Glättung mehr notwendig, um die Güte der Übereinstimmung berechnen zu können. Durch die Vermeidung einer Glättung wird das Verfahren erheblich genauer. Die auf diese Weise erzeugten Messdaten entsprechend den durch makroskopische Modelle ermittelten Zähl- und Belegungswerten wesentlich besser als direkt geglättete Rohdaten.In an advantageous embodiment of the method according to the invention are subdivided over a time intervals Examination period as measured data a count of detected vehicles per time interval and an occupancy value of the vehicle detector per time interval are detected, with count and occupancy values are determined from raw data of the vehicle detector. An essential point here is the initial systematic evaluation of the raw data of the vehicle detector in the form of time data of its rising and falling edges or in the form of finely resolved count and occupancy values every second for the determination of the coordination quality. In the case of the detector edge data, these are evaluated in a suitable, derived from the physics of traffic flow manner by the distance behavior and the transit time via the vehicle detector for each vehicle in macroscopic characteristics that may be finer in time than the time intervals of the investigation period, converted and possibly smoothed. The use of the raw data enables, in comparison to the previously known methods, the exact determination of results in examination periods which are considerably shorter than hitherto customary, for example 10 to 30 minutes. By using this method, in contrast to comparing direct edge data from the model and the measurement, no further smoothing is needed to calculate the goodness of the match. By avoiding smoothing, the process becomes considerably more accurate. The measurement data generated in this way, in accordance with the count and occupancy values determined by macroscopic models, are significantly better than directly smoothed raw data.

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird der zufließende Modell-Verkehrsstrom jeweils auf eine Umlaufzeit eines in einer den zufließenden Verkehrsstrom steuernden Lichtsignalanlage ablaufenden Signalzeitenplans bezogen. In diesem Fall wird dem Umstand Rechnung getragen, dass einem lichtsignalgesteuerten zufließenden Verkehrsstrom die Fahrzeuge in Umlaufzeit-periodischen Pulks durch den Einfahrtquerschnitt in die Straßenstrecke einfahren. Im Verkehrsmodell wird also der zufließende Modell-Verkehrsstrom auf die reale Umlaufzeit der den Zufluss steuernden Lichtsignalanlage bezogen.In a preferred embodiment of the method according to the invention, the inflowing model traffic flow is respectively related to a circulation time of a signal time schedule running in a traffic light system controlling the incoming traffic flow. In this case, the fact is taken into account that a light signal-controlled incoming traffic flow, the vehicles enter in orbital periodic pulses through the entrance cross section in the road section. In the traffic model, therefore, the inflowing model traffic flow based on the real orbital period of the inflow controlling traffic signal system.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden die während der Zeitintervalle des Untersuchungszeitraums erfassten Messdaten den einzelnen Signalumläufen des Signalzeitenplans entsprechend zugeordnet. Sind die Zeitintervalle des Untersuchungszeitraums bereits den Signalumläufen des Signalzeitenplans angepasst, können die Messdaten direkt weiterverwendet werden. Überlagern sich die Signalumläufe den Zeitintervallen mit verschiedenen Zeitdauern und/oder Anfangszeitpunkten, so müssen die Messdaten eines Zeitintervalls im Verhältnis zu dessen Überlappung mit den Signalumläufen auf diese aufgeteilt werden. Damit sind die Messdaten auf die Signalumläufe der den zufließenden Verkehrsstrom prägenden Lichtsignalanlage abgestimmt.In an advantageous embodiment of the method according to the invention, the measurement data acquired during the time intervals of the examination period are allocated correspondingly to the individual signal cycles of the signal time schedule. If the time intervals of the examination period are already adapted to the signal cycles of the signal time schedule, the measurement data can be used directly. If the signal circulations overlap the time intervals with different time durations and / or starting times, then the measured data of a time interval must be divided up in relation to its overlap with the signal circulations. Thus, the measurement data are tuned to the signal circulations of the incoming traffic flow stamping traffic signal.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der während einer Umlaufzeit zufließende Modell-Verkehrsstrom durch Multiplikation der Summe der dem Umlauf zugeordneten Zählwerte (zi) an detektierten Fahrzeugen (F) mit einem normierten Pulkprofil (p') gebildet, das eine zeitliche Verteilung von Fahrzeuganteilen eines zufließenden Fahrzeugpulks innerhalb einer Umlaufzeit angibt, wobei der zufließende Modell-Verkehrsstrom durch Variation des zugrundeliegenden Pulkprofils variiert wird. Hier wird das Pulkprofil als zentrale, zu schätzende Kenngröße des erfindungsgemäβen Verfahrens zugrunde gelegt. Durch dieses Pulkprofil soll das an sich nicht bekannte, real vorliegende Pulkprofil angenähert werden. Das Pulkprofil umfasst die Dauer einer Umlaufzeit des Signalzeitenplans der den Zufluss steuernden Lichtsignalanlage. Das Pulkprofil ist beispielsweise auf eine Einheitsfläche normiert und gibt an, in welchen Zeitabschnitten einer Umlaufzeit der den zufließenden Verkehrsstrom steuernden Lichtsignalanlage, welcher Anteil der Gesamtzahl an während der Umlaufzeit durch den Einfahrtquerschnitt in den Streckenabschnitt eingefahrenen Fahrzeuge zufließt.In an advantageous refinement of the method according to the invention, the model traffic flow flowing in during a circulation time is formed by multiplying the sum of the counted values (z i ) associated with circulation with detected vehicles (F) having a normalized pulse profile (p ') which has a time distribution of Vehicle proportions of an inflowing vehicle pulse within a cycle time indicates, wherein the inflowing model traffic flow is varied by varying the underlying pulp profile. Here, the pulk profile as a central, to be estimated characteristic of the erfindungsgemäβen method is based. By means of this pulp profile, the per se known, actually present pulp profile should be approximated. The pulse profile includes the duration of a round trip time of the signal time schedule of the inflow controlling traffic signal system. The pulse profile is normalized, for example, to a unit area and indicates in which time periods of a circulation time of the incoming traffic flow controlling traffic signal, which proportion of the total number of vehicles retracted during the orbital period through the entrance cross section into the stretch of vehicles.

Mit Vorteil wird bei der Bildung des im Untersuchungszeitraum zufließenden Modell-Verkehrsstromes für jede Umlaufzeit dasselbe Pulkprofil zugrunde gelegt. Diese Annahme ist für hinreichend kurze Untersuchungszeiträume, beispielsweise bis zu einer Stunde, gerechtfertigt und vereinfacht das Verfahren durch die Verwendung eines für alle Signalumläufe konstanten Pulkprofils.Advantageously, the formation of the model traffic flow flowing in during the investigation period is based on the same pulse profile for each revolution time. This assumption is justified for sufficiently short examination periods, for example up to one hour, and simplifies the method by using a constant pulse profile for all signal circulations.

