EP2226403B1 - Method of concentrating nickel in saprolite ore - Google Patents
Method of concentrating nickel in saprolite ore Download PDFInfo
- Publication number
- EP2226403B1 EP2226403B1 EP09814358A EP09814358A EP2226403B1 EP 2226403 B1 EP2226403 B1 EP 2226403B1 EP 09814358 A EP09814358 A EP 09814358A EP 09814358 A EP09814358 A EP 09814358A EP 2226403 B1 EP2226403 B1 EP 2226403B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- ore
- nickel
- processing
- dry
- specific gravity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 title claims description 398
- 229910052759 nickel Inorganic materials 0.000 title claims description 198
- 238000000034 method Methods 0.000 title claims description 79
- 239000002245 particle Substances 0.000 claims description 109
- 238000012545 processing Methods 0.000 claims description 109
- 230000005484 gravity Effects 0.000 claims description 103
- 238000000926 separation method Methods 0.000 claims description 48
- 239000012141 concentrate Substances 0.000 claims description 43
- 238000001035 drying Methods 0.000 claims description 36
- 238000003723 Smelting Methods 0.000 claims description 32
- 239000002994 raw material Substances 0.000 claims description 28
- 229910000863 Ferronickel Inorganic materials 0.000 claims description 27
- 239000002344 surface layer Substances 0.000 claims description 16
- 238000000227 grinding Methods 0.000 claims description 13
- 238000007873 sieving Methods 0.000 description 21
- 238000009826 distribution Methods 0.000 description 16
- 230000007613 environmental effect Effects 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 238000011084 recovery Methods 0.000 description 10
- 230000001965 increasing effect Effects 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- 230000000694 effects Effects 0.000 description 8
- 239000010419 fine particle Substances 0.000 description 8
- 239000000843 powder Substances 0.000 description 8
- 239000000428 dust Substances 0.000 description 7
- 230000002708 enhancing effect Effects 0.000 description 7
- 239000002699 waste material Substances 0.000 description 6
- 239000004568 cement Substances 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- 230000001186 cumulative effect Effects 0.000 description 4
- 230000003247 decreasing effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000011504 laterite Substances 0.000 description 4
- 229910001710 laterite Inorganic materials 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 3
- 229910052598 goethite Inorganic materials 0.000 description 3
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 239000011800 void material Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 2
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 230000018044 dehydration Effects 0.000 description 2
- 238000006297 dehydration reaction Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 241001131796 Botaurus stellaris Species 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000010332 dry classification Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 238000005188 flotation Methods 0.000 description 1
- 239000000295 fuel oil Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000002386 leaching Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- 238000007885 magnetic separation Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000011148 porous material Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011435 rock Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 238000005549 size reduction Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/005—Preliminary treatment of ores, e.g. by roasting or by the Krupp-Renn process
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B1/00—Preliminary treatment of ores or scrap
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B23/00—Obtaining nickel or cobalt
- C22B23/02—Obtaining nickel or cobalt by dry processes
- C22B23/023—Obtaining nickel or cobalt by dry processes with formation of ferro-nickel or ferro-cobalt
Definitions
- the present invention relates to a method for nickel concentration processing of a saprolite ore, for more detail, to a method for nickel concentration processing from a low grade saprolite ore which is not used for ferronickel smelting process, with low cost, simple and convenient, as well as having low environmental load.
- resource amount of a nickel ore, now approaching to a nearly depleted state can be increased, transportation cost and smelting cost can be reduced, and still more prevention of environmental problems can be attained.
- a raw material ore for nickel smelting is largely classified to a sulfide ore and an oxide ore such as a laterite ore.
- the laterite ore is classified to a saprolite ore and limonite ore.
- the saprolite ore has a relatively high nickel content of equal to or higher than 2% by mass, containing magnesia, silica, iron and the like as main composition components, and composed of ores such as a water-containing silicic bittern ore, goethite.
- the limonite ore present at the upper part thereof, having a low nickel content of about 1.5% by mass, and composed of goethite as a main ore.
- ferronickel smelting usually, a saprolite ore containing a large quantity of moisture is subjected to roasting at a high temperature of up to about 900°C, in order to decrease an attached moisture content and a crystal moisture content to a predetermined level, and then the resulting calcinated ore is subjected to reductive dissolution in a melting furnace such as an electric furnace at a temperature of about 1500°C, so as to produce ferronickel with predetermined nickel content satisfying a product standard.
