EP2220259B9 - Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor - Google Patents
Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor Download PDFInfo
- Publication number
- EP2220259B9 EP2220259B9 EP08864850A EP08864850A EP2220259B9 EP 2220259 B9 EP2220259 B9 EP 2220259B9 EP 08864850 A EP08864850 A EP 08864850A EP 08864850 A EP08864850 A EP 08864850A EP 2220259 B9 EP2220259 B9 EP 2220259B9
- Authority
- EP
- European Patent Office
- Prior art keywords
- oxidation
- coating
- layer
- steel
- carried out
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000831 Steel Inorganic materials 0.000 title claims description 49
- 239000010959 steel Substances 0.000 title claims description 49
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 4
- 238000000576 coating method Methods 0.000 claims description 53
- 230000003647 oxidation Effects 0.000 claims description 44
- 238000007254 oxidation reaction Methods 0.000 claims description 44
- 239000011248 coating agent Substances 0.000 claims description 37
- 229910052725 zinc Inorganic materials 0.000 claims description 19
- 239000011701 zinc Substances 0.000 claims description 19
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 13
- 229910052782 aluminium Inorganic materials 0.000 claims description 11
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 11
- 229910052751 metal Inorganic materials 0.000 claims description 11
- 239000002184 metal Substances 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 11
- 238000003618 dip coating Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 6
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 5
- 239000007800 oxidant agent Substances 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 229910045601 alloy Inorganic materials 0.000 claims description 4
- 239000000956 alloy Substances 0.000 claims description 4
- KFZAUHNPPZCSCR-UHFFFAOYSA-N iron zinc Chemical compound [Fe].[Zn] KFZAUHNPPZCSCR-UHFFFAOYSA-N 0.000 claims description 4
- 238000010791 quenching Methods 0.000 claims description 4
- 150000002739 metals Chemical class 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 2
- 238000005229 chemical vapour deposition Methods 0.000 claims description 2
- 239000004411 aluminium Substances 0.000 claims 5
- 229910001092 metal group alloy Inorganic materials 0.000 claims 4
- 229910000640 Fe alloy Inorganic materials 0.000 claims 1
- 238000004070 electrodeposition Methods 0.000 claims 1
- 239000000463 material Substances 0.000 description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 9
- 238000010438 heat treatment Methods 0.000 description 9
- 238000005275 alloying Methods 0.000 description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N ferric oxide Chemical compound O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 6
- 229960005191 ferric oxide Drugs 0.000 description 6
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 6
- 235000013980 iron oxide Nutrition 0.000 description 6
- 230000009466 transformation Effects 0.000 description 6
- 238000005452 bending Methods 0.000 description 5
- 238000001816 cooling Methods 0.000 description 5
- 238000002149 energy-dispersive X-ray emission spectroscopy Methods 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 4
- 238000005261 decarburization Methods 0.000 description 4
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000001000 micrograph Methods 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 238000009792 diffusion process Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005246 galvanizing Methods 0.000 description 3
- 239000007789 gas Substances 0.000 description 3
- 238000001878 scanning electron micrograph Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 230000001681 protective effect Effects 0.000 description 2
- 239000002436 steel type Substances 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 101100008044 Caenorhabditis elegans cut-1 gene Proteins 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 229910000760 Hardened steel Inorganic materials 0.000 description 1
- CSDREXVUYHZDNP-UHFFFAOYSA-N alumanylidynesilicon Chemical compound [Al].[Si] CSDREXVUYHZDNP-UHFFFAOYSA-N 0.000 description 1
- 238000005269 aluminizing Methods 0.000 description 1
- FJMNNXLGOUYVHO-UHFFFAOYSA-N aluminum zinc Chemical compound [Al].[Zn] FJMNNXLGOUYVHO-UHFFFAOYSA-N 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000010960 cold rolled steel Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 229910000734 martensite Inorganic materials 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/68—Temporary coatings or embedding materials applied before or during heat treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0478—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing involving a particular surface treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
- C21D9/48—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals deep-drawing sheets
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/261—After-treatment in a gas atmosphere, e.g. inert or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24942—Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
- Y10T428/24983—Hardness
Definitions
- the invention relates to a method for producing hardened components made of hardenable steel and a hardenable steel strip for this purpose.
- Hardenable steels are to be understood below as steels in which a phase transformation of the base material results during the heating and subsequent cooling, the so-called quench hardening from the previous microstructure transformation and optionally during the quench hardening further microstructural transformations results in a material which is significantly harder or higher Has tensile strengths as the starting material.
- press-hardening in which a board made of a hardenable steel material is heated above the so-called austenitizing temperature and placed in a heated state in a mold and formed in this mold and cooled at the same time, whereby on the one hand, the final geometry of the desired component and on the other hand gives the desired hardness or strength. This procedure is widely used.
- a method is known in which a hardened component made of hardenable steel sheet with a cathodic corrosion protection, wherein the component is cold-formed already in a metallic coated state, so that it is 0.5 to 2% smaller than the nominal final dimension of the finished hardened component. Subsequently, this component is heated and placed in a tool which corresponds exactly to the final dimensions of the desired component. Due to the thermal expansion, the coated component has expanded to exactly this final dimension and is held on all sides in the so-called mold and cooled, whereby the hardening is brought about.
- microcracks occur in the steel substrate, regardless of whether a metallic coating is present on the steel substrate or not, especially during hot forming, even of cold preformed but unfinished components.
- micro-cracks occur especially in the areas that are reshaped and especially in the areas with high degrees of deformation. These microcracks are located on the surface and / or in the metallic coating and may partially extend relatively far into the base material. This has the disadvantage that such cracks under load of the component can continue to grow and represent a pre-damage of the component, which can lead to failure under load.
- Metallic coatings on steels have long been known in the form of aluminum, aluminum alloy coatings, particularly aluminum-zinc alloy coatings, zinc coatings and zinc alloy coatings.
- Such coatings have the task of protecting the steel material from corrosion. In the case of aluminum coatings, this is done by what is known as barrier protection, in which the aluminum creates a barrier against the entry of corrosive media.
- Such coatings have hitherto been used in particular for normal-strength steel alloys, in particular for the motor vehicle industry, the construction industry, but also in the household appliance industry.
- They can be applied to the steel material by hot dip coating, PVD or CVD or electrodeposited.
- a process for hot dip coating a strip of high strength steel in which the strip in a continuous furnace in first A reducing atmosphere is heated to a temperature of about 650 ° C. At this temperature, the alloying constituents of the higher-strength steel should diffuse to the surface of the strip in only small amounts.
- the predominantly made of pure iron surface is converted by a very short heat treatment at an overlying temperature of up to 750 ° C in a continuous furnace integrated reaction chamber with an oxidizing atmosphere in an iron oxide layer. This iron oxide layer is intended to prevent diffusion of the alloying constituents to the surface of the strip in a subsequent annealing treatment at a higher temperature in a reducing atmosphere.
- the iron oxide layer is converted into a purer iron layer on which the zinc and / or aluminum is optimally adhered in the hot dip.
- the oxide layer applied by this method should have a maximum thickness of 300 nm. In practice, the layer thickness is usually set to about 150 nm.
- the object of the invention is to provide a method for producing hardened components made of hardenable steel, with which the forming behavior, in particular the hot forming behavior, is improved.
