WO2014037627A1 - Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured - Google Patents
Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured Download PDFInfo
- Publication number
- WO2014037627A1 WO2014037627A1 PCT/FR2012/000350 FR2012000350W WO2014037627A1 WO 2014037627 A1 WO2014037627 A1 WO 2014037627A1 FR 2012000350 W FR2012000350 W FR 2012000350W WO 2014037627 A1 WO2014037627 A1 WO 2014037627A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- temperature
- sheet
- coating
- steel
- iron
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/32—Ferrous alloys, e.g. steel alloys containing chromium with boron
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0278—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/012—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of aluminium or an aluminium alloy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B15/00—Layered products comprising a layer of metal
- B32B15/01—Layered products comprising a layer of metal all layers being exclusively metallic
- B32B15/013—Layered products comprising a layer of metal all layers being exclusively metallic one layer being formed of an iron alloy or steel, another layer being formed of a metal other than iron or aluminium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/34—Methods of heating
- C21D1/52—Methods of heating with flames
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/62—Quenching devices
- C21D1/673—Quenching devices for die quenching
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D1/00—General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
- C21D1/74—Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
- C21D1/76—Adjusting the composition of the atmosphere
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D3/00—Diffusion processes for extraction of non-metals; Furnaces therefor
- C21D3/02—Extraction of non-metals
- C21D3/04—Decarburising
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0205—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0236—Cold rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0257—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/04—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
- C21D8/0447—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
- C21D8/0457—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/003—Apparatus
- C23C2/0038—Apparatus characterised by the pre-treatment chambers located immediately upstream of the bath or occurring locally before the dipping process
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0222—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating in a reactive atmosphere, e.g. oxidising or reducing atmosphere
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/02—Pretreatment of the material to be coated, e.g. for coating on selected surface areas
- C23C2/022—Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
- C23C2/0224—Two or more thermal pretreatments
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/06—Zinc or cadmium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/04—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
- C23C2/12—Aluminium or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/26—After-treatment
- C23C2/28—Thermal after-treatment, e.g. treatment in oil bath
- C23C2/29—Cooling or quenching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C2/00—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
- C23C2/34—Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
- C23C2/36—Elongated material
- C23C2/40—Plates; Strips
Definitions
- the invention relates to a method of manufacturing parts from pre-coated steel sheets, heated, stamped and hardened during cooling obtained by holding in a press tool; these parts are particularly intended to be used as structural elements in motor vehicles to provide anti-intrusion or energy absorption functions. Such parts can also be used for example for the manufacture of tools or agricultural machinery parts.
- the mechanical properties of the parts thus obtained are evaluated by means of tensile and hardness tests.
- the aforementioned documents thus disclose manufacturing methods for obtaining a mechanical strength (or tensile strength) Rm of 1500 MPa from a steel blank having an initial resistance Rm of 500 MPa before heating and cooling fast.
- WO2009080292 discloses a method for increasing the bending angle of a cured part: according to this method, a steel sheet is heated in an annealing furnace at a temperature between 650 and 800 ° C so as to obtain an oxide layer with a thickness substantially greater than 0.3 micrometers. Some alloying elements of steel are oxidized under this oxide layer. This oxide layer is then partially reduced so that it has a thickness greater than 0.3 micrometers. The extreme surface of the reduced oxide layer consists of pure iron. The sheet is then tempered. After this step, the sheet comprises the following successive layers: the steel substrate comprising oxidized elements in the vicinity of the surface (internal oxidation), this substrate being surmounted by a partially reduced oxide layer, itself surmounted by dip coating. In the subsequent step of austenitizing the blank, and / or during shaping and cooling, a thin ductile layer is formed under the coating, so that the cracks formed during the coating during shaping propagate less easily in this underlying layer.
- the oxide layer that is present at the moment when the sheet is immersed in the coating metal bath may be detrimental to the adhesion of the coating to dipping on this layer.
- a method of manufacture is therefore sought which does not have this drawback and which would make it possible simultaneously to obtain, after hardening by quenching in press, high tensile and folding characteristics.
- the industrial manufacturing conditions inevitably include a certain variability: for example, the temperature cycle during the annealing of the sheet before coating, the composition and / or the dew point of the furnace atmosphere. continuous annealing, may vary slightly during the same production sequence, or vary from one manufacturing campaign to another. Even if the greatest precautions are taken to minimize these variations, it is sought to have a manufacturing method such that the mechanical characteristics, and in particular the folding ability, obtained after hardening by press quenching, are very insensitive to this possible variation of the manufacturing conditions.
- a manufacturing process is sought that leads to good isotropy of the parts after hot stamping, that is to say whose folding ability depends little on the direction of loading relative to the rolling direction of the sheet.
- the present invention aims to solve the problems mentioned above by means of an economical manufacturing process.
- the subject of the invention is a pre-coated rolled sheet for the manufacture of parts hardened by press quenching, composed of a steel substrate for heat treatment containing a carbon content C 0 of between 0.07 and % and 0.5%, this content being expressed by weight, and a metal pre-coating at least on the two main faces of the steel substrate, characterized in that the substrate has a decarburized zone on the surface of each of the two main faces, the depth p 50% of the decarburized zone being between 6 and 30 micrometers, pso being the depth at which the carbon content is equal to 50% of the content C 0 , and in that the sheet does not contains no iron oxide layer between the substrate and the metal pre-coating.
- the depth p 5 o % of the decarburized zone is advantageously between 9 and 30 micrometers, and very advantageously between 12 and 30 micrometers.
- the metal pre-coating of the sheet is aluminum or an aluminum alloy.
- the metal pre-coating is zinc or a zinc alloy.
- the metal pre-coating may preferably be composed of a layer of aluminum or of an aluminum alloy, surmounted by a layer of zinc or a zinc alloy.
- the composition of the steel substrate advantageously comprises the contents being expressed by weight: 0.07% ⁇ C ⁇ 0.5%, 0.5% ⁇ Mn ⁇ 3%, 0.02% ⁇ Si ⁇ 0.5%, 0.01% ⁇ Cr ⁇ 1%, Ti ⁇ 0.2%, Al ⁇ 0.25%, S ⁇ 0.05%, P ⁇ 0.1%, 0.0005% ⁇ B ⁇ 0.010%, optionally 0.0005% ⁇ Ca ⁇ 0.005%, the rest of the composition consisting of iron and unavoidable impurities resulting from the preparation.
- the composition of the steel substrate comprises, the contents being expressed by weight: 0.09% ⁇ C ⁇ 0.38%, 0.8% ⁇ Mn ⁇ 1.5%, 0.1% ⁇ Si ⁇ 0.35%, 0.01% ⁇ Cr ⁇ 0.3%, 0.02% ⁇ Ti ⁇ 0.1%, 0.001% ⁇ Al ⁇ 0.25%, S ⁇ 0.05%, P ⁇ 0, 1%, 0.002% ⁇ B ⁇ 0.005%, optionally 0.0005% ⁇ Ca ⁇ 0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
- the composition of the steel substrate comprises, the content being expressed by weight: 0.15% ⁇ C ⁇ 0.25%
- the subject of the invention is also a process for producing a coated and cured steel part, comprising the successive stages in which a laminated steel sheet for heat treatment is supplied containing a carbon content C 0 between 0.degree. 07% and 0.5%.
- the rolled sheet is annealed so as to obtain at the end of the annealing a decarburization of the surface of the sheet to a depth p 50 % of between 6 and 30 microns, p 5 o% being the depth at which the carbon content is equal to 50% of said content C 0 , and so as to obtain a sheet completely free of iron oxide layer on its surface, then a pre-coating of metal or metal alloy is carried out on said annealed sheet playing the role of substrate.
- the pre-coated sheet is then cut to obtain a blank, then the blank is optionally cold-pressed, and then heated to a temperature T R in an oven so as to at least partially impart an austenitic structure to said steel. .
- the heated blank is extracted from the furnace and transferred to a press or a shaping device, then hot deformed or heat calibrated blank to obtain a coin that is cooled in the press or the shaping device for quenching it with a martensitic or bainitomensitic microstructure.
- the invention also relates to a manufacturing process characterized in that the pre-coating is carried out continuously by dipping by passing through a bath.
- the pre-coating is aluminum or an aluminum alloy.
- the pre-coating is preferably zinc or a zinc alloy.
- the metal pre-coating is composed of a layer of aluminum or an aluminum alloy, surmounted by a layer of zinc or a zinc alloy.
- the depth p 50% is advantageously between 9 and 30 micrometers, preferably between 12 and 30 micrometers
- the invention also relates to a process characterized in that the composition of the steel substrate comprises, the contents being expressed by weight: 0.07% ⁇ C ⁇ 0.5%, 0.5% ⁇ Mn ⁇ 3% , 0.02% ⁇ If ⁇ 0.5%, 0.01% ⁇ Cr ⁇
- the composition of the steel substrate comprises, the contents being expressed by weight: 0.09% ⁇ C ⁇ 0.38%, 0.8% ⁇
- the temperature TR is preferably greater than or equal to the temperature A C 3 of the steel.
- the subject of the invention is also a manufacturing method according to any one of the modes set out above, the annealing conditions of which comprise the following successive stages: after having supplied the rolled steel sheet, the parcel is preheated in a a radiant tube furnace, or a resistance furnace, or an induction furnace, or an oven combining at least two of these means, the rolled sheet to a temperature T1a between 600 ° C and Ac1 + 40 ° C, where Ac1 denotes the austenitic transformation start temperature when heating the steel, in a zone of the furnace where the atmosphere A1 contains from 2 to 15% by volume of hydrogen preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C.
- the sheet of temperature T1a is then heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen. being carried out in the oven from the temperature T1a to obtain, in the furnace section between the temperature T1a and the temperature T2a, an atmosphere A2a with a dew point PR of between -15 ° C. and the temperature Te of the point dew point of the equilibrium Iron / iron oxide, the time interval between the instant when the sheet is at the temperature T1a and the instant when the sheet reaches the temperature T2a, being greater than or equal to 30 seconds.
- the sheet is then maintained at a temperature Tm between T2a and T2a + 40 ° C, under a reducing atmosphere A3 for iron, and then cooled in an atmosphere A4 such that no surface reoxidation of the iron intervenes, up to a temperature T3.
- the sheet is then pre-coated with a dip in a metal bath at the temperature Tbm, with the proviso that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
- the dew point PR of the atmosphere A2a is between -15 and + 17 ° C., very preferably between -15 and -10 ° C.
- the invention also relates to a manufacturing method whose annealing conditions comprise the following successive steps: after supplying the rolled steel sheet, is preheated on parade in a radiant tube furnace, or a resistance furnace, or an induction furnace, or a furnace combining at least two of these means, the rolled sheet to a temperature T1a between 600 ° C and Ac1 + 40 ° C, Ac1 designating the austenitic transformation start temperature to the heating of steel, in an area of the furnace where the atmosphere A1 contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C.
- the sheet of temperature T1a is then heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen. being carried out in the oven from the temperature T1a to obtain, in the furnace section between the temperature T1a and the temperature T2a, an oxidizing atmosphere A2b for the iron, the time interval between the instant when the sheet is at the temperature T1a and the instant when the temperature reaches the temperature T2a, being greater than or equal to 30 seconds.
- the sheet is then maintained at a temperature Tm between T2a and T2a + 40 ° C, under a reducing atmosphere A3 for iron, the complete reduction of the iron layer formed in said atmosphere A2b, occurring at the latest at the end of maintaining the temperature Tm.
- the sheet is then cooled in an atmosphere A4 such that no superficial reoxidation of the iron takes place, up to a temperature T3, and then the sheet is pre-coated by a dipping step in a metal bath at the temperature Tbm, it being understood that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C
- the temperature T1a is greater than Ac1, that is to say the austenitic transformation temperature when heating the steel substrate.
- the subject of the invention is also a manufacturing method whose annealing conditions comprise the following successive stages: after supplying a steel sheet, the laminated sheet is preheated in an oven, the preheating being carried out in a zone of a heated oven with direct flames, the sheet being preheated to a temperature T1b between 550 and 750 ° C in an atmosphere resulting from the combustion of a mixture of air and natural gas whose air / gas ratio is between 1 and 1, 2.
- the sheet of the temperature T1b is heated to a temperature T2b of between 760 and 830 ° C.
- the sheet is maintained at a temperature Tm of between T2b and T2b + 40 ° C., under a reducing atmosphere A3 for iron, and then the sheet is cooled in an atmosphere such that no surface reoxidation takes place, up to a temperature T3.
- Pre-coating of the sheet metal is carried out by dipping in a metal bath at the temperature Tbm, it being understood that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
- the temperature T2b is greater than Ac1.
- FIG. 1 shows the microstructure of a pre-coated steel sheet according to the invention, intended for the manufacture of hardened parts by quenching in a press.
- FIG. 2 schematically illustrates the definition of the depth of the softened area d measured by microhardness under the coating of a hardened part by press quenching.
- FIG. 3 schematically shows the definition for a sheet or a precoated blank, the depth of decarburization of the surface p 5 o% as measured by spectroscopy glow discharge under the pre-coating of the sheet or blank before hardening by press hardening.
- FIG. 4 shows the variation of the critical bending angle a c of a press hardened coated part, as a function of the depth of the surface softened area, which is measured by microhardness under the coating.
- FIG. 5 shows the variation of the critical bending angle a c of a pressed quench-hardened coated part, as a function of the 50% decarburization depth, which is measured on the pre-coated blank before stamping. hot and quenched.
- Figure 6 shows the influence of the dew point in a particular area of the oven during annealing before pre-coating, on the critical angle of folding of the workpiece after hot stamping.
- FIG. 7 shows the influence of the dew point in a particular zone of the oven during annealing before precoating, on the decarburization depth P 50%, the latter parameter being measured on the pre-coated blank before hot stamping and quenching.
- Figure 8 shows the microstructure of the steel under the zinc coating, after hardening by press quenching, for a dew point of -27 ° C.
- Figure 9 also illustrates the microstructure of the steel under the zinc coating, after hardening by press quenching, for a dew point of -7 ° C.
- FIG. 10 illustrates the variation, before hot stamping, of the carbon content of the steel substrate of two pre-coated steel sheets, in the vicinity of their interface with the pre-coating, the annealing of the sheets having been carried out in an A2a atmosphere with a dew point of -27 ° C or -7 ° C.
- FIG. 11 illustrates the variation of the carbon content of two pieces of hot-stamped steel, in the vicinity of the interface with the coating of these parts, the annealing of the sheets used for the manufacture of these parts having been carried out in a A2a atmosphere with a dew point of -27 ° C or -7 ° C.
- the thickness of the steel sheet used in the process according to the invention is preferably between 0.5 and 4 mm, thickness range used in particular in the manufacture of structural parts or reinforcement for the industry. automobile.
- Steel is a steel for heat treatment, that is to say a steel capable of hardening after austenitization and quenching fast cooling.
- the steel contains the following elements, the composition being expressed by weight:
- This element plays a major role in the quenchability and the mechanical strength obtained after cooling after treatment austenitizing. Below a content of 0.07% by weight, the quenchability is reduced and the mechanical strength is insufficient after quenching in press. A content of 0.15% C ensures sufficient quenchability in the most hot deformed areas. Beyond a content of 0.5% by weight, the risk of formation of defects is increased during quenching, particularly for thicker parts. It also becomes difficult to guarantee ductility when folding parts after hardening by press-hardening.
- a carbon content of between 0.09 and 0.38% makes it possible to obtain a resistance Rm of between approximately 1000 and 2050 MPa when the microstructure of the part is totally martensitic.
- manganese in addition to its deoxidizing role, manganese also has a significant effect on quenchability, in particular when its content by weight is greater than 0.5%, and preferably greater than 0.8%. However, it is preferable to limit its addition to 3% by weight, and very preferably to limit it to 1.5% so as to avoid excessive segregation.
- the silicon content of the steel must be between 0.02 and 0.5% by weight, and preferably between 0.1 and 0.35%.
- this element contributes to the hardening of the steel, but its content must be limited, however, to avoid the excessive formation of oxides and not to impair the coating ability by dipping.
- chromium increases the quenchability and contributes to obtaining significant resistance after the hot forming operation. Beyond a content equal to 1% (preferentially 0.3%), the effect of chromium on the homogeneity of the mechanical properties in the part is saturated.
- aluminum is an element promoting the deoxidation and the precipitation of nitrogen. In excessive amounts, coarse aluminates are formed during processing which tend to reduce the ductility, which makes it possible to limit the aluminum content to 0.25% by weight. A minimum content of 0.001% makes it possible to deoxidize the steel in the liquid state during the preparation.
- boron the content of which must be between 0.0005 and 0.010% by weight, and preferably between 0.002 and 0.005% by weight, is an element which plays an important role on the quenchability. Below a 0.0005% content, a sufficient effect on the quenchability is not obtained. The full effect is obtained for a content of 0.002%.
- the maximum boron content must be less than 0.010%, and preferably 0.005%, in order not to degrade the tenacity.
- Titanium has a high affinity for nitrogen. It protects the boron so that this element is in free form to play its full effect on the hardenability. Above 0.2%, however, there is a risk of forming coarse titanium nitrides in the liquid steel which play a detrimental role on toughness. It is preferably between 0.02 and 0.1%.
- the steel can also contain calcium in a quantity between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium makes it possible to avoid the formation of large inclusions which are harmful to the ductility of the sheets or parts thus manufactured.
- the rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
- a preferred steel is 22MnB5 containing 0.20-0.25% C, 1, 1 -1, 35% Mn, 0.15-0.35% Si, 0.02-0.06% AI, 0.02 -0.05% Ti, 0.02-0.25% Cr, 0.002-0.004% B, the balance being iron and unavoidable impurities.
- the inventors first sought the conditions which made it possible to obtain a good folding ability after hardening by press-hardening. This characteristic is measured by subjecting the part to a three-point bending. The workpiece is progressively folded over three-point bending rolls, the applied load being measured simultaneously. The critical bending angle a c is measured during the occurrence of cracks in the workpiece, which is accompanied by an instantaneous decrease in the applied load. Such test conditions are described in DIN VDA 238-100. For a breaking load Rm of the order of 1300-1600 MPa, a critical bending angle greater than 55 ° is required in order to meet the specifications. We even preferentially seek a folding angle critical greater than 60 ° to satisfy more severe conditions of use.
- the inventors have manufactured parts, from blanks of 22MnB5 steel of 1, 2mm thick pre-coated with zinc galvanized-alloyed ("galvannealed"), hot stamped after heating at 880 ° C. and holding for 5 minutes, differing only in the presence of a softened layer of greater or lesser extent located under the coating.
- the method for determining the depth of this softened zone is diagrammatically illustrated in FIG. 2: after hardening by press quenching, the part consists of a heat treatment steel substrate 6, a coating 4 separated from the substrate by the interface 5. Note that this diagram is not intended to reproduce the respective dimensions of the different areas.
- Hardness measurements are made under a very light load (for example Vickers hardness under a load of 50 grams, HV0.05) in the substrate from the interface 5, so as to obtain the curve 7 illustrating the profile of microhardness.
- a very light load for example Vickers hardness under a load of 50 grams, HV0.05
- HV0.05 very light load
- FIG. 4 shows the critical bending angle ⁇ c measured for values of d varying approximately between 30 and 40 microns. For a low softened area depth, hot stamped parts do not meet the requirement at c > 55 °.
- the inventors have demonstrated that it was necessary to determine, not on the part hardened by press quenching, but on the pre-coated sheet or blank before curing, the depth of decarburization, to obtain the desired result.
- the determination method is illustrated in FIG. 3, the diagram of which is not intended to reproduce on a scale the respective dimensions of the different zones: the sheet or the blank consists of a steel substrate 10, a meadow coating 8 separated from the substrate by the interface 9. From this interface is measured by glow discharge spectroscopy (or GDOES, "Glow Discharge Optical Emission Spectrometry technique known in itself) the depth p 50% to which carbon content is equal to 50% of the nominal carbon content C 0 of the substrate 10.
- the concentration profile may exhibit a regular decrease in carbon from the substrate to the interface (profile 1 1) or a
- the latter case represents a localized carbon enrichment in the vicinity of the extreme surface which has no influence in practice on the mechanical properties after hot stamping.
- the depth pso% to be taken into account is beyond this very superficial enrichment, as shown in FIG. 3.
- the inventors have manufactured 22MnB5 sheet of 1, 2mm thick pre-coated zinc galvanized-alloyed ("galvannealed”) differed by the presence of a decarburized layer more or less important under the pre-coating.
- the depth of decarburization p 50% must not be less than 9 microns.
- the decarburization depth p 50% must not be less than 12 micrometers.
- the folding ability is not improved or even slightly decreased when the flexion is exerted in the perpendicular direction. rolling.
- the deviation of the folding ability between the direction parallel to the direction perpendicular to the rolling tends to increase.
- the value of p 50% must be between 6 and 30 microns, preferably between 9 and 30, and very preferably between 12 and 30 microns.
- a steel for heat treatment is first supplied, as indicated above. This may be in the form of hot-rolled or subsequently cold-rolled sheet. After optional degreasing and electrolytic cleaning to obtain a pollution-free surface, a 50% decarburization depth of between 6 and 30 microns can be obtained by the following methods:
- the sheet is subjected to a heat treatment on the parade in a furnace heated by means of radiant tubes (or "RTF", radiant tube furnace), or by resistance, or by induction, or by any combination of these different ways.
- RTF radiant tube furnace
- the furnace comprises several zones (preheating, heating, holding, cooling) where different temperature and / or atmosphere conditions prevail: the sheet is preheated to a temperature T a in an area where the atmosphere (designated A1) contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities in the gas, with a point of dew between -60 and -15 ° C.
- the dew point characterizes the oxidation potential of the atmosphere in question.
- the scrolling sheet then passes into another zone of the furnace where injection is made from a temperature T1a, water in liquid form or in vapor form, or oxygen, or a combination of these. different elements, so as to increase the dew point of the atmosphere.
- the injection must not be carried out at a temperature T1 to less than 600 ° C which would lead to an oxidation of iron at low temperature.
- the injection is carried out at a temperature T1a greater than Ad, austenitic transformation start temperature of the steel heating. Indeed, beyond this temperature, the carbon is in solid solution in the austenite, that is to say in a form more suitable for the decarburizing phenomenon that will occur.
- the injection is carried out preferentially at a temperature T1 a less than or equal to Ac1 + 40 ° C.
- This temperature range greater than Ac1 will be preferred to obtain a decarburization depth p 5 o greater, for example greater than 9 or 12 micrometers.
- a temperature T1 + 40 ° C there is a risk of increasing the austenitic grain size and causing the formation of bainitic and / or martensitic compounds in the steel substrate during cooling following annealing.
- the injection is carried out so that the dew point PR of the atmosphere A2a of this section of the furnace is between -15 ° C and the temperature Te of the dew point of the thermodynamic equilibrium Iron / iron oxide .
- the iron oxide formed may be FeO or Fe3O4.
- This temperature Te can be determined for example from the publication: JANAF Thermomechanical Tables, 3rd Edition, Part II, Journal of Physical and Chemical Reference Data, Volume 14, 1985, Supplement No. 1, published by the American Chemical Society and The American Institute of Physics for the National Bureau of Standards.
- the sheet then leaves the section in which the injection was performed at a temperature T2a of between 720 and 860 ° C. to enter a holding zone at a temperature Tm between T2a and T2a + 40 ° C.
- the time interval between the instant when the sheet is at temperature T1a and the moment when it reaches temperature T2a must be at least 30 seconds in order to obtain a decarburization depth p 50 % between 6 and 30 micrometers.
- the atmosphere in the beginning of the holding zone may be identical to that of the previous zone, that is to say having a dew point between -15 and Te.
- the sheet can then be cooled or maintained at a temperature Tm under an atmosphere A3 containing from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being from nitrogen and unavoidable impurities in the gas, with a dew point between -60 and -15 ° C, these conditions being reducing for iron.
- the following cooling step will be described below.
- T1a temperature between 600 ° C and Ac1 + 40 ° C, preferably greater than Acl
- A2b oxidizing for iron.
- the sheet then leaves the injection section at a temperature T2a between 720 and 860 ° C to enter a holding zone at a holding temperature Tm between T2a and T2a + 40 ° C.