In einer vorteilhaften Ausführungsform des erfindungsgemäßen Verfahrens wird der Verkehrsfluss simuliert, indem Bewegungen von Modell-Fahrzeugen des zufließenden Modell-Verkehrsstroms längs einer Modell-Straßenstrecke nachgebildet werden, welche beim Passieren eines Modell-Messquerschnitts Modell-Messdaten erzeugen und welche durch einen lichtsignalgesteuerten Modell-Ausfahrtquerschnitt abfließen. Im Vergleich zu einem makroskopischen Verkehrsmodell bietet die Verwendung eines auf einem gezielten Einsetzen von einzelnen Modell-Fahrzeugen am Modell-Einfahrtquerschnitt beruhenden, mikroskopischen Verkehrsmodells detaillierte Verkehrsinformationen.In an advantageous embodiment of the method according to the invention, the traffic flow is simulated by simulating movements of model vehicles of the incoming model traffic flow along a model roadway, which generate model measurement data when passing a model measurement cross section and which by a light signal controlled model exit cross section flow away. Compared to a macroscopic traffic model, the use of a microscopic traffic model based on a targeted insertion of individual model vehicles at the model entrance cross section provides detailed traffic information.

In einer vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens wird der zufließende Modell-Verkehrsstrom aus Modell-Fahrzeugen unterschiedlicher Fahrzeugklassen mit je einer mittleren Fahrzeuglänge gebildet, wobei eine Zusammensetzung des Modell-Verkehrsstroms aus Fahrzeugklassen und deren mittlere Fahrzeuglängen vorgegeben oder variiert werden. Damit kann der zufließende Modell-Verkehrsstrom nicht nur hinsichtlich seiner zeitlichen Verteilung während einer Umlaufzeit untersucht werden, sondern auch hinsichtlich seiner Zusammensetzung bezüglich unterschiedlicher Fahrzeugklassen, wie beispielsweise Personenkraftwagen, Lastkraftwagen oder Bussen, die unterschiedliche Beschleunigungs- und Reisegeschwindigkeitswerte aufweisen. Nach Optimierung des zuflieβenden Modell-Verkehrsstroms stehen damit auch Kennwerte für unterschiedliche Fahrzeugklassen zur Verfügung. Durch die Einbeziehung von Kenngrößen eines Verkehrsmodells, wie zum Beispiel der Klassenverteilung oder der Klasseneigenschaften - etwa der mittleren Fahrzeuglänge - in den Optimierungsvorgang, kann das zur Simulation verwendete Verkehrsmodell kalibriert werden.In an advantageous embodiment of the method according to the invention, the inflowing model traffic flow is formed from model vehicles of different vehicle classes, each with a mean vehicle length, wherein a composition of the model traffic flow from vehicle classes and their average vehicle lengths are predetermined or varied. Thus, the incoming model traffic flow can be examined not only in terms of its time distribution during a round trip time, but also in its composition with respect to different vehicle classes, such as passenger cars, trucks or buses, which have different acceleration and cruising speed values. After optimizing the incoming model traffic flow, characteristic values for different vehicle classes are also available. By including characteristics of a traffic model, such as the class distribution or the class properties - such as the average vehicle length - in the optimization process, The traffic model used for the simulation can be calibrated.

In einer zusätzlichen bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird die sich wiederholende Umlaufzeit oder eine Abfolge von sich ändernden Umlaufzeiten des Signalzeitenplans, der in der den zufließenden Verkehrsstrom steuernden Lichtsignalanlage abläuft, variiert, wobei die erfassten Messdaten der sich wiederholenden Umlaufzeit oder den sich ändernden Umlaufzeiten entsprechend zugeordnet werden. Dieses Verfahren kann mit Vorteil bei Unsicherheit bezüglich der Übereinstimmung der Umlaufzeiten der sendenden und betrachteten Lichtsignalanlage eingesetzt werden. Optional kann ein einfaches Pulkprofil, welches beispielsweise aus einem Hauptrichtungspulk und einem Nebenrichtungspulk zusammengesetzt ist, vorausgesetzt werden, so dass sich die Optimierung auf die Ermittlung der Umläufe der sendenden Lichtsignalanlage beschränkt.In an additional preferred embodiment of the method according to the invention, the repetitive cycle time or a sequence of changing cycle times of the signal time schedule, which takes place in the light traffic system controlling the incoming traffic flow, is varied, the acquired measurement data being correspondingly associated with the repetitive cycle time or the changing cycle times become. This method can be used with advantage in uncertainty with respect to the coincidence of the transit times of the transmitting and considered traffic signal system. Optionally, a simple pulp profile composed of, for example, a main direction pulp and a pitching pulse may be presumed so that the optimization is limited to determining the revolutions of the transmitting traffic signal.

In einer weiteren bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird für wenigstens einen Teil der Zeitintervalle ein Abstand zwischen den jeweils erzeugten Modell-messdaten und den entsprechenden vom Fahrzeugdetektor erfassten Messdaten berechnet und zur Optimierung des zufließenden Modell-Verkehrsstroms ein Mittelwert der Abstände für den Teil der Zeitintervalle des Untersuchungszeitraumes minimiert. Liegen als Messdaten je Zeitintervall die Verkehrsstärke in der Einheit Fahrzeuge pro Stunde und der Belegungsgrad in Prozent vor, könnte als Abstandsmaß für ein bestimmtes Zeitintervall die Quadratwurzel aus der Summe der Quadrate der Differenzen zwischen den realen Messdaten und den Modell-Messdaten gebildet werden. Aus allen Abstandsmaßen der Zeitintervalle eines Untersuchungszeitraums wird nun ein arithmetischer Mittelwert gebildet, der durch Variation des die Modell-Messdaten erzeugenden Pulkprofils iterativ minimiert wird.In a further preferred embodiment of the method according to the invention, a distance between the respectively generated model measurement data and the corresponding measurement data acquired by the vehicle detector is calculated for at least a portion of the time intervals and an average value of the distances for the portion of the time intervals of Examination period minimized. If the traffic volume in the units of vehicles per hour and the occupancy rate in percent are present as measurement data per time interval, the square root could be formed as the distance measure for a specific time interval from the sum of the squares of the differences between the real measurement data and the model measurement data. From all distance measures of the time intervals of an examination period, an arithmetic mean value is now formed which is minimized iteratively by varying the pulse profile generating the model measurement data.

In einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens wird das dem zufließenden Modell-Verkehrsstrom zugrundeliegende Pulkprofil durch Anwendung genetischer Algorithmen variiert. Dieses an sich bekannte Verfahren eignet sich in besonderer Weise für den vorliegenden Anwendungsfall, ein normiertes Pulkprofil iterativ anzupassen.In a further preferred embodiment of the method according to the invention, the pulse profile on which the incoming model traffic stream is based is varied by using genetic algorithms. This method, which is known per se, is particularly suitable for the present application, iteratively adapting a normalized burst profile.

In einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens wird für jede Variante des zufließenden Modell-Verkehrsstroms ein den Grad der Übereinstimmung der von diesem erzeugten Modell-Messdaten mit den entsprechenden vom Fahrzeugdetektor erfassten Messdaten ermittelt, wobei aus den eine vorgegebene Schwelle für das Gütemaß überschreitenden Varianten eine Bandbreite möglicher Variationsparameter bestimmt wird. Dadurch kann neben der Ermittlung der Kenngröβen auch ein Maß für die Genauigkeit oder Zuverlässigkeit der Lösung ermittelt und dargestellt werden.In another preferred embodiment of the method according to the invention, for each variant of the incoming model traffic flow, a degree of correspondence of the model measured data generated by the latter with the corresponding measured data recorded by the vehicle detector is determined, wherein the variants exceeding a predetermined threshold for the quality measure Bandwidth of possible variation parameters is determined. As a result, in addition to the determination of the characteristic quantities, a measure of the accuracy or reliability of the solution can also be determined and displayed.

In einer weiteren vorteilhaften Ausgestaltung des erfindungsgemäßen Verfahrens werden aus dem optimierten zufließenden Modell-Verkehrsstrom durch statistische Auswertung der Modell-Fahrzeugbewegungen als Verkehrsinformationen Bewegungslinien und/oder Halte und/oder Wartezeiten der Modell-Fahrzeuge ermittelt. Liegt also ein optimiertes geschätztes Pulkprofil vor, so steht auch die daraus entstandene simulative Nachbildung des Verkehrsflusses auf der Straßenstrecke zur Verfügung. Durch die statistische Auswertung des simulierten Verkehrsflusses lassen sich Wartezeiten und Halte aller Fahrzeuge, ggf. unterschieden nach Fahrzeugen die aus der Haupt- bzw. aus einer Nebenrichtung zugeflossen sind, ermitteln. Aus der Form des gefundenen Pulkprofils können die Pulkanteile der Hauptrichtung und der einbiegenden Nebenrichtungen zugeordnet werden. Wird in der Simulation notiert, welche Fahrzeuge aus dem Hauptrichtungsanteil des Pulkprofils generiert wurden, können deren Fahrtverläufe nach der Simulation separat ausgewertet werden. Es ist sogar eine Unterscheidung der Fahrzeuge der Hauptrichtung in solche, die in die Straßenstrecke bei Grünbeginn oder während eines späteren Zeitpunkts der Grünzeit eingefahren sind, möglich.In a further advantageous embodiment of the method according to the invention, movement lines and / or holding and / or waiting times of the model vehicles are determined from the optimized incoming model traffic flow by statistical evaluation of the model vehicle movements as traffic information. Thus, if an optimized estimated pulp profile is available, then the resulting simulative simulation of the traffic flow on the road route is also available. The statistical evaluation of the simulated traffic flow makes it possible to determine waiting times and stops of all vehicles, possibly differentiated according to vehicles which have flowed in from the main direction or from a secondary direction. From the shape of the found pulp profile, the Pulehenile the main direction and the bending secondary directions can be assigned. If it is noted in the simulation which vehicles were generated from the main directional part of the pulp profile, their travel profiles can be evaluated separately after the simulation. It is even a distinction of vehicles of the main direction in those who are in the road section possible at green start or during a later time of the green time.

Mit besonderem Vorteil wird als Verkehrsinformation ein Qualitätswert für die Straßenstrecke berechnet. Hierbei kann es sich um den so genannten "Level-of-Service"-Qualitätskennwert gemäß des Handbuchs für die Bemessung von Straßenverkehrsanlagen (HBS) handeln. Damit ist erfindungsgemäß eine automatisierte Qualitätsermittlung für eine Straßenstrecke und damit auch der Nachweis der verkehrlichen Qualität von Planungsmaßnahmen im Rahmen einer Projektabnahme möglich.With particular advantage, a quality value for the road route is calculated as traffic information. This may be the so-called "level-of-service" quality score set out in the Road Safety Assessment Manual (HBS). Thus, according to the invention, an automated quality determination for a road route and thus also the proof of the traffic quality of planning measures in the context of a project acceptance is possible.

In einer anderen vorteilhaften Ausbildung des erfindungsgemäβen Verfahrens wird eine optimale Koordinierung der Lichtsignalanlage am Ausfahrtquerschnitt zu der Lichtsignalanlage am Einfahrtquerschnitt ermittelt. Wesentlich ist hierbei der Versatz der beiden Signalzeitenpläne zur Erzielung einer grünen Welle. Werden Wartezeiten und Halte der Haupt- und Nebenrichtungsfahrzeuge gewichtet, kann über einen nachgeschalteten Optimierungsalgorithmus eine Empfehlung für eine optimale Wellenlage bzw. Koordinierung auf dieser Straßenstrecke gegeben werden; es kann auch ermittelt werden, um welchen Prozentsatz die aktuelle Situation vom Optimum entfernt ist.In another advantageous embodiment of the method according to the invention, an optimal coordination of the traffic light system at the exit cross section to the traffic light system at the entrance cross section is determined. Essential here is the offset of the two signal time schedules to achieve a green wave. If waiting times and stops of the main and secondary direction vehicles are weighted, a recommendation for an optimal shaft position or coordination on this road section can be given via a downstream optimization algorithm; it can also be determined by what percentage the current situation is away from the optimum.

In einer weiteren bevorzugten Ausgestaltung des erfindungsgemäßen Verfahrens werden für Halte- und/oder Wartezeiten und/ oder Koordinierungsabweichungen Schwellenwerte vorgegeben, deren Über- bzw. Unterschreiten während eines Analysezeitraums festgestellt und nach Ablauf des Analysezeitraums als Qualitätsanalyse berichtet. Bei der Auswertung lassen sich aus mehreren Zufahrten diejenigen identifizieren, in welchen die Steuerungen der Lichtsignalanlagen hinsichtlich ihrer Qualität überprüft werden sollten. Durch die Vorgabe von Schwellenwerten können automatisierte Mechanismen eingesetzt werden, die im Hintergrund eine Qualitätsprüfung durchführen und beispielsweise nach Ablauf eines Tages eine Qualitäts-und Auffälligkeitsanalyse mit einem Bericht über die Verkehrsqualität und Auffälligkeiten generieren.In a further preferred refinement of the method according to the invention, threshold values are specified for holding and / or waiting times and / or coordination deviations, whose overshoots or undershoots are determined during an analysis period and reported after the analysis period as quality analysis. In the evaluation, it is possible to identify from several access roads those in which the controls of the traffic signals should be checked for their quality. By setting thresholds, automated mechanisms can be used to perform a quality check in the background and, for example, generate a quality and abnormality analysis with a report on traffic quality and abnormalities after one day.

