[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2291547B1 - Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche - Google Patents

Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche Download PDF

Info

Publication number
EP2291547B1
EP2291547B1 EP09761870A EP09761870A EP2291547B1 EP 2291547 B1 EP2291547 B1 EP 2291547B1 EP 09761870 A EP09761870 A EP 09761870A EP 09761870 A EP09761870 A EP 09761870A EP 2291547 B1 EP2291547 B1 EP 2291547B1
Authority
EP
European Patent Office
Prior art keywords
product
temperature
rolled
steel sheet
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP09761870A
Other languages
English (en)
French (fr)
Other versions
EP2291547A1 (de
Inventor
Antoine Moulin
Véronique Hebert
Catherine Vinci
Gloria Restrepo Garces
Tom Waterschoot
Mohamed Goune
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Investigacion y Desarrollo SL
Original Assignee
ArcelorMittal Investigacion y Desarrollo SL
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal Investigacion y Desarrollo SL filed Critical ArcelorMittal Investigacion y Desarrollo SL
Priority to EP09761870A priority Critical patent/EP2291547B1/de
Priority to PL09761870T priority patent/PL2291547T3/pl
Publication of EP2291547A1 publication Critical patent/EP2291547A1/de
Application granted granted Critical
Publication of EP2291547B1 publication Critical patent/EP2291547B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/001Continuous casting of metals, i.e. casting in indefinite lengths of specific alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D7/00Casting ingots, e.g. from ferrous metals
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/84Controlled slow cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/008Heat treatment of ferrous alloys containing Si
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/021Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0278Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular surface treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/022Pretreatment of the material to be coated, e.g. for coating on selected surface areas by heating
    • C23C2/0224Two or more thermal pretreatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/02Pretreatment of the material to be coated, e.g. for coating on selected surface areas
    • C23C2/024Pretreatment of the material to be coated, e.g. for coating on selected surface areas by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/26After-treatment
    • C23C2/28Thermal after-treatment, e.g. treatment in oil bath
    • C23C2/29Cooling or quenching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/34Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the shape of the material to be treated
    • C23C2/36Elongated material
    • C23C2/40Plates; Strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the invention relates to the manufacture of cold-rolled and annealed sheets of so-called “dual-phase" steels having a very high strength and a deformability for the manufacture of parts by shaping, in particular in the automotive industry. .
  • the dual-phase steels whose structure includes martensite, possibly bainite, in a ferritic matrix, have developed a great deal because they combine high resistance with significant possibilities of deformation.
  • their yield strength is relatively low compared to their breaking strength, which gives them a very favorable ratio (yield strength / strength) during forming operations.
  • Their consolidation capacity is very large, which allows a good distribution of deformations in the case of a collision and obtaining a significantly higher yield strength on the part after forming. It is thus possible to produce parts as complex as with conventional steels, but with higher mechanical properties, which allows a reduction in thickness to maintain identical functional specifications. In this way, these steels are an effective response to the requirements of lightening and safety of vehicles.
  • EP0796928A1 also describes cold-rolled Dual Phase steels with a resistance greater than 550 MPa, composition 0.05-0.3% C, 0.8-3% Mn, 0.4-2.5% Al, 0, 01 to 0.2% Si.
  • the ferritic matrix contains martensite, bainite and / or residual austenite.
  • the examples presented show that the resistance does not exceed 660 MPa, even for a high carbon content (0.20-0.21%)
  • the document JP11350038 describes Dual Phase steels with a strength greater than 980 MPa, composition 0.10-0.15% C, 0.8-1.5% Si, 1.5-2.0% Mn, 0.01-0 , 05% P, less than 0.005% S, 0.01-0.07% Al in solution, less than 0.01% N, additionally containing one or more elements: 0.001-0.02% Nb, 0.001-0 , 02% V, 0.001-0.02% Ti.
  • This high strength is, however, obtained at the cost of a significant addition of silicon which certainly allows the formation of martensite, but may nevertheless lead to the formation of surface oxides which deteriorate the coating on quenching.
  • FR 2790009 discloses a dual-phase high yield strength steel R e , comprising by weight between 0.04 and 0.4% carbon, between 1.0 and 2.0% manganese, between 0.1 and 0.8 % silicon, 0.4 and 0.6% chromium (claim 8), between 0 and 0.08% molybdenum (claim 9), less than 0.01% niobium, less than 0.02% titanium , less than 0.004% sulfur, less than 0.007% nitrogen (claim 11), less than 0.01% vanadium, the remainder being iron and unavoidable residual impurities.
  • the object of the present invention is to provide a method of manufacturing dual-phase steel plates very high strength, cold rolled, bare or coated, not having the disadvantages mentioned above. It aims to provide Dual Phase steel sheets with a mechanical strength of between 980 and 1100 MPa together with an elongation greater than 9% rupture and good formability, including folding