- the time interval between the instant when the sheet is at temperature T1a and the moment when it reaches temperature T2a must be at least 30 seconds in order to obtain a decarburization depth p 50 % between 6 and 30 micrometers.
- the sheet is maintained at the temperature Tm in a reducing atmosphere A3 for the iron, the conditions being chosen in such a way that the complete reduction of the iron oxide layer takes place at the latest at the end of maintaining the temperature Tm.
- the following cooling step will be described below.
- the annealing thermal cycle of the sheet combines different heating means; the preheating step is performed in an area of a direct flame heated furnace (or "DFF"): the sheet is preheated to the parade to a temperature T1b between 550 and 750 ° C in an area where the atmosphere results from the combustion of a mixture of air and natural gas.
- DFF direct flame heated furnace
- the air / gas ratio is between 1 and 1, 2, it being understood that the air-gas combustion in a stoichiometric ratio is 1.
- These preheating conditions lead to the formation of a surface layer of iron oxide of which the thickness is between 0.10 and 0.25 micrometers.
- the sheet At the outlet of this preheating zone by furnace DFF, the sheet enters a second furnace zone heated by radiant tubes (RTF) or by resistance, or by induction, or by any combination of these various means.
- the atmosphere contains 3 to 40% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, the dew point below -30 ° C.
- the sheet is heated to a temperature T2b of between 760 and 830 ° C.
- T2b is greater than Ad, which allows faster decarburization due to the presence of carbon in solid solution in the austenite.
- the time interval between the instant when the sheet is at temperature T1 b and the moment when it reaches temperature T2b must be at least 30 seconds to obtain a decarburization depth p 50% included between 6 and 30 micrometers.
- the parcel sheet then enters a holding zone at a holding temperature Tm between T2b and T2b + 40 ° C.
- the sheet is cooled to a temperature T3 in an atmosphere A4 such that no superficial reoxidation of iron intervenes.
- an atmosphere containing from 2 to 70% by volume of hydrogen may be used, the balance being nitrogen and unavoidable impurities in the gas, with a dew point of between -60 and -30 ° C.
- the sheet which subsequently enters the pre-coating bath is therefore totally free of superficial iron oxide.
- the temperature T3 is close to that of Tbm, temperature of the pre-coating bath, in order to avoid a thermal disturbance of the bath. For this reason, the temperature T3 will be between Tbm-10 ° C and Tbm + 50 ° C.
- the temperature T3 will be between 450 and 510 ° C.
- the temperature T3 will be between 660 and 720 ° C.
- the pre-coating may be aluminum or an aluminum-based alloy.
- the pre-coating preferably manufactured by continuous quenching, is advantageously an aluminum-silicon alloy comprising, by weight, 7-15% of silicon, 3 to 20% of iron, optionally between 15 and 30 ppm of calcium, the rest being aluminum and unavoidable impurities resulting from the elaboration.
- the pre-coating may also be zinc or a zinc alloy. It may be in particular of the type dipped galvanized continuous (“Gl") containing 0.25-0.70% AI, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting of elaboration.
- the pre-coating can also be galvanized-alloy ("GA") containing 0.15-0.4% AI, 6-15% Fe, the balance being zinc and unavoidable impurities resulting from elaboration.
- the precoat may also be a zinc-aluminum-magnesium alloy containing 1-15% Al, 0.5-5% Mg, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting from development.
- This pre-coating may be an alloy containing 4-6% AI, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting from the elaboration.
- the pre-coating may also be an aluminum-zinc alloy containing 40-45% Zn, 3-10% Fe, 1-3% Si, the balance being aluminum and unavoidable impurities resulting from the preparation.
- the pre-coating may also be composed of a superposition of layers: for example, after dipping a layer of aluminum or aluminum alloy, one or more subsequent deposits of zinc or aluminum may be made.
- zinc alloy for example by electrodeposition or by vacuum deposition: PVD (Physical Vapor Deposition) and / or CVD (Chemical Vapor Deposition), these deposition processes being known per se.
- FIG. 1 shows an example of such sheet metal, where the steel substrate 1 comprises a specific surface decarburized area 2 surmounted by a pre-coating 1 galvanized galvanized-alloyed.
- This sheet is then cut to obtain a blank whose geometry is related to the final geometry of the target part.
- it is possible to cold stamp it so as to approach to a greater or lesser degree of the final geometry of the target part.
- it may be supplemented by deformation carried out hot, as will be discussed below.
- This flat or pre-stamped blank is heated to a temperature T R capable of conferring a partially or totally austenitic structure on the steel substrate.
- T R can be between A c i (austenitic steel starting temperature at heating) and A c3 (austenitic end-of-transformation temperature), especially when it is desired to obtain bainitomensitic microstructures after cooling. to the press.
- the temperature TR will be greater than A C 3 if one rather aims a microstructure predominantly martensitic in the final part.
- the heating of the blanks is preferably carried out in an oven under ordinary atmosphere; during this step, the steel of the substrate and the precoat are alloyed.
- pre-coating refers to the alloy before heating, and "coating" the alloy layer formed during heating immediately preceding the hot stamping.
- the furnace heat treatment therefore modifies the nature of the pre-coating and its geometry since the thickness of the final coating is greater than that of the pre-coating.
- the coating formed by alliation protects the underlying steel from oxidation and additional decarburization and is capable of subsequent hot deformation including in a stamping press. Alliation occurs over the entire thickness of the coating.
- one or more intermetallic phases are formed in this alloy layer and / or an alloy in the form of a solid solution. The iron enrichment of the coating leads to a rapid rise in its melting point.
- the formed coatings also have the advantage of being adherent and being adapted to the possible operations of hot shaping and rapid cooling that will follow.
- the blank is kept at the temperature TR to ensure the homogeneity of the temperature within it.
- the holding time at the temperature Ti may vary from 30 seconds to 15 minutes.
- the heated blank is then extracted from the furnace and transferred into a tool, this transfer being effected rapidly so as not to cause transformation of the austenite to cooling.
- the blank is heated in the vicinity of the tooling and then deformed hot without transfer.
- the blank is then hot stamped so as to obtain the final geometry of the part.
- Other modes of hot deformation are also possible, for example a forming between rollers usually referred to as "roll forming".
- the step following the extraction of the blank from the oven can be simply a conformation within a press tooling. In this case, the conformation is characterized by a lower applied force of the tooling on the workpiece and is intended to complete the final geometry of the workpiece and to avoid any deformation during cooling.
- the part is held in the possibly cooled tooling, so as to ensure its efficient cooling by thermal conduction.
- the final microstructure is martensitic or bainitic-martensitic.
- Example 1 A 1.2 mm thick steel sheet was supplied, the composition of which is expressed in weight content (%), the remainder being iron and unavoidable impurities resulting from the preparation:
- the Ac1 temperature of this steel composition is 724 ° C.
- the sheet was preheated on the run in a radiant tube furnace under a nitrogen A1 atmosphere containing 4.7% by volume of hydrogen with a dew point of -31 ° C, up to a temperature T1 of 600 ° C from which a water injection is performed so as to obtain an atmosphere A2a with a dew point PR.
- Various tests were carried out by modifying the flow rate of water injected into the furnace, so as to vary the dew point PR between -27 ° C. (obtained thanks to a relatively small quantity of water injected) and -7 ° C. vs. In all the tests, the sheet was then heated from the temperature T.sub.a to the temperature T2a equal to 780.degree.
- the dew point of the iron / iron oxide equilibrium is + 17 ° C.
- the sheet then enters a zone of the furnace where it is maintained at the temperature Tm of 780 ° C. under an atmosphere A3 containing nitrogen and 7% of hydrogen, reducing for iron.
- the sheet is then cooled by passing through another zone of the furnace under an atmosphere containing 10% of hydrogen to a temperature T3 of 470.degree. C. and pre-quenched by dipping in a bath at a temperature Tm of 462.degree.
- the parts were cooled in press at a speed greater than 30 ° C / s so as to obtain a totally martensitic structure in the steel substrate.
- the tensile strength Rm obtained on the cured parts is typically of the order of 1500 MPa.
- the critical bending angle a c of these pieces was measured by three-point bending test performed with two outer rollers 30 mm in diameter and a central knife of very small radius.
- FIG. 6 shows the variation of the critical angle a c as a function of the dew point PR after water injection from the temperature T1a: when PR is less than -15 ° C., the folding angle obtained has a value less than 55 °, unsatisfactory.
- PR exceeds the temperature Te of + 17 ° C, there is a possible risk of not completely reducing the iron oxide during the subsequent maintenance, thus causing the local appearance of coating defects corresponding to the local presence of oxides superficial not reduced.
- the bending angle varies little according to the dew point: between -15 and -7 ° C, the increase is 0.79 ° per ° C on average while the variation is more important below - 15 ° C (1.05 ° C)
- PR is between -15 and -10 ° C
- Tests have also been carried out by simultaneously varying PR and the temperature T1a, the latter being 720 ° C. (ie Ac1-4 ° C.) or 760 ° C. (Ac1 + 36 ° C.). influence of the temperature T a and the point dew PR on the decarburization depth p 50% before hot stamping, measured by glow discharge spectroscopy: when the dew point is too low, the decarburized depth does not reach the value required by the invention (result found " A "in Figure 7).
- FIG. 10 illustrates the variation, before hot stamping, of the carbon content of the two annealed sheets in an A2a atmosphere with a dew point PR of -27 ° C. or -7 ° C.
- This variation measured by glow discharge spectrometry in the steel substrate, is expressed in FIG. 10 as a function of the depth under the interface between the steel and the precoat.
- the measured local content (C) was referred to the nominal carbon content C 0 so as to obtain the variation of the relative carbon content C / C 0 .
- the hot-stamped parts made from sheets pre-coated zinc or zinc alloy decarburized according to the invention have a particular aptitude for spot resistance welding: indeed, after heating and hot stamping, it is possible to note the presence of a decarburized layer under the coating. It is known that resistance welding leads to a very high local temperature rise since the fusion is reached within the molten core which constitutes the connection between the welded elements. In welded joints made on conventional hot-stamped parts, the austenitic grain boundaries can be weakened by penetration of the zinc coating, which is then liquid because of the rise in temperature during welding. According to the invention, the presence of a zone that is very depleted of carbon under the coating leads to a local increase in the temperature of Ac3 transformation into austenite during heating. Depending on the carbon content, the high temperature structure then consists of ferrite microstructure or a mixture of ferrite and austenite. In the presence of liquid zinc, this microstructure has a lower susceptibility to cracking than the austenitic structure.
- Pre-coated sheets of Zn were made by the method described above, except that they were 1.8 mm thick and were not heated to 540 ° C after coating. soaked, so that their coating is galvanized and not galvanized-alloyed.
- the manufacturing conditions were selected so as to obtain a sheet with a decarburized depth p o 5% to 6 micrometers. These sheets were cut to obtain blanks that were austenitized at a temperature of 880 ° C in a furnace under ordinary atmosphere. After a total residence of up to 10 minutes in the oven, the blanks were extracted, stamped immediately hot and cured in press.
- the following table shows the variation of the critical bending angle a c as a function of the total residence time of the part in the oven.
- the blanks can stay up to 7 minutes in the oven before being hot stamped, while meeting the requirements. This solves the problems encountered on the hot stamping lines, when an incident on the line forced to keep the blanks in the oven longer than expected.
- the invention allows this flexibility, avoiding discarding blanks.
- the increase in residence time leads only to a very small decrease in the bending angle, which indicates that the method according to the invention has great safety guarantees in case of drift compared with the nominal parameters of heat treatment during hot stamping, and provides a high reproducibility of the mechanical characteristics of the parts.
- the invention allows the manufacture of pre-coated sheets and coated parts with very high characteristics of strength and folding ability, with good isotropy, under very satisfactory economic conditions. These parts will be used profitably as structural parts or reinforcements in the field of automotive construction.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Heat Treatment Of Sheet Steel (AREA)
- Heat Treatment Of Articles (AREA)
- Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
- Coating With Molten Metal (AREA)
- Heat Treatment Of Strip Materials And Filament Materials (AREA)
- Laminated Bodies (AREA)
- Heat Treatments In General, Especially Conveying And Cooling (AREA)
- Mounting, Exchange, And Manufacturing Of Dies (AREA)
- Forging (AREA)
- Reduction Rolling/Reduction Stand/Operation Of Reduction Machine (AREA)
- Architecture (AREA)
- Structural Engineering (AREA)
- Combustion & Propulsion (AREA)
- Transportation (AREA)
Abstract
The invention relates to a precoated laminated sheet for manufacturing press-hardened parts, which sheet is composed of a steel substrate for heat treatment, which substrate has a carbon content C0 comprised between 0.07% and 0.5%, said content being expressed by weight, and a metal precoating at least on the two main faces of said steel substrate, characterised in that said substrate comprises a decarbonated zone on the surface of each of its two main faces, the depth p50% of said decarbonated zone being comprised between 6 and 30 microns, p50% being the depth at which the carbon content is equal to 50% of said content C0, and in that said sheet does not contain an iron oxide layer between said substrate and said metal precoating.
Description
PROCEDE DE FABRICATION DE PIECES D'ACIER REVÊTUES ET DURCIES A LA PRESSE, ET TÔLES PREREVÊTUES PERMETTANT PROCESS FOR MANUFACTURING COATED AND PRESSURE-CURED STEEL PARTS, AND PREFERRED SHEETS FOR PERMITTING
LA FABRICATION DE CES PIECES THE MANUFACTURE OF THESE PIECES
L'invention concerne un procédé de fabrication de pièces à partir de tôles d'acier pré-revêtues, chauffées, embouties puis durcies lors d'un refroidissement obtenu par maintien au sein d'un outil de presse; ces pièces sont notamment destinées à être utilisées comme éléments de structure dans les véhicules automobiles pour assurer des fonctions d'anti-intrusion ou d'absorption d'énergie. De telles pièces peuvent être aussi utilisées par exemple pour la fabrication d'outils ou de pièces de machines agricoles. The invention relates to a method of manufacturing parts from pre-coated steel sheets, heated, stamped and hardened during cooling obtained by holding in a press tool; these parts are particularly intended to be used as structural elements in motor vehicles to provide anti-intrusion or energy absorption functions. Such parts can also be used for example for the manufacture of tools or agricultural machinery parts.
Dans ce type d'applications, on cherche à réaliser des pièces en acier combinant une résistance mécanique élevée, une grande résistance aux chocs, une bonne tenue à la corrosion, et une bonne précision dimensionnelle. Cette combinaison est particulièrement désirable dans l'industrie automobile où l'on recherche un allégement significatif des véhicules. Des pièces anti-intrusion ou des pièces participant à la sécurité des véhicules automobiles telles que les traverses de pare-choc, renforts de portière ou de pied milieu, nécessitent par exemple les qualités mentionnées ci-dessus. Ceci peut être notamment obtenu grâce à des pièces d'aciers dont la microstructure est martensitique ou bainito-martensitique. In this type of application, it is sought to produce steel parts combining high mechanical strength, high impact resistance, good resistance to corrosion, and good dimensional accuracy. This combination is particularly desirable in the automotive industry where significant vehicle lightening is sought. Anti-intrusion parts or parts involved in the safety of motor vehicles such as bumper rails, reinforcements door or center stand, require for example the qualities mentioned above. This can be achieved in particular by steel pieces whose microstructure is martensitic or bainito-martensitic.
La fabrication de telles pièces est connue d'après les publications FR2780984 et FR2807447 selon lesquelles un flan découpé dans une tôle d'acier pour traitement thermique, pré-revêtu d'un métal ou d'un alliage métallique, est chauffé dans un four puis déformé à chaud. Le pré-revêtement peut être de l'aluminium ou un alliage d'aluminium, du zinc ou un alliage de zinc. Lors du chauffage en four, le pré-revêtement assure une protection de la surface de l'acier contre la décarburation et la formation de calamine. Lors du chauffage en four, ce pré-revêtement s'allie avec le substrat d'acier pour former un composé apte à la mise en forme à chaud et ne provoquant pas de dégradation de l'outillage. Le maintien de la pièce dans l'outillage après que la mise en forme a été réalisée, permet un refroidissement rapide qui conduit
à l'obtention de microstructures de trempe présentant de très hautes caractéristiques mécaniques. Un tel procédé est connu sous le nom de durcissement par trempe sous presse ou « press hardening ». The manufacture of such parts is known from publications FR2780984 and FR2807447 according to which a blank cut from a sheet of steel for heat treatment, pre-coated with a metal or a metal alloy, is heated in an oven and then hot deformed. The pre-coating may be aluminum or an aluminum alloy, zinc or a zinc alloy. When heated in an oven, the pre-coating protects the surface of the steel against decarburization and scale formation. During furnace heating, this pre-coating is combined with the steel substrate to form a hot-forming compound which does not cause degradation of the tooling. The maintenance of the part in the tooling after the shaping has been carried out, allows rapid cooling which leads obtaining quenching microstructures having very high mechanical characteristics. Such a process is known as hardening by press hardening.
En règle générale, on évalue les caractéristiques mécaniques des pièces ainsi obtenues au moyen d'essais de traction et de dureté. Les documents précités divulguent ainsi des procédés de fabrication permettant d'obtenir une résistance mécanique (ou résistance à la rupture en traction) Rm de 1500 MPa à partir d'un flan d'acier présentant une résistance initiale Rm de 500 MPa avant chauffage et refroidissement rapide. As a general rule, the mechanical properties of the parts thus obtained are evaluated by means of tensile and hardness tests. The aforementioned documents thus disclose manufacturing methods for obtaining a mechanical strength (or tensile strength) Rm of 1500 MPa from a steel blank having an initial resistance Rm of 500 MPa before heating and cooling fast.
Cependant, les conditions de service de certaines pièces durcies et revêtues nécessitent non seulement une valeur élevée de résistance Rm, mais également une bonne aptitude au pliage. Ce paramètre apparaît en effet comme plus pertinent que l'allongement à rupture mesuré en traction, pour garantir que la pièce présente une ductilité suffisante pour absorber des déformations ou des chocs sans risque de rupture, notamment dans des zones correspondant à des concentrations locales de contraintes dues à la géométrie de la pièce ou à la présence éventuelle de micro-défauts à la surface des pièces. However, the service conditions of some cured and coated parts require not only a high value of resistance Rm, but also good bendability. This parameter appears indeed to be more relevant than the tensile elongation measured in tension, to ensure that the part has a ductility sufficient to absorb deformations or shocks without risk of rupture, especially in areas corresponding to local concentrations of stress due to the geometry of the part or the possible presence of micro-defects on the surface of the parts.
Le document WO2009080292 divulgue un procédé permettant d'augmenter l'angle de pliage d'une pièce durcie : selon ce procédé, une tôle d'acier est chauffée dans un four de recuit à une température comprise entre 650 et 800°C de manière à obtenir une couche d'oxyde d'épaisseur nettement supérieure à 0,3 micromètres. Certains éléments d'alliage de l'acier sont oxydés sous cette couche d'oxyde. On réduit ensuite partiellement cette couche d'oxyde de façon à ce que celle-ci présente une épaisseur supérieure à 0,3 micromètres. L'extrême surface de la couche d'oxyde réduite est constituée de fer pur. La tôle est ensuite revêtue au trempé. Après cette étape, la tôle comporte les différentes couches successives suivantes : le substrat en acier comportant des éléments oxydés au voisinage de la surface (oxydation interne), ce substrat étant surmonté d'une couche d'oxyde partiellement réduite, elle-même surmontée du revêtement déposé au trempé. Lors de l'étape ultérieure d'austénitisation du flan, et/ou durant la mise en forme et le refroidissement, une fine couche ductile se forme sous le
revêtement, de telle sorte que les fissures formées durant le revêtement lors de la mise en forme se propagent moins aisément dans cette couche sous- jacente. WO2009080292 discloses a method for increasing the bending angle of a cured part: according to this method, a steel sheet is heated in an annealing furnace at a temperature between 650 and 800 ° C so as to obtain an oxide layer with a thickness substantially greater than 0.3 micrometers. Some alloying elements of steel are oxidized under this oxide layer. This oxide layer is then partially reduced so that it has a thickness greater than 0.3 micrometers. The extreme surface of the reduced oxide layer consists of pure iron. The sheet is then tempered. After this step, the sheet comprises the following successive layers: the steel substrate comprising oxidized elements in the vicinity of the surface (internal oxidation), this substrate being surmounted by a partially reduced oxide layer, itself surmounted by dip coating. In the subsequent step of austenitizing the blank, and / or during shaping and cooling, a thin ductile layer is formed under the coating, so that the cracks formed during the coating during shaping propagate less easily in this underlying layer.
Cependant, la couche d'oxydes qui est présente au moment où la tôle est immergée dans le bain métallique de revêtement, peut se révéler néfaste pour l'adhésion du revêtement au trempé sur cette couche. However, the oxide layer that is present at the moment when the sheet is immersed in the coating metal bath, may be detrimental to the adhesion of the coating to dipping on this layer.
On recherche donc un procédé de fabrication qui ne présenterait pas cet inconvénient et qui permettrait d'obtenir simultanément, après durcissement par trempe sous presse, des caractéristiques élevées de traction et de pliage. En outre, on sait que les conditions de fabrication industrielles comportent de façon inévitable une certaine variabilité : par exemple, le cycle de température lors du recuit de la tôle avant revêtement, la composition et/ou le point de rosée de l'atmosphère des fours de recuit continu, peuvent légèrement varier lors d'une même séquence de fabrication, ou varier d'une campagne de fabrication à une autre. Même si les plus grandes précautions sont prises pour minimiser ces variations, on cherche à disposer d'un procédé de fabrication tel que les caractéristiques mécaniques, et notamment l'aptitude au pliage, obtenues après durcissement par trempe sous presse, soient très peu sensibles à cette variation éventuelle des conditions de fabrication. On recherche en outre un procédé de fabrication conduisant à une bonne isotropie des pièces après emboutissage à chaud, c'est-à-dire dont l'aptitude au pliage dépende peu du sens de sollicitation par rapport à la direction de laminage de la tôle. A method of manufacture is therefore sought which does not have this drawback and which would make it possible simultaneously to obtain, after hardening by quenching in press, high tensile and folding characteristics. In addition, it is known that the industrial manufacturing conditions inevitably include a certain variability: for example, the temperature cycle during the annealing of the sheet before coating, the composition and / or the dew point of the furnace atmosphere. continuous annealing, may vary slightly during the same production sequence, or vary from one manufacturing campaign to another. Even if the greatest precautions are taken to minimize these variations, it is sought to have a manufacturing method such that the mechanical characteristics, and in particular the folding ability, obtained after hardening by press quenching, are very insensitive to this possible variation of the manufacturing conditions. In addition, a manufacturing process is sought that leads to good isotropy of the parts after hot stamping, that is to say whose folding ability depends little on the direction of loading relative to the rolling direction of the sheet.
De plus, on sait que la durée de séjour des flans dans les fours, lors de l'étape d'austénitisation avant emboutissage à chaud, peut influencer les caractéristiques mécaniques des pièces. On cherche donc à disposer d'un procédé de fabrication qui soit peu sensible à la durée de maintien en four afin d'obtenir une grande reproductibilité des caractéristiques mécaniques des pièces. In addition, it is known that the residence time of the blanks in the furnaces, during the austenitization step before hot stamping, can influence the mechanical characteristics of the parts. It is therefore sought to have a manufacturing method that is insensitive to the holding time in the oven in order to obtain a high reproducibility of the mechanical characteristics of the parts.
Dans le cas de pièces fabriquées à partir de tôles pré-revêtues de zinc ou d'alliage de zinc, on cherche à disposer d'un procédé permettant un soudage de ces pièces, sans risque de fragilisation des joints de grains par pénétration du zinc liquide.
La présente invention a pour but de résoudre les problèmes évoqués ci- dessus au moyen d'un procédé de fabrication économique. In the case of parts made from sheets pre-coated with zinc or zinc alloy, it is sought to have a method for welding these parts without the risk of embrittlement of the grain boundaries by penetration of the liquid zinc . The present invention aims to solve the problems mentioned above by means of an economical manufacturing process.