- the invention provides to oxidize a hot or cold rolled steel strip on the surface, then make a metallic coating and for the purpose of producing the component from the corresponding coated sheet - so necessary - to cut a board to heat this board to them by heating austenitize at least partially so that in a subsequent forming and cooling of the board, an at least partially cured microstructure or partially cured component is formed.
- the superficial oxidation of the strip of hardenable steel during the heating for the purpose of Austenit ensues and / or forming and cooling superficially a ductile layer is formed, which can reduce the stresses during forming so well that it no longer comes to microcracking .
- the metallic coating serves to protect against superficial decarburization, although this metallic coating can of course also perform other tasks, such as corrosion protection.
- a protective gas atmosphere can be produced, in particular, a superficial oxidation, for. B. to about 700 ° C in an oxidizing atmosphere, brought about and the further heating under inert gas atmosphere are carried out so that further oxidation and / or decarburization is omitted.
- the oxide layer as in conventional pre-oxidation, largely eliminated for the purpose of galvanizing.
- the oxidation according to the invention is carried out to a far greater extent than the pre-oxidation according to the prior art.
- the prior art pre-oxidation takes place up to a maximum thickness of 300 nm, the oxidation according to the invention to a much greater extent, so that even after a reduction has been carried out, an oxidized layer, preferably at least 300 nm thick, remains.
- the oxidation according to the invention apparently not only superficially creates an iron-oxide layer which, of course, also contains oxides of the alloying elements, it also seems to be the case that the alloying elements are partially oxidized even below this layer.
- a component produced by the process according to the invention shows on the surface between the steel substrate and the coating a thin, in the micrograph FIG. 4 as a whitish layer.
- the most likely cause of this ductile layer is oxidized alloying elements, which were not available in the superficially oxidized phase for the phase transformation during curing or have delayed or obstructed this transformation.
- the exact mechanisms have not yet been elucidated.
- FIG. 1 the method according to the invention is shown with reference to a method sequence, for example for a hot-dip-coated steel strip, in particular a galvanized steel strip of the 22MnB5 type with an overlay Z140.
- a bright steel strip 1 is subjected to oxidation before the hot-dip coating, so that the strip 1 is provided with an oxide layer 2.
- This oxidation is carried out at temperatures between 650 ° and 800 ° C. While for a conventional pre-oxidation, which would be necessary for a hot-dip galvanizing, the oxide layer thickness of 150 nm would be fully sufficient, the oxidation is carried out according to the invention so that the oxide layer thickness is> 300 nm.
- a partial reduction of the oxides at the surface is carried out in the next step, so that a very thin reduced layer 4 is produced, which consists essentially of pure iron. Below this remains a residual oxide layer 3.
- the hot-dip coating is carried out with the coating metal, so that a layer 5 of the coating metal on the residual oxide layer 3 results.
- a layer 5 of the coating metal on the residual oxide layer 3 results.
- Now around the hardened component To achieve the tape 1 is heated to the Austenitmaschinestemperatur and at least partially austenitized, which inter alia alloy the metallic coating 5 and the surface of the belt 1 together.
- the oxide layer 3 is in this case partially or completely consumed by diffusion processes between the band 1 and the metallic coating 5, or is not detectable in the high-temperature treatment.
- the deposition onto the oxide layer can take place without prior reduction or with reduction, if appropriate, however, a pickling is also carried out.
- this light-colored layer 7 The most probable cause of this light-colored layer 7 is that the oxidation carried out before the metallic coating has oxidized the alloying elements necessary for hardening, such as manganese, in the near-surface region and are not available for conversion or hinder conversion. so that the steel strip in the very thin near-surface area this forms ductile layer 7, which is apparently sufficient to compensate for the near-surface stresses so that no deformation and crack propagation occur during forming.
- the advantage of the process is also evident after curing, or can also be detected after curing, if a correspondingly produced or hardened sheet is subjected to a three-point bending test, for example. This can also positively influence the crash behavior.
- Time is measured, the distance from touching the flexural strength value with the sample and the force.
- the force and displacement or a force-bending angle curve are recorded, the angle being calculated from the path.
- the test criterion is the bending angle at the force maximum.
- the ductile layer 7 is located between the hardened substrate and the coating after the hardening reaction.
- the average layer thickness of this layer is greater than 0.3 microns, which layer may be continuous, but need not be completely continuous, to bring about the success of the invention.
- FIG. 6 shows a scanning electron micrograph of a comparative example according to the invention. It can be seen that the zinc content decreases abruptly from about 40% Zn content to below 5% Zn due to the diffusion processes in the direction of the base material martensite.
- the grains of the iron-zinc layer have near the base material only a very low zinc content, these appear in the cross-section whitish Fe-rich layer acts as a ductile intermediate layer between the other laminates.
- FIG. 7 shows an excerpt FIG. 6 with a line-zinc concentration profile from an energy-dispersive X-ray analysis (EDX). It is once again clearly evident that the zinc content decreases in the direction of the base material.
- EDX energy-dispersive X-ray analysis
- FIGS. 4 and 5 each show a cross-section of a hardened steel strip of the invention ( FIG. 4 ) and the prior art ( FIG. 5 ), where clearly the substrate in the cut 1, lying over the converted metallic coating 6 and lying between the ductile layer 7 are visible.
- FIG. 5 shows a layer structure according to the prior art, in which a galvanized strip 101 has a steel substrate 102 made of high-strength steel, on which a zinc-iron layer 103 is applied. A ductile layer is missing.
- the metallic coating can be selected from all common metallic coatings, since it is only a matter of counteracting a decarburization. Therefore, the coatings may be pure aluminum or aluminum-silicon coatings as well as alloy coatings of aluminum and zinc (Galvalume) as well as coatings of zinc or substantially zinc. But other coatings of metals or alloys are suitable if you can experience the high temperatures during curing in the short term.
- the coatings may, for. B. by electroplating or hot dip coating or PVD or CVD method may be applied.
- the oxidation can hereby be brought about conventionally in that the strip passes through a directly heated preheater in which gas burners are used and an increase of the oxidation potential in the atmosphere surrounding the strip can be produced by a change of the gas-air mixture.
- the oxygen potential can be controlled and lead to oxidation of the iron on the strip surface.
- the control is carried out in such a way that an oxidation is achieved which is significantly above the oxidation in the prior art.
- the iron oxide layer formed or an optionally achieved internal oxidation of the steel only superficially or partially reduced.
- oxidation or pre-oxidation is also carried out considerably more than it would be necessary.
- the oxidation strength can be adjusted here in particular by the supply of an oxidizing agent.
- the control of the oxidation can be controlled via the atmosphere, via an oxidant concentration of an optionally added further oxidizing agent, the treatment time, the temperature, the temperature profile and the water vapor content in the furnace chamber.
- Such a treated band as in the Figures 3 and 4 is excellent, and free of microcracks in the steel substrate cold form, heat and press hardening or reshaping but also hot forming and press hardening.
- An advantage of the invention is the provision of a method and a steel strip which make it possible, in a simpler and safer way, to considerably increase the quality of formed and hardened components made of higher-strength steel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Articles (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
Description
Die Erfindung betrifft ein Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl und ein härtbares Stahlband hierfür.The invention relates to a method for producing hardened components made of hardenable steel and a hardenable steel strip for this purpose.