- a melting furnace such as an electric furnace at a temperature of about 1500°C
- a wet-type smelting method such as a sulfuric acid leaching method of a laterite ore, which has been progressing recently, is generally suitable to a limonite ore with low magnesium content, however, on the contrary, it is not necessarily suitable to a saprolite ore with high magnesium content, in view of high acid consumption etc.
- a saprolite ore imported from a mine is usually in a state of having a high moisture content of equal to or higher than 30% by mass, and also a low nickel content of 2 to 2.6% by mass., therefore cost of a raw material ore including transportation cost was increased to a very high level.
- Patent Literature 1 a method for classification performing of a raw material saprolite ore, and still more specific gravity separation by each of the classified portions.
- these methods are wet-type methods, and provide ores with very poor precipitation property and dehydration property, therefore require a large quantity of thickener and a dehydration machine as a facility therefor, and not only increases cost extremely but also requires many labor in environmental preservation such as exhaust water processing, management of a tailing dam. Therefore, a method for concentration of slime using an organic flocculant has also been proposed (refer to Patent Literature 5), however, it requires a large quantity of the flocculant and thus has not led to cost reduction.
- the present inventors have intensively studied a method for nickel concentration processing of a saprolite ore, to attain the above object and found that nickel content can be enhanced to a level to be utilized economically as a raw material of ferronickel smelting, by a low cost, simple and convenient method, as well as having low environmental load, by subjecting a saprolite ore having low nickel content.
- the process consists of a crusher, a dryer, a dry-type attrition processing, and dry-type classification processing and dry-type specific gravity separation processing. Upgraded ore can be obtained by recovering each of the obtained ore portion, having a particle size of equal to or smaller than specific classification point, and ore portion, having a specific gravity of equal to or smaller than specific value.
- a stirring-type dryer or a dry-type Autogeneous mill can be applied for carrying out crushing process, drying process and attrition process at the same time.
- a method for nickel concentration processing of a saprolite ore characterized by including the steps of the following (1) to (4):
- the method for nickel concentration processing of a saprolite ore in the first aspect characterized in that a crushed ore is subjected to a drying processing prior to the dry-type attrition processing, in the step of the above (2).
- the method for nickel concentration processing of a saprolite ore in the first or the second aspect characterized by further including the step of the following (5).
- an ore portion having a particle size of equal to or smaller than the classification point, obtained in the step of the above (3), and an ore portion having a specific gravity of equal to or smaller than 2.0, obtained in the step of the above (4), are mixed to a saprolite ore for a raw material of ferronickel smelting having a free water.
- the method for nickel concentration processing of a saprolite ore in the first aspect characterized by including the step of the following (1') instead of the steps of the above (1) and (2).
- (1') a saprolite ore is subjected to crushing, drying and dry-type attrition processing by using a stirring-type dryer to perform crushing processing, drying processing and dry-type attrition processing at the same time, to adjust the ore particle size to a size passing a sieve with an mesh opening of 50 mm.
- the method for nickel concentration processing of a saprolite ore in the fourth aspect characterized by including the steps of the following (2') to (4') subsequent to the step of the above (1').
- (2') a ground ore obtained in the step of the above (1') is subjected to dry-type classification processing at a classification point to be selected from 2 to 5 mm.
- an ore portion having a particle size of equal to or smaller than said classification point, obtained in the step of the above (2'), is subjected to dry-type classification processing at a classification point to be selected from 0.01 to 2.0 mm, and then an ore portion, having a particle size of equal to or smaller than said classification point, is recovered as a nickel concentrate.
- an ore portion, having a particle size over the classification point, obtained in the step of the above (2') is subjected to dry-type specific gravity separation processing, and then an ore portion, having a specific gravity of equal to or smaller than 2.0, is recovered as a nickel concentrate.
- the method for nickel concentration processing of a saprolite ore in the fifth aspect characterized by further having the step of the following (5').
- an ore portion, having a particle size of equal to or smaller than the classification point, obtained in the step of the above (3'), and an ore portion, having a specific gravity of equal to or smaller than 2.0, obtained in the step of the above (4') are mixed to a saprolite ore for a raw material of ferronickel smelting.
- a seventh aspect of the present invention there is provided the method for nickel concentration processing of a saprolite ore in any one of the first to the sixth aspects, characterized in that the above saprolite ore has a nickel content of 1.8 to 2.3% by mass.
- the method for nickel concentration processing of a saprolite ore according to the present invention is capable of enhancing nickel content of a saprolite ore with low nickel content, which was not conventionally used effectively as a raw material of ferronickel smelting due to having low nickel content, to a level to be utilized economically as a raw material of ferronickel smelting, by a low cost, simple and convenient method, as well as having low environmental load, therefore industrial value thereof is extremely large.