De façon surprenante, les inventeurs ont mis en évidence qu'une aptitude élevée au pliage des pièces, était obtenue lorsqu'une zone décarburée d'une épaisseur spécifique était présente sous le pré-revêtement métallique, avant le durcissement par trempe sous presse de la pièce. D'une manière surprenante, cette décarburation spécifique avant durcissement, conduit à des résultats de pliage qui dépendent peu des conditions de recuit continu avant revêtement, et qui traduisent une bonne isotropie par rapport au sens de laminage. Surprisingly, the inventors have demonstrated that a high ability to bend parts, was obtained when a decarburized zone of a specific thickness was present under the metal pre-coating, before hardening by press-hardening of the room. Surprisingly, this specific decarburization before hardening leads to folding results which are not very dependent on continuous annealing conditions before coating, and which reflect good isotropy with respect to the rolling direction.
Dans ce but, l'invention a pour objet une tôle laminée pré-revêtue pour la fabrication de pièces durcies par trempe sous presse, composée d'un substrat d'acier pour traitement thermique contenant une teneur en carbone C0 comprise entre 0,07% et 0,5%, cette teneur étant exprimée en poids, et d'un pré-revêtement métallique au moins sur les deux faces principales du substrat d'acier, caractérisée en ce que le substrat comporte une zone décarburée à la surface de chacune des deux faces principales, la profondeur p50% de la zone décarburée étant comprise entre 6 et 30 micromètres, pso étant la profondeur à laquelle la teneur en carbone est égale à 50% de la teneur C0, et en ce que la tôle ne contient pas de couche d'oxyde de fer entre le substrat et le pré-revêtement métallique. La profondeur p5o% de la zone décarburée est avantageusement comprise entre 9 et 30 micromètres, et très avantageusement comprise entre 12 et 30 micromètres. For this purpose, the subject of the invention is a pre-coated rolled sheet for the manufacture of parts hardened by press quenching, composed of a steel substrate for heat treatment containing a carbon content C 0 of between 0.07 and % and 0.5%, this content being expressed by weight, and a metal pre-coating at least on the two main faces of the steel substrate, characterized in that the substrate has a decarburized zone on the surface of each of the two main faces, the depth p 50% of the decarburized zone being between 6 and 30 micrometers, pso being the depth at which the carbon content is equal to 50% of the content C 0 , and in that the sheet does not contains no iron oxide layer between the substrate and the metal pre-coating. The depth p 5 o % of the decarburized zone is advantageously between 9 and 30 micrometers, and very advantageously between 12 and 30 micrometers.
Selon un mode préférentiel, le pré-revêtement métallique de la tôle est de l'aluminium ou un alliage d'aluminium. In a preferred embodiment, the metal pre-coating of the sheet is aluminum or an aluminum alloy.
Selon un autre mode préférentiel, le pré-revêtement métallique est du zinc ou un alliage de zinc. According to another preferred embodiment, the metal pre-coating is zinc or a zinc alloy.
Le pré-revêtement métallique peut être préférentiellement composé d'une couche d'aluminium ou d'un alliage d'aluminium, surmontée d'une couche de zinc ou d'un alliage de zinc. The metal pre-coating may preferably be composed of a layer of aluminum or of an aluminum alloy, surmounted by a layer of zinc or a zinc alloy.
La composition du substrat d'acier comprend avantageusement, les teneurs étant exprimées en poids :0,07% < C < 0,5%, 0,5%< Mn < 3%, 0,02% < Si <
0,5%, 0,01 % < Cr < 1 %, Ti<0,2%, AI < 0,25%, S < 0,05%, P< 0, 1 %, 0,0005% < B < 0,010%, optionnellement 0,0005%< Ca < 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. The composition of the steel substrate advantageously comprises the contents being expressed by weight: 0.07% <C <0.5%, 0.5% <Mn <3%, 0.02% <Si < 0.5%, 0.01% <Cr <1%, Ti <0.2%, Al <0.25%, S <0.05%, P <0.1%, 0.0005% <B < 0.010%, optionally 0.0005% <Ca <0.005%, the rest of the composition consisting of iron and unavoidable impurities resulting from the preparation.
Très avantageusement, la composition du substrat d'acier comprend, les teneurs étant exprimées en poids : 0,09% < C < 0,38%, 0,8%< Mn < 1 ,5%, 0, 1 % < Si < 0,35%, 0,01 % < Cr < 0,3%, 0,02%<Ti<0,1 %, 0,001 %≤ Al < 0,25%, S < 0,05%, P< 0, 1 %, 0,002% < B < 0,005%, optionnellement 0,0005%< Ca < 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. Very advantageously, the composition of the steel substrate comprises, the contents being expressed by weight: 0.09% <C <0.38%, 0.8% <Mn <1.5%, 0.1% <Si < 0.35%, 0.01% <Cr <0.3%, 0.02% <Ti <0.1%, 0.001% ≤ Al <0.25%, S <0.05%, P <0, 1%, 0.002% <B <0.005%, optionally 0.0005% <Ca <0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the preparation.
Selon un mode préférentiel, la composition du substrat d'acier comprend, la teneur étant exprimée en poids : 0, 15% < C < 0,25% According to a preferred embodiment, the composition of the steel substrate comprises, the content being expressed by weight: 0.15% <C <0.25%
L'invention a également pour objet un procédé de fabrication d'une pièce d'acier revêtue et durcie, comprenant les étapes successives selon lesquelles on approvisionne une tôle laminée d'acier pour traitement thermique contenant une teneur en carbone C0 comprise entre 0,07% et 0,5%. On recuit la tôle laminée de manière à obtenir à l'issue du recuit, une décarburation de la surface de la tôle sur une profondeur p50% comprise entre 6 et 30 micromètres, p5o% étant la profondeur à laquelle la teneur en carbone est égale à 50% de ladite teneur C0, et de manière à obtenir une tôle dépourvue totalement de couche d'oxyde de fer à sa surface, puis on effectue un pré-revêtement de métal ou d'alliage métallique sur ladite tôle recuite jouant le rôle de substrat. On découpe ensuite la tôle pré-revêtue pour obtenir un flan, puis on emboutit optionnellement à froid le flan, puis on chauffe celui- ci à une température TR dans un four de manière à conférer, au moins partiellement, une structure austénitique audit acier. On extrait le flan chauffé du four et on transfère celui-ci dans une presse ou un dispositif de mise en forme, puis on déforme à chaud ou on calibre à chaud le flan pour obtenir une pièce que l'on refroidit au sein de la presse ou du dispositif de mise en forme pour lui conférer par trempe une microstructure martensitique ou bainito- martensitique.
L'invention a également pour objet un procédé de fabrication caractérisé en ce que le pré-revêtement est réalisé en continu au trempé par passage dans un bain. The subject of the invention is also a process for producing a coated and cured steel part, comprising the successive stages in which a laminated steel sheet for heat treatment is supplied containing a carbon content C 0 between 0.degree. 07% and 0.5%. The rolled sheet is annealed so as to obtain at the end of the annealing a decarburization of the surface of the sheet to a depth p 50 % of between 6 and 30 microns, p 5 o% being the depth at which the carbon content is equal to 50% of said content C 0 , and so as to obtain a sheet completely free of iron oxide layer on its surface, then a pre-coating of metal or metal alloy is carried out on said annealed sheet playing the role of substrate. The pre-coated sheet is then cut to obtain a blank, then the blank is optionally cold-pressed, and then heated to a temperature T R in an oven so as to at least partially impart an austenitic structure to said steel. . The heated blank is extracted from the furnace and transferred to a press or a shaping device, then hot deformed or heat calibrated blank to obtain a coin that is cooled in the press or the shaping device for quenching it with a martensitic or bainitomensitic microstructure. The invention also relates to a manufacturing process characterized in that the pre-coating is carried out continuously by dipping by passing through a bath.
Selon un mode préférentiel, le pré-revêtement est de l'aluminium ou un alliage d'aluminium. In a preferred embodiment, the pre-coating is aluminum or an aluminum alloy.
Le pré-revêtement est préférentiellement du zinc ou un alliage de zinc. The pre-coating is preferably zinc or a zinc alloy.
Selon un mode particulier, le pré-revêtement métallique est composé d'une couche d'aluminium ou d'un alliage d'aluminium, surmontée d'une couche de zinc ou d'un alliage de zinc. In a particular embodiment, the metal pre-coating is composed of a layer of aluminum or an aluminum alloy, surmounted by a layer of zinc or a zinc alloy.
La profondeur p50% est avantageusement comprise entre 9 et 30 micromètres, préférentiellement entre 12 et 30 micromètres The depth p 50% is advantageously between 9 and 30 micrometers, preferably between 12 and 30 micrometers
L'invention a également pour objet un procédé caractérisé en ce que la composition du substrat d'acier comprend, les teneurs étant exprimées en poids : 0,07% < C < 0,5%, 0,5%< Mn < 3%, 0,02% < Si < 0,5%, 0,01 % < Cr < The invention also relates to a process characterized in that the composition of the steel substrate comprises, the contents being expressed by weight: 0.07% <C <0.5%, 0.5% <Mn <3% , 0.02% <If <0.5%, 0.01% <Cr <
1 %, Ti<0,2%, Al < 0,25%, S < 0,05%, P< 0,1 %, 0,0005% < B < 0,010%, optionnellement 0,0005%< Ca < 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. 1%, Ti <0.2%, Al <0.25%, S <0.05%, P <0.1%, 0.0005% <B <0.010%, optionally 0.0005% <Ca <0.005 %, the rest of the composition being made of iron and unavoidable impurities resulting from the elaboration.
Selon un mode particulier du procédé, la composition du substrat d'acier comprend, les teneurs étant exprimées en poids : 0,09% < C < 0,38%, 0,8%< According to a particular mode of the process, the composition of the steel substrate comprises, the contents being expressed by weight: 0.09% <C <0.38%, 0.8% <
Mn < 1 ,5%, 0, 1 % < Si < 0,35%, 0,01 % < Cr < 0,3%, 0,02%<Ti<0,1 %, 0,001 %Mn <1, 5%, 0, 1% <Si <0.35%, 0.01% <Cr <0.3%, 0.02% <Ti <0.1%, 0.001%
< Al < 0,25%, S < 0,05%, P< 0,1 %, 0,002% < B < 0,005%, optionnellement<Al <0.25%, S <0.05%, P <0.1%, 0.002% <B <0.005%, optionally
0,0005%< Ca < 0,005%, le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. 0.0005% <Ca <0.005%, the balance of the composition consisting of iron and unavoidable impurities resulting from the elaboration.
Selon un mode particulier du procédé : 0, 15% < C < 0,25%. According to a particular mode of the process: 0, 15% <C <0.25%.
La température TR est préférentiellement supérieure ou égale à la température AC3 de l'acier. The temperature TR is preferably greater than or equal to the temperature A C 3 of the steel.
L'invention a également pour objet un procédé de fabrication selon l'un quelconque des modes exposés ci-dessus, dont les conditions de recuit comprennent les étapes successives suivantes : après avoir approvisionné la tôle laminée d'acier, on préchauffe au défilé dans un four à tube radiant, ou un four à résistance, ou un four à induction, ou un four combinant au moins deux quelconques de ces moyens, la tôle laminée jusqu'à une température
T1a comprise entre 600°C et Ac1 +40°C, Ac1 désignant la température de début de transformation austénitique au chauffage de l'acier, dans une zone du four où l'atmosphère A1 contient de 2 à 15% en volume d'hydrogène, préférentiellement de 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, avec un point de rosée compris entre -60 et - 15°C. On chauffe ensuite la tôle de la température T1a jusqu'à une température T2a comprise entre 720 et 860°C, une injection d'au moins un élément choisi parmi de l'eau liquide, de l'eau vapeur ou de l'oxygène, étant effectuée dans le four à partir de la température T1a pour obtenir, dans la section du four comprise entre la température T1a et la température T2a, une atmosphère A2a avec un point de rosée PR compris entre -15°C et la température Te du point de rosée de l'équilibre Fer/oxyde de fer, l'intervalle de temps entre l'instant où la tôle est à la température T1a et l'instant où la tôle atteint la température T2a, étant supérieur ou égal à 30 secondes. On maintient ensuite la tôle à une température Tm comprise entre T2a et T2a+40°C, sous une atmosphère A3 réductrice pour le fer, puis on refroidit celle-ci dans une atmosphère A4 telle qu'aucune réoxidation superficielle du fer n'intervienne, jusqu'à une température T3. On effectue ensuite un prérevêtement de la tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que la température T3 est comprise entre Tbm-10°C et Tbm+50°C. The subject of the invention is also a manufacturing method according to any one of the modes set out above, the annealing conditions of which comprise the following successive stages: after having supplied the rolled steel sheet, the parcel is preheated in a a radiant tube furnace, or a resistance furnace, or an induction furnace, or an oven combining at least two of these means, the rolled sheet to a temperature T1a between 600 ° C and Ac1 + 40 ° C, where Ac1 denotes the austenitic transformation start temperature when heating the steel, in a zone of the furnace where the atmosphere A1 contains from 2 to 15% by volume of hydrogen preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C. The sheet of temperature T1a is then heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen. being carried out in the oven from the temperature T1a to obtain, in the furnace section between the temperature T1a and the temperature T2a, an atmosphere A2a with a dew point PR of between -15 ° C. and the temperature Te of the point dew point of the equilibrium Iron / iron oxide, the time interval between the instant when the sheet is at the temperature T1a and the instant when the sheet reaches the temperature T2a, being greater than or equal to 30 seconds. The sheet is then maintained at a temperature Tm between T2a and T2a + 40 ° C, under a reducing atmosphere A3 for iron, and then cooled in an atmosphere A4 such that no surface reoxidation of the iron intervenes, up to a temperature T3. The sheet is then pre-coated with a dip in a metal bath at the temperature Tbm, with the proviso that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
Préférentiellement, le point de rosée PR de l'atmosphère A2a est compris entre -15 et +17°C, très préférentiellement entre -15 et -10°C. Preferentially, the dew point PR of the atmosphere A2a is between -15 and + 17 ° C., very preferably between -15 and -10 ° C.
L'invention a également pour objet un procédé de fabrication dont les conditions de recuit comprennent les étapes successives suivantes : après avoir approvisionné la tôle laminée d'acier, on préchauffe au défilé dans un four à tube radiant, ou un four à résistance, ou un four à induction, ou un four combinant au moins deux quelconques de ces moyens, la tôle laminée jusqu'à une température T1a comprise entre 600°C et Ac1+40°C, Ac1 désignant la température de début de transformation austénitique au chauffage de l'acier, dans une zone du four où l'atmosphère A1 contient de 2 à 15% en volume d'hydrogène, préférentiellement de 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, avec un
point de rosée compris entre -60 et -15°C. On chauffe ensuite la tôle de la température T1a jusqu'à une température T2a comprise entre 720 et 860°C, une injection d'au moins un élément choisi parmi de l'eau liquide, de l'eau vapeur ou de l'oxygène, étant effectuée dans le four à partir de la température T1a pour obtenir, dans la section du four comprise entre la température T1a et la température T2a, une atmosphère A2b oxydante pour le fer, l'intervalle de temps entre l'instant où la tôle est à la température T1a et l'instant où la température atteint la température T2a, étant supérieur ou égal à 30 secondes. On maintient ensuite la tôle à une température Tm comprise entre T2a et T2a+40°C, sous une atmosphère A3 réductrice pour le fer, la réduction complète de la couche de fer formée dans ladite atmosphère A2b, intervenant au plus tard à la fin du maintien à la température Tm. On refroidit ensuite la tôle dans une atmosphère A4 telle qu'aucune réoxydation superficielle du fer n'intervienne, jusqu'à une température T3, puis on effectue un pré-revêtement de la tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que la température T3 est comprise entre Tbm-10°C et Tbm+50°C The invention also relates to a manufacturing method whose annealing conditions comprise the following successive steps: after supplying the rolled steel sheet, is preheated on parade in a radiant tube furnace, or a resistance furnace, or an induction furnace, or a furnace combining at least two of these means, the rolled sheet to a temperature T1a between 600 ° C and Ac1 + 40 ° C, Ac1 designating the austenitic transformation start temperature to the heating of steel, in an area of the furnace where the atmosphere A1 contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C. The sheet of temperature T1a is then heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen. being carried out in the oven from the temperature T1a to obtain, in the furnace section between the temperature T1a and the temperature T2a, an oxidizing atmosphere A2b for the iron, the time interval between the instant when the sheet is at the temperature T1a and the instant when the temperature reaches the temperature T2a, being greater than or equal to 30 seconds. The sheet is then maintained at a temperature Tm between T2a and T2a + 40 ° C, under a reducing atmosphere A3 for iron, the complete reduction of the iron layer formed in said atmosphere A2b, occurring at the latest at the end of maintaining the temperature Tm. The sheet is then cooled in an atmosphere A4 such that no superficial reoxidation of the iron takes place, up to a temperature T3, and then the sheet is pre-coated by a dipping step in a metal bath at the temperature Tbm, it being understood that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C
Selon un mode avantageux, la température T1a est supérieure à Ac1 , c'est-à- dire la température de transformation austénitique au chauffage du substrat d'acier. According to an advantageous embodiment, the temperature T1a is greater than Ac1, that is to say the austenitic transformation temperature when heating the steel substrate.
L'invention a également pour objet un procédé de fabrication dont les conditions de recuit comprennent les étapes successives suivantes : après avoir approvisionné une tôle d'acier, on préchauffe au défilé dans un four la tôle laminée, le préchauffage étant réalisé dans une zone d'un four chauffé à flammes directes, la tôle étant préchauffée jusqu'à une température T1b comprise entre 550 et 750°C dans une atmosphère résultant de la combustion d'un mélange d'air et de gaz naturel dont le rapport air/gaz est compris entre 1 et 1 ,2. On chauffe la tôle de la température T1b jusqu'à une température T2b comprise entre 760 et 830°C au sein d'une seconde zone de four chauffée par tubes radiants, ou par résistances, ou par induction, ou par une combinaison quelconque d'au moins deux de ces moyens, dont l'atmosphère contient de 3 à 40% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, le point de rosée étant inférieur à -30°C,
l'intervalle de temps entre l'instant où la tôle est à la température T1 b et l'instant où celle-ci atteint la température T2b, étant au moins de 30 secondes. On maintient la tôle à une température Tm comprise entre T2b et T2b+40°C, sous une atmosphère A3 réductrice pour le fer, puis on refroidit la tôle dans une atmosphère telle qu'aucune réoxidation superficielle n'intervienne, jusqu'à une température T3. On effectue un pré-revêtement de la tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que la température T3 est comprise entre Tbm-10°C et Tbm+50°C. The subject of the invention is also a manufacturing method whose annealing conditions comprise the following successive stages: after supplying a steel sheet, the laminated sheet is preheated in an oven, the preheating being carried out in a zone of a heated oven with direct flames, the sheet being preheated to a temperature T1b between 550 and 750 ° C in an atmosphere resulting from the combustion of a mixture of air and natural gas whose air / gas ratio is between 1 and 1, 2. The sheet of the temperature T1b is heated to a temperature T2b of between 760 and 830 ° C. in a second oven zone heated by radiant tubes, or by resistance, or by induction, or by any combination of at least two of these means, the atmosphere of which contains from 3 to 40% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, the dew point being lower than -30 ° C, the time interval between the moment when the sheet is at the temperature T1 b and the moment when the latter reaches the temperature T2b, being at least 30 seconds. The sheet is maintained at a temperature Tm of between T2b and T2b + 40 ° C., under a reducing atmosphere A3 for iron, and then the sheet is cooled in an atmosphere such that no surface reoxidation takes place, up to a temperature T3. Pre-coating of the sheet metal is carried out by dipping in a metal bath at the temperature Tbm, it being understood that the temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
Selon un mode préférentiel, la température T2b est supérieure à Ac1. In a preferred embodiment, the temperature T2b is greater than Ac1.
D'autres caractéristiques et avantages de l'invention apparaîtront au cours de la description ci-dessous donnée à titre d'exemple et faite en référence aux figures jointes suivantes : Other features and advantages of the invention will become apparent from the following description given by way of example and with reference to the following appended figures:
La figure 1 présente la microstructure d'une tôle d'acier pré-revêtue selon l'invention, destinée à la fabrication de pièces durcies par trempe sous presse. FIG. 1 shows the microstructure of a pre-coated steel sheet according to the invention, intended for the manufacture of hardened parts by quenching in a press.
La figure 2 illustre schématiquement la définition de la profondeur de la zone adoucie d mesurée par microdureté sous le revêtement d'une pièce durcie par trempe sous presse. FIG. 2 schematically illustrates the definition of the depth of the softened area d measured by microhardness under the coating of a hardened part by press quenching.
La figure 3 illustre schématiquement la définition, pour une tôle ou un flan pré-revêtu, de la profondeur de décarburation de la surface p5o%, mesurée par spectroscopie à décharge luminescente, sous le pré-revêtement de la tôle ou du flan avant durcissement par trempe sous presse. 3 schematically shows the definition for a sheet or a precoated blank, the depth of decarburization of the surface p 5 o% as measured by spectroscopy glow discharge under the pre-coating of the sheet or blank before hardening by press hardening.
La figure 4 présente la variation de l'angle de pliage critique ac d'une pièce revêtue durcie par trempe sous presse, en fonction de la profondeur de la zone adoucie superficielle, celle-ci étant mesurée par microdureté sous le revêtement. FIG. 4 shows the variation of the critical bending angle a c of a press hardened coated part, as a function of the depth of the surface softened area, which is measured by microhardness under the coating.
La figure 5 présente la variation de l'angle de pliage critique ac d'une pièce revêtue durcie par trempe sous presse, en fonction de la profondeur de décarburation p50%, celle-ci étant mesurée sur le flan pré-revêtu avant emboutissage à chaud et trempe. FIG. 5 shows the variation of the critical bending angle a c of a pressed quench-hardened coated part, as a function of the 50% decarburization depth, which is measured on the pre-coated blank before stamping. hot and quenched.
La figure 6 montre l'influence du point de rosée dans une zone particulière du
four lors du recuit avant prérevêtement, sur l'angle critique de pliage de la pièce après emboutissage à chaud. Figure 6 shows the influence of the dew point in a particular area of the oven during annealing before pre-coating, on the critical angle of folding of the workpiece after hot stamping.
La figure 7 montre l'influence du point de rosée dans une zone particulière du four lors du recuit avant prérevêtement, sur la profondeur de décarburation P5o%, ce dernier paramètre étant mesuré sur le flan pré-revêtu avant emboutissage à chaud et trempe. FIG. 7 shows the influence of the dew point in a particular zone of the oven during annealing before precoating, on the decarburization depth P 50%, the latter parameter being measured on the pre-coated blank before hot stamping and quenching.
La figure 8 montre la microstructure de l'acier sous le revêtement de zinc, après durcissement par trempe sous presse, pour un point de rosée de - 27°C. Figure 8 shows the microstructure of the steel under the zinc coating, after hardening by press quenching, for a dew point of -27 ° C.
La figure 9 illustre également la microstructure de l'acier sous le revêtement de zinc, après durcissement par trempe sous presse, pour un point de rosée de -7°C. Figure 9 also illustrates the microstructure of the steel under the zinc coating, after hardening by press quenching, for a dew point of -7 ° C.
La figure 10 illustre la variation, avant emboutissage à chaud, de la teneur en carbone du substrat d'acier de deux tôles d'acier pré-revêtues, au voisinage de leur interface avec le pré-revêtement, le recuit des tôles ayant été effectué dans une atmosphère A2a avec un point de rosée de -27°C ou de -7°C. FIG. 10 illustrates the variation, before hot stamping, of the carbon content of the steel substrate of two pre-coated steel sheets, in the vicinity of their interface with the pre-coating, the annealing of the sheets having been carried out in an A2a atmosphere with a dew point of -27 ° C or -7 ° C.
La figure 11 illustre la variation de la teneur en carbone de deux pièces d'acier embouties à chaud, au voisinage de l'interface avec le revêtement de ces pièces, le recuit des tôles utilisées pour la fabrication de ces pièces ayant été effectué dans une atmosphère A2a avec un point de rosée de -27°C ou de -7°C. FIG. 11 illustrates the variation of the carbon content of two pieces of hot-stamped steel, in the vicinity of the interface with the coating of these parts, the annealing of the sheets used for the manufacture of these parts having been carried out in a A2a atmosphere with a dew point of -27 ° C or -7 ° C.