  • the invention also aims to provide a manufacturing method in which small variations in the parameters do not lead to significant changes in the microstructure or mechanical properties.
  • the invention also aims to provide a sheet of steel easily fabricated by cold rolling, that is to say whose hardness after the hot rolling step is limited so that the rolling forces remain moderate during of the cold rolling step.
  • the invention also aims to provide an economical manufacturing process by avoiding the addition of expensive alloying elements.
  • the subject of the invention is a dual-phase cold-rolled and annealed steel sheet having a strength of between 980 and 1100 MPa, an elongation at break of greater than 9%, the composition of which comprises the contents being expressed in terms of weight: 0.055% ⁇ C ⁇ 0.095%, 2% ⁇ Mn ⁇ 2.6%, 0.005% ⁇ Si ⁇ 0.35%, S ⁇ 0.005%, P ⁇ 0.050%, 0.1 ⁇ Al ⁇ 0.3% , 0,05% ⁇ Mo ⁇ 0,25%, 0,2% ⁇ Cr ⁇ 0,5%, it being understood that Cr + 2Mo ⁇ 0,6%, Ni ⁇ 0,1%, 0,010 ⁇ Nb ⁇ 0,040% , 0.010 ⁇ Ti ⁇ 0.050%, 0.0005 ⁇ B ⁇ 0.0025%, 0.002% ⁇ N ⁇ 0.007%, the remainder of the composition consisting of iron and unavoidable impurities resulting from processing.
  • the composition of the steel contains, the content being expressed by weight: 0.12% ⁇ Al ⁇ 0.25%.
  • the composition of the steel contains, the content being expressed by weight: 0.10% ⁇ Si ⁇ 0.30%.
  • the composition of the steel preferably contains: 0.15% ⁇ Si ⁇ 0.28%. According to a preferred embodiment, the composition contains: P ⁇ 0.015%.
  • the microstructure of the sheet preferably contains 35 to 50% of martensite in surface proportion.
  • the complement of the microstructure consists of 50 to 65% of ferrite in surface proportion.
  • the complement of the microstructure consists of 1 to 10% of bainite and 40 to 64% of ferrite in surface proportion.
  • the surface fraction of non-recrystallized ferrite relative to the entire ferritic phase is preferably less than or equal to 15%.
  • the steel sheet preferably has a ratio between its elastic limit R e and its resistance R m such that: 0.6 RRe / R m ⁇ 0.8.
  • the sheet is galvanized continuously.
  • the sheet has a galvannealed coating.
  • the invention also relates to a manufacturing method according to one of the above characteristics, characterized in that the temperature T M is between 760 and 830 ° C.
  • the cooling rate V R is greater than or equal to 15 ° C / s.
  • the invention also relates to the use of a steel sheet according to any one of the above characteristics, or manufactured by a process according to any one of the above characteristics, for the manufacture of structures or safety for motor vehicles.
  • carbon plays an important role in the formation of the microstructure and in the mechanical properties: below 0.055% by weight, the resistance becomes insufficient. Beyond 0.095%, a lengthening of 9% can no longer be guaranteed. The weldability is also reduced.
  • manganese is an element that increases quenchability and reduces carbide precipitation. A minimum content of 2% by weight is necessary to obtain the desired mechanical properties. However, beyond 2.6%, its gammagenic character leads to the formation of a band structure too marked. Silicon is a component involved in the deoxidation of liquid steel and hardening in solid solution. This element also plays an important role in the formation of the microstructure by preventing the precipitation of carbides and by promoting the formation of martensite which enters the structure of the Dual Phase steels. It plays an effective role beyond 0.005%. An addition of silicon in an amount greater than 0.10%, preferably greater than 0.15%, makes it possible to achieve the highest levels of resistance to which the invention relates.
  • an increase in the silicon content degrades the dip coating ability by promoting the formation of adherent oxides on the surface of the products: its content must be limited to 0.35% by weight, and preferably 0.30% to obtain a good coating.
  • the silicon decreases the weldability: a content of less than 0.28% makes it possible simultaneously to ensure very good weldability as well as good coating.
  • the ductility is reduced due to the excessive presence of sulfides such as MnS which decrease the ability to deform, especially during hole expansion tests.
  • Phosphorus is an element that hardens in solid solution but decreases spot weldability and hot ductility, particularly because of its ability to segregate at grain boundaries or co-segregate with manganese. For these reasons, its content must be limited to 0.050%, and preferably to 0.015% in order to obtain a good spot welding ability.
  • Aluminum plays an important role in the invention by preventing the precipitation of carbides and promoting the formation of martensitic constituents upon cooling. These effects are obtained when the aluminum content is greater than 0.1%, and preferably when the aluminum content is greater than 0.12%.
  • AlN aluminum limits grain growth during annealing after cold rolling.
  • This element is also used for the deoxidation of the liquid steel in an amount usually less than about 0.050%. It is usually considered that higher levels increase the erosion of refractories and the risk of plugging the nozzles. In excessive amounts, aluminum reduces hot ductility and increases the risk of defects in continuous casting. It is also sought to limit inclusions of alumina, in particular in the form of clusters, in order to ensure sufficient elongation properties.