- the first embodiment of the method for nickel concentration processing of the saprolite ore according to the present invention is characterized by including the steps of the following (1) to (4).
- step of the following (5) may be contained:
- an ore after crushing processing obtained in the step of the above (1) is subjected to dry-type attrition processing of the surface layer part, then it is subjected to dry-type classification processing at a predetermined classification point to recover an ore portion having a particle size of equal to or smaller than that classification point, as a nickel concentrate, and still more an ore portion having a particle size over the classification point is subjected to dry-type specific gravity separation processing at a predetermined specific gravity to recover an ore portion having a specific gravity of equal to or smaller than that specific gravity, as a nickel concentrate.
- Table 1 shows investigation results of nickel concentration states (weight distribution rate, increased content (variation difference of nickel content (% by mass), and nickel distribution rate) by each portion of particle size and specific gravity, by measurement of particle size (sieve: 150, 100, 75, 50, 25, 9.5, 1.7, 1.0 and 0.5 mm) and specific gravity (heavy liquid: 2.6, 2.4, 2.2 and 2.0), by sampling 33 saprolite ore samples in total, having low nickel content of equal to or lower than 2.0%, from nickel ores in operation.
- nickel is concentrated in (1) rough particles with low specific gravity, that is, having a particle size width of 25 to 75 mm, and a specific gravity of equal to or smaller than 2.0, and (2) fine particles with middle specific gravity, that is, having a particle size width of equal to or smaller than 1.7 mm, and a specific gravity of 2.0 to 2.4. That is, nickel content of a high specific gravity part of equal to or larger than 2.4 is low, and by removal of this part, ore content can be increased.
- nickel is concentrated, in the rough particle portion, in a range having smaller specific gravity, while in the fine particle portion, in a specific gravity range of 2.0 to 2.2. That is, it was shown that by separation and removal of the ore portion having rough particle size and high specific gravity range, ore content of an ore can be increased.
- an ore of the Moneo mine was crushed with a handheld hammer, and then sieved with a 9.5 mm sieve to determine weight distribution rate, nickel content, and nickel distribution rate, by each particle size classification of minus sieve at that time, and then a portion of plus sieve was subjected to attrition processing by a cement mixer, three times in total for each 5 minutes, and sieving with a 9.5 mm sieve each time to determine cumulative weight distribution rate, cumulative nickel content, and cumulative nickel distribution rate, by each particle size of minus sieve at that time.
- nickel concentration is observed in a saprolite ore, on (a) rough particles with low specific gravity, that is, having a particle size width of 25 to 75 mm, and a specific gravity of equal to or smaller than 2.0, (b) fine particles with middle specific gravity, that is, having a particle size width of equal to or smaller than 1.7 mm, and a specific gravity of 2.0 to 2.4 and (c) particles with a particle size of equal to or smaller than 0.5 mm obtained by these attrition, as for a method for concentration to a nickel content of equal to or higher than 2.0% by mass, which can be processed in ferronickel smelting process of conventional technology, by using, as a raw material, a saprolite ore with low nickel content of equal to higher than 1.8% by mass and below 2.0% by mass, and by concentrating the nickel by the dry-type step including attrition and classification, and still more specific gravity separation, it is important to efficiently separate these particles and particle portions having nickel concentrated.
- Figure 1 is one example of a flow of the method for nickel concentration processing of a saprolite ore according to the present invention.
- a saprolite ore 1 having low nickel content is divided to a minus sieve 5 of ore particle size of equal to or smaller than 50 mm and a plus sieve 4, by crushing 2 and sieving (50 mm) 3.
- the plus sieve 4 is crushed to an ore particle size of equal to or smaller than 50 mm, with a closed-loop crushing system.
- the minus sieve 5 portion is subjected to dry-type attrition 6, and is then divided by sieving (2 mm) 7 at a classification point of 2 mm.
- the obtained minus sieve 9 portion is recovered as a nickel concentrate 14.
- the plus sieve 8 portion is separated to a portion 11 having a high specific gravity of equal to or larger than 2.0, and a portion 12 having low specific gravity, by dry-type specific gravity separation 10.
- the portion 11 having high specific gravity becomes a waste ore 13.
- the portion 12 having low specific gravity is recovered as a nickel concentrate 14.
- the obtained nickel concentrate 14 is mixed with a saprolite ore 15 having high nickel content, for shipping 16.