L'épaisseur de la tôle d'acier mise en œuvre dans le procédé selon l'invention est comprise préférentiellement entre 0,5 et 4 mm environ, gamme d'épaisseur utilisée notamment dans la fabrication de pièces structurales ou de renfort pour l'industrie automobile. The thickness of the steel sheet used in the process according to the invention is preferably between 0.5 and 4 mm, thickness range used in particular in the manufacture of structural parts or reinforcement for the industry. automobile.
L'acier est un acier pour traitement thermique, c'est-à-dire un acier capable de durcissement après austénitisation et refroidissement rapide par trempe. Avantageusement, l'acier contient les éléments suivants, la composition étant exprimée en poids : Steel is a steel for heat treatment, that is to say a steel capable of hardening after austenitization and quenching fast cooling. Advantageously, the steel contains the following elements, the composition being expressed by weight:
- une teneur en carbone comprise entre 0,07 et 0,5%, préférentiellement entre 0,09 et 0,38% en poids, et très préférentiellement entre 0, 15 et 0,25% en poids. Cet élément joue un grand rôle sur la trempabilité et sur la résistance mécanique obtenue après le refroidissement qui suit le traitement
d'austénitisation. Au-dessous d'une teneur de 0,07% en poids, l'aptitude à la trempe est réduite et la résistance mécanique est insuffisante après durcissement par trempe sous presse. Une teneur de 0,15%C permet de garantir une trempabilité suffisante dans les zones les plus déformées à chaud. Au-delà d'une teneur de 0,5 % en poids, le risque de formation de défauts est accru lors de la trempe, particulièrement pour les pièces de plus forte épaisseur. Il devient également difficile de garantir une ductilité lors du pliage de pièces après durcissement par trempe sous presse. Une teneur en carbone comprise entre 0,09 et 0,38% permet d'obtenir une résistance Rm comprise entre 1000 et 2050 MPa environ lorsque la microstructure de la pièce est totalement martensitique. a carbon content of between 0.07 and 0.5%, preferably between 0.09 and 0.38% by weight, and very preferably between 0.15 and 0.25% by weight. This element plays a major role in the quenchability and the mechanical strength obtained after cooling after treatment austenitizing. Below a content of 0.07% by weight, the quenchability is reduced and the mechanical strength is insufficient after quenching in press. A content of 0.15% C ensures sufficient quenchability in the most hot deformed areas. Beyond a content of 0.5% by weight, the risk of formation of defects is increased during quenching, particularly for thicker parts. It also becomes difficult to guarantee ductility when folding parts after hardening by press-hardening. A carbon content of between 0.09 and 0.38% makes it possible to obtain a resistance Rm of between approximately 1000 and 2050 MPa when the microstructure of the part is totally martensitic.
- outre son rôle de désoxydant, le manganèse a également un effet important sur la trempabilité en particulier lorsque sa teneur en poids est supérieure à 0,5%, et préférentiellement supérieure à 0,8%. Cependant, il est préférable de limiter son addition à 3% en poids, et très préférentiellement de la limiter à 1 ,5% de façon à éviter une ségrégation excessive. in addition to its deoxidizing role, manganese also has a significant effect on quenchability, in particular when its content by weight is greater than 0.5%, and preferably greater than 0.8%. However, it is preferable to limit its addition to 3% by weight, and very preferably to limit it to 1.5% so as to avoid excessive segregation.
- la teneur en silicium de l'acier doit être comprise entre 0,02 et 0,5 % en poids, et de préférence entre 0,1 et 0,35%. Outre son rôle sur la désoxydation de l'acier liquide, cet élément contribue au durcissement de l'acier mais sa teneur doit être cependant limitée pour éviter la formation excessive d'oxydes et pour ne pas nuire à la revêtabilité au trempé. the silicon content of the steel must be between 0.02 and 0.5% by weight, and preferably between 0.1 and 0.35%. In addition to its role in the deoxidation of liquid steel, this element contributes to the hardening of the steel, but its content must be limited, however, to avoid the excessive formation of oxides and not to impair the coating ability by dipping.
- au delà d'une teneur supérieure à 0,01%, le chrome augmente la trempabilité et contribue à l'obtention d'une résistance importante après l'opération de formage à chaud. Au delà d'une teneur égale à 1 %, (préférentiellement 0,3%), l'effet du chrome sur l'homogénéité des propriétés mécaniques dans la pièce est saturé. - Beyond a content greater than 0.01%, chromium increases the quenchability and contributes to obtaining significant resistance after the hot forming operation. Beyond a content equal to 1% (preferentially 0.3%), the effect of chromium on the homogeneity of the mechanical properties in the part is saturated.
- l'aluminium est un élément favorisant la désoxydation et la précipitation de l'azote. En quantité excessive, il se forme des aluminates grossiers lors de l'élaboration qui tendent à diminuer la ductilité, ce qui incite à limiter la teneur en aluminium à 0,25 % en poids. Une teneur minimale de 0,001 % permet de désoxyder l'acier à l'état liquide lors de l'élaboration. aluminum is an element promoting the deoxidation and the precipitation of nitrogen. In excessive amounts, coarse aluminates are formed during processing which tend to reduce the ductility, which makes it possible to limit the aluminum content to 0.25% by weight. A minimum content of 0.001% makes it possible to deoxidize the steel in the liquid state during the preparation.
- en quantités excessives, le soufre et le phosphore conduisent à une fragilité augmentée. C'est pourquoi il est préférable de limiter leur teneur respective à
0,05 et 0, 1 % en poids. In excessive amounts, sulfur and phosphorus lead to increased brittleness. Therefore, it is preferable to limit their respective content to 0.05 and 0.1% by weight.
- le bore, dont la teneur doit être comprise entre 0,0005 et 0,010 % en poids, et de préférence entre 0,002 et 0,005% en poids, est un élément qui joue un rôle important sur la trempabilité. Au-dessous d'une teneur de 0,0005%, on n'obtient pas un effet suffisant sur la trempabilité. Le plein effet est obtenu pour une teneur de 0,002%. La teneur maximale en bore doit être inférieure à 0,010%, et préférentiellement 0,005%, pour ne pas dégrader la ténacité. boron, the content of which must be between 0.0005 and 0.010% by weight, and preferably between 0.002 and 0.005% by weight, is an element which plays an important role on the quenchability. Below a 0.0005% content, a sufficient effect on the quenchability is not obtained. The full effect is obtained for a content of 0.002%. The maximum boron content must be less than 0.010%, and preferably 0.005%, in order not to degrade the tenacity.
- Le titane a une forte affinité pour l'azote. Il protège le bore de façon à ce que cet élément se trouve sous forme libre pour jouer son plein effet sur la trempabilité. Au-delà de 0,2%, il existe cependant un risque de former des nitrures de titane grossiers dans l'acier liquide qui jouent un rôle néfaste sur la ténacité. Il est compris préférentiellement entre 0,02 et 0, 1 %. Titanium has a high affinity for nitrogen. It protects the boron so that this element is in free form to play its full effect on the hardenability. Above 0.2%, however, there is a risk of forming coarse titanium nitrides in the liquid steel which play a detrimental role on toughness. It is preferably between 0.02 and 0.1%.
- A titre optionnel, l'acier peut également contenir du calcium en quantité comprise entre 0,0005 et 0,005% : en se combinant avec l'oxygène et le soufre, le calcium permet d'éviter la formation d'inclusions de grande taille qui sont néfastes pour la ductilité des tôles ou des pièces ainsi fabriquées. - As an option, the steel can also contain calcium in a quantity between 0.0005 and 0.005%: by combining with oxygen and sulfur, calcium makes it possible to avoid the formation of large inclusions which are harmful to the ductility of the sheets or parts thus manufactured.
Le reste de la composition de l'acier est constitué de fer et d'impuretés inévitables résultant de l'élaboration. The rest of the composition of the steel consists of iron and unavoidable impurities resulting from the elaboration.
Un acier préféré est le 22MnB5 contenant 0,20-0,25%C, 1 ,1 -1 ,35%Mn, 0,15- 0,35%Si, 0,02-0,06%AI, 0,02-0,05%Ti, 0,02-0,25%Cr, 0,002-0,004%B, le solde étant du fer et des impuretés inévitables. A preferred steel is 22MnB5 containing 0.20-0.25% C, 1, 1 -1, 35% Mn, 0.15-0.35% Si, 0.02-0.06% AI, 0.02 -0.05% Ti, 0.02-0.25% Cr, 0.002-0.004% B, the balance being iron and unavoidable impurities.
Les inventeurs ont recherché en premier lieu les conditions qui permettaient d'obtenir une bonne aptitude au pliage après durcissement par trempe sous presse. Cette caractéristique est mesurée en soumettant la pièce à une flexion trois points. La pièce est pliée progressivement sur des rouleaux en flexion trois points, la charge appliquée étant mesurée simultanément. On mesure l'angle de pliage critique ac lors de l'apparition de fissures dans la pièce, ceci s'accompagnant d'une décroissance instantanée de la charge appliquée. De telles conditions d'essais sont décrites dans la norme DIN VDA 238-100. Pour une charge de rupture Rm de l'ordre de 1300-1600 MPa, un angle de pliage critique supérieur à 55° est requis afin de satisfaire aux spécifications. On recherche même préférentiellement un angle de pliage
critique supérieur à 60° pour satisfaire des conditions d'utilisation plus sévères. The inventors first sought the conditions which made it possible to obtain a good folding ability after hardening by press-hardening. This characteristic is measured by subjecting the part to a three-point bending. The workpiece is progressively folded over three-point bending rolls, the applied load being measured simultaneously. The critical bending angle a c is measured during the occurrence of cracks in the workpiece, which is accompanied by an instantaneous decrease in the applied load. Such test conditions are described in DIN VDA 238-100. For a breaking load Rm of the order of 1300-1600 MPa, a critical bending angle greater than 55 ° is required in order to meet the specifications. We even preferentially seek a folding angle critical greater than 60 ° to satisfy more severe conditions of use.
Grâce à un procédé de fabrication qui sera détaillé ci-dessous, les inventeurs ont fabriqué des pièces, à partir de flans d'acier de 22MnB5 de 1 ,2mm d'épaisseur pré-revêtus de zinc galvanisé-allié («galvannealed »), embouties à chaud après chauffage à 880°C et maintien pendant 5 minutes, ne différant que par la présence d'une couche adoucie plus ou moins importante située sous le revêtement. La méthode de détermination de la profondeur de cette zone adoucie est illustrée schématiquement à la figure 2 : après durcissement par trempe sous presse, la pièce est constituée d'un substrat d'acier pour traitement thermique 6, d'un revêtement 4 séparé du substrat par l'interface 5. On notera que ce schéma ne vise pas à reproduire les dimensions respectives des différentes zones. On effectue des mesures de dureté sous une très faible charge (par exemple des duretés Vickers sous une charge de 50 grammes, HV0,05) dans le substrat à partir de l'interface 5, de façon à obtenir la courbe 7 illustrant le profil de microdureté. On en déduit la valeur d qui caractérise la profondeur de la zone adoucie. On a porté à la figure 4 l'angle de pliage critique ac mesuré pour des valeurs de d variant approximativement entre 30 et 40 micromètres. Pour une faible profondeur de zone adoucie, les pièces embouties à chaud ne satisfont pas à l'exigence ac > 55°. Cependant, pour les zones adoucies plus profondes, on observe que la relation est entachée d'une grande dispersion : pour une valeur donnée de d, par exemple 35 micromètres, il n'est pas possible de déterminer avec certitude si la pièce emboutie à chaud satisfera au critère requis. On a également observé que les microstructures correspondant à ces zones adoucies de largeur variable sont très semblables après durcissement par trempe sous presse. De plus, la microstructure de ces zones adoucies peut être totalement martensitique, c'est-à-dire qu'il n'est pas possible de la distinguer aisément par microscopie optique classique. En d'autres termes, les inventeurs ont mis en évidence que, ni la profondeur des zones adoucies mesurées sur les pièces durcies par trempe sous presse, ni l'observation microstructurale optique des zones adoucies de ces pièces, ne sont des
paramètres permettant de garantir de façon fiable une valeur minimale pour l'angle de pliage. By means of a manufacturing method which will be detailed below, the inventors have manufactured parts, from blanks of 22MnB5 steel of 1, 2mm thick pre-coated with zinc galvanized-alloyed ("galvannealed"), hot stamped after heating at 880 ° C. and holding for 5 minutes, differing only in the presence of a softened layer of greater or lesser extent located under the coating. The method for determining the depth of this softened zone is diagrammatically illustrated in FIG. 2: after hardening by press quenching, the part consists of a heat treatment steel substrate 6, a coating 4 separated from the substrate by the interface 5. Note that this diagram is not intended to reproduce the respective dimensions of the different areas. Hardness measurements are made under a very light load (for example Vickers hardness under a load of 50 grams, HV0.05) in the substrate from the interface 5, so as to obtain the curve 7 illustrating the profile of microhardness. We deduce the value d which characterizes the depth of the softened zone. FIG. 4 shows the critical bending angle α c measured for values of d varying approximately between 30 and 40 microns. For a low softened area depth, hot stamped parts do not meet the requirement at c > 55 °. However, for deeper softened areas, it is observed that the relationship is tainted by a large dispersion: for a given value of d, for example 35 micrometers, it is not possible to determine with certainty if the hot-stamped part satisfy the required criterion. It has also been observed that the microstructures corresponding to these softened zones of variable width are very similar after hardening by press quenching. In addition, the microstructure of these softened zones can be completely martensitic, that is to say that it is not possible to easily distinguish it by conventional optical microscopy. In other words, the inventors have demonstrated that neither the depth of the softened areas measured on the parts cured by press quenching, nor the optical microstructural observation of the softened areas of these parts, are parameters to reliably guarantee a minimum value for the bending angle.
D'une manière surprenante, les inventeurs ont mis en évidence qu'il convenait de déterminer, non pas sur la pièce durcie par trempe sous presse, mais sur la tôle ou le flan pré-revêtu avant durcissement, la profondeur de décarburation, pour obtenir le résultat souhaité. La méthode de détermination est illustrée à la figure 3 dont le schéma ne vise pas à reproduire à l'échelle les dimensions respectives des différentes zones : la tôle, ou le flan sont constitués d'un substrat d'acier 10, d'un pré-revêtement 8 séparé du substrat par l'interface 9. A partir de cet interface, on mesure, par spectroscopie de décharge luminescente (ou GDOES, « Glow Discharge Optical Emission Spectrometry, technique connue en elle-même) la profondeur p50% à laquelle la teneur en carbone est égale à 50% de la teneur en carbone nominale C0 du substrat 10. Le profil de concentration peut présenter une décroissance régulière du carbone depuis le substrat jusqu'à l'interface (profil 1 1) ou bien un minimum situé à peu de distance de l'interface (profil 12) Ce dernier cas traduit un enrichissement en carbone localisé au voisinage de l'extrême surface qui n'a pas d'influence en pratique sur les propriétés mécaniques après emboutissage à chaud. Dans le cas du profil 12, la profondeur pso% à prendre en compte se situe au-delà de cet enrichissement très superficiel, comme le montre la figure 3. Grâce à un procédé de fabrication qui sera détaillé ci-dessous, les inventeurs ont fabriqué des tôles de 22MnB5 de 1 ,2mm d'épaisseur pré-revêtues de zinc galvanisé-allié («galvannealed ») différant par la présence d'une couche décarburée plus ou moins importante située sous le pré-revêtement. Ces tôles ont été découpées pour obtenir des flans qui ont été chauffés en four à 880°C pendant 5 minutes, puis emboutis à chaud pour obtenir des pièces. Celles-ci ont été soumises à des essais de pliage dont les résultats sont illustrés à la figure 5, la flexion lors du pliage s'exerçant soit dans un sens parallèle au sens du laminage (courbe 13) soit dans un sens perpendiculaire (courbe 14). Contrairement aux résultats présentés à la figure 4, on observe que la profondeur de la zone décarburée avant durcissement par trempe sous presse, permet de prévoir de façon
satisfaisante les propriétés de la pièce après durcissement par trempe sous presse. Pour obtenir une valeur d'angle critique de pliage ac≥ 55° (pliage sens parallèle au laminage), la profondeur de la zone décarburée p50% ne doit pas être inférieure à 6 micromètres. Pour que cette condition soit remplie quelle que soit l'orientation par rapport au sens de laminage, la profondeur de la décarburation p50% ne doit pas être inférieure à 9 micromètres. Pour obtenir une valeur ac ≥ 55°, quelle que soit l'orientation par rapport au sens de laminage, la profondeur de la décarburation p50% ne doit pas être inférieure à 12 micromètres. D'une manière surprenante, on observe cependant qu'au- delà d'une profondeur p50% de 30 micromètres, l'aptitude au pliage n'est pas améliorée, voire même légèrement diminuée lorsque la flexion s'exerce dans le sens perpendiculaire au laminage. De plus, l'écart de l'aptitude au pliage entre le sens parallèle et le sens perpendiculaire au laminage, a tendance à s'accroître. Ainsi, pour satisfaire les exigences mécaniques, la valeur de p50% doit être comprise entre 6 et 30 micromètres, préférentiellement entre 9 et 30, et très préférentiellement entre 12 et 30 micromètres. Surprisingly, the inventors have demonstrated that it was necessary to determine, not on the part hardened by press quenching, but on the pre-coated sheet or blank before curing, the depth of decarburization, to obtain the desired result. The determination method is illustrated in FIG. 3, the diagram of which is not intended to reproduce on a scale the respective dimensions of the different zones: the sheet or the blank consists of a steel substrate 10, a meadow coating 8 separated from the substrate by the interface 9. From this interface is measured by glow discharge spectroscopy (or GDOES, "Glow Discharge Optical Emission Spectrometry technique known in itself) the depth p 50% to which carbon content is equal to 50% of the nominal carbon content C 0 of the substrate 10. The concentration profile may exhibit a regular decrease in carbon from the substrate to the interface (profile 1 1) or a The latter case represents a localized carbon enrichment in the vicinity of the extreme surface which has no influence in practice on the mechanical properties after hot stamping. In the case of the profile 12, the depth pso% to be taken into account is beyond this very superficial enrichment, as shown in FIG. 3. Thanks to a manufacturing process which will be detailed below, the inventors have manufactured 22MnB5 sheet of 1, 2mm thick pre-coated zinc galvanized-alloyed ("galvannealed") differed by the presence of a decarburized layer more or less important under the pre-coating. These sheets were cut to obtain blanks that were heated in an oven at 880 ° C for 5 minutes, then hot stamped to obtain parts. These were subjected to folding tests, the results of which are illustrated in FIG. 5, the flexion during bending being in a direction parallel to the direction of rolling (curve 13) or in a perpendicular direction (curve 14). ). Contrary to the results presented in FIG. 4, it is observed that the depth of the decarburized zone before hardening by press hardening makes it possible to predict satisfactory properties of the part after hardening by quenching in press. To obtain a critical bending angle value at c ≥ 55 ° (bending direction parallel to rolling), the depth of the decarburized zone p 50% must not be less than 6 micrometers. For this condition to be fulfilled irrespective of the orientation with respect to the rolling direction, the depth of decarburization p 50% must not be less than 9 microns. To obtain a value at c ≥ 55 °, irrespective of the orientation with respect to the rolling direction, the decarburization depth p 50% must not be less than 12 micrometers. Surprisingly, however, it is observed that beyond a depth of 50% of 30 micrometers, the folding ability is not improved or even slightly decreased when the flexion is exerted in the perpendicular direction. rolling. In addition, the deviation of the folding ability between the direction parallel to the direction perpendicular to the rolling tends to increase. Thus, to satisfy the mechanical requirements, the value of p 50% must be between 6 and 30 microns, preferably between 9 and 30, and very preferably between 12 and 30 microns.
Le procédé selon l'invention va être maintenant décrit : on approvisionne tout d'abord un acier pour traitement thermique, comme on l'a indiqué ci-dessus. Celui-ci peut être sous forme de tôle laminée à chaud ou ultérieurement laminée à froid. Après un dégraissage optionnel et un nettoyage électrolytique pour obtenir une surface exempte de pollution, une profondeur de décarburation p50% comprise entre 6 et 30 micromètres peut être obtenue grâce aux procédés suivants : The process according to the invention will now be described: a steel for heat treatment is first supplied, as indicated above. This may be in the form of hot-rolled or subsequently cold-rolled sheet. After optional degreasing and electrolytic cleaning to obtain a pollution-free surface, a 50% decarburization depth of between 6 and 30 microns can be obtained by the following methods:
selon un premier mode, la tôle est soumise à un traitement thermique au défilé dans un four chauffé au moyen de tubes radiants (ou « RTF », radiant tube furnace), ou par résistance, ou par induction, ou par une combinaison quelconque de ces différents moyens. Ceux-ci présentent la caractéristique que l'atmosphère régnant dans les différentes parties du four peut être ajustée de façon indépendante de ces moyens de chauffage. Le four comporte plusieurs zones (préchauffe, chauffe, maintien, refroidissement) où régnent différentes conditions de température et/ou d'atmosphère : on préchauffe la tôle jusqu'à une température T a dans une zone où
l'atmosphère (désignée par A1 ) contient de 2 à 15% en volume d'hydrogène, préférentiellement 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables dans le gaz, avec un point de rosée compris entre -60 et -15°C. Il est connu que le point de rosée caractérise le potentiel d'oxydation de l'atmosphère en question. La tôle en défilement passe ensuite dans une autre zone du four où l'on injecte à partir d'une température T1 a, de l'eau sous forme liquide ou sous forme vapeur, ou de l'oxygène, ou encore une combinaison de ces différents éléments, de façon à augmenter le point de rosée de l'atmosphère. L'injection ne doit pas être réalisée à une température T1 a inférieure à 600°C qui conduirait à une oxydation du fer à basse température. Préférentiellement, l'injection est effectuée à une température T1 a supérieure à Ad , température de début de transformation austénitique de l'acier au chauffage. En effet, au-delà de cette température, le carbone se trouve en solution solide dans l'austénite, c'est-à-dire sous une forme plus apte au phénomène de décarburation qui va intervenir. L'injection est menée préférentiellement à une température T1 a inférieure ou égale à Ac1 +40°C. Cette gamme de température supérieure à Ac1 sera préférée pour obtenir une profondeur de décarburation p5o% plus importante, par exemple supérieure à 9 ou 12 micromètres. Au-delà de Ac1 +40°C, il existe un risque de faire croître la taille de grain austénitique et de provoquer la formation de composés bainitiques et/ou martensitiques dans le substrat d'acier lors du refroidissement qui suit le recuit. according to a first embodiment, the sheet is subjected to a heat treatment on the parade in a furnace heated by means of radiant tubes (or "RTF", radiant tube furnace), or by resistance, or by induction, or by any combination of these different ways. These have the characteristic that the atmosphere prevailing in the different parts of the furnace can be adjusted independently of these heating means. The furnace comprises several zones (preheating, heating, holding, cooling) where different temperature and / or atmosphere conditions prevail: the sheet is preheated to a temperature T a in an area where the atmosphere (designated A1) contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities in the gas, with a point of dew between -60 and -15 ° C. It is known that the dew point characterizes the oxidation potential of the atmosphere in question. The scrolling sheet then passes into another zone of the furnace where injection is made from a temperature T1a, water in liquid form or in vapor form, or oxygen, or a combination of these. different elements, so as to increase the dew point of the atmosphere. The injection must not be carried out at a temperature T1 to less than 600 ° C which would lead to an oxidation of iron at low temperature. Preferably, the injection is carried out at a temperature T1a greater than Ad, austenitic transformation start temperature of the steel heating. Indeed, beyond this temperature, the carbon is in solid solution in the austenite, that is to say in a form more suitable for the decarburizing phenomenon that will occur. The injection is carried out preferentially at a temperature T1 a less than or equal to Ac1 + 40 ° C. This temperature range greater than Ac1 will be preferred to obtain a decarburization depth p 5 o greater, for example greater than 9 or 12 micrometers. Beyond Ac1 + 40 ° C, there is a risk of increasing the austenitic grain size and causing the formation of bainitic and / or martensitic compounds in the steel substrate during cooling following annealing.