In einer anderen bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens weist die Straßenstrecke mehrere Fahrspuren auf, wobei wenigstens eine Fahrspur mindestens einen fahrspurbezogenen Fahrzeugdetektor aufweist, wobei der zufließende Modellverkehrsstrom bezüglich der zeitlichen Verteilung von in die jeweiligen Modell-Fahrspuren der Modell-Straßenstrecke einfahrenden Modell-Fahrzeugen variiert und hinsichtlich einer Übereinstimmung der jeweils erzeugten Modell-Messdaten mit den entsprechenden vom mindestens einen fahrspurbezogenen Fahrzeugdetektor erfassten Messdaten optimiert wird. Erfindungsgemäß kann das Verfahren auch für komplexere Knotenpunkttopologien angewendet werden, wobei in die Schätzung ggf. mehrere Fahrspuren je Straßenstrecke einbezogen werden. Die einzelnen Fahrspuren können keinen, einen oder auch mehrere hintereinander liegende Fahrzeugdetektoren aufweisen.In another preferred embodiment of the method according to the invention, the road section has a plurality of lanes, wherein at least one lane at least one lane-related vehicle detector, wherein the inflowing model traffic flow with respect to the temporal distribution of entering into the respective model lanes of the model road route model vehicles varies and is optimized with respect to a match of the respectively generated model measurement data with the corresponding measured by the at least one lane-related vehicle detector measurement data. According to the invention, the method can also be used for more complex node topologies, wherein the estimate may include several lanes per road section. The individual lanes may have none, one or more consecutive vehicle detectors.

Die Aufgabe wird ferner gelöst durch einen Verkehrsrechner zur Ermittlung von Verkehrsinformationen für eine Straßenstrecke eines Straßennetzes, der mit einem Programmcode versehen ist, welcher Steuerbefehle enthält, die den Verkehrsrechner zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 16 veranlassen. Hierzu weist der Verkehrsrechner entsprechend ausgebildete Datenverarbeitungsmittel, Schnittstellen für Datenein- und -ausgabe sowie eine Visualisierungseinheit zur Darstellung der Verkehrsinformationen auf.The object is further achieved by a traffic computer for determining traffic information for a road section of a road network, which is provided with a program code containing control commands that cause the traffic computer to carry out a method according to one of claims 1 to 16. For this purpose, the traffic computer has correspondingly designed data processing means, interfaces for data input and output as well as a visualization unit for displaying the traffic information.

Des Weiteren bezieht sich die Erfindung auf einen maschinenlesbaren Programmcode für einen Verkehrsrechner, welcher Steuerbefehle enthält, die den Verkehrsrechner zur Durchführung eines Verfahrens nach einem der Ansprüche 1 bis 16 veranlassen.Furthermore, the invention relates to a machine-readable program code for a traffic computer, which contains control commands that cause the traffic computer to carry out a method according to one of claims 1 to 16.

Schließlich betrifft die Erfindung auch ein Speichermedium mit einem darauf gespeicherten maschinenlesbaren Programmcode gemäß Anspruch 18.Finally, the invention also relates to a storage medium having a machine-readable program code stored thereon according to claim 18.

Weitere Eigenschaften und Vorteile der Erfindung ergeben sich aus einem in den Zeichnungen dargestellten Ausführungsbeispiel, in deren

FIG 1
ein Ablaufplan des erfindungsgemäßen Verfahrens in einem Verkehrsrechner für eine Straßenstrecke,
FIG 2
Rohdaten eines Detektors,
FIG 3
Zählwert-Zustand variabler Zeitdauer,
FIG 4
Belegungswert-Zustand variabler Zeitdauer,
FIG 5
Zähl- und Belegungswert-Zustand konstanter Zeitdau- er,
FIG 6
ein normiertes Pulkprofil,
FIG 7
ein Diagramm für den Mittelwert der Abstandsmaße in Abhängigkeit der Versatzzeit
schematisch veranschaulicht sind.Further features and advantages of the invention will become apparent from an embodiment illustrated in the drawings, in which
FIG. 1
a flowchart of the method according to the invention in a traffic computer for a road,
FIG. 2
Raw data of a detector,
FIG. 3
Count state of variable duration,
FIG. 4
Occupancy value state variable duration,
FIG. 5
Count and occupancy value state of constant time duration,
FIG. 6
a normalized bulk profile,
FIG. 7
a diagram for the mean of the distance measures as a function of the offset time
are illustrated schematically.

FIG 1 zeigt eine Straßenstrecke S12 eines Straßennetzes, die beispielsweise zwei nicht näher dargestellte Knotenpunkte verbindet. Die Straßenstrecke S12 weist einen Einfahrtquerschnitt 1 am Vorknoten, einen Ausfahrtquerschnitt 2 am Hauptknoten sowie einen dazwischen liegenden Messquerschnitt 3 auf. Durch den Einfahrtquerschnitt 1 fließt ein die Straßenstrecke S12 nachfragender Verkehrsstrom, gebildet durch Fahrzeuge F, zu. Der zufließende Verkehrsstrom wird durch eine Lichtsignalanlage 10 am Vorknoten gesteuert. Die Lichtsignalanlage 10 weist Signalgeber 11 für den Hauptverkehrsstrom und die Nebenverkehrsströme auf, deren Signalzeiten entsprechend eines im Steuergerät 12 ablaufenden Signalzeitenplans SP1 geschaltet werden. Der zufließende Verkehrsstrom erfolgt in Fahrzeugpulks je Umlaufzeit des Signalzeitenplans SP1. Entsprechend des sich ergebenden Verkehrsflusses werden am Messquerschnitt 3 durch einen Fahrzeugdetektor 30, der beispielsweise als Induktionsschleife ausgebildet ist, in äquidistanten Zeitintervallen i von beispielsweise einer Sekunde Detektor-Rohdaten in Form von Zählwerten zi und Belegungswerten bi erfasst. FIG. 1 shows a road S 12 a road network that connects, for example, two nodes not shown. The road S 12 has an entrance cross-section 1 at the Vorknoten, an exit cross-section 2 at the main node and an intermediate measuring cross-section 3. Through the entrance cross-section 1 flows a the route S 12 querying traffic flow, formed by vehicles F to. The incoming traffic flow is controlled by a traffic signal 10 at the Vorknoten. The traffic signal system 10 has signal transmitters 11 for the main traffic flow and the secondary traffic flows whose signal times are switched according to a signal schedule SP 1 running in the control device 12. The inflowing traffic flow takes place in vehicle pulse per revolution time of the signal time schedule SP 1 . In accordance with the resulting traffic flow, detector raw data in the form of count values z i and occupancy values b i are detected at the measuring cross-section 3 by a vehicle detector 30, which is designed as an induction loop, for example, at equidistant time intervals i.