Es ist bekannt, Bauteile aus einem härtbaren Stahl herzustellen und insbesondere gehärtete Bauteile. Unter härtbaren Stählen sollen nachfolgend Stähle verstanden werden, bei denen sich beim Aufheizen eine Phasenumwandlung des Grundmaterials ergibt und bei einer nachfolgenden Abkühlung, der sogenannten Abschreckhärtung aus der vorangegangenen Gefügeumwandlung und gegebenenfalls bei der Abschreckhärtung weiteren Gefügeumwandlungen ein Material ergibt, welches deutlich härter ist bzw. höhere Zugfestigkeiten besitzt als das Ausgangsmaterial.It is known to produce components from a hardenable steel and in particular hardened components. Hardenable steels are to be understood below as steels in which a phase transformation of the base material results during the heating and subsequent cooling, the so-called quench hardening from the previous microstructure transformation and optionally during the quench hardening further microstructural transformations results in a material which is significantly harder or higher Has tensile strengths as the starting material.
Aus der
Aus der
Zudem ist aus der
Bei den vorgenannten Verfahren zum Warmumformen ist von Nachteil, dass - unabhängig davon, ob eine metallische Beschichtung auf dem Stahlsubstrat vorhanden ist oder nicht - insbesondere beim Warmumformen, auch von kalt vorgeformten aber nicht fertig geformten Bauteilen, im Stahlsubstrat Mikrorisse auftreten.It is disadvantageous in the abovementioned methods for hot forming that microcracks occur in the steel substrate, regardless of whether a metallic coating is present on the steel substrate or not, especially during hot forming, even of cold preformed but unfinished components.
Diese Mikrorisse treten insbesondere in den Bereichen auf, die umgeformt werden und insbesondere in den Bereichen mit hohen Umformgraden. Diese Mikrorisse befinden sich an der Oberfläche und/oder in der metallischen Beschichtung und können sich teilweise relativ weit ins Grundmaterial hinein erstrecken. Hierbei ist von Nachteil, dass derartige Risse bei Belastung des Bauteils weiter wachsen können und eine Vorschädigung des Bauteils darstellen, die bei Belastung zum Versagen führen kann.These micro-cracks occur especially in the areas that are reshaped and especially in the areas with high degrees of deformation. These microcracks are located on the surface and / or in the metallic coating and may partially extend relatively far into the base material. This has the disadvantage that such cracks under load of the component can continue to grow and represent a pre-damage of the component, which can lead to failure under load.
Metallische Beschichtungen auf Stählen sind in Form von Aluminium, Aluminiumlegierungsbeschichtungen, insbesondere Aluminium-Zink-Legierungsbeschichtungen, Zinkbeschichtungen und Zinklegierungsbeschichtungen seit langem bekannt.Metallic coatings on steels have long been known in the form of aluminum, aluminum alloy coatings, particularly aluminum-zinc alloy coatings, zinc coatings and zinc alloy coatings.
Derartige Beschichtungen haben die Aufgabe, das Stahlmaterial vor Korrosion zu schützen. Bei Aluminiumbeschichtungen geschieht dies durch einen sogenannten Barriereschutz, bei dem das Aluminium eine Barriere gegen den Zutritt korrosiver Medien schafft.Such coatings have the task of protecting the steel material from corrosion. In the case of aluminum coatings, this is done by what is known as barrier protection, in which the aluminum creates a barrier against the entry of corrosive media.
Bei Zinkbeschichtungen erfolgt der Schutz durch die sogenannte kathodische Wirkung des Zinks.For zinc coatings, protection is provided by the so-called cathodic effect of zinc.
Derartige Beschichtungen wurden bislang insbesondere bei normalfesten Stahllegierungen, insbesondere für den Kraftfahrzeugbau, die Bauindustrie, aber auch in der Hausgeräteindustrie, verwendet.Such coatings have hitherto been used in particular for normal-strength steel alloys, in particular for the motor vehicle industry, the construction industry, but also in the household appliance industry.
Sie können durch Schmelztauchbeschichten, PVD- oder CVD-Verfahren oder galvanisch abgeschieden auf das Stahlmaterial aufgebracht werden.They can be applied to the steel material by hot dip coating, PVD or CVD or electrodeposited.
Durch den Einsatz höherfester Stahlgüten wurde auch versucht, letztere mit derartigen Schmelztauchbeschichtungen zu überziehen.The use of higher-strength steel grades has also tried to coat the latter with such hot-dip coatings.
Aus der
Aufgabe der Erfindung ist es, ein Verfahren zum Herstellen von gehärteten Bauteilen aus härtbarem Stahl zu schaffen, mit welchem das Umformverhalten, insbesondere auch das Warmumformverhalten, verbessert wird.The object of the invention is to provide a method for producing hardened components made of hardenable steel, with which the forming behavior, in particular the hot forming behavior, is improved.
Die Aufgabe wird mit einem Verfahren mit den Merkmalen des Anspruchs 1 gelöst. Vorteilhafte Weiterbildungen sind in Unteransprüchen gekennzeichnet.The object is achieved by a method having the features of
Es ist eine weitere Aufgabe, ein Stahlband zu schaffen, welches eine verbesserte Umformbarkeit, insbesondere Warmumformbarkeit, besitzt.It is another object to provide a steel strip which has improved formability, especially hot workability.
Die Aufgabe wird mit einem Stahlband mit den Merkmalen des Anspruchs 10 gelöst.The object is achieved with a steel strip having the features of
Vorteilhafte Weiterbildungen sind in den hiervon abhängigen Unteransprüchen gekennzeichnet.Advantageous developments are characterized in the dependent claims.
Die Erfindung sieht vor, ein warm oder kalt gewalztes Stahlband oberflächlich zu oxidieren, anschließend eine metallische Beschichtung vorzunehmen und zum Zwecke der Herstellung des Bauteils aus dem dementsprechend beschichteten Blech - so nötig - eine Platine zu schneiden, diese Platine aufzuheizen, um sie durch das Aufheizen zumindest teilweise so zu austenitisieren, dass bei einem nachfolgenden Umformen und Abkühlen der Platine ein zumindest teilgehärtetes Gefüge bzw. teilgehärtetes Bauteil gebildet wird. Überraschenderweise wird durch die oberflächliche Oxidation des Bandes aus dem härtbaren Stahl offenbar während des Aufheizens zum Zwecke des Austenitisierens und/oder beim Umformen und Kühlen oberflächlich eine duktile Schicht gebildet, welche die Spannungen beim Umformen so gut abbauen kann, dass es zu keiner Mikrorissbildung mehr kommt. Die metallische Beschichtung dient hierbei dem Schutz vor einer oberflächlichen Entkohlung, wobei diese metallische Beschichtung selbstverständlich auch andere Aufgaben, wie Korrosionsschutz übernehmen kann.The invention provides to oxidize a hot or cold rolled steel strip on the surface, then make a metallic coating and for the purpose of producing the component from the corresponding coated sheet - so necessary - to cut a board to heat this board to them by heating austenitize at least partially so that in a subsequent forming and cooling of the board, an at least partially cured microstructure or partially cured component is formed. Surprisingly, the superficial oxidation of the strip of hardenable steel during the heating for the purpose of Austenitisierens and / or forming and cooling superficially a ductile layer is formed, which can reduce the stresses during forming so well that it no longer comes to microcracking , The metallic coating serves to protect against superficial decarburization, although this metallic coating can of course also perform other tasks, such as corrosion protection.