  • the inventors have demonstrated, in connection with the other elements of the composition, that an amount of aluminum up to 0.3% by weight could be added without adverse effect vis-à-vis other properties required particularly with respect to the deformability, and also provided the desired microstructural and mechanical properties.
  • An aluminum content of up to 0.25% by weight makes it possible to ensure the formation of a fine microstructure without large martensitic islands which would play a detrimental role on the ductility.
  • the inventors have shown that, surprisingly, it was possible to obtain a high level of resistance, between 980 and 1100 MPa, even in spite of the limitation of additions of aluminum and silicon. This is achieved by the particular combination of the alloying or microalloying elements according to the invention, in particular by virtue of the additions of Mo, Cr, Nb, Ti, B.
  • molybdenum plays an effective role on quenchability and delays the enlargement of ferrite and the appearance of bainite.
  • a content greater than 0.25% excessively increases the cost of the additions.
  • chromium in an amount greater than 0.2%, chromium, by its role on quenchability, also contributes to delay the formation of proeutectoid ferrite. Beyond 0.5%, the cost of the addition is too excessive.
  • chromium and molybdenum contents are such that: Cr + (2 ⁇ Mo) ⁇ 0.6%.
  • the coefficients in this relation reflect the respective influence of these two elements on the quenchability in order to favor the obtaining of a fine ferritic structure.
  • the titanium and niobium contents above make it possible to ensure that the nitrogen is completely trapped in the form of nitrides or carbonitrides, so that the boron is in free form and can play an effective role on the quenchability.
  • the effect of boron on quenchability is fundamental.
  • boron indeed makes it possible to control and limit the diffusive phase transformations (ferritic or pearlitic transformation during cooling) and to form hardening phases (bainite or martensite) necessary for obtaining high mechanical strength characteristics.
  • the addition of boron is therefore an important component of the present invention, it also makes it possible to limit the addition of quenching elements such as Mn, Mo, Cr and to reduce the analytical cost of the steel grade.
  • the minimum boron content to ensure effective quenchability is 0.0005%. Beyond 0.0025%, the effect on the quenchability is saturated and there is a detrimental effect on the coating and hot ductility.
  • nitrides and carbonitrides In order to form a sufficient amount of nitrides and carbonitrides, a minimum content of 0.002% nitrogen is required. The nitrogen content is limited to 0.007% to avoid the formation of BN which would decrease the amount of free boron required for the hardening of the ferrite.
  • Ni may be performed to provide additional hardening of the ferrite. This addition is, however, limited to 0.1% for cost reasons.
  • the cast semi-finished products are first brought to a temperature T R greater than 1150 ° C. in order to reach at all points a temperature favorable to the high deformations which the steel will undergo during rolling.
  • the austenitic grains increase undesirably.
  • the only precipitates likely to effectively control the size of the austenitic grain are titanium nitrides, and the reheat temperature should be limited to 1250 ° C in order to maintain a fine austenitic grain at this stage.
  • the hot rolling step of these semi-finished products starting at more than 1150 ° C. can be done directly after casting. that an intermediate heating step is not necessary in this case.
  • the semi-finished product is hot-rolled in a temperature range where the structure of the steel is totally austenitic: if T FL is lower than the starting temperature of transformation from austenite to cooling A r3 , the ferrite grains are hardened by rolling and ductility is reduced.
  • a rolling end temperature of greater than 850 ° C. will be chosen.
  • the hot-rolled product is then rolled at a temperature T bob of between 500 and 570 ° C.
  • T bob This temperature range makes it possible to obtain a complete bainitic transformation during the quasi-isothermal maintenance associated with the winding.
  • This range leads to a morphology of Ti and Nb precipitates which are sufficiently fine in order to allow the exploitation of their hardening and quenching power during the subsequent steps of the manufacturing process.
  • a coil temperature greater than 570 ° C leads to the formation of coarser precipitates, whose coalescence during continuous annealing significantly decreases the efficiency.
  • the hot rolled product is then etched according to a process known per se, followed by cold rolling with a reduction ratio preferably comprised between 30 and 80%.
  • the cold-rolled product is then heated, preferably in a continuous annealing installation, with an average heating rate V C of between 1 and 5 ° C./s.
  • V C average heating rate
  • T M annealing temperature
  • the heating is carried out up to an annealing temperature T M between the temperature A c1 (allotropic transformation start temperature at heating) + 40 ° C, and A c3 (end of allotropic transformation temperature at heating) - 30 ° C, that is to say in a particular temperature range of the intercritical domain: when T M is less than (A c1 + 40 ° C), the structure may further comprise non-recrystallized ferrite zones whose surface fraction can reach 15 %. This proportion of non-recrystallized ferrite is evaluated as follows: after having identified the ferritic phase within the microstructure, the surface percentage of non-recrystallized ferrite relative to the entire ferritic phase is quantified.