Gemäß FIG 2 werden als Rohdaten des Fahrzeugdetektors 30 sogenannte Flankendaten erfasst, also diejenigen Zeitpunkte, zu welchen der Belegungszustand des Fahrzeugdetektors 30 von "belegt (Wert 1)" auf "nicht belegt (Wert 0)" wechselt und umgekehrt. Zu den Zeitpunkten t1, t2, t3 und t4 der fallenden Flanken verlässt ein Fahrzeug F den Erfassungsbereich des Fahrzeugdetektors 30. Es entsteht eine Zeitlücke h1, h2 bzw. h3, bis das nächste Fahrzeug F in den Erfassungsbereich des Fahrzeugdetektors 30 einfährt. Die sich anschließende Belegungsdauer O1, O2 bzw. O3 endet dann an der nächsten fallenden Flanke t2, t3 bzw. t4. Alternativ zu den Flankendaten können als Rohdaten des Fahrzeugdetektors 30 auch sekündlich aufgelöste Belegungszustände verwendet werden, aus welchen sich ebenfalls die Zeitdaten ti, hi, Oi ergeben. Jedem Intervall [tn; tn+1], mit n = 1, 2, 3, zweier aufeinander folgender Fahrzeuge F werden gemäß FIG 3 ein Zählwert z(n) = 1/ (tn+1 - tn) und gemäß FIG 4 ein Belegungswert b(n) = on/(tn+1 - tn) zugeordnet. Hierbei handelt es sich um konstante, makroskopische Zustände variabler Zeitdauer. Nach FIG 5 werden nun der Zählwert (strichpunktierte Linie) und der Belegungswert (durchgezogene Linie) einer diskreten Zeitachse mit äquidistanten Zeitintervallen i von beispielsweise einer Sekunde zugewiesen. Der Zählwert zi gibt die Anzahl an Fahrzeugen pro Sekunde im Zeitintervall i an, während der Belegungswert bi die Belegungsdauer pro Sekunde im Zeitintervall i angibt.According to FIG. 2 be detected as raw data of the vehicle detector 30 so-called edge data, ie those times at which the occupancy state of the vehicle detector 30 of "occupied (value 1)" to "not busy (value 0)" changes and vice versa. At the times t 1 , t 2 , t 3 and t 4 of the falling flanks, a vehicle F leaves the detection range of the vehicle detector 30. A time gap h 1 , h 2 or h 3 arises until the next vehicle F enters the detection range of Vehicle detector 30 retracts. The subsequent occupancy time O 1 , O 2 or O 3 then ends at the next falling edge t 2 , t 3 or t 4 . Alternatively to the edge data 30 and every second resolution occupancy states of the vehicle can be used as raw data detector may be used, out of which also the time data t i, h i, O i arise. Each interval [t n ; t n + 1 ], with n = 1, 2, 3, two consecutive vehicles F are according to FIG. 3 a count z (n) = 1 / (t n + 1 -t n ) and according to FIG. 4 assigned an occupancy value b (n) = o n / (t n + 1 - t n ). These are constant, macroscopic states of variable duration. To FIG. 5 Now the count value (dash-dotted line) and the occupancy value (solid line) are assigned to a discrete time axis with equidistant time intervals i of, for example, one second. The count value of z i is the number of vehicles per second, in the time interval i, while the occupancy value b i indicating the holding time per second in the time interval i.

Die Detektor-Rohdaten werden den Signalstellungen entsprechend umlaufweise für den zufließenden Verkehrsstrom zusammengefasst, wobei die Umlaufzeit des Signalzeitenplans SP1 beispielsweise 60 s oder 90 s betragen kann. Am Ausfahrtquerschnitt 2 wird der abfließende Verkehrsstrom mittels einer Lichtsignalanlage 20 gesteuert, die einen Signalgeber 21 sowie ein Steuergerät 22 aufweist, in welchem vom Signalgeber 21 abgegebene Lichtsignale gemäß eines ablaufenden Signalzeitenplans SP2 geschaltet werden.The detector raw data are summarized according to the signal positions circulating for the incoming traffic flow, wherein the cycle time of the signal time schedule SP 1 can be for example 60 s or 90 s. At the exit cross-section 2 of the outflowing traffic flow is controlled by a traffic signal 20, which has a signal generator 21 and a controller 22, in which emitted by the signal generator 21 light signals are switched according to an expiring signal time plan SP 2 .

Typischerweise sind die Lichtsignalanlagen 10 bzw. 20 am Einfahrtquerschnitt 1 bzw. Ausfahrtquerschnitt 2 durch Einstellung gleicher Umlaufzeiten der Signalzeitenpläne SP1 bzw. SP2 koordiniert; die Signalumläufe der Signalzeitenpläne SP1 bzw. SP2 sind dabei entsprechend der Länge der Straßenstrecke S12 und der typischen Fahrgeschwindigkeiten auf der Straßenstrecke S12 zeitlich zueinander versetzt. Die Wahl der Versatzzeit ist dabei entscheidend für die Qualität der Koordinierung der beiden Lichtsignalanlagen 10 bzw. 20.Typically, the traffic signal systems 10 and 20 at the entrance cross-section 1 and exit cross-section 2 by adjustment the same cycle times of the signal time schedules SP 1 and SP 2 coordinated; The signal cycles of the signal time schedules SP 1 and SP 2 are offset in time according to the length of the road S 12 and the typical driving speeds on the road S 12 . The choice of the offset time is decisive for the quality of the coordination of the two traffic signal systems 10 and 20, respectively.

In einem Verkehrsrechner 40 läuft nun eine Simulation des Verkehrsflusses längs der Straßenstrecke S12 mittels eines Verkehrsmodells VM ab, indem iterativ ein Pulkprofil p' des zufließenden Modell-Verkehrsstromes zzu' geschätzt wird. Ein derartiges Pulkprofil p' ist in FIG 6 dargestellt. Das Pulkprofil p' gibt über eine Umlaufzeit von beispielsweise 90 s den zeitlichen Verlauf des Anteils an Fahrzeugen F an, die je Zeitabschnitt durch den Einfahrtquerschnitt 1 einfahren. Das gesamte Pulkprofil p' ist durch Division durch die Gesamtzahl an während der Umlaufzeit den Einfahrtquerschnitt 1 passierenden Fahrzeugen F normiert. Über einen Untersuchungszeitraum von beispielsweise einer Stunde kann davon ausgegangen werden, dass das Pulkprofil p' für alle 40 Zeitintervalle bzw. Umlaufzeiten von jeweils 90 s konstant ist. Die Optimierung mit Hilfe des Verkehrsmodells VM erfolgt nun folgendermaßen:In a traffic control computer 40 is now a simulation of the traffic flow of the road section runs along S 12 by means of a traffic model VM off by a Pulkprofil p 'of the incoming traffic flow model to z' is estimated iteratively. Such a pulp profile p 'is in FIG. 6 shown. The pulp profile p 'indicates over a cycle time of, for example, 90 s, the time course of the proportion of vehicles F, which retract per period of time through the inlet cross-section 1. The entire pulp profile p 'is normalized by dividing by the total number of vehicles F passing the entrance cross section 1 during the circulation time. Over an examination period of, for example, one hour, it can be assumed that the pulse profile p 'is constant for every 40 time intervals or circulation times of 90 s in each case. The optimization with the help of the traffic model VM now follows as follows:

Ausgehend von einem Pulkprofil p' werden diesem für jeden der Signalumläufe die zugehörigen real gemessenen Zählwerte zi multiplikativ aufgeprägt. Daraus resultiert als Eingangsgröße für das Verkehrsmodell VM die Intensitätsverteilung des während einer Umlaufzeit zufließenden Modell-Verkehrsstroms zzu'.Starting from a Pulkprofil p 'are this imposed for each of the associated real Signalumläufe measured count values z i multiplicative. This results as input to the transport model VM, the intensity distribution of the influent during a round trip time model for the traffic stream to '.