Anstelle einer metallischen Beschichtung kann während des Aufheizens zum Zwecke der Austenitisierung auch eine Schutzgasatmosphäre hergestellt werden, insbesondere kann eine oberflächliche Oxidation, z. B. bis etwa 700°C in oxidierender Atmosphäre, herbeigeführt werden und die weitere Aufheizung unter Inertgasatmosphäre so durchgeführt werden, dass eine weitere Oxidation und/oder Entkohlung unterbleibt.Instead of a metallic coating, during the heating for the purpose of austenitizing also a protective gas atmosphere can be produced, in particular, a superficial oxidation, for. B. to about 700 ° C in an oxidizing atmosphere, brought about and the further heating under inert gas atmosphere are carried out so that further oxidation and / or decarburization is omitted.
Sollte es notwendig sein, kann die Oxidation des Stahlbandes zum Zwecke des Aufbringens der metallischen Beschichtung oberflächlich reduziert werden, um eine reaktive Oberfläche zu erzielen.Should it be necessary, the oxidation of the steel strip for the purpose of applying the metallic coating on the surface be reduced to achieve a reactive surface.
Keinesfalls wird die Oxidschicht jedoch, wie beim herkömmlichen Voroxidieren, zum Zwecke des Verzinkens weitgehend beseitigt. Zudem wird die erfindungsgemäße Oxidation in einem weit größerem Maße durchgeführt, als die Voroxidation nach dem Stand der Technik. Die Voroxidation nach dem Stand der Technik erfolgt bis maximal 300 nm Dicke, die erfindungsgemäße Oxdiation in weit stärkerem Maße, so dass selbst nach einer durchgeführten Reduktion noch eine, vorzugsweise mindestens 300 nm dicke, oxidierte Schicht verbleibt.Under no circumstances, however, is the oxide layer, as in conventional pre-oxidation, largely eliminated for the purpose of galvanizing. In addition, the oxidation according to the invention is carried out to a far greater extent than the pre-oxidation according to the prior art. The prior art pre-oxidation takes place up to a maximum thickness of 300 nm, the oxidation according to the invention to a much greater extent, so that even after a reduction has been carried out, an oxidized layer, preferably at least 300 nm thick, remains.
Durch die erfindungsgemäße Oxidation wird offenbar nicht nur oberflächlich eine Eisen-Oxid-Schicht geschaffen, die selbstverständlich auch Oxide der Legierungselemente enthält, es scheint zudem so zu sein, dass auch unterhalb dieser Schicht die Legierungselemente teilweise oxidiert sind.The oxidation according to the invention apparently not only superficially creates an iron-oxide layer which, of course, also contains oxides of the alloying elements, it also seems to be the case that the alloying elements are partially oxidized even below this layer.
Nach dem Härten zeigt ein nach dem erfindungsgemäßen Verfahren hergestelltes Bauteil an der Oberfläche zwischen dem Stahlsubstrat und der Beschichtung eine dünne, im Schliffbild
Überraschenderweise hat sich herausgestellt, dass eine derartige - für die eigentliche Beschichtung mit einem Überzugsmetall nicht notwendige - Oxidation auch nach der Metallbeschichtung zu einer erhöhten Duktilität des gehärteten Substrats im Oberflächenbereich führt. In überraschender Weise kann mit einer Oxidation, die eine Eisenoxidschicht mit einer Schichtdicke > 300 nm bildet, ein Blech erzielt werden, welches auch beim Warmumformen und bei der Wärmebehandlung zum Zwecke des Härtens, beispielsweise für einen geeigneten Stahl vom Typ 22MnB5 oberhalb 850°C, bzw. der jeweiligen Austenitisierungstemperatur, mikrorissfrei umformbar ist.Surprisingly, it has been found that such oxidation, which is not necessary for the actual coating with a coating metal, leads to increased ductility of the hardened substrate in the surface region, even after the metal coating. In a surprising way can be achieved with an oxidation, which forms an iron oxide layer with a layer thickness> 300 nm, a sheet which also during hot forming and during the heat treatment for the purpose of curing, for example for a suitable steel type 22MnB5 above 850 ° C, or the respective Austenitisierungstemperatur, microcracking is deformable.
Die Erfindung wird anhand einer Zeichnung beispielhaft erläutert, es zeigen dabei:
- Figur 1:
- stark schematisiert den erfindungsgemäßen Verfahrensablauf;
- Figur 2:
- ein Diagramm zeigend die Verbesserung beim Biegewinkel bei der Erfindung gegenüber dem Stand der Technik;
- Figur 3:
- stark schematisiert einen Schichtaufbau nach der Erfindung im Vergleich zum Stand der Technik nach dem Härten;
- Figur 4:
- eine mikroskopische Schliffaufnahme der Oberfläche des erfindungsgemäßen Stahlbandes;
- Figur 5:
- eine mikroskopische Schliffaufnahme eines nicht erfindungsgemäßen Vergleichsbeispiels;
- Figur 6:
- eine rasterelektronische Schliffaufnahme eines erfindungsgemäßen Vergleichsbeispiels;
- Figur 7:
- ein Auschnitt aus der
rasterelektronischen Schliffaufnahme Figur 6 mit einem Linien-Zink-Konzentrationsprofil aus einer energiedispersiven Röntgenanalyse (EDX).
- FIG. 1:
- highly schematic of the process sequence according to the invention;
- FIG. 2:
- a graph showing the improvement in the bending angle in the invention over the prior art;
- FIG. 3:
- strongly schematized a layer structure according to the invention in comparison with the prior art after curing;
- FIG. 4:
- a microscopic micrograph of the surface of the steel strip according to the invention;
- FIG. 5:
- a microscopic micrograph of a comparative example not according to the invention;
- FIG. 6:
- a scanning electron micrograph of a comparative example according to the invention;
- FIG. 7:
- an excerpt from the scanning electron micrograph
FIG. 6 with a line-zinc concentration profile from an energy-dispersive X-ray analysis (EDX).