- the saprolite ore to be used in the above method is not especially limited, however, among various saprolite ores, a saprolite ore having low nickel content is suitable, that is, one having high content of calcium or sodium, relatively low serpentinization of ultramafic rocks, and a nickel content of equal to or lower than 2.3% by mass, in particular, a nickel content of 1.8 to 2.3% by mass. It is natural that also a saprolite ore having a nickel content of over 2.3% by mass can be processed, however, because it can be processed by conventional ferronickel smelting technology, it can be selected, as appropriate, depending on balance between cost of the above method and smelting cost by increase in nickel content.
- the step of the above (1) is a size reduction process to make a feed size of a stirring type dryer, however, mined saprolite ore is usually first classified with using the Grizzly with a mesh opening of 150 mm. An oversize is disposed as muck because of having the content of equal to or lower than a target level, while an undersize portion is handled as a product, and nickel is concentrated at the surface layer thereof.
- the underflow of grizzly can be fed as a feed of a stirring-type dryer directly for drying and attrition process.
- all mined saprolite ore can be fed to the dry type aerogenous mill without a grizzly.
- the step of the above (2) is a step for subjecting a crushed ore obtained in the step of the above (1) to dry-type attrition processing of the surface layer part.
- attrition processing is performed to peel off the surface layer part of particles of saprolite ore, with using a cement mixer or the like.
- the surface layer part of particles of saprolite ore has high void ratio, and is very easily peeled off, therefore attrition is performed by attrition of saprolite ore particles themselves, without requiring a grinding media or the like.
- Attrition is usually performed by stirring of high density pulp in the wet process.
- the attached water is vaporised through the porous surface of ore, so the surface is fractuated with a kind of heat shock, therefore, attrition with a dry process can be achieved easily in the drying process.
- the step of the above (3) is a step for subjecting a attrition in the step of the above (2) to dry-type classification processing at a classification point to be selected from 0.5 to 2.0 mm, and then for recovering an ore portion having a particle size of equal to or smaller than the classification point, as a nickel concentrate.
- a classification point is selected as the most suitable condition depending on an ore.
- the step of the above (4) is a step for subjecting an ore portion having a particle size over the classification point obtained in the step of the above (3), to dry-type specific gravity separation processing, and then for recovering an ore portion having a specific gravity of equal to or smaller than 2.0, as a nickel concentrate. That is, in an ore portion with a particle size over the classification point obtained in the step of the above (3), nickel is concentrated in particles having high void ratio, and apparent specific gravity thereof is as small as equal to or smaller than 2.0. On the other hand, because nickel adsorbed at the surface layer is already removed by attrition, particles with a specific gravity of over 2.0 have a low nickel concentration rate. Here because particles with a specific gravity of over 2.0 have no nickel concentration, they are subjected to waste processing, as muck (tailings).
- a dry-type specific gravity separation apparatus such as a dry-type fluidized bed specific gravity separation apparatus, an air table, a dry-type jig is used preferably. It should be noted that a rough particle portion obtained by attrition has relatively large size and solar drying is also possible, therefore adoption of a wet-type specific gravity separation apparatus, such as a usual jig or heavy liquid ore selection is also possible.
- a specific gravity point of separation becomes lower, as compared with a wet-type specific gravity separation, because of presence of voids in the rough particles, and as the specific gravity point of separation, a specific gravity of 1.6 to 2.0 is used.
- the step of the above (5) is a step for mixing an ore portion having a particle size of equal to or smaller than the classification point obtained in the step of the above (3), and an ore portion having a specific gravity of equal to or smaller than 2.0 obtained in the step of the above (4), to a saprolite ore for a raw material of ferronickel smelting having a free water. That is, a saprolite ore originally contains moisture in an amount of about 20 to 35%, and when moisture is contained, viscosity is high and sieving is difficult, on the other hand, drying of the ore generates powder dust, which generates not only nickel loss contained in fine particles but also a big problem in view of work environment in handling.
- water spraying to suppress powder dust raises a problem of inhibiting an object of decreasing transportation cost and drying cost in smelting, by intentional drying to decrease moisture content.
- an operation system can be performed that an ore of the above nickel concentrated portion is mixed to a saprolite ore having a nickel content of equal to or higher than 2.3% by mass, which is not required to subject to the method of the present invention, to decrease powder dust owing to moisture in the saprolite ore.
- concentration is possible to a nickel content of equal to or higher than 2.3% by mass, which can be processed by a ferronickel smelting process of a conventional technology, by using a saprolite ore having a low nickel content of 1.8 to 2.3% by mass, as a raw material, and by concentration of nickel in attrition and classification, and still more a dry-type step including specific gravity separation.