Mittels des Verkehrsmodells VM werden nun die Bewegungen von Modell-Fahrzeugen des zufließenden Modell-Verkehrsstroms zzu' längs einer Modell-Straßenstrecke nachgebildet, welche beim Passieren eines Modell-Messquerschnitts Modell-Messdaten zi' bzw. bi' erzeugen und welche durch einen lichtsignalgesteuerten Modell-Ausfahrtquerschnitt abfließen. An dieser Stelle gehen in das Verkehrsmodell VM die realen Signalzyklen des Signalzeitenplans SP2 der den Abfluss steuernden Lichtsignalanlage 20 ein. Derartige Verkehrsmodelle VM sind dem Fachmann an sich bekannt. Neben makroskopischen Verkehrsmodellen sind hier mikroskopische, auf die Verfolgung einzelner Modell-Fahrzeuge abzielende Verkehrsmodelle im Gebrauch. Als Ergebnis liefert das Verkehrsmodell VM Modell-Messdaten in Form von Modell-Zählwerten zi' und Modell-Belegungswerten bi', welche nun mit den real vom Fahrzeugdetektor 30 in den jeweiligen Zeitintervallen i erzeugten Messdaten zi bzw. bi verglichen werden.By means of the traffic model VM, the movements of model vehicles of the incoming model traffic flow z are now simulated to 'along a model road route, which generate model measurement data z i ' or b i 'when passing a model measurement cross section and which by a Departure light signal controlled model exit cross section. At this point In the traffic model VM, the real signal cycles of the signal time schedule SP 2 of the traffic light control system 20 controlling the outflow enter. Such traffic models VM are known to those skilled in the art. In addition to macroscopic traffic models, microscopic traffic models aimed at tracking individual model vehicles are in use here. As a result, the traffic model VM provides model measurement data in the form of model counts z i 'and model occupancy values b i ', which are now compared to the measurement data z i and b i actually generated by the vehicle detector 30 in the respective time intervals i.

Als Abstandsmaß di wird der euklidische Abstand zwischen den entsprechenden realen und Modell-generierten Punkten im Fundamentaldiagramm herangezogen, in welchem für jedes Zeitintervall i die Verkehrsstärke q in Fahrzeugen pro Stunde über den Belegungsgrad b in Prozent aufgetragen ist. Das Abstandsmaß ergibt sich nun wie folgt: d i = q i - q i ʹ 2 + b i - b i ʹ 2

Figure imgb0001
The distance measure d i used is the Euclidean distance between the corresponding real and model-generated points in the fundamental diagram, in which for each time interval i the traffic volume q in vehicles per hour is plotted over the occupancy rate b in percent. The distance measure is now as follows: d i = q i - q i ' 2 + b i - b i ' 2
Figure imgb0001

Daraus wird nun ein Mittelwert d aus sämtlichen Abstandsmaßen di für einen Untersuchungszeitraum mit N Zeitintervallen gebildet: d = 1 N i = 1 N d i

Figure imgb0002
From this, an average value d is calculated from all the distance measures d i for an examination period with N time intervals: d = 1 N Σ i = 1 N d i
Figure imgb0002

Der Mittelwert d der Abstandsmaße di wird nun mit einem Schwellenwert D verglichen. Solange der Mittelwert d den Schwellenwert D überschreitet, wird unter Verwendung genetischer Algorithmen GA das Pulkprofil p' angepasst und mittels des Verkehrsmodells VM solange neue Modell-Messdaten zi' bzw. bi' erzeugt, bis der Mittelwert d der Abstandsmaße di den Schwellenwert D erreicht oder unterschreitet. Das Iterationsverfahren kann auch abgebrochen werden, wenn eine vorgebbare Laufzeit überschritten wird oder wenn sich der Mittelwert d nur noch um kleine Werte änderte. In diesem Fall wurde der optimierte Modell-Verkehrsstrom zzu' ermittelt, der die realen Messdaten zi bzw. bi am besten nachbildet.The mean value d of the distance measures d i is now compared with a threshold value D. As long as the mean value d exceeds the threshold value D, the pulse profile p 'is adapted using genetic algorithms GA and new model measurement data z i ' or b i 'is generated by means of the traffic model VM until the mean value d of the distance measures d i reaches the threshold value D reaches or falls below. The iteration procedure can also be aborted if a predefined runtime is exceeded or if the mean value d only changed by small values. In this case, the optimized model traffic flow z to 'was determined, which best simulates the real measured data z i or b i .

Erfindungsgemäß wird nun davon ausgegangen, dass eine gute Übereinstimmung zwischen den erzeugten Modell-Messdaten zi' bzw. bi' und den entsprechenden vom Fahrzeugdetektor 30 erfassten Messdaten zi bzw. bi vorliegt, so dass die Verkehrsinformationen VI aus dem simulierten Modell-Verkehrsfluss, der sich aus dem optimierten Modell-Verkehrsstrom zzu' ergibt, ermittelt werden können. Durch statistische Auswertung SA der Modell-Fahrzeugbewegungen des optimierten zufließenden Modell-Verkehrsstroms zzu' werden beispielsweise Bewegungslinien, Halte und Wartezeiten der Modell-Fahrzeuge ermittelt. Des Weiteren wird ein Qualitätskennwert für die Straßenstrecke S12 berechnet. Außerdem kann die optimale Koordinierung zwischen den Lichtsignalanlagen 10 bzw. 20 am Ausfahrtquerschnitt 2 bzw. Einfahrtquerschnitt 1 ermittelt werden.According to the invention, it is now assumed that there is a good correspondence between the generated model measured data z i 'or b i ' and the corresponding measured data z i or b i detected by the vehicle detector 30, so that the traffic information VI can be obtained from the simulated model. Traffic flow, which results from the optimized model traffic flow z to 'can be determined. By statistical evaluation SA of the model vehicle movements of the optimized incoming model traffic flow z to ', for example, movement lines, stops and waiting times of the model vehicles are determined. Furthermore, a quality characteristic value for the road S 12 is calculated. In addition, the optimal coordination between the traffic signal systems 10 and 20 at the exit section 2 or entrance cross section 1 can be determined.