In
Die in
Ein blankes Stahlband 1 wird vor der Schmelztauchbeschichtung einer Oxidation unterzogen, so dass das Band 1 mit einer Oxidschicht 2 versehen ist.A
Diese Oxidation wird bei Temperaturen zwischen 650° und 800°C durchgeführt. Während für eine herkömmliche Voroxidation, die für eine Feuerverzinkung notwendig wäre, die Oxidschichtdicke mit 150 nm voll ausreichend wäre, wird die Oxidation erfindungsgemäß so durchgeführt, dass die Oxidschichtdicke > 300 nm ist. Um die metallische Schmelztauchbeschichtung, beispielsweise Verzinkung oder Aluminierung, aufzubringen, wird im nächsten Schritt eine teilweise Reduktion der Oxide an der Oberfläche durchgeführt, so dass eine sehr dünne reduzierte Schicht 4 erzeugt wird, die im Wesentlichen aus Reineisen besteht. Hierunter verbleibt eine Restoxidschicht 3.This oxidation is carried out at temperatures between 650 ° and 800 ° C. While for a conventional pre-oxidation, which would be necessary for a hot-dip galvanizing, the oxide layer thickness of 150 nm would be fully sufficient, the oxidation is carried out according to the invention so that the oxide layer thickness is> 300 nm. In order to apply the metallic hot-dip coating, for example galvanizing or aluminizing, a partial reduction of the oxides at the surface is carried out in the next step, so that a very thin reduced layer 4 is produced, which consists essentially of pure iron. Below this remains a
Unter der Oxidschicht 3 besteht durch die Oxidation vermutlich ein Bereich einer "inneren Oxidation" 3a. In diesem Bereich 3a sind offenbar die Legierungselemente teilweise oxidiert bzw. liegen teilweise in oxidierter Form vor.Under the
Nachfolgend erfolgt die Schmelztauchbeschichtung mit dem Überzugsmetall, so dass sich eine Schicht 5 aus dem Überzugsmetall auf der Restoxidschicht 3 ergibt. Um nun das gehärtete Bauteil zu erzielen, wird das Band 1 auf die Austenitisierungstemperatur erhitzt und zumindest teilweise austenitisiert, wodurch sich u. a. die metallische Beschichtung 5 und die Oberfläche des Bandes 1 miteinander legieren. Die Oxidschicht 3 wird hierbei durch Diffusionsvorgänge zwischen dem Band 1 und der metallischen Beschichtung 5 teilweise oder vollständig aufgezehrt, bzw. ist bei der Hochtemperaturbehandlung nicht nachweisbar.Subsequently, the hot-dip coating is carried out with the coating metal, so that a
Bei einer galvanisch aufgebrachten metallischen Beschichtung kann die Abscheidung auf die Oxidschicht ohne vorherige Reduktion oder mit Reduktion erfolgen, gegebenenfalls wird jedoch noch eine Beizung vorgenommen.In the case of a galvanically applied metallic coating, the deposition onto the oxide layer can take place without prior reduction or with reduction, if appropriate, however, a pickling is also carried out.
Um das gehärtete Bauteil oder teilgehärtete Bauteil je nach Austenitisierungsgrad zu erhalten, erfolgt anschließend die Umformung und Abkühlung in einem Werkzeug, wobei sich die Schicht 6 gegebenenfalls den Phasen nach umwandelt und auch eine Phasenumwandlung im Band 1 stattfindet. Nach dem Härten kann zwischen dem Band 1 und der metallischen Beschichtung 6 eine in Schliffbild (
Die wahrscheinlichste Ursache für diese helle Schicht 7 ist offenbar, dass durch die durchgeführte Oxidation vor der metallischen Beschichtung die für die Härtung notwendigen Legierungselemente, wie beispielsweise Mangan, im oberflächennahen Bereich oxidiert wurden und für eine Umwandlung nicht zur Verfügung stehen bzw. eine Umwandlung behindern, so dass das Stahlband in dem sehr dünnen oberflächennahen Bereich diese duktile Schicht 7 ausbildet, die offenbar ausreicht, die oberflächennahen Spannungen so auszugleichen, dass beim Umformen keine Rissbildung und kein Rissfortschritt erfolgen.The most probable cause of this light-
Es wird zudem vermutet, dass hierfür auch der Bereich 3a der "inneren Oxidation" der Legierungselemente von Bedeutung ist.It is also assumed that the
Der Vorteil des Verfahrens zeigt sich auch noch nach dem Härten, bzw. kann auch noch nach dem Härten nachgewiesen werden, wenn ein entsprechend erfindungsgemäß hergestelltes bzw. gehärtetes Blech beispielsweise einem Dreipunkt-Biegeversuch unterzogen wird. Dies kann auch das Crashverhalten positiv beeinflussen.The advantage of the process is also evident after curing, or can also be detected after curing, if a correspondingly produced or hardened sheet is subjected to a three-point bending test, for example. This can also positively influence the crash behavior.
Bei diesem Dreipunkt-Biegeversuch werden zwei Auflager mit einem Durchmesser von 30 mm im Abstand der doppelten Blechdicke angeordnet. Das gehärtete Blech wird aufgelegt und anschließend mit einem Biegeschwert mit Radius 0,2 mm im jeweils gleichen Abstand zu den Auflagern belastet.In this three-point bending test two supports with a diameter of 30 mm are arranged at a distance of twice the sheet thickness. The hardened sheet is placed on top and then loaded with a bending bar with a radius of 0.2 mm at the same distance from the supports.
Gemessen werden die Zeit, der Weg ab Berührung des Biegeschwertes mit der Probe und die Kraft.Time is measured, the distance from touching the flexural strength value with the sample and the force.
Aufgenommen werden Kraft und Weg bzw. eine Kraft-Biege-Winkelkurve, wobei der Winkel aus dem Weg berechnet wird. Das Prüfkriterium ist der Biegewinkel beim Kraftmaximum.The force and displacement or a force-bending angle curve are recorded, the angle being calculated from the path. The test criterion is the bending angle at the force maximum.
Der Vergleich ist in der
Die Erfindung und der Stand der Technik sind auch in
Bei der Erfindung befindet sich zwischen dem gehärteten Substrat und der Beschichtung nach der Härtereaktion die duktile Schicht 7.In the invention, between the hardened substrate and the coating after the hardening reaction, the
Die mittlere Schichtdicke dieser Schicht ist größer als 0,3 µm, wobei die Schicht durchgehend sein kann, aber nicht vollkommen durchgehend sein muss, um den erfindungsgemäßen Erfolg herbeizuführen.The average layer thickness of this layer is greater than 0.3 microns, which layer may be continuous, but need not be completely continuous, to bring about the success of the invention.
Die Körner der Eisen-Zink Schicht weisen nahe dem Grundwerkstoff nur mehr einen sehr geringen Zinkgehalt auf, diese im Schnittbild weißlich erscheinden Fe-reiche Schicht wirkt als duktile Zwischenschicht zwischen den anderen Schichtkörpern.The grains of the iron-zinc layer have near the base material only a very low zinc content, these appear in the cross-section whitish Fe-rich layer acts as a ductile intermediate layer between the other laminates.
Die
Erfindungsgemäß kann der metallische Überzug aus allen gängigen metallischen Überzügen ausgewählt sein, da es lediglich darum geht, einer Entkohlung entgegenzuwirken. Daher können die Beschichtungen reine Aluminium- bzw. Aluminium-Silizium-Beschichtungen als auch Legierungsbeschichtungen aus Aluminium und Zink (Galvalume) als auch Beschichtungen aus Zink oder im Wesentlichen Zink sein. Aber auch andere Überzüge aus Metallen oder Legierungen sind geeignet, wenn sie kurzfristig die hohen Temperaturen bei der Härtung erleiden können.According to the invention, the metallic coating can be selected from all common metallic coatings, since it is only a matter of counteracting a decarburization. Therefore, the coatings may be pure aluminum or aluminum-silicon coatings as well as alloy coatings of aluminum and zinc (Galvalume) as well as coatings of zinc or substantially zinc. But other coatings of metals or alloys are suitable if you can experience the high temperatures during curing in the short term.
Die Beschichtungen können z. B. durch Galvanisieren oder Schmelztauchbeschichten oder PVD- oder CVD-Verfahren aufgebracht sein.The coatings may, for. B. by electroplating or hot dip coating or PVD or CVD method may be applied.