  • An annealing temperature T M makes it possible to obtain an amount of austenite sufficient to subsequently form the cooling of the martensite in an amount such that the desired characteristics are attained.
  • a temperature T M lower than (A c3 - 30 ° C) also makes it possible to ensure that the carbon content of the austenite islands formed at the temperature T M indeed leads to a subsequent martensitic transformation: when the annealing temperature is too high The carbon content of the austenite islands becomes too low, leading to subsequent transformation into bainite or unfavorable pearlite.
  • too high a temperature leads to an increase in the size of niobium precipitates which lose some of their curing ability. The final mechanical strength is then decreased.
  • a temperature T M of between 760 ° C. and 830 ° C. is preferably chosen for this purpose.
  • This cooling can be carried out from the temperature T M in one or several steps and may involve in the latter case different cooling modes such as cold or boiling water baths, jets of water or gas . These possible accelerated cooling modes can be combined to obtain a complete martensitic transformation of the austenite. After this martensitic transformation, the sheet is cooled to room temperature.
  • the hot-rolled products were then pickled and then cold-rolled to a thickness of 1.4 to 2 mm, ie a reduction rate of 50%.
  • some steels have been subject to different manufacturing conditions.
  • References IX1, IX2 and IX3 denote for example three steel sheets manufactured under different conditions from the steel composition IX.
  • the sheets were galvanized by dipping in a zinc bath at a temperature T Zn of 460 ° C., others were further subjected to a galvannealing treatment.
  • Table 3 shows the manufacturing conditions for annealed sheet after cold rolling: - Heating speed V c - Annealing temperature T M.
  • the microstructure of steels whose matrix is ferritic, has also been determined.
  • the surface fractions of bainite and martensite were quantified after Picral and LePera reagent etching respectively, followed by image analysis using Aphelion TM software.
  • the non-recrystallized ferrite surface fraction was also determined by optical and scanning electron microscopy observations in which the ferritic phase was identified and the recrystallized fraction within this ferritic phase quantified.
  • Non-recrystallized ferrite is generally in the form of elongated islands by rolling.
  • the folding ability was quantified as follows: sheets were folded in a block on themselves in several turns. In this way, the bending radius decreases each turn. The foldability is then evaluated by noting the presence of cracks on the surface of the folded block, the rating being expressed from 1 (low foldability) to 5 (very good ability). satisfactory.
  • the steel sheets according to the invention have a set of microstructural and mechanical characteristics enabling the advantageous manufacture of parts, in particular for structural applications: resistance of between 980 and 1100 MPa, ratio R e / R m of between 0.6 and 0.8, elongation at break of greater than 9%, good folding ability.
  • the figure 1 illustrates the morphology of the IX1 steel sheet, where the ferrite is completely recrystallized.
  • the sheets according to the invention have good weldability, in particular resistance, the equivalent carbon being less than 0.25.
  • the weldability range as defined by ISO18278-2, in spot welding is very wide, of the order of 3500A. It is increased relative to a reference grade of the same grade.
  • cross-tension or tensile-shear tests carried out on welded points of sheets according to the invention reveal that the resistance of these welded points is very high with regard to the mechanical characteristics.
  • the steel plates IX3 (galvanized) and IX6 (galvannealed) were annealed at a temperature T M too low: consequently, the fraction of non-recrystallized ferrite is excessive as well as the martensite fraction.
  • T M temperature
  • the figure 2 illustrates the microstructure of the steel sheet IX3: note the presence of non-recrystallized ferrite in the form of elongate islands (marked (A)) coexisting with recrystallized ferrite and martensite, the latter constituting appearing darker on the micrograph.
  • a Micrograph in Scanning Electron Microscopy ( figure 3 ) makes it possible to finely distinguish the zones of non recrystallized ferrite (A) from those recrystallized (B).
  • Sheet IX5 is a galvannealed sheet annealed at a temperature T M too high: the carbon content of austenite at high temperature then becomes too low and the appearance of bainite is favored at the expense of the formation of martensite. Coalescence of niobium precipitates is also observed, which causes a loss of hardening. The resistance is then insufficient, the ratio Re / R m being too high.
  • IX7 galvannealed sheet was cooled at a speed V R too slow after the annealing step: the transformation of the austenite formed into ferrite then occurs in this cooling step excessively, the steel sheet containing at the stage final a proportion of bainite too important and a proportion of martensite too low, which leads to insufficient resistance.
  • the composition of the steel sheet R does not correspond to the invention, its carbon content being too high, and its content of manganese, aluminum, niobium, titanium, boron being too low. As a result, the martensite fraction is too weak so that the mechanical strength is insufficient.
  • the steel sheets according to the invention will be used profitably for the manufacture of structural parts or safety in the automotive industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Coating With Molten Metal (AREA)