L'injection est réalisée de façon à ce que le point de rosée PR de l'atmosphère A2a de cette section du four se situe entre -15°C et la température Te du point de rosée de l'équilibre thermodynamique Fer/oxyde de fer. Dans la gamme de température considérée, l'oxyde de fer formé peut être FeO ou Fe304. On choisira la température d'équilibre Te la plus basse correspondant à la formation de l'un ou l'autre oxyde. Cette température Te peut être déterminée par exemple à partir de la publication : JANAF Thermomechanical Tables, 3rd Edition, Part II, Journal of Physical and Chemical Référence Data, Volume 14, 1985, supplément n°1 , publié par l'American Chemical Society and the American Institute of Physics for the National Bureau of Standards. Dans ces conditions d'injection, on crée une
oxydation sélective interne de certains éléments d'addition présents dans l'acier (Mn, Si, Al, Cr, Ti, C) sans qu'une oxydation superficielle du fer n'intervienne. L'oxydation interne peut avoir une profondeur allant jusqu'à 40 micromètres environ sous la surface pour le carbone, et jusqu'à 5 micromètres environ sous la surface pour le Mn, Si, Al et le Cr. Une décarburation superficielle se produit dans ces conditions. Lorsque le point de rosée est supérieur à la température Te du point de rosée correspondant à l'équilibre Fer/oxyde de fer, l'atmosphère devient oxydante pour le fer. Lors des étapes ultérieures de recuit, il existe alors un risque éventuel de ne pas réduire complètement l'oxyde de fer et de causer l'apparition locale de défauts de revêtement correspondant à la présence locale d'oxydes superficiels non réduits. La température Te est fonction de la température et de la teneur en hydrogène de l'atmosphère. A titre indicatif, pour une atmosphère contenant 97,5% d'azote et 2,5% d'hydrogène, Te=+9°C à 800°C. Pour une atmosphère contenant 95% d'azote et 5% d'hydrogène, Te=+18°C à 800°C. La tôle sort ensuite de la section dans laquelle on a réalisé l'injection, à une température T2a comprise entre 720 et 860°C pour entrer dans une zone de maintien à une température Tm comprise entre T2a et T2a+40°C. L'intervalle de temps entre l'instant où la tôle est à la température T1a et l'instant où celle-ci atteint la température T2a, doit être au moins de 30 secondes afin d'obtenir une profondeur de décarburation p50% comprise entre 6 et 30 micromètres. The injection is carried out so that the dew point PR of the atmosphere A2a of this section of the furnace is between -15 ° C and the temperature Te of the dew point of the thermodynamic equilibrium Iron / iron oxide . In the temperature range under consideration, the iron oxide formed may be FeO or Fe3O4. We will choose the lowest equilibrium temperature Te corresponding to the formation of one or the other oxide. This temperature Te can be determined for example from the publication: JANAF Thermomechanical Tables, 3rd Edition, Part II, Journal of Physical and Chemical Reference Data, Volume 14, 1985, Supplement No. 1, published by the American Chemical Society and The American Institute of Physics for the National Bureau of Standards. In these conditions of injection, one creates a selective internal oxidation of certain additive elements present in the steel (Mn, Si, Al, Cr, Ti, C) without any superficial oxidation of the iron. The internal oxidation may have a depth of up to about 40 microns below the surface for carbon, and up to about 5 micrometers below the surface for Mn, Si, Al and Cr. Superficial decarburization occurs under these conditions. When the dew point is greater than the dew point temperature Te corresponding to the iron / iron oxide equilibrium, the atmosphere becomes oxidizing to iron. In subsequent annealing steps, there is then a possible risk of not completely reducing the iron oxide and causing the local appearance of coating defects corresponding to the local presence of unreduced surface oxides. The temperature Te is a function of the temperature and the hydrogen content of the atmosphere. As an indication, for an atmosphere containing 97.5% nitrogen and 2.5% hydrogen, Te = + 9 ° C at 800 ° C. For an atmosphere containing 95% nitrogen and 5% hydrogen, Te = + 18 ° C at 800 ° C. The sheet then leaves the section in which the injection was performed at a temperature T2a of between 720 and 860 ° C. to enter a holding zone at a temperature Tm between T2a and T2a + 40 ° C. The time interval between the instant when the sheet is at temperature T1a and the moment when it reaches temperature T2a, must be at least 30 seconds in order to obtain a decarburization depth p 50 % between 6 and 30 micrometers.
Optionnellement, l'atmosphère dans le début de la zone de maintien peut être identique à celle de la zone précédente, c'est-à-dire avoir un point de rosée compris entre -15 et Te. On peut ensuite soit refroidir la tôle, soit maintenir celle-ci à la température Tm sous une atmosphère A3 contenant de 2 à 15% en volume d'hydrogène, préférentiellement 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables dans le gaz, avec un point de rosée compris entre -60 et -15°C, ces conditions étant réductrices pour le fer. L'étape de refroidissement qui suit sera décrite ci-dessous. Optionally, the atmosphere in the beginning of the holding zone may be identical to that of the previous zone, that is to say having a dew point between -15 and Te. The sheet can then be cooled or maintained at a temperature Tm under an atmosphere A3 containing from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being from nitrogen and unavoidable impurities in the gas, with a dew point between -60 and -15 ° C, these conditions being reducing for iron. The following cooling step will be described below.
Selon un second mode, on débute le procédé de fabrication de manière identique à celle qui vient d'être décrite jusqu'à l'étape d'injection à la
température T1a comprise entre 600°C et Ac1+40°C, préférentiellement supérieure à Acl A cette température, on injecte une quantité d'eau, de vapeur ou d'oxygène de manière à obtenir dans cette zone du four une atmosphère désignée par A2b, oxydante pour le fer. Ces conditions provoquent une oxydation totale de la surface, c'est-à-dire du fer et de certains éléments d'addition (Mn, Si, Al, Cr, Ti, C) Une décarburation superficielle intervient en même temps que l'oxydation du fer. La tôle sort ensuite de la section d'injection à une température T2a comprise entre 720 et 860°C pour entrer dans une zone de maintien à une température de maintien Tm comprise entre T2a et T2a+40°C. L'intervalle de temps entre l'instant où la tôle est à la température T1a et l'instant où celle-ci atteint la température T2a, doit être au moins de 30 secondes afin d'obtenir une profondeur de décarburation p50% comprise entre 6 et 30 micromètres. Au-delà, dans la zone de maintien, la tôle est maintenue à la température Tm dans une atmosphère A3 réductrice pour le fer, les conditions étant choisies de telle sorte que la réduction complète de la couche d'oxyde de fer intervienne au plus tard à la fin du maintien à la température Tm. On peut choisir par exemple à cet effet une atmosphère contenant de 2 à 15% en volume d'hydrogène, préférentiellement 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables dans le gaz avec un point de rosée compris entre - 60 et -15°C, pendant une durée suffisamment longue pour qu'une réduction complète de la couche superficielle d'oxyde de fer intervienne dans cette zone. L'étape de refroidissement qui suit sera décrite ci-dessous. selon un troisième mode, le cycle thermique de recuit de la tôle combine différents moyens de chauffage ; l'étape de préchauffage est réalisée dans une zone d'un four chauffé à flammes directes (ou « DFF » : « direct flame furnace »): la tôle est préchauffée au défilé jusqu'à une température T1b comprise entre 550 et 750°C dans une zone où l'atmosphère résulte de la combustion d'un mélange d'air et de gaz naturel. Selon l'invention, le rapport air/gaz est compris entre 1 et 1 ,2, étant entendu que la combustion air-gaz dans un rapport stcechiométrique est de 1. Ces conditions de préchauffage conduisent à la formation d'une couche superficielle d'oxyde de fer dont
l'épaisseur est comprise entre 0,10 et 0,25 micromètres. A la sortie de cette zone de préchauffage par four DFF, la tôle pénètre dans une seconde zone de four chauffée par tubes radiants (RTF) ou par résistances, ou par induction, ou par une combinaison quelconque de ces différents moyens. L'atmosphère contient de 3 à 40% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, le point de rosée inférieur à -30°C. Dans cette seconde zone, la tôle est chauffée jusqu'à une température T2b comprise entre 760 et 830°C. Préférentiellement, T2b est supérieure à Ad , ce qui permet une décarburation plus rapide en raison de la présence du carbone en solution solide dans l'austénite. L'intervalle de temps entre l'instant où la tôle est à la température T1 b et l'instant où celle-ci atteint la température T2b, doit être au moins de 30 secondes afin d'obtenir une profondeur de décarburation p50% comprise entre 6 et 30 micromètres. Ces conditions conduisent à une réduction totale de la couche superficielle d'oxyde de fer créée à l'étape précédente, et à la décarburation superficielle visée. According to a second mode, the manufacturing process is started in the same manner as the one just described up to the injection stage of the invention. T1a temperature between 600 ° C and Ac1 + 40 ° C, preferably greater than Acl At this temperature, an amount of water, steam or oxygen is injected so as to obtain in this zone of the furnace an atmosphere designated by A2b , oxidizing for iron. These conditions cause a total oxidation of the surface, that is to say iron and some elements of addition (Mn, Si, Al, Cr, Ti, C) A superficial decarburization intervenes at the same time as the oxidation iron. The sheet then leaves the injection section at a temperature T2a between 720 and 860 ° C to enter a holding zone at a holding temperature Tm between T2a and T2a + 40 ° C. The time interval between the instant when the sheet is at temperature T1a and the moment when it reaches temperature T2a, must be at least 30 seconds in order to obtain a decarburization depth p 50 % between 6 and 30 micrometers. Beyond this, in the holding zone, the sheet is maintained at the temperature Tm in a reducing atmosphere A3 for the iron, the conditions being chosen in such a way that the complete reduction of the iron oxide layer takes place at the latest at the end of maintaining the temperature Tm. For example, an atmosphere containing from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen, may be selected for this purpose. and unavoidable impurities in the gas with a dew point between -60 and -15 ° C, for a time long enough for a complete reduction of the iron oxide surface layer to occur in this zone. The following cooling step will be described below. according to a third mode, the annealing thermal cycle of the sheet combines different heating means; the preheating step is performed in an area of a direct flame heated furnace (or "DFF"): the sheet is preheated to the parade to a temperature T1b between 550 and 750 ° C in an area where the atmosphere results from the combustion of a mixture of air and natural gas. According to the invention, the air / gas ratio is between 1 and 1, 2, it being understood that the air-gas combustion in a stoichiometric ratio is 1. These preheating conditions lead to the formation of a surface layer of iron oxide of which the thickness is between 0.10 and 0.25 micrometers. At the outlet of this preheating zone by furnace DFF, the sheet enters a second furnace zone heated by radiant tubes (RTF) or by resistance, or by induction, or by any combination of these various means. The atmosphere contains 3 to 40% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, the dew point below -30 ° C. In this second zone, the sheet is heated to a temperature T2b of between 760 and 830 ° C. Preferentially, T2b is greater than Ad, which allows faster decarburization due to the presence of carbon in solid solution in the austenite. The time interval between the instant when the sheet is at temperature T1 b and the moment when it reaches temperature T2b must be at least 30 seconds to obtain a decarburization depth p 50% included between 6 and 30 micrometers. These conditions lead to a total reduction of the superficial layer of iron oxide created in the previous step, and the target surface decarburization.
La tôle au défilé entre ensuite dans une zone de maintien à une température de maintien Tm comprise entre T2b et T2b+40°C. The parcel sheet then enters a holding zone at a holding temperature Tm between T2b and T2b + 40 ° C.
La suite du procédé est identique dans les trois modes décrits ci-dessus : la tôle est refroidie jusqu'à une température T3 dans une atmosphère A4 telle qu'aucune réoxydation superficielle du fer n'intervienne. On peut utiliser par exemple une atmosphère contenant de 2 à 70% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables dans le gaz, avec un point de rosée compris entre -60 et -30°C. La tôle qui pénètre ultérieurement dans le bain de pré-revêtement est donc totalement exempte d'oxyde de fer superficiel. La température T3 est voisine de celle de Tbm, température du bain de pré-revêtement, afin d'éviter une perturbation thermique du bain. Pour cette raison, la température T3 sera comprise entre Tbm-10°C et Tbm+50°C. Ainsi, pour un pré-revêtement de zinc, la température T3 sera comprise entre 450 et 510°C. Pour un pré-revêtement dans un bain dit d'aluminium-silicium, la température T3 sera comprise entre 660 et 720°C.
Le pré-revêtement peut être de l'aluminium ou un alliage à base d'aluminium. Dans ce dernier cas, le pré-revêtement, fabriqué préférentiellement par trempé en continu, est avantageusement un alliage aluminium-silicium comprenant en poids 7-15% de silicium, 3 à 20% de fer, optionnellement entre 15 et 30 ppm de calcium, le reste étant de l'aluminium et des impuretés inévitables résultant de l'élaboration. The rest of the process is identical in the three modes described above: the sheet is cooled to a temperature T3 in an atmosphere A4 such that no superficial reoxidation of iron intervenes. For example, an atmosphere containing from 2 to 70% by volume of hydrogen may be used, the balance being nitrogen and unavoidable impurities in the gas, with a dew point of between -60 and -30 ° C. The sheet which subsequently enters the pre-coating bath is therefore totally free of superficial iron oxide. The temperature T3 is close to that of Tbm, temperature of the pre-coating bath, in order to avoid a thermal disturbance of the bath. For this reason, the temperature T3 will be between Tbm-10 ° C and Tbm + 50 ° C. Thus, for a zinc pre-coating, the temperature T3 will be between 450 and 510 ° C. For a pre-coating in a so-called aluminum-silicon bath, the temperature T3 will be between 660 and 720 ° C. The pre-coating may be aluminum or an aluminum-based alloy. In the latter case, the pre-coating, preferably manufactured by continuous quenching, is advantageously an aluminum-silicon alloy comprising, by weight, 7-15% of silicon, 3 to 20% of iron, optionally between 15 and 30 ppm of calcium, the rest being aluminum and unavoidable impurities resulting from the elaboration.
Le pré-revêtement peut être également du zinc ou un alliage de zinc. Celui-ci peut être notamment du type galvanisé au trempé en continu (« Gl »), contenant 0,25-0,70%AI, 0,01-0,1 %Fe, le solde étant du zinc et des impuretés inévitables résultant de l'élaboration. Le pré-revêtement peut être également galvanisé-allié (« GA ») contenant 0,15-0,4%AI, 6-15%Fe, le solde étant du zinc et des impuretés inévitables résultant de l'élaboration. Le prérevêtement peut être également un alliage de zinc-aluminium-magnésium contenant 1-15%AI, 0,5-5%Mg, 0,01-0,1%Fe, le solde étant du zinc et des impuretés inévitables résultant de l'élaboration. Ce pré-revêtement peut être encore un alliage contenant 4-6%AI, 0,01-0,1%Fe, le solde étant du zinc et des impuretés inévitables résultant de l'élaboration. The pre-coating may also be zinc or a zinc alloy. It may be in particular of the type dipped galvanized continuous ("Gl") containing 0.25-0.70% AI, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting of elaboration. The pre-coating can also be galvanized-alloy ("GA") containing 0.15-0.4% AI, 6-15% Fe, the balance being zinc and unavoidable impurities resulting from elaboration. The precoat may also be a zinc-aluminum-magnesium alloy containing 1-15% Al, 0.5-5% Mg, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting from development. This pre-coating may be an alloy containing 4-6% AI, 0.01-0.1% Fe, the balance being zinc and unavoidable impurities resulting from the elaboration.
Le pré-revêtement peut être également un alliage aluminium-zinc, contenant 40-45%Zn, 3-10%Fe, 1-3%Si, le solde étant de l'aluminium et des impuretés inévitables résultant de l'élaboration. The pre-coating may also be an aluminum-zinc alloy containing 40-45% Zn, 3-10% Fe, 1-3% Si, the balance being aluminum and unavoidable impurities resulting from the preparation.
Le pré-revêtement peut être également composé d'une superposition de couches : par exemple, après dépôt au trempé d'une couche d'aluminium ou d'alliage d'aluminium, on peut effectuer un ou plusieurs dépôts ultérieurs de zinc ou d'alliage de zinc, par exemple par électrodéposition ou par dépôt sous vide : PVD (Physical Vapor Déposition) et/ou CVD (Chemical Vapor Déposition), ces procédés de dépôt étant connus en eux-mêmes. The pre-coating may also be composed of a superposition of layers: for example, after dipping a layer of aluminum or aluminum alloy, one or more subsequent deposits of zinc or aluminum may be made. zinc alloy, for example by electrodeposition or by vacuum deposition: PVD (Physical Vapor Deposition) and / or CVD (Chemical Vapor Deposition), these deposition processes being known per se.
A ce stade, on obtient grâce aux procédés décrits ci-dessus, une tôle composée d'un substrat d'acier dont la profondeur de décarburation p50% est comprise entre 6 et 30 micromètres surmontée d'un pré-revêtement, sans couche d'oxyde de fer présente entre le substrat et le pré-revêtement. La figure 1 présente un exemple de telle tôle, où le substrat d'acier 1 comporte
une zone décarburée superficielle spécifique 2 surmontée d'un prérevêtement 1 zingué galvanisé-allié. At this stage, using the processes described above, a sheet made of a steel substrate with a depth of decarburization p 50 % of between 6 and 30 microns surmounted by a pre-coating, without a coating layer, is obtained. iron oxide present between the substrate and the precoat. FIG. 1 shows an example of such sheet metal, where the steel substrate 1 comprises a specific surface decarburized area 2 surmounted by a pre-coating 1 galvanized galvanized-alloyed.
Cette tôle est ensuite découpée pour obtenir un flan dont la géométrie est en rapport avec la géométrie finale de la pièce visée. Optionnellement, il est possible d'emboutir à froid celui-ci de façon à se rapprocher à un degré plus ou moins grand de la géométrie finale de la pièce visée. Dans le cas d'une faible déformation à froid, celle-ci pourra être complétée par une déformation effectuée à chaud, comme il sera exposé plus loin. This sheet is then cut to obtain a blank whose geometry is related to the final geometry of the target part. Optionally, it is possible to cold stamp it so as to approach to a greater or lesser degree of the final geometry of the target part. In the case of a low cold deformation, it may be supplemented by deformation carried out hot, as will be discussed below.
On chauffe ce flan plan ou pré-embouti, à une température TR propre à conférer une structure partiellement ou totalement austénitique au substrat d'acier. TR peut être comprise entre Aci (température de début de transformation austénitique de l'acier au chauffage) et Ac3 (température de fin de transformation austénitique) en particulier lorsque l'on cherche à obtenir des microstructures bainito-martensitiques après refroidissement à la presse. La température TR sera supérieure à AC3 si l'on vise plutôt une microstructure majoritairement martensitique dans la pièce finale. Le chauffage des flans est effectué préférentiellement dans un four sous atmosphère ordinaire ; on assiste durant cette étape à une alliation entre l'acier du substrat et le prérevêtement. On désigne par le terme de « pré-revêtement » l'alliage avant chauffage, et par « revêtement » la couche alliée formée lors du chauffage qui précède immédiatement l'emboutissage à chaud. Le traitement thermique en four modifie donc la nature du pré-revêtement et sa géométrie puisque l'épaisseur du revêtement final est supérieure à celle du pré-revêtement. Le revêtement formé par alliation protège l'acier sous-jacent de l'oxydation et d'une décarburation supplémentaire et se révèle apte à une déformation ultérieure à chaud notamment dans une presse d'emboutissage. L'alliation intervient sur la totalité de l'épaisseur du revêtement. En fonction de la composition du pré-revêtement, on forme une ou plusieurs phases intermétalliques dans cette couche alliée et/ou un alliage sous forme de solution solide. L'enrichissement en fer du revêtement conduit à une élévation rapide de son point de fusion. Les revêtements formés présentent également l'avantage d'être adhérents et d'être adaptés aux opérations éventuelles de mise en forme à chaud et de refroidissement rapide qui vont suivre.
On maintient le flan à la température TR pour assurer l'homogénéité de la température en son sein. Selon l'épaisseur du flan, comprise par exemple entre 0,5 à 4 mm, la durée de maintien à la température Ti peut varier de 30 secondes à 15 minutes. This flat or pre-stamped blank is heated to a temperature T R capable of conferring a partially or totally austenitic structure on the steel substrate. T R can be between A c i (austenitic steel starting temperature at heating) and A c3 (austenitic end-of-transformation temperature), especially when it is desired to obtain bainitomensitic microstructures after cooling. to the press. The temperature TR will be greater than A C 3 if one rather aims a microstructure predominantly martensitic in the final part. The heating of the blanks is preferably carried out in an oven under ordinary atmosphere; during this step, the steel of the substrate and the precoat are alloyed. The term "pre-coating" refers to the alloy before heating, and "coating" the alloy layer formed during heating immediately preceding the hot stamping. The furnace heat treatment therefore modifies the nature of the pre-coating and its geometry since the thickness of the final coating is greater than that of the pre-coating. The coating formed by alliation protects the underlying steel from oxidation and additional decarburization and is capable of subsequent hot deformation including in a stamping press. Alliation occurs over the entire thickness of the coating. Depending on the composition of the pre-coating, one or more intermetallic phases are formed in this alloy layer and / or an alloy in the form of a solid solution. The iron enrichment of the coating leads to a rapid rise in its melting point. The formed coatings also have the advantage of being adherent and being adapted to the possible operations of hot shaping and rapid cooling that will follow. The blank is kept at the temperature TR to ensure the homogeneity of the temperature within it. Depending on the thickness of the blank, for example between 0.5 to 4 mm, the holding time at the temperature Ti may vary from 30 seconds to 15 minutes.
On extrait ensuite du four le flan chauffé et on le transfère au sein d'un outillage, ce transfert étant effectué rapidement de façon à ne pas provoquer de transformation de l'austénite au refroidissement. Selon une variante, le flan est chauffé au voisinage de l'outillage puis déformé à chaud sans transfert. On effectue ensuite un emboutissage à chaud du flan de façon à obtenir la géométrie finale de la pièce. D'autres modes de déformation à chaud sont également possibles, par exemple un formage entre galets désigné usuellement sous le nom de« roll forming ». Dans le cas où le flan a déjà été embouti à froid préalablement, l'étape qui suit l'extraction du flan hors du four peut être simplement une conformation au sein d'un l'outillage de presse. Dans ce cas, la conformation est caractérisée par un effort appliqué plus faible de l'outillage sur la pièce et vise à parachever la géométrie finale de la pièce et à éviter ses déformations éventuelles au refroidissement. The heated blank is then extracted from the furnace and transferred into a tool, this transfer being effected rapidly so as not to cause transformation of the austenite to cooling. According to a variant, the blank is heated in the vicinity of the tooling and then deformed hot without transfer. The blank is then hot stamped so as to obtain the final geometry of the part. Other modes of hot deformation are also possible, for example a forming between rollers usually referred to as "roll forming". In the case where the blank has already been cold-stamped beforehand, the step following the extraction of the blank from the oven can be simply a conformation within a press tooling. In this case, the conformation is characterized by a lower applied force of the tooling on the workpiece and is intended to complete the final geometry of the workpiece and to avoid any deformation during cooling.
D'une manière optionnelle, il est également possible de ne chauffer qu'une partie du flan, ou de refroidir la pièce emboutie de façon différente dans ses différentes zones, ces variantes conduisant à l'obtention de pièces durcies de façon non uniforme, certaines zones étant durcies de façon importante, d'autres zones présentant une résistance mécanique moindre mais une ductilité supérieure. Optionally, it is also possible to heat only a portion of the blank, or to cool the stamped part differently in its different zones, these variants leading to the obtaining of non-uniformly hardened parts, some areas being significantly hardened, other areas with less mechanical strength but higher ductility.
Après l'étape d'emboutissage ou de conformation, la pièce est maintenue dans l'outillage éventuellement refroidi, de façon à assurer son refroidissement efficace par conduction thermique. After the stamping or shaping step, the part is held in the possibly cooled tooling, so as to ensure its efficient cooling by thermal conduction.