Die Oxidation kann hierbei klassisch dadurch herbeigeführt werden, dass das Band einen direkt beheizten Vorwärmer durchläuft, bei dem Gasbrenner eingesetzt werden und durch eine Veränderung des Gas-Luft-Gemisches eine Erhöhung des Oxidationspotentials in der das Band umgebenden Atmosphäre erzeugt werden kann. Hierdurch kann das Sauerstoffpotential gesteuert werden und zu einer Oxidation des Eisens an der Bandoberfläche führen. Hierbei wird die Steuerung derart durchgeführt, dass eine Oxidation erreicht wird, die deutlich über der Oxidation im Stand der Technik liegt. In einer anschließenden Ofenstrecke wird im Gegensatz zum Stand der Technik die gebildete Eisenoxidschicht bzw. eine gegebenenfalls erzielte innere Oxidation des Stahles nur oberflächlich bzw. teilweise reduziert.The oxidation can hereby be brought about conventionally in that the strip passes through a directly heated preheater in which gas burners are used and an increase of the oxidation potential in the atmosphere surrounding the strip can be produced by a change of the gas-air mixture. As a result, the oxygen potential can be controlled and lead to oxidation of the iron on the strip surface. In this case, the control is carried out in such a way that an oxidation is achieved which is significantly above the oxidation in the prior art. In a subsequent furnace section, in contrast to the prior art, the iron oxide layer formed or an optionally achieved internal oxidation of the steel only superficially or partially reduced.
Darüber hinaus ist es möglich, das Band in einem an sich bekannten RTF-Vorwärmer unter Schutzgasatmosphäre zu glühen, wobei hierbei die Oxidation bzw. Voroxidation ebenfalls erheblich stärker durchgeführt wird, als es an sich notwendig wäre. Die Oxidationsstärke kann hier insbesondere durch die Zufuhr eines Oxidationsmittels eingestellt werden.Moreover, it is possible to anneal the strip in a known RTF preheater under a protective gas atmosphere, wherein in this case the oxidation or pre-oxidation is also carried out considerably more than it would be necessary. The oxidation strength can be adjusted here in particular by the supply of an oxidizing agent.
Darüber hinaus hat sich gezeigt, dass eine Befeuchtung der Ofenatmosphäre, d. h. eine sehr stark wasserdampfhaltige Atmosphäre (stärker als üblich) alleine oder zusammen mit weiteren Oxidationsmitteln den gewünschten Effekt erzielt. Erfindungswesentlich ist, dass die gegebenenfalls nachfolgende Reduktion lediglich so durchgeführt wird, dass eine Restoxidation verbleibt. Bei einer Wärmebehandlung allein mit einer wasserdampfhaltigen Atmosphäre wird der innere Oxidationszustand des Stahls nicht vollständig zurückgeführt.In addition, it has been found that moistening the furnace atmosphere, i. H. a very strong water vapor-containing atmosphere (stronger than usual) alone or together with other oxidizing agents achieved the desired effect. It is essential to the invention that the optionally subsequent reduction is carried out only in such a way that a residual oxidation remains. In a heat treatment alone with a water vapor-containing atmosphere, the internal oxidation state of the steel is not completely returned.
Die Steuerung der Oxidation kann über die Atmosphäre, über eine Oxidationsmittelkonzentration eines gegebenenfalls zugesetzten weiteren Oxidationsmittels, die Behandlungsdauer, die Temperatur, den Temperaturverlauf und den Wasserdampfgehalt im Ofenraum gesteuert werden.The control of the oxidation can be controlled via the atmosphere, via an oxidant concentration of an optionally added further oxidizing agent, the treatment time, the temperature, the temperature profile and the water vapor content in the furnace chamber.
Ein derart behandeltes Band, wie es in den
Dabei hat sich gezeigt, dass die erfindungsgemäße Durchführung der Oxidation - im Gegensatz zur Randentkohlung bei unbeschichtetem Stahlmaterial - keinerlei negativen Einflüsse auf die erzielbare Endfestigkeit des Materials hat.It has been found that the implementation of the invention oxidation - in contrast to the edge decarburization in uncoated Steel material - has no negative effects on the achievable ultimate strength of the material.
Bei der Erfindung ist von Vorteil, dass ein Verfahren und ein Stahlband geschaffen werden, die es in einfacherer und sicherer Weise ermöglichen, die Qualität umgeformter und gehärteter Bauteile aus höherfestem Stahl erheblich zu steigern.An advantage of the invention is the provision of a method and a steel strip which make it possible, in a simpler and safer way, to considerably increase the quality of formed and hardened components made of higher-strength steel.
- 11
- Stahlbandsteel strip
- 22
- Oxidschichtoxide
- 33
- Restoxidschichtresidual oxide layer
- 44
- dünne reduzierte Schichtthin reduced layer
- 55
- metallische Beschichtungmetallic coating
- 66
- metallischen Beschichtungmetallic coating
- 77
- helle, duktile Schichtbright, ductile layer
- 101101
- verzinktes Bandgalvanized band
- 102102
- Stahlsubstratsteel substrate
- 103103
- Zink-Eisen-SchichtZinc-iron layer
Claims (12)
- Method for producing a hardened component from a hardenable steel, wherein the steel strip is subjected to a temperature increase and, in the process, an oxidizing treatment in a furnace, so that a superficial oxide layer is produced, and a coating with a metal or a metal alloy is then carried out, and, in order to produce an at least partially hardened component, the strip is heated and at least partially austenitized and then cooled off and thus hardened, wherein, in order to produce a superficial ductile layer (7), the oxides at the surface are partially reduced prior to the coating with a metal or a metal alloy, so that a very thin reduced layer (4) is produced, which is located on the residual oxide layer (3), wherein an area of an inner oxidation (3a) is located beneath the oxide layer (3) in the strip, in which the steel-alloy elements are present in a partially oxidized form.
- Method according to claim 1, characterised in that a reducing treatment is carried out after producing the superficial oxide layer (3) in order to reverse the oxidation superficially, and a reducing layer (4) is produced on the layer (3), and a coating with a metal or a metal alloy is subsequently carried out, wherein, however, the oxidation and the reduction are carried out such that, after the superficial reduction and the coating, an oxide layer (3) remains between the coating and the steel strip.
- Method according to claim 1 or 2, characterised in that the metallic coating is formed as a hot-dip coating with a molten metal or a molten metal alloy or by electrodeposition of one or more metals on the strip or by PVD and/or CVD methods.
- Method according to any one of the preceding claims, characterised in that the oxidizing treatment is carried out by means of an oxidizing furnace chamber atmosphere and/or a water-vapour containing furnace chamber atmosphere.
- Method according to any one of the preceding claims, characterised in that the degree of oxidation and the oxide layer thickness is adjusted by the content of oxidizing agents in the treatment atmosphere and/or the duration of the treatment and/or the temperature level and/or the water-vapour concentration in the furnace chamber.
- Method according to any one of the preceding claims, characterised in that coating is carried out with aluminium or an alloy substantially containing aluminium, or with an alloy from aluminium and zinc, and/or a different zinc alloy substantially containing zinc, and/or zinc and/or other coating metals.
- Method according to any one of the preceding claims, characterised in that the furnace chamber in which the oxidation and/or reduction is carried out is directly or indirectly heated.
- Method according to any one of the preceding claims, characterised in that the furnace chamber in which the oxidation and/or reduction is carried out is heated by means of gas and/or oil burners and/or convectively, or that the steel strip is heated inductively.
- Method according to any one of the preceding claims, characterised in that the oxidation is carried out such that an oxidation layer thickness of more than 300 nm is achieved at the end of the oxidation, and the subsequent reduction is carried out such that the oxide layer is partially reduced from the surface.