Claims (17)

  1. Kaltgewalztes und geglühtes Zweiphasen-Stahlblech mit einer Festigkeit zwischen 980 und 1100 MPa, mit einer Bruchdehnung, die höher ist als 9 %, dessen Zusammensetzung Folgendes umfasst, wobei die Gehalte auf das Gewicht bezogen ausgedrückt sind:
    0,055 % ≤ 0,095 %
    2 % ≤ Mn ≤ 2,6 %
    0,005 % ≤ Si ≤ 0,35 %
    S ≤ 0,005 %
    P ≤ 0,050 %
    0,1 ≤ Al ≤ 0,3 %
    0,05 % ≤ Mo ≤ 0,25 %
    0,2 ≤ Cr ≤ 0,5 %
    wobei selbstverständlich Cr + 2 Mo ≤ 0,6 %
    Ni ≤ 0,1 %
    0,010 ≤ Nb ≤ 0,040%
    0,010 ≤ Ti ≤ 0,050 %
    0,0005 ≤ B ≤ 0,0025 %
    0,002 % ≤ N ≤ 0,007 %
    wobei der Rest der Zusammensetzung aus Eisen und unvermeidlichen Verunreinigungen besteht, die sich aus der Bearbeitung ergeben, wobei sein nicht umkristallisierter flächenbezogener Anteil an Ferrit bezogen auf die Gesamtheit der Ferritphase geringer als oder gleich 15 % ist.
  2. Stahlblech nach Anspruch 1, dadurch gekennzeichnet, dass die Zusammensetzung des Stahls enthält, wobei der Gehalt auf das Gewicht bezogen ausgedrückt ist:
    0,12 % ≤ Al ≤ 0,25 %
  3. Stahlblech nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zusammensetzung des Stahls enthält, wobei der Gehalt auf das Gewicht bezogen ausgedrückt ist:
    0,10 % ≤ Si ≤ 0,30 %
  4. Stahlblech nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Zusammensetzung des Stahls enthält, wobei der Gehalt auf das Gewicht bezogen ausgedrückt ist:
    0,15 % ≤ Si ≤ 0,28 %
  5. Stahlblech nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die Zusammensetzung des Stahls enthält, wobei der Gehalt auf das Gewicht bezogen ausgedrückt ist:
    P ≤ 0,015 %
  6. Stahlblech nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass seine Mikrostruktur 35 bis 50 % Martensit als flächenbezogenen Anteil enthält.
  7. Stahlblech nach Anspruch 6, dadurch gekennzeichnet, dass das Komplement der Mikrostruktur aus 50 bis 65 % Ferrit als flächenbezogener Anteil gebildet ist.
  8. Stahlblech nach Anspruch 6, dadurch gekennzeichnet, dass das Komplement der Mikrostruktur aus 1 bis 10 % Bainit und 40 bis 64 % Ferrit als flächenbezogener Anteil gebildet ist.
  9. Stahlblech nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Verhältnis zwischen seiner Streckgrenze Re und seiner Festigkeit Rm derart ist, dass: 0,6 ≤Re/Rm ≤ 0,8.
  10. Stahlblech nach einem der Ansprüche 1 bis 6 oder 8 bis 9, dadurch gekennzeichnet, dass es kontinuierlich verzinkt ist.
  11. Stahlblech nach einem der Ansprüche 1 bis 6 oder 8 bis 9, dadurch gekennzeichnet, dass es einen verzinkten-geglühten Überzug umfasst.
  12. Verfahren zur Herstellung eines kaltgewalzten und geglühten Zweiphasen-Stahlblechs, dadurch gekennzeichnet, dass ein Stahl mit einer Zusammensetzung nach einem der Ansprüche 1 bis 5 bereitgestellt wird, dann
    - der Stahl in Form eines Halbzeugs gegossen wird, dann
    - das Halbzeug auf eine Temperatur von 1150 °C ≤ TR ≤ 1250 °C gebracht wird, dann
    - das Halbzeug mit einer Walzendtemperatur von TFL ≥ Ar3 warmgewalzt wird, um ein warmgewalztes Produkt zu erhalten, dann
    - das warmgewalzte Produkt bei einer Temperatur Tbob wie: 500 °C ≤ Tbob ≤ 570 °C gehaspelt wird, dann
    - das warmgewalzte Produkt gebeizt wird, dann
    - ein Kaltwalzen mit einem Reduktionsprozentsatz zwischen 30 und 80 % durchgeführt wird, um ein kaltgewalztes Produkt zu erhalten, dann
    - das kaltgewalzte Produkt mit einer Geschwindigkeit von 1 °C/s ≤ VC ≤ 5 °C/s bis auf eine Glühtemperatur TM wie: Ac1 + 40 °C ≤ TM ≤ Ac3 - 30 °C erhitzt wird, wobei ein Halten während einer Dauer: 30 s ≤ tM ≤ 300 s durchgeführt wird, um ein erhitztes und geglühtes Produkt mit einer Struktur mit Austenit zu erhalten, dann
    - das Produkt bis auf eine Temperatur, die geringer ist als die Temperatur Ms, mit einer Geschwindigkeit V abgefühlt wird, die ausreicht, damit der Austenit sich vollständig in Martensit umwandelt.
  13. Verfahren zur Herstellung eines kaltgewalzten, geglühten und verzinkten Zweiphasen-Stahlblechs, dadurch gekennzeichnet, dass das erhitzte und geglühte Produkt mit einer Struktur mit Austenit nach Anspruch 12 bereitgestellt wird, dann
    - das erhitzte und geglühte Produkt mit einer Geschwindigkeit VR abgekühlt wird, die ausreicht, un die Umwandlung des Austenits in Ferrit zu vermeiden, bis eine Temperatur nahe der Tauchverzinkungstemperatur TZn erreicht wird, dann
    - das Produkt durch Eintauchen in ein Bad aus Zink oder einer Zn-Legierung bei einer Temperatur von 450 °C ≤ 29 TZn ≤ 480 °C kontinuierlich verzinkt wird, um ein verzinktes Produkt zu erhalten, dann
    - das verzinkte Produkt bis auf die Umgebungstemperatur mit einer Geschwindigkeit V'R abgekühlt wird, die höher ist als 4 °C/s, um ein kaltgewalztes, geglühtes und verzinktes Stahlblech zu erhalten.
  14. Verfahren zur Herstellung eines kaltgewalzten und verzinkten-geglühten Zweiphasen-Stahlblechs, dadurch gekennzeichnet, dass das erhitzte und geglühte Produkt mit einer Struktur mit Austenit nach Anspruch 12 bereitgestellt wird, dann
    - das erhitzte und geglühte Produkt mit einer Geschwindigkeit VR abgekühlt wird, die ausreicht, um die Umwandlung des Austenits in Ferrit zu vermeiden, bis eine Temperatur nahe der Tauchverzinkungstemperatur TZn erreicht wird, dann
    - das Produkt durch Eintauchen in ein Bad aus Zink oder einer Zn-Legierung bei einer Temperatur von 450 °C ≤ TZn ≤ 480 °C kontinuierlich verzinkt wird, um ein verzinktes Produkt zu erhalten, dann
    - das verzinkte Produkt auf eine Temperatur TG zwischen 490 und 550 °C während einer Dauer tG zwischen 10 und 40 s erhitzt wird, um ein verzinktes-geglühtes Produkt zu erhalten, dann
    - das verzinkte-geglühte Produkt bis auf die Umgebungstemperatur mit einer Geschwindigkeit V"R abgekühlt wird, die höher ist als 4 °C/s, um ein kaltgewalztes und verzinktes-geglühtes Stahlblech zu erhalten.
  15. Herstellungsverfahren nach einem der Ansprüche 12 bis 14, dadurch gekennzeichnet, dass die Temperatur TM zwischen 760 und 830 °C liegt.
  16. Herstellungsverfahren nach Anspruch 13 oder 14, dadurch gekennzeichnet, dass die Abkühlgeschwindigkeit VR höher als oder gleich 15 °C/s ist.
  17. Vervendung eines Stahlblechs nach einem der Ansprüche 1 bis 11 oder das durch ein Verfahren nach einem der Ansprüche 12 bis 16 hergestellt ist, für die Herstellung von Struktur- oder Sicherheitsteilen für Kraftfahrzeuge.
EP09761870A 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche Active EP2291547B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09761870A EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
PL09761870T PL2291547T3 (pl) 2008-05-21 2009-05-15 Sposób wytwarzania blach ze stali dwufazowej, walcowanych na zimno, o bardzo dużej wytrzymałości i blachy w ten sposób wytwarzane