- a process is attained, which is capable of reducing transportation cost and smelting cost at the same time, and it is also an environmentally benign process with low environmental load, not requiring a tailing dam at a mine site, and no water processing.
- an operation embodiment by transportation after mixing with a saprolite ore having high nickel content, which does not require the method for nickel concentration processing, of the present invention, an operation embodiment can be provided, which is capable of suppressing powder dust generation, which becomes a problem in a dry-type system, enhancing the handling performance and also attaining improvement in view of environmental hygiene.
- a second embodiment of the method for nickel concentration processing of the saprolite ore, of the present invention is characterized by including the step of the following (1') instead of the steps of the above (1) and (2).
- (1') a saprolite ore is subjected to crushing, drying and dry-type attrition processing by using a stirring-type dryer to perform crushing processing, drying processing and dry-type attrition processing at the same time, to adjust the ore particle size to a size passing a sieve with an mesh opening of 50 mm.
- a saprolite ore for example, an ore classified by using the Grizzly with a mesh opening of 150 mm
- a stirring-type dryer which is capable of providing attrition effect by stirring under drying, to adjust the ore particle size to a size passing a sieve with an mesh opening of 50 mm.
- drying of a saprolite ore with hot air or direct fire induces thermal crushing, caused by abrupt expansion of moisture contained in pore clearance, and makes the ore surface layer very brittle. Therefore, in drying of a saprolite ore, with using a stirring-type drier for drying a supplied substance under stirring and heating, crushing, drying and dry-type attrition may be performed at the same time.
- the step of (3) and the step of (4) used in the first embodiment may be carried out subsequent to the step of (1'), however, it is preferable that the steps of the following (2') to (4') are performed subsequent to the step of (1').
- (2') a ground ore obtained in the step of the above (1') is subjected to dry-type classification processing at a classification point to be selected from 2 to 5 mm.
- an ore portion having a particle size of equal to or smaller than the classification point obtained in the step of the above (2'), is subjected to dry-type classification processing at a classification point to be selected from 0.01 to 2.0 mm, and then an ore portion having a particle size of equal to or smaller than the classification point, is recovered as a nickel concentrate.
- an ore portion having a particle size over the classification point obtained in the step of the above (2') is subjected to dry-type specific gravity separation processing, and then an ore portion having a specific gravity of equal to or smaller than 2.0, is recovered as a nickel concentrate.
- a saprolite ore to be used in the above method (the second embodiment) is not especially limited, however, a similar one as in the above method (the first embodiment) is used.
- a undersize portion of the Grizzly is used as a target ore, and particle size of this ore is adjusted so as to be a size passing a sieve with a mesh opening of 50 mm. This plus sieve is crushed to a particle size of ore of equal to or smaller than 50 mm, by a closed circuit crushing system.
- the step of the above (1') is a step for subjecting a saprolite ore to crushing, drying and dry-type attrition processing by using a stirring-type dryer to perform all three processes at the same time, to adjust the ore particle size to a size passing a sieve with an mesh opening of 50 mm.
- a stirring-type dryer to be used in the step of the above (1') is not especially limited, and a drying furnace equipped with a stirring blade, which is capable of strong stirring while drying an ore, a heating-type peripheral discharging-type autogenous mill or a heating-type peripheral discharging-type semi-autogenous mill is used.
- drying temperature is not especially limited, and temperature capable of drying the above saprolite ore is used, however, 600 to 1200°C is preferable. In this way, sufficient attrition effect is obtained, because thermal crushing is performed by abrupt expansion of moisture contained in voids of the saprolite ore, which makes the ore surface layer very brittle.
- the step of the above (2') is a step for subjecting a ground ore obtained in the step of the above (1'), to dry-type classification processing at a classification point to be selected from 2 to 5 mm.
- a classification point is selected as the most suitable condition depending on an ore.
- Dry-type classification processing to be used in the step of the above (2') is not especially limited, however, a sieving method is used.
- the step of the above (3') is a step for subjecting an ore portion having a particle size of equal to or smaller than the classification point, obtained in the step of the above (2'), to dry-type classification processing at a classification point to be selected from 0.01 to 2.0 mm, and then for recovering an ore portion having a particle size of equal to or smaller than the classification point, as a nickel concentrate.
- Dry-type classification processing to be used in the step of the above (3') is not especially limited, however, an air-flow classification method, which is effective in classification of fine powder, is used.