- Steel strip from a hardenable steel, comprising a steel substrate (1) and a metallic coating applied thereon, wherein an oxidation layer (3) of the steel substrate (1) is present in the boundary area in which the metallic coating (5) is formed overlying the steel substrate (1), and a reduction layer (4) is present on the oxidation layer (3).
- Steel strip according to claim 10, characterised in that the metallic coating (5) consists of aluminium or substantially aluminium, an aluminium alloy, an aluminium-zinc-alloy, a zinc alloy substantially containing zinc, a zinc-iron alloy or substantially zinc.
- Use of a steel strip according to any one of the claims 10 to 11 for producing press-hardened components in which the component is cold-formed, austenitized and then quench hardened, or austenitized, formed, and quench hardened.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102007061489A DE102007061489A1 (en) | 2007-12-20 | 2007-12-20 | Process for producing hardened hardenable steel components and hardenable steel strip therefor |
PCT/EP2008/010850 WO2009080292A1 (en) | 2007-12-20 | 2008-12-18 | Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor |
Publications (3)
Publication Number | Publication Date |
---|---|
EP2220259A1 EP2220259A1 (en) | 2010-08-25 |
EP2220259B1 EP2220259B1 (en) | 2012-08-15 |
EP2220259B9 true EP2220259B9 (en) | 2012-12-19 |
Family
ID=40548658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP08864850A Active EP2220259B9 (en) | 2007-12-20 | 2008-12-18 | Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor |
Country Status (11)
Country | Link |
---|---|
US (1) | US9090951B2 (en) |
EP (1) | EP2220259B9 (en) |
JP (1) | JP5776961B2 (en) |
KR (1) | KR20100113492A (en) |
CN (1) | CN101918599B (en) |
BR (1) | BRPI0817353B1 (en) |
CA (1) | CA2705700C (en) |
DE (1) | DE102007061489A1 (en) |
ES (1) | ES2393093T3 (en) |
MX (1) | MX2010005433A (en) |
WO (1) | WO2009080292A1 (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9109275B2 (en) | 2009-08-31 | 2015-08-18 | Nippon Steel & Sumitomo Metal Corporation | High-strength galvanized steel sheet and method of manufacturing the same |
DE102009044861B3 (en) * | 2009-12-10 | 2011-06-22 | ThyssenKrupp Steel Europe AG, 47166 | Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product |
KR101798257B1 (en) * | 2010-02-19 | 2017-11-15 | 타타 스틸 네덜란드 테크날러지 베.뷔. | Strip, sheet or blank suitable for hot forming and process for the production thereof |
US9677145B2 (en) * | 2011-08-12 | 2017-06-13 | GM Global Technology Operations LLC | Pre-diffused Al—Si coatings for use in rapid induction heating of press-hardened steel |
US9988706B2 (en) * | 2012-05-03 | 2018-06-05 | Magna International Inc. | Automotive components formed of sheet metal coated with a non-metallic coating |
WO2014037627A1 (en) | 2012-09-06 | 2014-03-13 | Arcelormittal Investigación Y Desarrollo Sl | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
CN103160764A (en) * | 2013-03-25 | 2013-06-19 | 冷水江钢铁有限责任公司 | Single-side continuous hot zinc-plating method for composite strip steel |
WO2014166630A1 (en) * | 2013-04-10 | 2014-10-16 | Tata Steel Ijmuiden Bv | Product formed by hot forming of metallic coated steel sheet, method to form the product, and steel strip |
JP6470266B2 (en) | 2013-05-17 | 2019-02-13 | エーケー スティール プロパティ−ズ、インク. | Galvanized steel for press hardening and method for producing the same |
CN103320589B (en) * | 2013-06-11 | 2014-11-05 | 鞍钢股份有限公司 | Method for preventing high-nickel steel billet from being oxidized in heating process |
DE102013015032A1 (en) * | 2013-09-02 | 2015-03-05 | Salzgitter Flachstahl Gmbh | Zinc-based corrosion protection coating for steel sheets for producing a component at elevated temperature by press hardening |
JP2017066508A (en) | 2015-10-02 | 2017-04-06 | 株式会社神戸製鋼所 | Galvanized steel sheet for hot press and method of producing hot press formed article |
DE102015016656A1 (en) * | 2015-12-19 | 2017-06-22 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of making a coated hot worked cured body and a body made by the method |
DE102016102324B4 (en) * | 2016-02-10 | 2020-09-17 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel components |
DE102016102344B4 (en) * | 2016-02-10 | 2020-09-24 | Voestalpine Metal Forming Gmbh | Method and device for producing hardened steel components |
GB201611342D0 (en) * | 2016-06-30 | 2016-08-17 | Ge Oil & Gas Uk Ltd | Sacrificial shielding |
DE102017210201A1 (en) * | 2017-06-19 | 2018-12-20 | Thyssenkrupp Ag | Process for producing a steel component provided with a metallic, corrosion-protective coating |
DE102017211753A1 (en) * | 2017-07-10 | 2019-01-10 | Thyssenkrupp Ag | Method for producing a press-hardened component |
JP6740973B2 (en) * | 2017-07-12 | 2020-08-19 | Jfeスチール株式会社 | Method for manufacturing hot-dip galvanized steel sheet |
DE102018217835A1 (en) | 2018-10-18 | 2020-04-23 | Sms Group Gmbh | Process for producing a hot-formable steel flat product |
DE102018222063A1 (en) * | 2018-12-18 | 2020-06-18 | Volkswagen Aktiengesellschaft | Steel substrate for the production of a hot-formed and press-hardened sheet steel component as well as a hot-forming process |
DE102019108459B4 (en) * | 2019-04-01 | 2021-02-18 | Salzgitter Flachstahl Gmbh | Process for the production of a steel strip with improved adhesion of metallic hot-dip coatings |
US20240399439A1 (en) * | 2021-10-29 | 2024-12-05 | Jfe Steel Corporation | Hot pressed member |
WO2023074115A1 (en) * | 2021-10-29 | 2023-05-04 | Jfeスチール株式会社 | Hot-pressed member |
Family Cites Families (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE435527B (en) | 1973-11-06 | 1984-10-01 | Plannja Ab | PROCEDURE FOR PREPARING A PART OF Hardened Steel |
JPH0627315B2 (en) * | 1985-07-01 | 1994-04-13 | 川崎製鉄株式会社 | Method for producing high-strength alloyed hot-dip galvanized steel sheet |
JPH01159318A (en) * | 1987-12-16 | 1989-06-22 | Kawasaki Steel Corp | Production of middle-carbon low-alloy tough steel |
JPH0624860A (en) | 1992-07-09 | 1994-02-01 | Kurosaki Refract Co Ltd | Production of aluminous porous body |
AU723565B2 (en) * | 1996-05-31 | 2000-08-31 | Kawasaki Steel Corporation | Plated steel sheet |
FR2780984B1 (en) | 1998-07-09 | 2001-06-22 | Lorraine Laminage | COATED HOT AND COLD STEEL SHEET HAVING VERY HIGH RESISTANCE AFTER HEAT TREATMENT |
FR2807447B1 (en) * | 2000-04-07 | 2002-10-11 | Usinor | METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET |
EP1288325B1 (en) * | 2000-04-24 | 2014-10-15 | JFE Steel Corporation | Method for production of galvannealed sheet steel |
KR20070026882A (en) * | 2001-06-06 | 2007-03-08 | 신닛뽄세이테쯔 카부시키카이샤 | High strength hot dip galvanized steel and alloyed hot dip galvanized steel with fatigue resistance, corrosion resistance, ductility and plating adhesion at high processing |
FR2828888B1 (en) * | 2001-08-21 | 2003-12-12 | Stein Heurtey | METHOD FOR HOT GALVANIZATION OF HIGH STRENGTH STEEL METAL STRIPS |
JP2003193213A (en) * | 2001-12-21 | 2003-07-09 | Kobe Steel Ltd | Hot dip galvanized steel sheet and galvannealed steel sheet |
US8021497B2 (en) | 2003-07-29 | 2011-09-20 | Voestalpine Stahl Gmbh | Method for producing a hardened steel part |
DE102004059566B3 (en) | 2004-12-09 | 2006-08-03 | Thyssenkrupp Steel Ag | Process for hot dip coating a strip of high strength steel |