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP08290474A EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
PCT/FR2009/000574 WO2009150319A1 (fr) 2008-05-21 2009-05-15 Procede de fabrication de toles d'aciers dual phase laminees a froid a tres haute resistance et toles ainsi produites
EP09761870A EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche

Publications (2)

Publication Number Publication Date
EP2291547A1 EP2291547A1 (de) 2011-03-09
EP2291547B1 true EP2291547B1 (de) 2012-04-25

Family

ID=39855450

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08290474A Withdrawn EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP09761870A Active EP2291547B1 (de) 2008-05-21 2009-05-15 Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP08290474A Withdrawn EP2123786A1 (de) 2008-05-21 2008-05-21 Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche

Country Status (16)

Country Link
US (3) US20110168300A1 (de)
EP (2) EP2123786A1 (de)
JP (1) JP5425896B2 (de)
KR (1) KR101328768B1 (de)
CN (1) CN102046827B (de)
AT (1) ATE555225T1 (de)
BR (1) BRPI0912879B1 (de)
CA (1) CA2725290C (de)
ES (1) ES2386701T3 (de)
MA (1) MA32294B1 (de)
MX (1) MX2010012584A (de)
PL (1) PL2291547T3 (de)
RU (1) RU2470087C2 (de)
UA (1) UA100056C2 (de)
WO (1) WO2009150319A1 (de)
ZA (1) ZA201007964B (de)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2123786A1 (de) 2008-05-21 2009-11-25 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
KR101587968B1 (ko) * 2011-07-29 2016-01-22 신닛테츠스미킨 카부시키카이샤 합금화 용융 아연 도금층 및 그것을 가진 강판 및 그 제조 방법
CN102618802B (zh) * 2012-03-20 2013-08-21 东北大学 一种超细晶粒双相钢材料及其制备方法
WO2014037627A1 (fr) 2012-09-06 2014-03-13 Arcelormittal Investigación Y Desarrollo Sl Procede de fabrication de pieces d'acier revêtues et durcies a la presse, et tôles prerevêtues permettant la fabrication de ces pieces
WO2014081774A1 (en) * 2012-11-20 2014-05-30 Thyssenkrupp Steel Usa, Llc Process for making coated cold-rolled dual phase steel sheet
JP6048123B2 (ja) * 2012-12-20 2016-12-21 新日鐵住金株式会社 耐酸性に優れた高強度鋼板及びその製造方法
CN103882202B (zh) * 2012-12-20 2016-03-30 上海梅山钢铁股份有限公司 一种连续退火高强热镀锌钢的制造方法
CN103060703B (zh) 2013-01-22 2015-09-23 宝山钢铁股份有限公司 一种780MPa级冷轧双相带钢及其制造方法
US20140261919A1 (en) * 2013-03-14 2014-09-18 Thyssenkrupp Steel Usa, Llc Low carbon-high manganese steel and manufacturing process thereof
CN103469112A (zh) * 2013-09-29 2013-12-25 宝山钢铁股份有限公司 一种高成形性冷轧双相带钢及其制造方法
DE102013224851A1 (de) * 2013-12-04 2015-06-11 Schaeffler Technologies AG & Co. KG Kettenelement
WO2015088523A1 (en) * 2013-12-11 2015-06-18 ArcelorMittal Investigación y Desarrollo, S.L. Cold rolled and annealed steel sheet
KR101813974B1 (ko) * 2013-12-18 2018-01-02 제이에프이 스틸 가부시키가이샤 고강도 용융 아연 도금 강판 및 그의 제조 방법
WO2016016676A1 (fr) * 2014-07-30 2016-02-04 ArcelorMittal Investigación y Desarrollo, S.L. Procédé de fabrication de tôles d'acier, pour durcissement sous presse, et pièces obtenues par ce procédé
BR112017014686A2 (pt) * 2015-01-14 2018-01-09 Ak Steel Properties Inc aço bifásico com propriedades aprimoradas
CN104947023B (zh) * 2015-06-10 2017-08-08 武汉钢铁(集团)公司 无粉化厚规格锌铁合金化板的生产方法
WO2016198906A1 (fr) * 2015-06-10 2016-12-15 Arcelormittal Acier a haute résistance et procédé de fabrication
WO2017006144A1 (en) * 2015-07-09 2017-01-12 Arcelormittal Steel for press hardening and press hardened part manufactured from such steel
CN105950998B (zh) * 2016-07-11 2018-01-26 攀钢集团攀枝花钢铁研究院有限公司 一种1000MPa级低碳热镀锌双相钢及其制备方法
KR102020411B1 (ko) 2017-12-22 2019-09-10 주식회사 포스코 가공성이 우수한 고강도 강판 및 이의 제조방법
KR102020412B1 (ko) 2017-12-22 2019-09-10 주식회사 포스코 충돌특성 및 성형성이 고강도 강판 및 이의 제조방법
CN108642380B (zh) * 2018-05-15 2020-08-25 首钢集团有限公司 一种900MPa级别的抗冲击波钢板及其制造方法
CN109402525B (zh) * 2018-11-28 2020-09-04 北京首钢冷轧薄板有限公司 一种780MPa级屈服强度1000MPa级抗拉强度的双相钢加工方法
RU2699480C1 (ru) * 2018-12-14 2019-09-05 Публичное акционерное общество "Северсталь" (ПАО "Северсталь") Способ производства холоднокатаного проката
CN109943778B (zh) * 2019-04-30 2020-08-11 马鞍山钢铁股份有限公司 一种扩孔性能优异的590MPa级冷轧双相钢及其生产方法
RU2743946C1 (ru) * 2019-11-05 2021-03-01 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката из двухфазной ферритно-мартенситной стали