Hierzu zeigt FIG 7 ein Diagramm, wie sich der Mittelwert d der Abstandsmaße di in Abhängigkeit der Veränderung der Versatzzeit zwischen den Signalzeitenplänen SP1 uns SP2 verändert. Bei dem fiktiven Beispiel wird von einer gegebenen Koordinierung von 60 s Versatzzeit ausgegangen. In der Simulation mittels des Verkehrsmodells VM wurde die Koordinierung über einen Umlauf in Schritten von 10 s variiert, wobei man ein deutliches Minimum des Abstandmittelwertes d bei einem im Verkehrsmodell VM modellierten Versatz von 60 s erkennt. Dies zeigt die mit dem erfindungsgemäßen Verfahren erreichbare Sensitivität für die Koordinierung schon bei einem relativ kurzen Zeitraum von weniger als einer Stunde.This shows FIG. 7 a diagram of how the mean d of the distance measures d i changes as a function of the change in the offset time between the signal time schedules SP 1 us SP 2 . The fictitious example assumes a given coordination of 60 s offset time. In the simulation by means of the traffic model VM, the coordination was varied over one revolution in steps of 10 s, whereby a clear minimum of the mean distance d at an offset of 60 s modeled in the traffic model VM is recognized. This shows the sensitivity for the coordination achievable with the method according to the invention even with a relatively short period of time of less than one hour.

Claims (21)

  1. Method for ascertaining traffic information (VI) for a section of road (s12) in a road network, wherein the section of road (s12) has an entry cross-section (1) through which a stream of traffic requesting the section of road (s12) enters, an exit cross-section (2) through which a stream of traffic controlled by means of a set of traffic lights (20) exits, and at least one measurement cross-section (3) which is arranged between the entry cross-section (1) and the exit cross-section (2) and on which a vehicle detector (30) captures measurement data (zi, bi) produced by passing vehicles (F), wherein the flow of traffic along the section of road (s12) is simulated by means of a traffic model (VM), characterized in that an entering model stream of traffic (zin') is taken as a basis for producing model measurement data (zi', bi') which are associated with the measurement data (zi, bi), wherein the entering model stream of traffic (zin') is varied in terms of the temporal distribution of model vehicles entering the model section of road and is optimized in terms of a match between the respectively produced model measurement data (zi', bi') and the corresponding measurement data (zi, bi) captured by the vehicle detector (30), and wherein the traffic information (VI) is ascertained from the simulated model flow of traffic which arises from the optimized model stream of traffic (zin').
  2. Method according to Claim 1, wherein, over an examination period (T) which is divided into time intervals (i), a count (zi) for detected vehicles (F) per time interval (i) and an engagement value (bi) for the vehicle detector (30) per time interval (i) are captured as measurement data, wherein counts and engagement values (zi, bi) are ascertained from raw data from the vehicle detector (30).
  3. Method according to Claim 1 or 2, wherein the entering model stream of traffic (zin') is respectively referenced to a cycle time for a signal schedule (SP1) running in a set of traffic lights (10) which controls the entering stream of traffic.
  4. Method according to Claim 3, wherein the measurement data (zi, bi) captured during the time intervals (i) in the examination period (T) are associated with the individual signal cycles of the signal schedule (SP1) as appropriate.
  5. Method according to Claim 4, wherein the model stream of traffic (Zin' entering during a cycle time is formed by multiplying the sum of the counts (zi) of detected vehicles (F) that are associated with the cycle by a normalized group profile (p') which indicates a temporal distribution of vehicle components of an entering vehicle group within a cycle time, wherein the entering model stream of traffic (zin') is varied by varying the underlying group profile (p').
  6. Method according to Claim 5, wherein the formation of the model stream of traffic (Zin' entering in the examination period (T) involves the same group profile (p') being taken as a basis for each cycle time.
  7. Method according to one of Claims 1 to 6, wherein the flow of traffic is simulated by reproducing movements by model vehicles in an entering model stream of traffic (zin') along a model section of road which produce the model measurement data (zi', bi') when passing through a model measurement cross-section and which exit through a model exit cross-section which is controlled by traffic lights.
  8. Method according to Claim 7, wherein the entering model stream of traffic (zin') is formed from model vehicles in various vehicle classes, each with an average vehicle length, wherein a composition for the model stream of traffic (zin') from vehicle classes and the average vehicle lengths thereof are prescribed or varied.
  9. Method according to one of Claims 3 to 8, wherein the repeating cycle time or a series of changing cycle times for the signal schedule (SP1) running in the set of traffic lights (10) which controls the entering stream of traffic is varied, wherein the captured measurement data (zi, bi) are associated with the repeating cycle time or with the changing cycle times as appropriate.
  10. Method according to one of Claims 1 to 9, wherein for at least one portion of the time intervals (i) a distance (di) between the respectively produced model measurement data (zi', bi') and the corresponding measurement data (zi, bi) captured by the vehicle detector (30) is calculated and the entering model stream of traffic (zin') is optimized by minimizing a mean value (d) of the distances for the portion of the time intervals (i) in the examination period (T).
  11. Method according to one of Claims 5 to 10, wherein the group profile (p') on which the entering model stream of traffic (zin') is based is varied by applying genetic algorithms.
  12. Method according to one of Claims 1 to 11, wherein for each variant of the entering model stream of traffic (zin') a measure of quality which conveys the degree of the match between the model measurement data (zi', bi') produced by said model stream of traffic and the corresponding measurement data (zi, bi) captured by the vehicle detector (30) is ascertained, wherein a bandwidth of possible variation parameters is determined from the variants which exceed a prescribed threshold for the measure of quality.
  13. Method according to one of Claims 1 to 12, wherein lines of movement and/or halt and/or waiting times for the model vehicles are ascertained from the optimized entering model stream of traffic (zin') by statistically evaluating (AW) the model vehicle movements as traffic information (VI).
  14. Method according to Claim 13, wherein the traffic information (VI) calculated is a quality parameter for the section of road (s12).
  15. Method according to Claim 13 or 14, wherein optimum coordination of the set of traffic lights (20) on the exit cross-section (2) with the set of traffic lights (10) on the entry cross-section (1) is ascertained.
  16. Method according to Claim 15, wherein a discrepancy between current coordination and the optimum coordination of the sets of traffic lights (10, 20) is determined.
  17. Method according to one of Claims 13 to 16, wherein halt and/or waiting times and/or coordination discrepancies have threshold values prescribed for them, the exceeding and undershooting of which are established during an analysis period and are reported as a quality analysis when the analysis period has elapsed.
  18. Method according to one of Claims 1 to 17, wherein the section of road has a plurality of lanes, wherein at least one lane has at least one lane-related vehicle detector, wherein the entering model stream of traffic is varied in terms of the temporal distribution of model vehicles entering the respective model lanes on the model section of road and is optimized in terms of a match between the respectively produced model measurement data and the corresponding measurement data captured by the at least one lane-related vehicle detector.
  19. Traffic computer (40) for ascertaining traffic information (VI) for a section of road (s12) in a road network, which traffic computer is provided with a program code which contains control commands which prompt the traffic computer (40) to carry out a method according to one of Claims 1 to 18.
  20. Machine-readable program code for a traffic computer (40) which contains control commands which prompt the traffic computer (40) to carry out a method according to one of Claims 1 to 18.
  21. Storage medium having a machine-readable program code according to Claim 20 stored thereon.
EP09167020A 2009-07-31 2009-07-31 Method for determining traffic information for a section of a road network and traffic calculator to implement the method Not-in-force EP2280383B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09167020A EP2280383B1 (en) 2009-07-31 2009-07-31 Method for determining traffic information for a section of a road network and traffic calculator to implement the method
PL09167020T PL2280383T3 (en) 2009-07-31 2009-07-31 Method for determining traffic information for a section of a road network and traffic calculator to implement the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP09167020A EP2280383B1 (en) 2009-07-31 2009-07-31 Method for determining traffic information for a section of a road network and traffic calculator to implement the method