Selon la vitesse de refroidissement et la trempabilité de l'acier du substrat, la microstructure finale est martensitique ou bainito-martensitique. Depending on the cooling rate and the hardenability of the substrate steel, the final microstructure is martensitic or bainitic-martensitic.
A titre d'exemple non limitatif, les résultats suivants vont montrer les caractéristiques avantageuses conférées par l'invention. By way of non-limiting example, the following results will show the advantageous characteristics conferred by the invention.
Exemple 1 :
On a approvisionné une tôle d'acier de 1 ,2mm d'épaisseur dont la composition exprimée en teneur pondérale (%) est la suivante, le reste étant du fer et des impuretés inévitables résultant de l'élaboration :
Example 1 A 1.2 mm thick steel sheet was supplied, the composition of which is expressed in weight content (%), the remainder being iron and unavoidable impurities resulting from the preparation:
La température Ac1 de cette composition d'acier est de 724°C. La tôle a été préchauffée au défilé dans un four à tube radiant sous une atmosphère A1 d'azote contenant 4,7% en volume d'hydrogène avec un point de rosée de - 31 °C, jusqu'à une température T1 a de 600°C à partir de laquelle une injection d'eau est effectuée de façon à d'obtenir une atmosphère A2a avec un point de rosée PR. Différents essais ont été menés en modifiant le débit d'eau injectée dans le four, de manière à faire varier le point de rosée PR entre - 27°C (obtenu grâce à une quantité d'eau injectée relativement peu importante) et -7°C. Dans tous les essais, la tôle a été ensuite chauffée depuis la température T a jusqu'à la température T2a égale à 780°C dans l'atmosphère A2a pendant une durée de 1 10 s., ce qui conduit à obtenir une décarburation et une oxydation sélective interne du Mn, Si, Al, Cr et Ti. A la température T2a, le point de rosée de l'équilibre Fer/oxyde de fer, est de +17°C. La tôle pénètre ensuite dans une zone du four où elle est maintenue à la température Tm de 780°C sous une atmosphère A3 contenant de l'azote et 7% d'hydrogène, réductrice pour le fer. La tôle est ensuite refroidie au défilé dans une autre zone du four sous une atmosphère A4 contenant 10% d'hydrogène, jusqu'à une température T3 de 470°C et prérevêtue au trempé dans un bain à la température Tm de 462°C contenant du zinc et 0, 125% d'aluminium ainsi que des impuretés inévitables. Aucune réoxydation superficielle du fer n'intervient dans les étapes de maintien et de refroidissement dans l'atmosphère A4. Immédiatement après pré-revêtement, la tôle est réchauffée jusqu'à une température de 540°C pour obtenir un prérevêtement galvanisé-allié (« GA »), c'est-à-dire contenant 9% de fer. On obtient ainsi une tôle ne contenant pas de couche d'oxyde de fer entre le substrat d'acier et ledit pré-revêtement galvanisé-allié.
Cette tôle pré-revêtue a été ensuite découpée pour obtenir des flans propres à l'emboutissage. Ceux-ci ont été chauffés jusqu'à une température de 880°C dans un four sous atmosphère ordinaire. Après séjour total de 5 minutes dans le four (dont une durée de 4 minutes pour la phase de chauffage), les flans ont été extraits et emboutis immédiatement. Après emboutissage à chaud, les pièces ont été refroidies sous presse à une vitesse supérieure à 30°C/s de façon à obtenir une structure totalement martensitique dans le substrat d'acier. La résistance à la rupture en traction Rm obtenue sur les pièces durcies est typiquement de l'ordre de 1500 MPa. L'angle de pliage critique ac de ces pièces a été mesuré par essai de flexion trois points effectué avec deux rouleaux extérieurs de 30 mm de diamètre et un couteau central de très faible rayon. The Ac1 temperature of this steel composition is 724 ° C. The sheet was preheated on the run in a radiant tube furnace under a nitrogen A1 atmosphere containing 4.7% by volume of hydrogen with a dew point of -31 ° C, up to a temperature T1 of 600 ° C from which a water injection is performed so as to obtain an atmosphere A2a with a dew point PR. Various tests were carried out by modifying the flow rate of water injected into the furnace, so as to vary the dew point PR between -27 ° C. (obtained thanks to a relatively small quantity of water injected) and -7 ° C. vs. In all the tests, the sheet was then heated from the temperature T.sub.a to the temperature T2a equal to 780.degree. C. in the atmosphere A2a for a period of 10 seconds, which leads to obtaining a decarburization and a internal selective oxidation of Mn, Si, Al, Cr and Ti. At the temperature T2a, the dew point of the iron / iron oxide equilibrium is + 17 ° C. The sheet then enters a zone of the furnace where it is maintained at the temperature Tm of 780 ° C. under an atmosphere A3 containing nitrogen and 7% of hydrogen, reducing for iron. The sheet is then cooled by passing through another zone of the furnace under an atmosphere containing 10% of hydrogen to a temperature T3 of 470.degree. C. and pre-quenched by dipping in a bath at a temperature Tm of 462.degree. zinc and 0, 125% aluminum and unavoidable impurities. No superficial reoxidation of iron occurs in the maintenance and cooling steps in the atmosphere A4. Immediately after pre-coating, the sheet is heated to a temperature of 540 ° C to obtain a coating galvanized-alloy ("GA"), that is to say containing 9% iron. A sheet not containing an iron oxide layer is thus obtained between the steel substrate and said galvanized-alloy pre-coating. This pre-coated sheet was then cut to obtain blanks suitable for stamping. These were heated to a temperature of 880 ° C in a furnace under ordinary atmosphere. After total residence of 5 minutes in the oven (including a duration of 4 minutes for the heating phase), the blanks were extracted and stamped immediately. After hot stamping, the parts were cooled in press at a speed greater than 30 ° C / s so as to obtain a totally martensitic structure in the steel substrate. The tensile strength Rm obtained on the cured parts is typically of the order of 1500 MPa. The critical bending angle a c of these pieces was measured by three-point bending test performed with two outer rollers 30 mm in diameter and a central knife of very small radius.
La figure 6 présente la variation de l'angle critique ac en fonction du point de rosée PR après injection d'eau à partir de la température T1a : lorsque PR est inférieur à -15°C, l'angle de pliage obtenu présente une valeur inférieure à 55°, non satisfaisante. Lorsque PR excède la température Te de +17°C, il existe un risque éventuel de ne pas réduire complètement l'oxyde de fer lors du maintien ultérieur, causant ainsi l'apparition locale de défauts de revêtement correspondant à la présence locale d'oxydes superficiels non réduits. Dans le domaine de l'invention, l'angle de pliage varie peu en fonction du point de rosée : entre -15 et -7°C, l'augmentation est de 0,79° par °C en moyenne alors que la variation est plus importante au dessous de - 15°C (1 ,05° par °C) Lorsque PR est compris entre -15 et -10°C, on met en évidence un domaine particulièrement intéressant puisque l'angle de pliage est pratiquement indépendant du point de rosée. En d'autres termes, dans cette gamme particulière, une fluctuation éventuelle non désirée de la quantité d'eau injectée lors du recuit en four, n'a pas de conséquence sur l'aptitude au pliage après emboutissage à chaud, ce qui permet de garantir une grande stabilité des caractéristiques sur les pièces embouties et durcies à la presse. FIG. 6 shows the variation of the critical angle a c as a function of the dew point PR after water injection from the temperature T1a: when PR is less than -15 ° C., the folding angle obtained has a value less than 55 °, unsatisfactory. When PR exceeds the temperature Te of + 17 ° C, there is a possible risk of not completely reducing the iron oxide during the subsequent maintenance, thus causing the local appearance of coating defects corresponding to the local presence of oxides superficial not reduced. In the field of the invention, the bending angle varies little according to the dew point: between -15 and -7 ° C, the increase is 0.79 ° per ° C on average while the variation is more important below - 15 ° C (1.05 ° C) When PR is between -15 and -10 ° C, we highlight a particularly interesting area since the bending angle is virtually independent of the point Dew. In other words, in this particular range, an undesirable possible fluctuation of the quantity of water injected during oven annealing has no effect on the bending ability after hot stamping, which makes it possible to to guarantee a great stability of the characteristics on the stamped parts and hardened to the press.
On a réalisé par ailleurs des essais en faisant varier simultanément PR et la température T1a, cette dernière étant de 720°C (soit Ac1-4°C) ou de 760°C (Ac1 +36°C) La figure 7 illustre l'influence de la température T a et du point
de rosée PR sur la profondeur de décarburation p50% avant emboutissage à chaud, mesurée par spectroscopie à décharge luminescente : lorsque le point de rosée est trop bas, la profondeur décarburée n'atteint pas la valeur requise par l'invention (résultat repéré « A » sur la figure 7). Un point de rosée suffisamment élevé, avec une température T1a légèrement inférieure à Ac1 permet d'atteindre la profondeur requise (résultat « B ») Un chauffage à une température T1 a plus élevée (Ac1 +36°C) permet d'augmenter notablement la profondeur de décarburation p5o% (résultat « C») Tests have also been carried out by simultaneously varying PR and the temperature T1a, the latter being 720 ° C. (ie Ac1-4 ° C.) or 760 ° C. (Ac1 + 36 ° C.). influence of the temperature T a and the point dew PR on the decarburization depth p 50% before hot stamping, measured by glow discharge spectroscopy: when the dew point is too low, the decarburized depth does not reach the value required by the invention (result found " A "in Figure 7). A sufficiently high dew point, with a temperature T1a slightly lower than Ac1 makes it possible to reach the required depth (result "B") Heating at a higher T1 temperature (Ac1 + 36 ° C.) makes it possible to increase significantly the depth of decarburization p 5 o % (result "C")
Après polissage et attaque au réactif Nital des pièces embouties à chaud obtenues, on a observé par microscopie optique la microstructure sous le revêtement qui résulte de l'alliation par diffusion entre le zinc du prérevêtement initial et l'acier du substrat : la figure 8 illustre ainsi le revêtement 15 et l'acier sous-jacent 16, pour un recuit avec un point de rosée PR=-27°C. la figure 9 illustre le revêtement 17 et l'acier sous-jacent 18, pour un recuit avec un point de rosée PR=-7°C. En dépit de la différence importante d'aptitude au pliage entre les deux échantillons (20°), on ne met pas en évidence de différences microstructurales significatives entre les deux échantillons après emboutissage à chaud, malgré la différence de décarburation existant entre ceux-ci avant emboutissage à chaud : After polishing and Nital reagent etching of the hot stamped parts obtained, the microstructure under the coating which was obtained by the diffusional bonding between the zinc of the initial pre-coating and the steel of the substrate was observed by optical microscopy: FIG. thus the coating 15 and the underlying steel 16, for annealing with a dew point PR = -27 ° C. Figure 9 illustrates the coating 17 and the underlying steel 18, for annealing with a dew point PR = -7 ° C. Despite the significant difference in folding ability between the two samples (20 °), no significant microstructural differences were found between the two samples after hot stamping, despite the difference in decarburization between them before hot stamping:
La figure 10 illustre la variation, avant emboutissage à chaud, de la teneur en carbone des deux tôles recuites dans une atmosphère A2a avec un point de rosée PR de -27°C ou de -7°C. Cette variation, mesurée par spectrométrie de décharge luminescente dans le substrat d'acier, est exprimée à la figure 10 en fonction de la profondeur sous l'interface entre l'acier et le pré-revêtement. La teneur locale mesurée (C) a été rapportée à la teneur nominale en carbone C0 de façon à obtenir la variation de la teneur en carbone relative C/C0. On observe que les zones décarburées sont très différentes dans les deux conditions de recuit, la profondeur de décarburation p50% étant de 15 micromètres pour PR=-7°C et de 3 micromètres pour PR=-27°C. Si l'on considère la totalité de la zone décarburée, la profondeur de décarburation mesurée après recuit avec PR=-7°C est supérieure d'environ 35 micromètres à celle mesurée après recuit sous PR=-27°C. FIG. 10 illustrates the variation, before hot stamping, of the carbon content of the two annealed sheets in an A2a atmosphere with a dew point PR of -27 ° C. or -7 ° C. This variation, measured by glow discharge spectrometry in the steel substrate, is expressed in FIG. 10 as a function of the depth under the interface between the steel and the precoat. The measured local content (C) was referred to the nominal carbon content C 0 so as to obtain the variation of the relative carbon content C / C 0 . It is observed that the decarburized zones are very different in the two annealing conditions, the decarburization depth p 50% being 15 microns for PR = -7 ° C. and 3 microns for PR = -27 ° C. If we consider the entire decarburized zone, the decarburization depth measured after annealing with PR = -7 ° C is about 35 micrometers higher than that measured after annealing at PR = -27 ° C.
Après emboutissage à chaud de ces tôles, on a déterminé par la même
méthode la variation de la teneur en carbone sous le revêtement des pièces ainsi obtenues. La figure 1 1 illustre la variation de la teneur en carbone relative C/C0 de ces pièces. On met alors en évidence que la zone décarburée est sensiblement identique dans les deux conditions de recuit. Ceci indique que le chauffage en four préalable au traitement de durcissement par trempe sous presse, conduit à une diffusion du carbone vers la surface décarburée de l'acier. La détermination de la décarburation après emboutissage à chaud ne permet pas de déterminer que le recuit avec PR=-7°C conduira à des résultats de pliage satisfaisants alors que le recuit avec PR=-27°C ne satisfera pas le niveau requis. Bien qu'incomplète, cette homogénéisation du carbone permet cependant d'obtenir dans l'acier situé immédiatement sous le revêtement, une teneur suffisante en carbone pour provoquer une trempe martensitique dans les conditions de refroidissement liées à l'emboutissage à chaud, comme illustré aux figures 8 et 9. Cependant, les caractéristiques intrinsèques de ténacité de la martensite créée dans ces conditions, dépendent des conditions de décarburation qui résultent notamment du choix de la température PR. Ainsi, le contrôle efficace de l'aptitude au pliage des pièces embouties à chaud doit être réalisé sur les tôles ou les flans avant l'opération d'emboutissage à chaud, et non après cette dernière, contrairement à ce qui était attendu par l'homme du métier. En outre, les pièces embouties à chaud fabriquées à partir de tôles prérevêtues de zinc ou d'alliage de zinc décarburées selon l'invention, présentent une aptitude particulière au soudage par résistance par point : en effet, après chauffage puis emboutissage à chaud, on constate la présence d'une couche décarburée sous le revêtement. On sait que le soudage par résistance conduit à une élévation de température locale très importante puisque la fusion est atteinte au sein du noyau fondu qui constitue la liaison entre les éléments soudés. Dans les joints soudés effectués sur des pièces embouties à chaud conventionnelles, on peut assister à une fragilisation des joints de grains austénitiques par pénétration du zinc du revêtement, alors liquide en raison de l'élévation de température lors du soudage. Selon l'invention, la présence d'une zone très appauvrie en carbone sous le revêtement conduit à une augmentation locale de la température de
transformation Ac3 en austénite lors du chauffage. Selon la teneur en carbone, la structure à haute température est alors constituée de microstructure de ferrite ou d'un mélange de ferrite et d'austénite. En présence de zinc liquide, cette microstructure présente une moindre sensibilité à la fissuration que la structure austénitique. After hot stamping of these sheets, it was determined by the same method the variation of the carbon content under the coating of the pieces thus obtained. Figure 11 illustrates the variation of the relative carbon content C / C 0 of these parts. It is then demonstrated that the decarburized zone is substantially identical in both annealing conditions. This indicates that furnace heating prior to press hardening treatment leads to diffusion of carbon to the decarburized surface of the steel. The determination of the decarburization after hot stamping does not make it possible to determine that the annealing with PR = -7 ° C will lead to satisfactory folding results while the annealing with PR = -27 ° C. will not satisfy the required level. Although incomplete, this homogenization of the carbon makes it possible, however, to obtain in the steel immediately beneath the coating, a sufficient carbon content to cause martensitic quenching under the cooling conditions associated with hot stamping, as illustrated in FIGS. Figures 8 and 9. However, the intrinsic characteristics of tenacity of the martensite created under these conditions, depend on the decarburization conditions resulting in particular from the choice of the PR temperature. Thus, the effective control of the bending ability of the hot-stamped parts must be achieved on the sheets or blanks before the hot stamping operation, and not after the latter, contrary to what was expected by the skilled person. In addition, the hot-stamped parts made from sheets pre-coated zinc or zinc alloy decarburized according to the invention, have a particular aptitude for spot resistance welding: indeed, after heating and hot stamping, it is possible to note the presence of a decarburized layer under the coating. It is known that resistance welding leads to a very high local temperature rise since the fusion is reached within the molten core which constitutes the connection between the welded elements. In welded joints made on conventional hot-stamped parts, the austenitic grain boundaries can be weakened by penetration of the zinc coating, which is then liquid because of the rise in temperature during welding. According to the invention, the presence of a zone that is very depleted of carbon under the coating leads to a local increase in the temperature of Ac3 transformation into austenite during heating. Depending on the carbon content, the high temperature structure then consists of ferrite microstructure or a mixture of ferrite and austenite. In the presence of liquid zinc, this microstructure has a lower susceptibility to cracking than the austenitic structure.
Exemple 2 : Example 2
On a fabriqué des tôles pré-revêtues de Zn par la méthode décrite ci-dessus, à l'exception du fait que celles-ci ont une épaisseur de 1 ,8 mm et n'ont pas été réchauffées à 540°C après revêtement au trempé, de telle sorte que leur revêtement est galvanisé et non galvanisé-allié. Pre-coated sheets of Zn were made by the method described above, except that they were 1.8 mm thick and were not heated to 540 ° C after coating. soaked, so that their coating is galvanized and not galvanized-alloyed.
Les conditions de fabrication ont été choisies de manière à obtenir une tôle avec une profondeur décarburée p5o% de 6 micromètres. Ces tôles ont été découpées pour obtenir des flans qui ont été austénitisés à une température de 880°C dans un four sous atmosphère ordinaire. Après un séjour total allant jusqu'à 10 minutes dans le four, les flans ont été extraits, emboutis immédiatement à chaud et durcis sous presse. Le tableau suivant indique la variation de l'angle de pliage critique ac en fonction de la durée de séjour total de la pièce dans le four. The manufacturing conditions were selected so as to obtain a sheet with a decarburized depth p o 5% to 6 micrometers. These sheets were cut to obtain blanks that were austenitized at a temperature of 880 ° C in a furnace under ordinary atmosphere. After a total residence of up to 10 minutes in the oven, the blanks were extracted, stamped immediately hot and cured in press. The following table shows the variation of the critical bending angle a c as a function of the total residence time of the part in the oven.
Il apparaît ainsi que les flans peuvent séjourner jusqu'à 7 minutes dans le four avant d'être embouti à chaud, tout en satisfaisant aux exigences requises. Ceci permet de résoudre les problèmes rencontrés sur les lignes d'emboutissage à chaud, lorsqu'un incident sur la ligne contraint à faire séjourner les flans dans le four plus longtemps que prévu. L'invention permet cette souplesse, en évitant de rebuter des flans. De plus, on observera qu'au-
delà de 7 minutes, l'augmentation de durée de séjour ne conduit qu'à une très faible décroissance de l'angle de pliage, ce qui indique que le procédé selon l'invention présente de grandes garanties de sécurité en cas de dérive par rapport aux paramètres nominaux de traitement thermique lors de l'emboutissage à chaud, et permet d'obtenir une grande reproductibilité des caractéristiques mécaniques des pièces. It appears that the blanks can stay up to 7 minutes in the oven before being hot stamped, while meeting the requirements. This solves the problems encountered on the hot stamping lines, when an incident on the line forced to keep the blanks in the oven longer than expected. The invention allows this flexibility, avoiding discarding blanks. In addition, it will be observed that beyond 7 minutes, the increase in residence time leads only to a very small decrease in the bending angle, which indicates that the method according to the invention has great safety guarantees in case of drift compared with the nominal parameters of heat treatment during hot stamping, and provides a high reproducibility of the mechanical characteristics of the parts.
Ainsi, l'invention permet la fabrication de tôles prérevêtues et de pièces revêtues à très hautes caractéristiques de résistance et d'aptitude au pliage, avec une bonne isotropie, dans des conditions économiques très satisfaisantes. Ces pièces seront utilisées avec profit comme pièces de structure ou de renfort dans le domaine de la construction automobile.
Thus, the invention allows the manufacture of pre-coated sheets and coated parts with very high characteristics of strength and folding ability, with good isotropy, under very satisfactory economic conditions. These parts will be used profitably as structural parts or reinforcements in the field of automotive construction.
Claims
REVENDICATIONS
Tôle laminée pré-revêtue pour la fabrication de pièces durcies par trempe sous presse, composée d'un substrat d'acier pour traitement thermique contenant une teneur en carbone C0 comprise entre 0,07% et 0,5%, ladite teneur étant exprimée en poids, et d'un pré-revêtement métallique au moins sur les deux faces principales dudit substrat d'acier, caractérisée en ce que ledit substrat comporte une zone décarburée à la surface de chacune desdites deux faces principales, la profondeur p5o<% de ladite zone décarburée étant comprise entre 6 et 30 micromètres, préférentiellement entre 9 et 30 micromètres, et très préférentiellement entre 12 et 30 micromètres, p5o% étant la profondeur à laquelle la teneur en carbone est égale à 50% de ladite teneur C0, et en ce que ladite tôle ne contient pas de couche d'oxyde de fer entre ledit substrat et ledit pré-revêtement métallique. Pre-coated laminated sheet for the manufacture of hardened press-hardened parts, composed of a heat-treatable steel substrate containing a carbon content C 0 of between 0.07% and 0.5%, said content being expressed by weight, and a metal pre-coating at least on the two main faces of said steel substrate, characterized in that said substrate comprises a decarburized zone on the surface of each of said two main faces, the depth p 5 o < % of said decarburized zone being between 6 and 30 micrometers, preferably between 9 and 30 micrometers, and very preferably between 12 and 30 micrometers, p 5 o % being the depth at which the carbon content is equal to 50% of said content C 0 , and in that said sheet does not contain an iron oxide layer between said substrate and said metal pre-coating.
Tôle pré-revêtue selon la revendication 1 caractérisée en ce que ledit pré-revêtement métallique est de l'aluminium ou un alliage d'aluminium. Pre-coated sheet according to claim 1 characterized in that said metal pre-coating is aluminum or an aluminum alloy.
Tôle pré-revêtue selon la revendication 1 caractérisée en ce que ledit pré-revêtement métallique est du zinc ou un alliage de zinc. Pre-coated sheet according to claim 1 characterized in that said metal pre-coating is zinc or a zinc alloy.
Tôle pré-revêtue selon la revendication 1 caractérisée en ce que ledit pré-revêtement métallique est composée d'une couche d'aluminium ou d'un alliage d'aluminium, surmontée d'une couche de zinc ou d'un alliage de zinc Pre-coated sheet according to claim 1 characterized in that said metal pre-coating is composed of a layer of aluminum or an aluminum alloy, topped with a layer of zinc or a zinc alloy
Tôle pré-revêtue selon l'une quelconque des revendications 1 à 4 caractérisée en ce que la composition dudit substrat d'acier comprend, les teneurs étant exprimées en poids : Pre-coated sheet according to any one of claims 1 to 4 characterized in that the composition of said steel substrate comprises, the contents being expressed by weight:
0,07% < C < 0,5%
0,5%< Mn < 3% 0.07% <C <0.5% 0.5% <Mn <3%
0,02% < Si < 0,5% 0.02% <If <0.5%
0,01%<Cr<1% 0.01% <Cr <1%
Ti<0,2% Ti <0.2%
AI < 0,25% AI <0.25%
S < 0,05% S <0.05%
P≤0,1% P≤0,1%
0,0005% <B<0,010%, 0.0005% <B <0.010%,
optionnellement 0,0005%< Ca < 0,005%, optionally 0.0005% <Ca <0.005%,
le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration.