RU2718604C1 (ru) * 2019-11-05 2020-04-08 Публичное акционерное общество "Магнитогорский металлургический комбинат" Способ производства холоднокатаного высокопрочного проката различных классов прочности из двухфазной ферритно-мартенситной стали
WO2021116741A1 (en) * 2019-12-13 2021-06-17 Arcelormittal Heat treated cold rolled steel sheet and a method of manufacturing thereof
RU2751072C1 (ru) * 2020-09-02 2021-07-07 Публичное Акционерное Общество "Новолипецкий металлургический комбинат" Способ производства высокопрочной холоднокатаной стали
CN112176147B (zh) * 2020-10-13 2021-06-08 五矿营口中板有限责任公司 一种适合于大线能焊接的正火厚钢板的制造方法
CN115181840B (zh) * 2021-04-02 2024-08-09 宝山钢铁股份有限公司 780MPa级别高成形性热镀铝锌或热镀锌铝镁双相钢及快速热处理制造方法
CN113481435B (zh) * 2021-06-29 2022-09-16 鞍钢股份有限公司 一种900MPa级热轧复相钢及其生产方法
CN113817961B (zh) * 2021-08-26 2022-06-21 马鞍山钢铁股份有限公司 彩涂基料用热浸镀锌钢板及其制造方法
CN114107806A (zh) * 2021-10-29 2022-03-01 马鞍山钢铁股份有限公司 一种高加工硬化率及表面质量的450MPa级热镀锌双相钢及其生产方法
CN115612816B (zh) * 2022-09-30 2024-02-02 攀钢集团攀枝花钢铁研究院有限公司 含硼钢制备复相钢、热成形用钢镀层板的方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5545269A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method for producing ultra high strength, secondary hardening steels with superior toughness and weldability
US5545270A (en) 1994-12-06 1996-08-13 Exxon Research And Engineering Company Method of producing high strength dual phase steel plate with superior toughness and weldability
DE19610675C1 (de) 1996-03-19 1997-02-13 Thyssen Stahl Ag Mehrphasenstahl und Verfahren zu seiner Herstellung
JP3478128B2 (ja) 1998-06-12 2003-12-15 Jfeスチール株式会社 延性及び伸びフランジ成形性に優れた複合組織型高張力冷延鋼板の製造方法
JP3793350B2 (ja) * 1998-06-29 2006-07-05 新日本製鐵株式会社 動的変形特性に優れたデュアルフェーズ型高強度冷延鋼板とその製造方法
FR2790009B1 (fr) * 1999-02-22 2001-04-20 Lorraine Laminage Acier dual-phase a haute limite d'elasticite
WO2001081640A1 (fr) 2000-04-21 2001-11-01 Nippon Steel Corporation Plaque d'acier presentant une excellente aptitude a l'ebarbage et une resistance elevee a la fatigue, et son procede de production
DE10023036A1 (de) * 2000-05-11 2001-11-22 Siemens Ag Verfahren zum Kaltstart von Brennstoffzellen einer Brennstoffzellenanlage und zugehörige Brennstoffzellenanlage
KR20020073564A (ko) * 2000-11-28 2002-09-27 가와사끼 세이데쓰 가부시키가이샤 복합조직형 고장력 강판, 복합조직형 고장력 도금강판 및이들의 제조방법
RU2190685C1 (ru) * 2001-06-29 2002-10-10 Открытое акционерное общество "Новолипецкий металлургический комбинат" Сталь для производства листового проката
US6635313B2 (en) * 2001-11-15 2003-10-21 Isg Technologies, Inc. Method for coating a steel alloy
US6902829B2 (en) * 2001-11-15 2005-06-07 Isg Technologies Inc. Coated steel alloy product
FR2844281B1 (fr) * 2002-09-06 2005-04-29 Usinor Acier a tres haute resistance mecanique et procede de fabrication d'une feuille de cet acier revetue de zinc ou d'alliage de zinc
JP4235030B2 (ja) * 2003-05-21 2009-03-04 新日本製鐵株式会社 局部成形性に優れ溶接部の硬さ上昇を抑制した引張強さが780MPa以上の高強度冷延鋼板および高強度表面処理鋼板
JP4214006B2 (ja) * 2003-06-19 2009-01-28 新日本製鐵株式会社 成形性に優れた高強度鋼板およびその製造方法
JP4635525B2 (ja) * 2003-09-26 2011-02-23 Jfeスチール株式会社 深絞り性に優れた高強度鋼板およびその製造方法
KR101094594B1 (ko) * 2003-09-30 2011-12-15 신닛뽄세이테쯔 카부시키카이샤 용접성과 연성이 우수한 고항복비 고강도 냉연 강판
JP3934604B2 (ja) * 2003-12-25 2007-06-20 株式会社神戸製鋼所 塗膜密着性に優れた高強度冷延鋼板
JP4380348B2 (ja) * 2004-02-09 2009-12-09 Jfeスチール株式会社 表面品質に優れる高強度溶融亜鉛めっき鋼板
JP4843982B2 (ja) * 2004-03-31 2011-12-21 Jfeスチール株式会社 高剛性高強度薄鋼板およびその製造方法
JP3889767B2 (ja) 2005-03-31 2007-03-07 株式会社神戸製鋼所 溶融亜鉛めっき用高強度鋼板
JP4959161B2 (ja) * 2005-09-05 2012-06-20 新日本製鐵株式会社 耐食性と伸びと穴拡げ性に優れた溶融亜鉛めっき鋼板および合金化溶融亜鉛めっき鋼板
JP4665692B2 (ja) * 2005-09-29 2011-04-06 Jfeスチール株式会社 曲げ剛性に優れた高強度薄鋼板およびその製造方法
KR100931140B1 (ko) * 2006-10-31 2009-12-10 현대자동차주식회사 성형성이 우수한 고장력 강판 및 그 제조 방법
EP1990431A1 (de) * 2007-05-11 2008-11-12 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten und geglühten Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche
EP2123786A1 (de) 2008-05-21 2009-11-25 ArcelorMittal France Verfahren zur Herstellung von kalt gewalzten Zweiphasen-Stahlblechen mit sehr hoher Festigkeit und so hergestellte Bleche