- the step of the above (4') is a step for subjecting an ore portion having a particle size over the classification point, obtained in the step of the above (2'), to dry-type specific gravity separation processing, and then for recovering an ore portion having a specific gravity of equal to or smaller than 2.0, as a nickel concentrate. That is, in an ore portion with a particle size over the classification point, obtained in the step of the above (2'), nickel is concentrated in particles having high void ratio, and apparent specific gravity thereof is as small as equal to or smaller than 2.0, in addition, because nickel adsorbed at the surface layer is already removed by attrition, particles with a specific gravity of over 2.0 have a low nickel concentration rate. Here because particles with a specific gravity of over 2.0 have no nickel concentration, they are subjected to waste processing, as muck (tailings).
- a dry-type specific gravity separation apparatus such as a dry-type fluidized bed specific gravity separation apparatus, an air table, a dry-type jig is used preferably. It should be noted that a rough particle portion obtained by attrition has relatively large size and solar drying is also possible, therefore, adoption of a wet-type specific gravity separation apparatus such as a usual jig or heavy liquid ore selection is also possible.
- a specific gravity point of separation becomes lower, as compared with a wet-type specific gravity separation, because of presence of voids in the rough particles, and as the specific gravity point of separation, a specific gravity of 1.6 to 2.0 is used.
- Figure 3 is one example of a flow of the method for nickel concentration processing of a saprolite ore, of the present invention.
- a saprolite ore 1 having low nickel content is divided to a minus sieve 5 with ore particle size of equal to or smaller than 50 mm, and a plus sieve 4, by crushing, drying and dry-type attrition 17 and sieving (50 mm) 3.
- the plus sieve 4 is crushed to an ore particle size of equal to or smaller than 50 mm, by a closed circuit crushing system.
- the minus sieve portion 5 is divided by sieving (5 mm) 18 at a classification point of 5 mm.
- the plus sieve 19 portion obtained here is separated to a high specific gravity portion 11 of equal to or larger than 2.0, and a low specific gravity portion 12, by dry-type specific gravity separation 10.
- the high specific gravity portion 11 is handled as a waste ore 13.
- the low specific gravity portion 12 is recovered as a nickel concentrate 14.
- a minus sieve 20 portion is divided by air-flow classification 21 again.
- the fine particle portion 22 obtained here is recovered as a nickel concentrate 14.
- the rough particle portion 23 is handled as a waste ore 13.
- the obtained nickel concentrate 14 is mixed with a saprolite ore 15 having high nickel content, for shipping 16.
- concentration is possible to a nickel content of equal to or higher than 2.3% by mass, which can be processed by a ferronickel smelting process of a conventional technology, by using a saprolite ore having a low nickel content of 1.8 to 2.3% by mass, as a raw material, and by concentration of nickel in grinding and classification, and still more a dry-type step including specific gravity separation.
- a process is attained, which is capable of reducing transportation cost and smelting cost at the same time, and it is also an environmentally benign process with low environmental load, not requiring a tailing dam at a mine site, and no water processing.
- an operation embodiment by transportation after mixing with a saprolite ore having high nickel content, which does not require the method for nickel concentration processing, of the present invention, an operation embodiment can be provided, which is capable of suppressing powder dust generation, which becomes a problem in a dry-type system, enhancing the handling performance and also attaining improvement in view of environmental hygiene.
- Nickel concentration processing of a saprolite ore was carried out according to a flow-sheet of Figure 1 .
- mined saprolite ores A to I were crushed to a size of equal to or smaller than 50 mm with a jaw-crusher to enhance handling performance in the subsequent steps.
- attrition was carried out with a cement mixer, on the ore crushed to a size of equal to or smaller than 50 mm, after drying, and subsequently dry-type sieving was carried out at a classification point of 2.0 mm.
- the rough particles thus classified were sent to dry-type specific gravity separation, and separated at a specific gravity of 2.0 with using a dry-type fluidized bed specific gravity separation apparatus. It should be noted that the specific gravity separation was carried out by each particle size, however, sufficient separation was impossible for the particle size with a range of 2.0 to 5.0 mm, due to interaction with a medium forming the fluidized bed.
- nickel recovery rate is about 60%.
- Nickel concentration processing of a saprolite ore was carried out according to a flow-sheet of Figure 3 .
- saprolite ores J and K classified using the Grizzly with a mesh opening of 150 mm were subj ected to dry-type sieving at a classification point of 50 mm, after drying under conditions of a drying temperature of 85°C, a residence time of 20 minutes, and a stirring rotation speed of 175 rpm, with using a dryer equipped with a stirrer (manufactured by NHI Co., Ltd. "Shin-Nihonkai Heavy Industry Co., Ltd.") to prepare an ore with a particle size of equal to or smaller than 50 mm.