CN102260842B (en) * | 2004-12-21 | 2013-12-25 | 株式会社神户制钢所 | Method and facility for hot dip zinc plating |
JP4619404B2 (en) * | 2005-03-30 | 2011-01-26 | 新日本製鐵株式会社 | Hot-rolled steel sheet manufacturing method |
EP1826289A1 (en) * | 2006-02-28 | 2007-08-29 | Ocas N.V. | A steel sheet coated with an aluminium based coating, said sheet having high formability |
JP4972775B2 (en) | 2006-02-28 | 2012-07-11 | Jfeスチール株式会社 | Manufacturing method of high-strength hot-dip galvanized steel sheet with excellent appearance and plating adhesion |
DE102007022174B3 (en) | 2007-05-11 | 2008-09-18 | Voestalpine Stahl Gmbh | Method for creating and removing a temporary protective layer for a cathodic coating |
-
2007
- 2007-12-20 DE DE102007061489A patent/DE102007061489A1/en not_active Withdrawn
-
2008
- 2008-12-18 ES ES08864850T patent/ES2393093T3/en active Active
- 2008-12-18 US US12/809,186 patent/US9090951B2/en active Active
- 2008-12-18 JP JP2010538467A patent/JP5776961B2/en active Active
- 2008-12-18 CA CA2705700A patent/CA2705700C/en active Active
- 2008-12-18 MX MX2010005433A patent/MX2010005433A/en active IP Right Grant
- 2008-12-18 KR KR1020107013840A patent/KR20100113492A/en not_active Application Discontinuation
- 2008-12-18 BR BRPI0817353A patent/BRPI0817353B1/en active IP Right Grant
- 2008-12-18 WO PCT/EP2008/010850 patent/WO2009080292A1/en active Application Filing
- 2008-12-18 EP EP08864850A patent/EP2220259B9/en active Active
- 2008-12-18 CN CN200880121231.0A patent/CN101918599B/en active Active
Also Published As
Publication number | Publication date |
---|---|
DE102007061489A1 (en) | 2009-06-25 |
JP5776961B2 (en) | 2015-09-09 |
CN101918599A (en) | 2010-12-15 |
WO2009080292A1 (en) | 2009-07-02 |
CA2705700A1 (en) | 2009-07-02 |
BRPI0817353A2 (en) | 2015-03-31 |
US20110076477A1 (en) | 2011-03-31 |
EP2220259A1 (en) | 2010-08-25 |
EP2220259B1 (en) | 2012-08-15 |
KR20100113492A (en) | 2010-10-21 |
MX2010005433A (en) | 2010-06-18 |
JP2011508824A (en) | 2011-03-17 |
BRPI0817353B1 (en) | 2017-06-06 |
CA2705700C (en) | 2016-04-26 |
CN101918599B (en) | 2016-06-01 |
US9090951B2 (en) | 2015-07-28 |
ES2393093T3 (en) | 2012-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2220259B9 (en) | Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor | |
EP2656187B1 (en) | Method for producing hardened structural elements | |
EP2553133B1 (en) | Steel, flat steel product, steel component and method for producing a steel component | |
EP3041969B1 (en) | Zinc based corrosion protection coating for steel sheets for manufacturing an article at elevated temperature by press hardening | |
DE102011053939B4 (en) | Method for producing hardened components | |
WO2015036151A1 (en) | Method for producing a steel component having a metal coating protecting it against corrosion, and steel component | |
WO2005021820A1 (en) | Method for producing a hardened profile part | |
AT412878B (en) | Method for production of a hardened profile part from a hardenable steel alloy having cathodic corrosion protection useful in the production of hardened steel sections, e.g. for automobile construction | |
DE102015118869A1 (en) | Method for producing a corrosion protection coating for hardenable steel sheets and corrosion protection layer for hardenable steel sheets | |
EP3250727B2 (en) | Method for producing such a component made of press-form-hardened, aluminum-based coated steel sheet | |
DE102010056265B3 (en) | Preparing cured steel components with coating of zinc or zinc alloy, by coating curable steel material with layer of zinc or zinc alloy, punching plates of curable steel material, and converting zinc coating on steel to zinc-iron coating | |
WO2016078644A1 (en) | Ultra high-strength air-hardening multiphase steel having excellent processing properties, and method for manufacturing a strip of said steel | |
WO2011069906A2 (en) | Method for producing an easily deformable flat steel product, flat steel product, and method for producing a component from such a flat steel product | |
WO2020079200A1 (en) | Method for producing a heat-formable flat steel product | |
EP3303647B1 (en) | Deformation-hardened component made of galvanized steel, production method therefor and method for producing a steel strip suitable for the deformation-hardening of components | |
DE102017002385A1 (en) | Method and body semi-finished for producing a body component for a motor vehicle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20100428 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA MK RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: MANZENREITER, THOMAS Inventor name: KURZ, THOMAS Inventor name: BRANDSTAETTER, WERNER Inventor name: PERUZZI, MARTIN Inventor name: KOLNBERGER, SIEGFRIED Inventor name: STRUTZENBERGER, JOHANN |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20111124 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502008007988 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: C21D0008020000 Ipc: C23C0002280000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: C23C 2/12 20060101ALI20120103BHEP Ipc: C21D 8/02 20060101ALI20120103BHEP Ipc: C23C 2/02 20060101ALI20120103BHEP Ipc: C23C 2/06 20060101ALI20120103BHEP Ipc: C23C 2/28 20060101AFI20120103BHEP Ipc: C21D 1/68 20060101ALI20120103BHEP Ipc: C21D 9/46 20060101ALI20120103BHEP Ipc: C21D 9/48 20060101ALI20120103BHEP |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 570901 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502008007988 Country of ref document: DE Effective date: 20121011 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2393093 Country of ref document: ES Kind code of ref document: T3 Effective date: 20121218 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007988 Country of ref document: DE Representative=s name: NAEFE, JAN ROBERT, DIPL.-ING., DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121215 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121217 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121116 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20130516 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502008007988 Country of ref document: DE Effective date: 20130516 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121218 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121218 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20081218 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 8 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 10 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230515 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: TR Payment date: 20231206 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: ES Payment date: 20240102 Year of fee payment: 16 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20231229 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502008007988 Country of ref document: DE Representative=s name: WSL PATENTANWAELTE PARTNERSCHAFT MBB, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20241227 Year of fee payment: 17 Ref country code: NL Payment date: 20241226 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20241227 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20241226 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20241204 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20241218 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20241227 Year of fee payment: 17 |