Publications (2)

Publication Number Publication Date
EP2280383A1 EP2280383A1 (en) 2011-02-02
EP2280383B1 true EP2280383B1 (en) 2012-05-30

Family

ID=41611187

Family Applications (1)

Application Number Title Priority Date Filing Date
EP09167020A Not-in-force EP2280383B1 (en) 2009-07-31 2009-07-31 Method for determining traffic information for a section of a road network and traffic calculator to implement the method

Country Status (2)

Country Link
EP (1) EP2280383B1 (en)
PL (1) PL2280383T3 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931474A (en) * 2016-02-29 2016-09-07 南京航空航天大学 City road intersection group local overflow control method with quantum decision

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011005495A1 (en) * 2011-03-14 2012-09-20 Siemens Aktiengesellschaft Method and control system for traffic flow control
CN103680157B (en) * 2014-01-06 2015-09-16 东南大学 A kind of vehicle queue's overflow pre-judging method towards city bottleneck road
CN103927892B (en) * 2014-04-29 2016-01-13 山东比亚科技有限公司 A kind of method for building up of traffic overflow cooperation control Optimized model and method of work thereof
CN105913666A (en) * 2016-07-11 2016-08-31 东南大学 Optimized layout method for variable speed limit signs on expressway mainline
CN109284527B (en) * 2018-07-26 2022-06-10 福州大学 Method for simulating traffic flow of urban road section
DE102019209279A1 (en) * 2019-06-26 2020-08-13 Continental Automotive Gmbh Method for operating a signaling system and signaling system
CN111199247B (en) * 2019-12-25 2023-11-10 银江技术股份有限公司 Bus operation simulation method
CN112541465A (en) * 2020-12-21 2021-03-23 北京百度网讯科技有限公司 Traffic flow statistical method and device, road side equipment and cloud control platform
CN116543562B (en) * 2023-07-06 2023-11-14 银江技术股份有限公司 Method and device for constructing trunk coordination optimization model

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4106024C1 (en) 1991-02-26 1992-04-02 Siemens Ag, 8000 Muenchen, De
ATE205321T1 (en) * 1996-07-25 2001-09-15 Thomas Dr Riedel METHOD AND DEVICE FOR TRAFFIC CONTROL
DE10108611A1 (en) 2001-02-22 2002-09-05 Daimler Chrysler Ag Simulation and prediction method for individual motor vehicle movement within a road network, by separation of macroscopic modeling from microscopic or individual vehicle modeling
ATE241189T1 (en) 2001-07-11 2003-06-15 Transver Gmbh METHOD FOR DETERMINING A NUMBER OF STEAMS AND FOR DETERMINING BACKLONG LENGTH
EP1480184A3 (en) 2003-05-19 2006-06-07 TransVer GmbH Method for detecting road traffic characteristics at access points
EP1480183A1 (en) 2003-05-19 2004-11-24 TransVer GmbH Method for detecting road traffic characteristics at access points
DE10359977B4 (en) 2003-12-18 2009-02-12 Siemens Ag Method for determining a travel time

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105931474A (en) * 2016-02-29 2016-09-07 南京航空航天大学 City road intersection group local overflow control method with quantum decision

Also Published As

Publication number Publication date
PL2280383T3 (en) 2012-10-31
EP2280383A1 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
EP2280383B1 (en) Method for determining traffic information for a section of a road network and traffic calculator to implement the method
DE19647127C2 (en) Process for automatic traffic monitoring with dynamic analysis
EP3042368B1 (en) Method, evaluation system and vehicle for forecasting at least a traffic jam parameter
EP2048515B1 (en) Method for determining and documenting traffic violations at a traffic light
EP1212738B1 (en) Method for monitoring the condition of traffic for a traffic network comprising effective narrow points
EP0740280A2 (en) Disturbance detection method for road traffic
EP2511892B1 (en) Method for detecting whether a border has been crossed
EP2364494A1 (en) Method for approximating the time curve of traffic data
DE102011018821B4 (en) Method and device for traffic-dependent control of a traffic signal system
WO2003036320A2 (en) Method and device for measuring the speeds of moving objects
DE102008003039A1 (en) Vehicle traffic condition recognizing method for traffic assistance system, involves differentiating traffic jam conditions on basis of measured speed, and recognizing traffic jam condition if another traffic jam condition is not recognized
DE69631629T2 (en) Registration and prediction of traffic obstructions
DE102008021260A1 (en) Method for quality testing of traffic congestion information procedure, involves detecting total quantity of traffic congestion information that is generated by traffic congestion information procedure
DE102011107663B4 (en) Method and device for the dynamic control of a signaling system
DE102008022349A1 (en) Method and device for determining tailback lengths at traffic lights
DE102015209055A1 (en) Method and device for determining signal groups at intersection entrances of an intersection with a traffic signal system for use in driver assistance systems
DE19940957C2 (en) Traffic forecasting method for a traffic network with traffic-regulated network nodes
EP1736932B1 (en) Method and system for determining a distance travelled by a vehicle
EP2161698B1 (en) Method for coordinating light signal-controlled nodes in a street network
EP0042546B1 (en) Speed measuring system, especially for road vehicles
EP1276085B1 (en) Method for determining a traffic jam index and for determining tailback lengths
EP3923027B1 (en) Method for determining an occupancy status of a parking lot and method for determining the occupancy status of a plurality of parking lots along a road
EP0501193B1 (en) Method for the automatic coordination of an independent intersection traffic light control device with one or more neighbouring intersections
DE2207487B2 (en) Device for recording and controlling the flow of traffic on roads
AT412594B (en) METHOD AND SYSTEM FOR DETERMINING TRAFFIC DATA

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

AX Request for extension of the european patent

Extension state: AL BA RS

17P Request for examination filed

Effective date: 20110704

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G08G 1/07 20060101ALI20111130BHEP

Ipc: G08G 1/01 20060101AFI20111130BHEP

Ipc: G08G 1/081 20060101ALI20111130BHEP

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 560375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120615

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502009003664

Country of ref document: DE

Effective date: 20120726

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20120530

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

Effective date: 20120509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120830

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120930

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120831

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20120731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20121001

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130329

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120910

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

26N No opposition filed

Effective date: 20130301

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502009003664

Country of ref document: DE

Effective date: 20130301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120830

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130918

Year of fee payment: 5

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120731

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120530

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090731

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140627

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20140724

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140605

Year of fee payment: 6

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003664

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502009003664

Country of ref document: DE

Effective date: 20150203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 560375

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150731