- Particle size distribution of the obtained ore is shown in Table 3. It should be noted that measurement of the particle size distribution was carried out by a dry-type Ro-Tap method, and D90 to D10 in this Table represent each particle size of 90% to 10% of cumulative mass distribution rate.
- dry-type sieving was carried out at a classification point of 5.0 mm.
- Rough particulates classified by the dry-type sieving were sent to dry-type specific gravity separation to separate at a specific gravity of 2.0, with using a dry-type fluidized bed specific gravity separation apparatus.
- an ore portion having a specific gravity of less than 1.6 was impossible to separate due to scattering.
- an ore portion having a specific gravity of larger than 2.0 with low nickel concentration degree was eliminated as a muck (tailings).
- an ore portion having a specific gravity of 1.6 to 2.0 was recovered as a nickel concentrate.
- fine particulates classified with a dry-type sieve were further classified with an air-flow classifier at a classification point of 0.75 mm.
- nickel content of the nickel concentrate of each ore increases relative to nickel content of a raw material ore, and the nickel concentrate having the nickel content of equal to or higher than 2.3% by mass, can be recovered in a nickel recovery rate of about 69% or 35%.
- the method for nickel concentration processing of a saprolite ore, of the present invention is capable of enhancing nickel content of a saprolite ore with low nickel content, which was not conventionally used effectively, as a raw material of ferronickel smelting due to having low nickel content, to a level to be utilized economically as a raw material of ferronickel smelting, by a low cost, simple and convenient method, as well as having low environmental load, and adoption of this method is capable of significantly increasing resource amount which is usable as a raw material of ferronickel.
- This method is suitable as a method for nickel concentration processing of a saprolite ore with low nickel content, to be utilized particularly in a ferronickel smelting field.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Geology (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacture And Refinement Of Metals (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2008238904A JP5163387B2 (ja) | 2007-11-13 | 2008-09-18 | サプロライト鉱のニッケル濃縮処理方法 |
PCT/JP2009/058450 WO2010032513A1 (ja) | 2008-09-18 | 2009-04-30 | サプロライト鉱のニッケル濃縮処理方法 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2226403A1 EP2226403A1 (en) | 2010-09-08 |
EP2226403A4 EP2226403A4 (en) | 2010-12-01 |
EP2226403B1 true EP2226403B1 (en) | 2012-06-27 |
Family
ID=42040245
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09814358A Not-in-force EP2226403B1 (en) | 2008-09-18 | 2009-04-30 | Method of concentrating nickel in saprolite ore |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP2226403B1 (ja) |
BR (1) | BRPI0906560B1 (ja) |
WO (1) | WO2010032513A1 (ja) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102014107787A1 (de) * | 2014-06-03 | 2015-12-03 | Thyssenkrupp Ag | Verfahren und Anlage zur Verarbeitung von lateritischem Nickelerz |
JP5975093B2 (ja) | 2014-12-24 | 2016-08-23 | 住友金属鉱山株式会社 | ニッケル酸化鉱の製錬方法 |
JP5958576B1 (ja) * | 2015-02-24 | 2016-08-02 | 住友金属鉱山株式会社 | サプロライト鉱の製錬方法 |
JP6020651B1 (ja) * | 2015-05-12 | 2016-11-02 | 住友金属鉱山株式会社 | 鉱石スラリーの前処理方法、鉱石スラリーの製造方法 |
CN104959219A (zh) * | 2015-06-30 | 2015-10-07 | 广西盛隆冶金有限公司 | 一种红土镍矿的选矿工艺 |
CN106994387B (zh) * | 2017-05-05 | 2020-06-23 | 深圳市中金岭南科技有限公司 | 一种多次分层、分带-筛分的重选方法 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2175484A (en) * | 1936-11-19 | 1939-10-10 | Vanadium Corp Of America | Dry concentration of carnotite ores |
FR2320781A1 (fr) | 1975-08-14 | 1977-03-11 | Nickel Sln Ste Metallurg Le | Procede pour preconcentrer des minerais nickeliferes oxydes d'origine lateritique |
FR2432893A2 (fr) * | 1978-08-11 | 1980-03-07 | Nickel Ste Metallurg Le | Procede pour preconcentrer des minerais nickeliferes oxydes d'origine lateritique |
FR2767142B1 (fr) | 1997-08-06 | 1999-09-17 | Le Nickel Sln | Procede pour enrichir des minerais nickeliferes oxydes |
FR2767143A1 (fr) | 1997-08-06 | 1999-02-12 | Le Nickel Sln | Procede pour diminuer la quantite d'eau contenue dans les pulpes de minerais nickeliferes oxydes |