Tôle pré-revêtue selon l'une quelconque des revendications 1 à 4, caractérisée en ce que la composition dudit substrat d'acier comprend, les teneurs étant exprimées en poids : Pre-coated sheet according to any one of claims 1 to 4, characterized in that the composition of said steel substrate comprises, the contents being expressed by weight:
0,09% < C < 0,38% 0.09% <C <0.38%
0,8%<Mn< 1,5% 0.8% <Mn <1.5%
0,1% < Si < 0,35% 0.1% <If <0.35%
0,01% <Cr< 0,3% 0.01% <Cr <0.3%
0,02%<Ti<0,1% 0.02% <Ti <0.1%
0,001 %≤ Al < 0,25% 0.001% ≤ Al <0.25%
S < 0,05% S <0.05%
P<0,1% P <0.1%
0,002% < B < 0,005%, 0.002% <B <0.005%,
optionnellement 0,0005%< Ca < 0,005%, optionally 0.0005% <Ca <0.005%,
le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration
Tôle pré-revêtue selon l'une quelconque des revendications 1 à 6, caractérisée en ce que la composition dudit substrat d'acier comprend, la teneur étant exprimée en poids : the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration Pre-coated sheet according to any one of claims 1 to 6, characterized in that the composition of said steel substrate comprises, the content being expressed by weight:
0,15% < C < 0,25% 0.15% <C <0.25%
Procédé de fabrication d'une pièce d'acier revêtue et durcie, comprenant les étapes successives selon lesquelles : A method of manufacturing a coated and cured steel part, comprising the successive steps according to which:
on approvisionne une tôle laminée d'acier pour traitement thermique contenant une teneur en carbone C0 comprise entre 0,07% et 0,5%, puis supplying a rolled steel sheet for heat treatment containing a carbon content C 0 of between 0.07% and 0.5%, then
on recuit ladite tôle laminée de manière à obtenir à l'issue du recuit, une décarburation de la surface de ladite tôle sur une profondeur p50% comprise entre 6 et 30 micromètres, p50% étant la profondeur à laquelle la teneur en carbone est égale à 50% de ladite teneur C0, et de manière à obtenir une tôle dépourvue totalement de couche d'oxyde de fer à sa surface, puis said laminated sheet is annealed so as to obtain, after annealing, a decarburization of the surface of said sheet to a depth p 50% of between 6 and 30 micrometers, p 50% being the depth at which the carbon content is equal to 50% of said content C 0 , and so as to obtain a sheet totally free of iron oxide layer on its surface, and then
on effectue un pré-revêtement de métal ou d'alliage métallique sur ladite tôle recuite jouant le rôle de substrat, puis a pre-coating of metal or metal alloy is carried out on said annealed sheet acting as a substrate, then
on découpe ladite tôle pré-revêtue pour obtenir un flan, puis said pre-coated sheet is cut to obtain a blank, then
on emboutit optionnellement à froid ledit flan, puis the said blank is optionally cold-pressed, then
on chauffe ledit flan à une température TR dans un four de manière à conférer, au moins partiellement, une structure austénitique audit acier, puis said blank is heated to a temperature T R in an oven so as to at least partially impart an austenitic structure to said steel, and then
on extrait ledit flan chauffé du four et on transfère celui-ci dans une presse ou un dispositif de mise en forme, puis said heated blank is extracted from the furnace and transferred to a press or a shaping device, and
on déforme à chaud ou on calibre à chaud ledit flan pour obtenir une pièce, puis it deforms hot or hot gauge said blank to obtain a room, then
on refroidit ladite pièce au sein de ladite presse ou dudit dispositif de mise en forme pour lui conférer par trempe une microstructure martensitique ou bainito-martensitique.
Procédé de fabrication selon la revendication 8 caractérisé en ce que ledit pré-revêtement est réalisé en continu au trempé par passage dans un bain Procédé de fabrication selon la revendication 8 ou 9 caractérisé en ce que ledit pré-revêtement est de l'aluminium ou un alliage d'aluminium Procédé de fabrication selon la revendication 8 ou 9 caractérisé en ce que ledit pré-revêtement est du zinc ou un alliage de zinc Procédé de fabrication selon la revendication 8 ou 9 caractérisé en ce que ledit pré-revêtement métallique est composé d'une couche d'aluminium ou d'un alliage d'aluminium, surmontée d'une couche de zinc ou d'un alliage de zinc Procédé de fabrication selon l'une quelconque des revendications 8 à 12 caractérisé en que ladite profondeur pso% est comprise entre 9 et 30 micromètres, préférentiellement entre 12 et 30 micromètres said part is cooled in said press or said shaping device to impart to it by quenching a martensitic or bainito-martensitic microstructure. Manufacturing method according to claim 8 characterized in that said pre-coating is carried out continuously by dipping by bathing. Manufacturing method according to claim 8 or 9 characterized in that said pre-coating is aluminum or a aluminum alloy Manufacturing method according to claim 8 or 9 characterized in that said pre-coating is zinc or a zinc alloy Manufacturing process according to claim 8 or 9 characterized in that said metal pre-coating is composed of an aluminum or aluminum alloy layer, surmounted by a layer of zinc or a zinc alloy. A manufacturing method according to any one of claims 8 to 12, characterized in that said depth pso is between 9 and 30 micrometers, preferably between 12 and 30 micrometers
Procédé de fabrication selon l'une quelconque des revendications 8 à 13, caractérisé en ce que la composition dudit substrat d'acier comprend, les teneurs étant exprimées en poids : Manufacturing method according to any one of claims 8 to 13, characterized in that the composition of said steel substrate comprises, the contents being expressed by weight:
0,07% < C < 0,5% 0.07% <C <0.5%
0,5%< Mn < 3% 0.5% <Mn <3%
0,02% < Si < 0,5% 0.02% <If <0.5%
0,01 % < Cr < 1% 0.01% <Cr <1%
Ti<0,2% Ti <0.2%
Al < 0,25% Al <0.25%
S < 0,05% S <0.05%
P< 0,1 % P <0.1%
0,0005% < B < 0,010%, 0.0005% <B <0.010%,
optionnellement 0,0005%< Ca < 0,005%,
le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration. optionally 0.0005% <Ca <0.005%, the remainder of the composition consisting of iron and unavoidable impurities resulting from the elaboration.
Procédé de fabrication selon l'une quelconque des revendications 8 à 14, caractérisé en ce que la composition dudit substrat d'acier comprend, les teneurs étant exprimées en poids : Manufacturing method according to any one of claims 8 to 14, characterized in that the composition of said steel substrate comprises, the contents being expressed by weight:
0,09% < C < 0,38% 0.09% <C <0.38%
0,8%< Mn < 1 ,5% 0.8% <Mn <1.5%
0,1 % < Si < 0,35% 0.1% <If <0.35%
0,01 % < Cr < 0,3% 0.01% <Cr <0.3%
0,02%≤Ti<0,1 % 0.02% ≤Ti <0.1%
0,001 %≤ Al < 0,25% 0.001% ≤ Al <0.25%
S < 0,05% S <0.05%
P< 0,1 % P <0.1%
0,002% < B < 0,005%, 0.002% <B <0.005%,
optionnellement 0,0005%< Ca < 0,005%, optionally 0.0005% <Ca <0.005%,
le reste de la composition étant constitué de fer et d'impuretés inévitables résultant de l'élaboration Procédé selon l'une quelconque des revendications 8 à 15, caractérisée en ce que la composition dudit substrat d'acier comprend, la teneur étant exprimée en poids : the remainder of the composition consisting of iron and unavoidable impurities resulting from the production process according to any one of claims 8 to 15, characterized in that the composition of said steel substrate comprises, the content being expressed by weight :
0, 15% < C < 0,25% 0, 15% <C <0.25%
Procédé de fabrication selon l'une quelconque des revendications 8 à 16 caractérisé en ce que ladite température TR est supérieure ou égale à la température Ac3 dudit acier. Manufacturing method according to any one of claims 8 to 16 characterized in that said temperature T R is greater than or equal to the temperature A c3 of said steel.
Procédé de fabrication selon l'une quelconque des revendications 8 à 17 caractérisé en ce que lesdites conditions de recuit comprennent les étapes successives suivantes :
- après avoir approvisionné ladite tôle laminée d'acier, on préchauffe au défilé dans un four à tube radiant, ou un four à résistance, ou un four à induction, ou un four combinant au moins deux quelconques de ces moyens, ladite tôle laminée jusqu'à une température T1a comprise entre 600°C et Ac1 +40°C, Ad désignant la température de début de transformation austénitique au chauffage dudit acier, dans une zone dudit four où l'atmosphère A1 contient de 2 à 15% en volume d'hydrogène, préférentiellement de 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, avec un point de rosée compris entre -60 et -15°C, puis Manufacturing method according to any one of claims 8 to 17 characterized in that said annealing conditions comprise the following successive steps: - After supplying said rolled steel sheet, is preheated in the parade in a radiant tube furnace, or a resistance furnace, or an induction furnace, or a furnace combining at least two of these means, said sheet rolled up to at a temperature T1a of between 600 ° C. and Ac1 + 40 ° C., Ad denoting the austenitic transformation start temperature at heating said steel, in an area of said furnace in which the atmosphere A1 contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C, and then
- on chauffe ladite tôle de la température T1a jusqu'à une température T2a comprise entre 720 et 860°C, une injection d'au moins un élément choisi parmi de l'eau liquide, de l'eau vapeur ou de l'oxygène, étant effectuée dans ledit four à partir de ladite température T1 a pour obtenir, dans la section du four comprise entre ladite température T1 a et ladite température T2a, une atmosphère A2a avec un point de rosée PR compris entre -15°C et la température Te du point de rosée de l'équilibre Fer/oxyde de fer, l'intervalle de temps entre l'instant où la tôle est à la température T1 a et l'instant où ladite tôle atteint la température T2a, étant supérieur ou égal à 30 secondes, puis said sheet of temperature T1a is heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen, being carried out in said oven from said temperature T1 a to obtain, in the section of the furnace between said temperature T1a and said temperature T2a, an atmosphere A2a with a dew point PR of between -15 ° C and the temperature Te the dew point of the iron / iron oxide equilibrium, the time interval between the instant when the sheet is at the temperature T1 a and the instant when said sheet reaches the temperature T2a, being greater than or equal to 30 seconds and then
on maintient ladite tôle à une température Tm comprise entre T2a et T2a+40°C, sous une atmosphère A3 réductrice pour le fer, puis on refroidit ladite tôle dans une atmosphère A4 telle qu'aucune réoxidation superficielle du fer n'intervienne, jusqu'à une température T3, puis said sheet is maintained at a temperature Tm between T2a and T2a + 40 ° C, in a reducing atmosphere A3 for iron, and then said sheet is cooled in an atmosphere A4 such that no surface reoxidation of the iron intervenes, until at a temperature T3, then
on effectue un pré-revêtement de ladite tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que ladite température T3 est comprise entre Tbm-10°C et Tbm+50°C. pre-coating of said sheet by a dip in a metal bath at the temperature Tbm, provided that said temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
Procédé selon la revendication 18, caractérisé en ce que ledit point de rosée PR est compris entre -15 et +17°C.
0 Procédé selon la revendication 18, caractérisé en ce que ledit point de rosée PR est compris entre -15 et -10°C. 1 Procédé de fabrication selon l'une quelconque des revendications 8 à 17 caractérisé en ce que lesdites conditions de recuit comprennent les étapes successives suivantes : Process according to Claim 18, characterized in that the said dew point PR is between -15 and + 17 ° C. 0 Process according to claim 18, characterized in that said dew point PR is between -15 and -10 ° C. 1 manufacturing method according to any one of claims 8 to 17 characterized in that said annealing conditions comprise the following successive steps:
- après avoir approvisionné ladite tôle laminée d'acier, on préchauffe au défilé dans un four à tube radiant, ou un four à résistance, ou un four à induction, ou un four combinant au moins deux quelconques de ces moyens, ladite tôle laminée jusqu'à une température T1a comprise entre 600°C et Ac1 +40°C, Ad désignant la température de début de transformation austénitique au chauffage dudit acier, dans une zone dudit four où l'atmosphère A1 contient de 2 à 15% en volume d'hydrogène, préférentiellement de 3-5% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, avec un point de rosée compris entre -60 et -15°C, puis - After supplying said rolled steel sheet, is preheated in the parade in a radiant tube furnace, or a resistance furnace, or an induction furnace, or a furnace combining at least two of these means, said sheet rolled up to at a temperature T1a of between 600 ° C. and Ac1 + 40 ° C., Ad denoting the austenitic transformation start temperature at heating said steel, in an area of said furnace in which the atmosphere A1 contains from 2 to 15% by volume of hydrogen, preferably 3-5% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, with a dew point between -60 and -15 ° C, and then
- on chauffe ladite tôle de la température T1a jusqu'à une température T2a comprise entre 720 et 860°C, une injection d'au moins un élément choisi parmi de l'eau liquide, de l'eau vapeur ou de l'oxygène, étant effectuée dans ledit four à partir de ladite température T1a pour obtenir, dans la section du four comprise entre ladite température T1a et ladite température T2a, une atmosphère A2b oxydante pour le fer, l'intervalle de temps entre l'instant où la tôle est à la température T1a et l'instant où ladite tôle atteint la température T2a, étant supérieur ou égal à 30 secondes, puis said sheet of temperature T1a is heated to a temperature T2a of between 720 and 860 ° C., an injection of at least one element chosen from liquid water, steam water or oxygen, being carried out in said oven from said temperature T1a to obtain, in the section of the furnace between said temperature T1a and said temperature T2a, an oxidizing atmosphere A2b for the iron, the time interval between the instant when the sheet is at the temperature T1a and the moment when said sheet reaches the temperature T2a, being greater than or equal to 30 seconds, then
- on maintient ladite tôle à une température Tm comprise entre T2a et T2a+40°C, sous une atmosphère A3 réductrice pour le fer, la réduction complète de la couche de fer formée dans ladite atmosphère A2b, intervenant au plus tard à la fin du maintien à ladite température Tm, puis said sheet is maintained at a temperature Tm between T2a and T2a + 40 ° C, under a reducing atmosphere A3 for iron, the complete reduction of the iron layer formed in said atmosphere A2b, occurring at the latest at the end of maintaining at said temperature Tm, then
- on refroidit ladite tôle dans une atmosphère A4 telle qu'aucune réoxydation superficielle du fer n'intervienne, jusqu'à une température T3, puis
- on effectue un pré-revêtement de ladite tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que ladite température T3 est comprise entre Tbm-10°C et Tbm+50°C Procédé de fabrication selon l'une quelconque des revendications 18 à 21 , caractérisé en ce que ladite température T1 a est supérieure à Ad , température de transformation austénitique au chauffage dudit substrat d'acier Procédé de fabrication selon l'une quelconque des revendications 8 à 17, caractérisé en ce que lesdites conditions de recuit comprennent les étapes successives suivantes : said sheet is cooled in an atmosphere A4 such that no superficial reoxidation of the iron takes place, up to a temperature T3, then a precoating of said sheet is carried out by a quenching passage in a metal bath at the temperature Tbm, provided that said temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C. Manufacturing process according to any one of claims 18 to 21, characterized in that said temperature T1a is greater than Ad, austenitic transformation temperature when heating said steel substrate. Manufacturing method according to any one of claims 8 to 17, characterized in that said annealing conditions comprise the following successive steps:
- après avoir approvisionné ladite tôle d'acier, on préchauffe au défilé dans un four ladite tôle laminée, ledit préchauffage étant réalisé dans une zone d'un four chauffé à flammes directes, ladite tôle étant préchauffée jusqu'à une température T1 b comprise entre 550 et 750°C dans une atmosphère résultant de la combustion d'un mélange d'air et de gaz naturel dont le rapport air/gaz est compris entre 1 et 1 ,2, puis - After supplying said steel sheet, said laminated sheet is preheated in a furnace in an oven, said preheating being carried out in an area of a heated oven with direct flames, said sheet being preheated to a temperature T1b between 550 and 750 ° C in an atmosphere resulting from the combustion of a mixture of air and natural gas whose air / gas ratio is between 1 and 1, 2, then
- on chauffe ladite tôle de la température T1 b jusqu'à une température T2b comprise entre 760 et 830°C au sein d'une seconde zone de four chauffée par tubes radiants, ou par résistances, ou par induction, ou par une combinaison quelconque d'au moins deux de ces moyens, dont l'atmosphère contient de 3 à 40% en volume d'hydrogène, le solde étant de l'azote et des impuretés inévitables, le point de rosée étant inférieur à -30°C, l'intervalle de temps entre l'instant où la tôle est à ladite température T1 b et l'instant où ladite tôle atteint ladite température T2b, étant au moins de 30 secondes, puis said sheet of temperature T1 b is heated up to a temperature T2b of between 760 and 830 ° C. in a second furnace zone heated by radiant tubes, or by resistance, or by induction, or by any combination at least two of these means, the atmosphere of which contains 3 to 40% by volume of hydrogen, the balance being nitrogen and unavoidable impurities, the dew point being below -30 ° C, time interval between the instant when the sheet is at said temperature T1 b and the moment when said sheet reaches said temperature T2b, being at least 30 seconds, then
- on maintient ladite tôle à une température Tm comprise entre T2b et T2b+40°C, sous une atmosphère A3 réductrice pour le fer, puis said sheet is maintained at a temperature Tm between T2b and T2b + 40 ° C, under a reducing atmosphere A3 for iron, and then
- on refroidit ladite tôle dans une atmosphère A4 telle qu'aucune réoxidation superficielle n'intervienne, jusqu'à une température T3, puis
- on effectue un pré-revêtement de ladite tôle par un passage au trempé dans un bain métallique à la température Tbm, étant entendu que ladite température T3 est comprise entre Tbm-10°C et Tbm+50°C. said sheet is cooled in an atmosphere A4 such that no surface reoxidation intervenes, up to a temperature T3, then a pre-coating of said sheet is carried out by a quenching step in a metal bath at the temperature Tbm, it being understood that said temperature T3 is between Tbm-10 ° C and Tbm + 50 ° C.