AU2003903632A0 (en) * | 2003-07-14 | 2003-07-31 | Qni Technology Pty Ltd | Process for recovery of nickel and cobalt by heap leaching of low grade nickel or cobalt containing material |
-
2009
- 2009-04-30 WO PCT/JP2009/058450 patent/WO2010032513A1/ja active Application Filing
- 2009-04-30 BR BRPI0906560A patent/BRPI0906560B1/pt not_active IP Right Cessation
- 2009-04-30 EP EP09814358A patent/EP2226403B1/en not_active Not-in-force
Also Published As
Publication number | Publication date |
---|---|
EP2226403A4 (en) | 2010-12-01 |
EP2226403A1 (en) | 2010-09-08 |
WO2010032513A1 (ja) | 2010-03-25 |
BRPI0906560B1 (pt) | 2017-01-24 |
BRPI0906560A2 (pt) | 2016-08-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2309611C (en) | Method for upgrading iron ore utilizing multiple magnetic separators | |
EP2594345B1 (en) | Soil cleaning method | |
EP2226403B1 (en) | Method of concentrating nickel in saprolite ore | |
Singh et al. | Beneficiation and agglomeration process to utilize low-grade ferruginous manganese ore fines | |
CN103757200B (zh) | 一种红土镍矿分离富集镍铁的方法 | |
CN102029223B (zh) | 用于锌挥发窑窑渣干法磁选回收铁、炭的工艺 | |
Liu et al. | Comparison of different comminution flowsheets in terms of minerals liberation and separation properties | |
JP7273254B2 (ja) | 金属含有材料からの金属回収 | |
CN107385199A (zh) | 一种难选矿磁化焙烧干磨干选工艺 | |
CN1318615C (zh) | 采用挤压床方式在低压下粉碎矿石的方法和设备 | |
US8028939B2 (en) | Method for nickel concentration processing of saprolite ore | |
CN112295703B (zh) | 自然湿度下铁矿石或铁矿石产品的粉碎方法 | |
WO2015081372A2 (en) | Heap leaching | |
JP2019065341A (ja) | ニッケル酸化鉱石の湿式製錬方法 | |
CN102935404B (zh) | 从含钒矿物中干法分级富集v2o5的方法 | |
Arvidson | Processing high-grade concentrates from challenging low-grade iron ore deposits | |
CN111621637A (zh) | 矿物的处理 | |
JP2013019004A (ja) | 酸化ニッケル鉱石のニッケル濃縮方法 | |
CN105964390A (zh) | 一种铜矿废石综合利用方法及系统 | |
Van Der Meer | Feasibility of dry high pressure grinding and classification | |
CN115725804B (zh) | 以钢渣立磨为中心的钢渣二次处理方法 | |
WO2014009769A1 (en) | Method of processing an iron ore containing phosphorus, the iron ore having a gangue | |
JP2019065340A (ja) | ニッケル酸化鉱石の湿式製錬方法 | |
Norgate et al. | Opportunities and technologies to reduce the energy and water impacts of deteriorating ore reserves | |
OA21070A (en) | Heap leaching. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100624 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
A4 | Supplementary search report drawn up and despatched |
Effective date: 20101102 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22B 1/00 20060101ALI20101026BHEP Ipc: B07B 9/00 20060101ALI20101026BHEP Ipc: B07B 1/00 20060101ALI20101026BHEP Ipc: B07B 4/08 20060101ALI20101026BHEP Ipc: C22B 23/00 20060101AFI20100412BHEP |
|
17Q | First examination report despatched |
Effective date: 20110506 |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C22B 1/00 20060101ALI20120209BHEP Ipc: B07B 9/00 20060101ALI20120209BHEP Ipc: B07B 1/00 20060101ALI20120209BHEP Ipc: C22B 23/00 20060101AFI20120209BHEP Ipc: B07B 4/08 20060101ALI20120209BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 564297 Country of ref document: AT Kind code of ref document: T Effective date: 20120715 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602009007940 Country of ref document: DE Effective date: 20120823 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 564297 Country of ref document: AT Kind code of ref document: T Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120928 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121027 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121029 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121008 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130328 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602009007940 Country of ref document: DE Effective date: 20130328 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120927 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131101 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602009007940 Country of ref document: DE Effective date: 20131101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120627 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20090430 Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130430 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220308 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230430 |