Procédé de fabrication selon la revendication 23, caractérisé en ce que ladite température T2b est supérieure à Ac1
Manufacturing method according to claim 23, characterized in that said temperature T2b is greater than Ac1
Priority Applications (33)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2012/000350 WO2014037627A1 (en) | 2012-09-06 | 2012-09-06 | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
FIEP20157000.9T FI3783118T3 (en) | 2012-09-06 | 2013-09-06 | Method for manufacturing press-hardened parts |
CA2895944A CA2895944C (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
PL20156836.7T PL3783116T3 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets allowing the production of press-hardened and coated steel parts |
HUE13803200A HUE049636T2 (en) | 2012-09-06 | 2013-09-06 | Process for the fabrication of coated and press-hardened steel parts and pre-coated sheets for the fabrication of these parts |
ES13803200T ES2785071T3 (en) | 2012-09-06 | 2013-09-06 | Manufacturing process for pressure-hardened and coated steel parts, and pre-coated sheets that allow the manufacture of these parts |
ES20156836T ES2946442T3 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets for the manufacture of press-cured and coated steel parts |
ES20157000T ES2945840T3 (en) | 2012-09-06 | 2013-09-06 | Manufacturing procedure for pressure hardened and coated steel parts |
US14/426,523 US9909194B2 (en) | 2012-09-06 | 2013-09-06 | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
FIEP20156836.7T FI3783116T3 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets allowing the production of press-hardened and coated steel parts |
HUE20156836A HUE061920T2 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets allowing the production of press-hardened and coated steel parts |
EP20157000.9A EP3783118B1 (en) | 2012-09-06 | 2013-09-06 | Method for manufacturing press-hardened parts |
KR1020157008667A KR101643513B1 (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
PCT/IB2013/001914 WO2015033177A1 (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
HUE20157000A HUE062051T2 (en) | 2012-09-06 | 2013-09-06 | Method for manufacturing press-hardened parts |
MX2015002972A MX366129B (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts. |
PL20157000.9T PL3783118T3 (en) | 2012-09-06 | 2013-09-06 | Method for manufacturing press-hardened parts |
EP13803200.8A EP2893047B1 (en) | 2012-09-06 | 2013-09-06 | Process for the fabrication of coated and press-hardened steel parts and pre-coated sheets for the fabrication of these parts |
EP20156836.7A EP3783116B1 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets allowing the production of press-hardened and coated steel parts |
JP2015540223A JP6166787B2 (en) | 2012-09-06 | 2013-09-06 | Method for producing press-hardened coated steel parts and pre-coated steel sheets enabling the production of the parts |
BR122019008477-7A BR122019008477B1 (en) | 2012-09-06 | 2013-09-06 | STEEL PIECE MANUFACTURING PROCESS |
CN201380057817.6A CN104769138B (en) | 2012-09-06 | 2013-09-06 | For manufacturing the coating method of steel part of repressed hardening and can be used in manufacturing the pre-coated steel plate of described part |
RU2015112317A RU2610995C2 (en) | 2012-09-06 | 2013-09-06 | Manufacturing method for work-hardened steel parts with coating and pre-coated sheets for producing these parts |
IN1908DEN2015 IN2015DN01908A (en) | 2012-09-06 | 2013-09-06 | |
UAA201503121A UA115791C2 (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
BR112015005090A BR112015005090B8 (en) | 2012-09-06 | 2013-09-06 | cold rolled and annealed sheet |
PL13803200T PL2893047T3 (en) | 2012-09-06 | 2013-09-06 | Process for the fabrication of coated and press-hardened steel parts and pre-coated sheets for the fabrication of these parts |
MA37932A MA37932B1 (en) | 2012-09-06 | 2013-09-06 | Process for producing press-hardened and press-hardened steel parts and pre-coated sheets for the production of these parts |
EP20156919.1A EP3783117A1 (en) | 2012-09-06 | 2013-09-06 | Pre-coated sheets allowing the production of press-hardened coated steel parts |
ZA2015/01534A ZA201501534B (en) | 2012-09-06 | 2015-03-06 | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
MX2019002069A MX2019002069A (en) | 2012-09-06 | 2015-03-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts. |
US15/609,841 US9957582B2 (en) | 2012-09-06 | 2017-05-31 | Precoated sheets for manufacturing press-hardened coated steel parts |
JP2017121954A JP6359155B2 (en) | 2012-09-06 | 2017-06-22 | Method for producing press-hardened coated steel parts and pre-coated steel sheets enabling the production of the parts |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/FR2012/000350 WO2014037627A1 (en) | 2012-09-06 | 2012-09-06 | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2014037627A1 true WO2014037627A1 (en) | 2014-03-13 |
Family
ID=46982626
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/FR2012/000350 WO2014037627A1 (en) | 2012-09-06 | 2012-09-06 | Process for manufacturing press-hardened coated steel parts and precoated sheets allowing these parts to be manufactured |
PCT/IB2013/001914 WO2015033177A1 (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/001914 WO2015033177A1 (en) | 2012-09-06 | 2013-09-06 | Method for the production of press-hardened, coated steel parts and pre-coated steel sheets that can be used for the production of said parts |
Country Status (18)
Country | Link |
---|---|
US (2) | US9909194B2 (en) |
EP (4) | EP2893047B1 (en) |
JP (2) | JP6166787B2 (en) |
KR (1) | KR101643513B1 (en) |
CN (1) | CN104769138B (en) |
BR (2) | BR112015005090B8 (en) |
CA (1) | CA2895944C (en) |
ES (3) | ES2946442T3 (en) |
FI (2) | FI3783116T3 (en) |
HU (3) | HUE049636T2 (en) |
IN (1) | IN2015DN01908A (en) |
MA (1) | MA37932B1 (en) |
MX (2) | MX366129B (en) |
PL (3) | PL3783118T3 (en) |
RU (1) | RU2610995C2 (en) |
UA (1) | UA115791C2 (en) |
WO (2) | WO2014037627A1 (en) |
ZA (1) | ZA201501534B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014166630A1 (en) * | 2013-04-10 | 2014-10-16 | Tata Steel Ijmuiden Bv | Product formed by hot forming of metallic coated steel sheet, method to form the product, and steel strip |
WO2016132165A1 (en) * | 2015-02-19 | 2016-08-25 | Arcelormittal | Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating |
US20180237877A1 (en) * | 2017-02-17 | 2018-08-23 | GM Global Technology Operations LLC | Mitigating liquid metal embrittlement in zinc-coated press hardened steels |
CN108699665A (en) * | 2016-02-08 | 2018-10-23 | 德国沙士基达板材有限公司 | For steel plate or the Al-based coating and its manufacturing method of steel band |
WO2019043422A1 (en) * | 2017-08-30 | 2019-03-07 | Arcelormittal | A coated metallic substrate |
CN109433960A (en) * | 2018-09-30 | 2019-03-08 | 苏州普热斯勒先进成型技术有限公司 | Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system |
CN110144444A (en) * | 2015-07-09 | 2019-08-20 | 安赛乐米塔尔公司 | For suppressing the steel of hardening and the component of the compacting hardening by such steel making |
CN110144439A (en) * | 2014-11-18 | 2019-08-20 | 安赛乐米塔尔公司 | For manufacture high strength steel product method and thus obtained steel product |
US10590522B2 (en) | 2015-12-23 | 2020-03-17 | Posco | Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same |
WO2020130666A1 (en) | 2018-12-19 | 2020-06-25 | 주식회사 포스코 | Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof |
US11530469B2 (en) | 2019-07-02 | 2022-12-20 | GM Global Technology Operations LLC | Press hardened steel with surface layered homogenous oxide after hot forming |
CN115595530A (en) * | 2017-11-10 | 2023-01-13 | 昭和电工材料株式会社(Jp) | Surface hardening material of iron-based sintered alloy material, and sprocket, gear and shaft comprising same |
US11613789B2 (en) | 2018-05-24 | 2023-03-28 | GM Global Technology Operations LLC | Method for improving both strength and ductility of a press-hardening steel |
US11612926B2 (en) | 2018-06-19 | 2023-03-28 | GM Global Technology Operations LLC | Low density press-hardening steel having enhanced mechanical properties |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5852690B2 (en) * | 2013-04-26 | 2016-02-03 | 株式会社神戸製鋼所 | Alloyed hot-dip galvanized steel sheet for hot stamping |
BR112016012236A2 (en) * | 2013-12-10 | 2017-08-08 | Arcelormittal | METHOD OF ANNEALING STEEL SHEET AND METHOD OF PRODUCTION OF A GALVANIZED STEEL SHEET |
JP2017066508A (en) * | 2015-10-02 | 2017-04-06 | 株式会社神戸製鋼所 | Galvanized steel sheet for hot press and method of producing hot press formed article |
WO2017098304A1 (en) * | 2015-12-09 | 2017-06-15 | Arcelormittal | Method for producing an automotive structural part comprising a lowerside sill and a lower front pillar |
DE102015016656A1 (en) * | 2015-12-19 | 2017-06-22 | GM Global Technology Operations LLC (n. d. Ges. d. Staates Delaware) | A method of making a coated hot worked cured body and a body made by the method |
DE102016100648B4 (en) | 2015-12-23 | 2018-04-12 | Benteler Automobiltechnik Gmbh | A heat treatment furnace and method for heat treating a precoated sheet steel plate and method of making a motor vehicle component |
KR102115278B1 (en) * | 2016-02-25 | 2020-05-26 | 닛폰세이테츠 가부시키가이샤 | High-strength hot-dip galvanized steel sheet with excellent impact resistance and peeling resistance |
JP6237937B2 (en) * | 2016-03-11 | 2017-11-29 | Jfeスチール株式会社 | Method for producing high-strength hot-dip galvanized steel sheet |
WO2017182833A1 (en) | 2016-04-19 | 2017-10-26 | Arcelormittal | Method for producing a metallic coated steel sheet |
DE102016117474A1 (en) * | 2016-09-16 | 2018-03-22 | Benteler Automobiltechnik Gmbh | Body component with reduced tendency to crack and method of manufacture |
GB2555104B (en) * | 2016-10-14 | 2022-06-01 | Liberty Performance Steels Ltd | Manufacture of a stress relieved length of steel having an oxidised surface layer |
CN106334875A (en) * | 2016-10-27 | 2017-01-18 | 宝山钢铁股份有限公司 | Steel welding component with aluminum or aluminum alloy coating and manufacturing method thereof |
WO2018096387A1 (en) * | 2016-11-24 | 2018-05-31 | Arcelormittal | Hot-rolled and coated steel sheet for hot-stamping, hot-stamped coated steel part and methods for manufacturing the same |
WO2018115914A1 (en) | 2016-12-19 | 2018-06-28 | Arcelormittal | A manufacturing process of hot press formed aluminized steel parts |
KR101858868B1 (en) | 2016-12-23 | 2018-05-16 | 주식회사 포스코 | Plated steel sheets for hot press forming having excellent impact toughness, hot press formed parts, and methods of manufacturing the same |
EP3584338A4 (en) * | 2017-02-20 | 2020-08-05 | Nippon Steel Corporation | Hot stamp moulded body |
JP6428970B1 (en) | 2017-03-30 | 2018-11-28 | Jfeスチール株式会社 | Hot-pressed member and manufacturing method thereof |
DE102017112164A1 (en) * | 2017-06-01 | 2018-12-06 | Benteler Automobiltechnik Gmbh | Sheet metal forming component and method for producing the Blechumformbauteils |
WO2018220412A1 (en) | 2017-06-01 | 2018-12-06 | Arcelormittal | Method for producing high-strength steel parts with improved ductility, and parts obtained by said method |
WO2018220430A1 (en) * | 2017-06-02 | 2018-12-06 | Arcelormittal | Steel sheet for manufacturing press hardened parts, press hardened part having a combination of high strength and crash ductility, and manufacturing methods thereof |
WO2018234839A1 (en) * | 2017-06-20 | 2018-12-27 | Arcelormittal | Zinc coated steel sheet with high resistance spot weldability |
US10329639B2 (en) * | 2017-08-04 | 2019-06-25 | Gm Global Technology Operations Llc. | Multilayer steel and method of reducing liquid metal embrittlement |
CN111527224B (en) * | 2017-12-27 | 2021-11-05 | 杰富意钢铁株式会社 | High-strength steel sheet and method for producing same |
JP6916129B2 (en) * | 2018-03-02 | 2021-08-11 | 株式会社神戸製鋼所 | Galvanized steel sheet for hot stamping and its manufacturing method |
WO2020070545A1 (en) | 2018-10-04 | 2020-04-09 | Arcelormittal | A press hardening method |
JP2020082102A (en) * | 2018-11-19 | 2020-06-04 | 株式会社神戸製鋼所 | Joint structure and joint structure manufacturing method |
JP7137015B2 (en) | 2018-12-18 | 2022-09-13 | アルセロールミタル | Press-hardened parts with high resistance to delayed fracture and method for manufacturing the same |
JP2022519709A (en) * | 2019-02-08 | 2022-03-24 | エリコン サーフェス ソリューションズ アーゲー、 プフェフィコン | Coated tools coated with a diffusion barrier layer containing boride |
EP3951012A4 (en) * | 2019-03-29 | 2023-01-11 | Nippon Steel Corporation | Coated steel member, coated steel sheet, and methods for producing same |
US11149327B2 (en) * | 2019-05-24 | 2021-10-19 | voestalpine Automotive Components Cartersville Inc. | Method and device for heating a steel blank for hardening purposes |
WO2021084304A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
WO2021084302A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
WO2021084303A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
WO2021084305A1 (en) * | 2019-10-30 | 2021-05-06 | Arcelormittal | A press hardening method |
EP4151757A4 (en) * | 2020-05-13 | 2023-10-04 | Nippon Steel Corporation | Hot stamped molded body |
US12134810B2 (en) * | 2020-05-13 | 2024-11-05 | Nippon Steel Corporation | Steel sheet for hot stamping and hot-stamping formed body |
CN111778467B (en) * | 2020-09-04 | 2020-11-24 | 育材堂(苏州)材料科技有限公司 | Precoated steel sheet with precoated layer of aluminum or aluminum alloy, process for producing the same, and hot press-formed member |
WO2022129989A1 (en) * | 2020-12-15 | 2022-06-23 | Arcelormittal | Annealing method |
WO2022129995A1 (en) * | 2020-12-16 | 2022-06-23 | Arcelormittal | Coated steel sheet and high strength press hardened steel part and method of manufacturing the same |
WO2022129994A1 (en) * | 2020-12-16 | 2022-06-23 | Arcelormittal | Coated steel sheet and high strength press hardened steel part and method of manufacturing the same |
EP4267776A1 (en) * | 2020-12-23 | 2023-11-01 | voestalpine Stahl GmbH | A zinc or zinc-alloy coated strip or steel with improved zinc adhesion |
CN112877632A (en) * | 2021-01-12 | 2021-06-01 | 鞍钢股份有限公司 | Aluminum-silicon plated steel plate for high-plasticity hot stamping forming and hot stamping method thereof |
DE102021201845A1 (en) | 2021-02-26 | 2022-09-01 | Volkswagen Aktiengesellschaft | Process for the production of a hot-formed and press-hardened sheet steel component |
KR20230145132A (en) * | 2021-03-17 | 2023-10-17 | 닛폰세이테츠 가부시키가이샤 | Steel plates, steel members and covered steel members |
WO2024122120A1 (en) * | 2022-12-09 | 2024-06-13 | 日本製鉄株式会社 | Plated steel sheet |
WO2024122119A1 (en) * | 2022-12-09 | 2024-06-13 | 日本製鉄株式会社 | Hot-stamped molded article |
CN116174558A (en) | 2023-02-09 | 2023-05-30 | 香港大学 | Aluminum-silicon coating hot stamping forming member and preparation method and application thereof |
WO2024182196A1 (en) * | 2023-03-01 | 2024-09-06 | Cleveland-Cliffs Steel Properties Inc. | Furnace humidification system, a method for annealing steel, a continuous annealing line |
WO2024203606A1 (en) * | 2023-03-30 | 2024-10-03 | 株式会社神戸製鋼所 | Steel sheet and method for manufacturing steel sheet |
WO2024203604A1 (en) * | 2023-03-30 | 2024-10-03 | 株式会社神戸製鋼所 | Plated steel sheet and method for manufacturing same |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1294402B (en) * | 1965-08-06 | 1969-05-08 | Armco Steel Corp | Process for the production of a ferrous metal provided with a metal coating and with greatly improved drawability |
JPH04276057A (en) * | 1991-03-05 | 1992-10-01 | Nippon Steel Corp | Manufacture of high si-containing high tensile strength galvannealed steel sheet having good plating adhesion |
FR2780984A1 (en) | 1998-07-09 | 2000-01-14 | Lorraine Laminage | HOT AND COOLED COLD ROLLED STEEL SHEET WITH VERY HIGH RESISTANCE AFTER THERMAL TREATMENT |
FR2807447A1 (en) | 2000-04-07 | 2001-10-12 | Usinor | METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET |
JP2006104546A (en) * | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | High strength automobile member and hot pressing method |
WO2009080292A1 (en) | 2007-12-20 | 2009-07-02 | Voestalpine Stahl Gmbh | Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor |
JP2010043323A (en) * | 2008-08-12 | 2010-02-25 | Sumitomo Metal Ind Ltd | Hot rolled steel sheet for hot press, method for producing the same, and method for producing hot pressed steel sheet member |
US20100050730A1 (en) * | 2008-08-28 | 2010-03-04 | Otto Buschsieweke | Method of making tempered shaped part |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10130782A (en) | 1996-11-01 | 1998-05-19 | Nippon Steel Corp | Ultrahigh strength cold rolled steel sheet and its production |
JP4582850B2 (en) * | 2000-02-24 | 2010-11-17 | 日新製鋼株式会社 | High-strength stainless steel plate with excellent bending workability |
ATE471996T1 (en) * | 2003-03-31 | 2010-07-15 | Nippon Steel Corp | STEEL SHEET COATED WITH ZINC ALLOYED BY THE HOT PRESSING METHOD AND PRODUCTION PROCESS THEREOF |
CA2521710C (en) * | 2003-04-10 | 2009-09-29 | Nippon Steel Corporation | High strength molten zinc plated steel sheet and process of production of same |
JP2006051543A (en) * | 2004-07-15 | 2006-02-23 | Nippon Steel Corp | Hot press method for high strength automotive member made of cold rolled or hot rolled steel sheet, or al-based plated or zn-based plated steel sheet, and hot pressed parts |
RU2418094C2 (en) * | 2006-01-30 | 2011-05-10 | Ниппон Стил Корпорейшн | High strength hot-galvanised steel sheet and high strength annealed after galvanising steel sheet with excellent mouldability and ability to application of electro-deposit; procedures and devices for fabrication of such sheets |
KR100760152B1 (en) | 2006-06-07 | 2007-09-18 | 현대하이스코 주식회사 | Manufacturing method of high strength automobile parts by zinc galvanization steel sheet using hot stamping |
KR101504370B1 (en) * | 2007-02-23 | 2015-03-19 | 타타 스틸 이즈무이덴 베.뷔. | Method of thermomechanical shaping a final product with very high strength and a product produced thereby |
EP2009129A1 (en) * | 2007-06-29 | 2008-12-31 | ArcelorMittal France | Process for manufacturing a galvannealed steel sheet by DFF regulation |
EP2123786A1 (en) | 2008-05-21 | 2009-11-25 | ArcelorMittal France | Method of manufacturing very high-resistance, cold-laminated dual-phase steel sheets, and sheets produced thereby |
DE102009044861B3 (en) | 2009-12-10 | 2011-06-22 | ThyssenKrupp Steel Europe AG, 47166 | Process for producing a readily deformable flat steel product, flat steel product and method for producing a component from such a flat steel product |
-
2012
- 2012-09-06 WO PCT/FR2012/000350 patent/WO2014037627A1/en active Application Filing
-
2013
- 2013-09-06 HU HUE13803200A patent/HUE049636T2/en unknown
- 2013-09-06 JP JP2015540223A patent/JP6166787B2/en active Active
- 2013-09-06 BR BR112015005090A patent/BR112015005090B8/en active IP Right Grant
- 2013-09-06 IN IN1908DEN2015 patent/IN2015DN01908A/en unknown
- 2013-09-06 PL PL20157000.9T patent/PL3783118T3/en unknown
- 2013-09-06 RU RU2015112317A patent/RU2610995C2/en active
- 2013-09-06 PL PL13803200T patent/PL2893047T3/en unknown
- 2013-09-06 FI FIEP20156836.7T patent/FI3783116T3/en active
- 2013-09-06 EP EP13803200.8A patent/EP2893047B1/en active Active
- 2013-09-06 WO PCT/IB2013/001914 patent/WO2015033177A1/en active Application Filing
- 2013-09-06 HU HUE20156836A patent/HUE061920T2/en unknown
- 2013-09-06 HU HUE20157000A patent/HUE062051T2/en unknown
- 2013-09-06 EP EP20157000.9A patent/EP3783118B1/en active Active
- 2013-09-06 PL PL20156836.7T patent/PL3783116T3/en unknown
- 2013-09-06 CA CA2895944A patent/CA2895944C/en active Active
- 2013-09-06 MA MA37932A patent/MA37932B1/en unknown
- 2013-09-06 FI FIEP20157000.9T patent/FI3783118T3/en active
- 2013-09-06 BR BR122019008477-7A patent/BR122019008477B1/en active IP Right Grant
- 2013-09-06 KR KR1020157008667A patent/KR101643513B1/en active IP Right Grant
- 2013-09-06 ES ES20156836T patent/ES2946442T3/en active Active
- 2013-09-06 MX MX2015002972A patent/MX366129B/en active IP Right Grant
- 2013-09-06 EP EP20156836.7A patent/EP3783116B1/en active Active
- 2013-09-06 ES ES13803200T patent/ES2785071T3/en active Active
- 2013-09-06 US US14/426,523 patent/US9909194B2/en active Active
- 2013-09-06 UA UAA201503121A patent/UA115791C2/en unknown
- 2013-09-06 ES ES20157000T patent/ES2945840T3/en active Active
- 2013-09-06 CN CN201380057817.6A patent/CN104769138B/en active Active
- 2013-09-06 EP EP20156919.1A patent/EP3783117A1/en active Pending
-
2015
- 2015-03-06 ZA ZA2015/01534A patent/ZA201501534B/en unknown
- 2015-03-06 MX MX2019002069A patent/MX2019002069A/en unknown
-
2017
- 2017-05-31 US US15/609,841 patent/US9957582B2/en active Active
- 2017-06-22 JP JP2017121954A patent/JP6359155B2/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1294402B (en) * | 1965-08-06 | 1969-05-08 | Armco Steel Corp | Process for the production of a ferrous metal provided with a metal coating and with greatly improved drawability |
JPH04276057A (en) * | 1991-03-05 | 1992-10-01 | Nippon Steel Corp | Manufacture of high si-containing high tensile strength galvannealed steel sheet having good plating adhesion |
FR2780984A1 (en) | 1998-07-09 | 2000-01-14 | Lorraine Laminage | HOT AND COOLED COLD ROLLED STEEL SHEET WITH VERY HIGH RESISTANCE AFTER THERMAL TREATMENT |
FR2807447A1 (en) | 2000-04-07 | 2001-10-12 | Usinor | METHOD FOR MAKING A PART WITH VERY HIGH MECHANICAL CHARACTERISTICS, SHAPED BY STAMPING, FROM A STRIP OF LAMINATED AND IN PARTICULAR HOT ROLLED AND COATED STEEL SHEET |
JP2006104546A (en) * | 2004-10-08 | 2006-04-20 | Nippon Steel Corp | High strength automobile member and hot pressing method |
WO2009080292A1 (en) | 2007-12-20 | 2009-07-02 | Voestalpine Stahl Gmbh | Method for the production of coated and hardened components made of steel, and coated and hardenable steel strip therefor |
JP2010043323A (en) * | 2008-08-12 | 2010-02-25 | Sumitomo Metal Ind Ltd | Hot rolled steel sheet for hot press, method for producing the same, and method for producing hot pressed steel sheet member |
US20100050730A1 (en) * | 2008-08-28 | 2010-03-04 | Otto Buschsieweke | Method of making tempered shaped part |
Non-Patent Citations (2)
Title |
---|
"Journal of Physical and Chemical Reference Data", vol. 14, 1985, article "JANAF Thermomechanical Tables" |
DATABASE WPI Week 199333, Derwent World Patents Index; AN 1993-260666, XP002697340 * |
Cited By (27)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2014166630A1 (en) * | 2013-04-10 | 2014-10-16 | Tata Steel Ijmuiden Bv | Product formed by hot forming of metallic coated steel sheet, method to form the product, and steel strip |
CN110144439B (en) * | 2014-11-18 | 2021-11-12 | 安赛乐米塔尔公司 | Method for manufacturing a high-strength steel product and steel product obtained thereby |
CN110144439A (en) * | 2014-11-18 | 2019-08-20 | 安赛乐米塔尔公司 | For manufacture high strength steel product method and thus obtained steel product |
CN107250414A (en) * | 2015-02-19 | 2017-10-13 | 安赛乐米塔尔公司 | By be coated with coating based on aluminium and spelter coating plate production can phosphatization part method |
RU2686164C2 (en) * | 2015-02-19 | 2019-04-24 | Арселормиттал | Method of making a phosphated part from a sheet containing an aluminum-based coating and a zinc coating |
WO2016132194A1 (en) * | 2015-02-19 | 2016-08-25 | Arcelormittal | Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating |
WO2016132165A1 (en) * | 2015-02-19 | 2016-08-25 | Arcelormittal | Method of producing a phosphatable part from a sheet coated with an aluminium-based coating and a zinc coating |
CN110144444B (en) * | 2015-07-09 | 2021-05-25 | 安赛乐米塔尔公司 | Steel for press hardening and press hardened component made of such steel |
CN110144443B (en) * | 2015-07-09 | 2021-05-25 | 安赛乐米塔尔公司 | Steel for press hardening and press hardened component made of such steel |
US11319610B2 (en) | 2015-07-09 | 2022-05-03 | Arcelormittal | Steel for press hardening and press hardened part manufactured from such steel |
US11814696B2 (en) | 2015-07-09 | 2023-11-14 | Arcelormittal | Steel for press hardening and press hardened part manufactured from such steel |
CN110144444A (en) * | 2015-07-09 | 2019-08-20 | 安赛乐米塔尔公司 | For suppressing the steel of hardening and the component of the compacting hardening by such steel making |
CN110144443A (en) * | 2015-07-09 | 2019-08-20 | 安赛乐米塔尔公司 | For suppressing the steel of hardening and the component of the compacting hardening by such steel making |
US10590522B2 (en) | 2015-12-23 | 2020-03-17 | Posco | Aluminum-iron alloy-coated steel sheet for hot press forming, having excellent hydrogen delayed fracture resistance, peeling resistance, and weldability and hot-formed member using same |
US10876195B2 (en) | 2016-02-08 | 2020-12-29 | Salzgitter Flachstahl Gmbh | Method for producing press-hardened components consisting of steel sheets or steel strips comprising an aluminium-based coating, and pressed-hardened component therefrom |
CN108699665A (en) * | 2016-02-08 | 2018-10-23 | 德国沙士基达板材有限公司 | For steel plate or the Al-based coating and its manufacturing method of steel band |
US20180237877A1 (en) * | 2017-02-17 | 2018-08-23 | GM Global Technology Operations LLC | Mitigating liquid metal embrittlement in zinc-coated press hardened steels |
WO2019043422A1 (en) * | 2017-08-30 | 2019-03-07 | Arcelormittal | A coated metallic substrate |
US11668002B2 (en) | 2017-08-30 | 2023-06-06 | Arcelormittal | Coated metallic substrate |
CN115595530A (en) * | 2017-11-10 | 2023-01-13 | 昭和电工材料株式会社(Jp) | Surface hardening material of iron-based sintered alloy material, and sprocket, gear and shaft comprising same |
US11613789B2 (en) | 2018-05-24 | 2023-03-28 | GM Global Technology Operations LLC | Method for improving both strength and ductility of a press-hardening steel |
US11612926B2 (en) | 2018-06-19 | 2023-03-28 | GM Global Technology Operations LLC | Low density press-hardening steel having enhanced mechanical properties |
US11951522B2 (en) | 2018-06-19 | 2024-04-09 | GM Global Technology Operations LLC | Low density press-hardening steel having enhanced mechanical properties |
CN109433960A (en) * | 2018-09-30 | 2019-03-08 | 苏州普热斯勒先进成型技术有限公司 | Drop stamping high-strength steel automobile body covering piece and its manufacturing method, manufacture system |
EP3901315A4 (en) * | 2018-12-19 | 2021-11-17 | Posco | Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof |
WO2020130666A1 (en) | 2018-12-19 | 2020-06-25 | 주식회사 포스코 | Plated steel sheet for hot press forming having excellent impact properties after hot press forming, hot press formed member, and manufacturing methods thereof |
US11530469B2 (en) | 2019-07-02 | 2022-12-20 | GM Global Technology Operations LLC | Press hardened steel with surface layered homogenous oxide after hot forming |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3783118B1 (en) | Method for manufacturing press-hardened parts | |
CA2680623C (en) | Steel for tool-less hot forming or quenching with improved ductility | |
EP3175006B1 (en) | Process for manufacturing steel sheets for press hardening and parts obtained by means of this process | |
CA2668393C (en) | Coated steel strips, fabrication processes thereof, usage processes thereof, stamping blanks prepared from same, stamped products prepared therefrom and manufactured products containing such a stamped product | |
EP2171112B1 (en) | Method for producing steel sheets having high resistance and ductility characteristics, and sheets thus obtained | |
EP3126459B1 (en) | Process for high productivity production of steel parts coated and press hardened | |
CA2627394C (en) | Method of producing a part with very high mechanical properties from a rolled coated sheet | |
CA2838665C (en) | Cold-rolled steel plate coated with zinc or a zinc alloy, method for manufacturing same, and use of such a steel plate | |
EP2707513B1 (en) | Method for the production of very-high-strength martensitic steel and sheet or part thus obtained | |
EP3307921A2 (en) | High-strength steel and production method | |
WO2018220540A1 (en) | Method for producing high-strength steel parts with improved ductility, and parts obtained by said method | |
WO2012153013A1 (en) | Method for the production of martensitic steel having a very high yield point and sheet or part thus obtained | |
WO2011104443A1 (en) | Method for making a part from a metal sheet coated with aluminium or an aluminium alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12769450 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWE | Wipo information: entry into national phase |
Ref document number: MX/A/2015/002972 Country of ref document: MX |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12769450 Country of ref document: EP Kind code of ref document: A1 |