Also Published As

Publication number Publication date
MX2010012584A (es) 2011-04-05
RU2470087C2 (ru) 2012-12-20
US10190187B2 (en) 2019-01-29
US20160222486A1 (en) 2016-08-04
EP2291547A1 (de) 2011-03-09
PL2291547T3 (pl) 2012-09-28
KR101328768B1 (ko) 2013-11-13
WO2009150319A1 (fr) 2009-12-17
BRPI0912879B1 (pt) 2018-06-26
US20110168300A1 (en) 2011-07-14
RU2010152214A (ru) 2012-06-27
BRPI0912879A2 (pt) 2017-05-16
CA2725290A1 (fr) 2009-12-17
JP2011523440A (ja) 2011-08-11
ZA201007964B (en) 2011-07-27
UA100056C2 (ru) 2012-11-12
KR20110013490A (ko) 2011-02-09
MA32294B1 (fr) 2011-05-02
CN102046827A (zh) 2011-05-04
EP2123786A1 (de) 2009-11-25
CN102046827B (zh) 2013-03-06
US20190106765A1 (en) 2019-04-11
ES2386701T3 (es) 2012-08-27
JP5425896B2 (ja) 2014-02-26
CA2725290C (fr) 2015-10-13
ATE555225T1 (de) 2012-05-15

Similar Documents

Publication Publication Date Title
EP2291547B1 (de) Verfahren zur herstellung von kaltgewalzten dualphasenstahlblechen mit sehr hoher festigkeit und so hergestellte bleche
EP3084014B1 (de) Hochfester stahl und herstellungsverfahren dafür
CN111433380B (zh) 高强度镀锌钢板及其制造方法
CA2617879C (fr) Procede de fabrication de toles d'acier presentant une haute resistance et une excellente ductilite, et toles ainsi produites
EP2155915B2 (de) Verfahren zur herstellung kaltgewalzter und geglühter stahlbleche von sehr hoher festigkeit und in diesem verfahren hergestellte bleche
CA2838665C (fr) Tole d'acier laminee a froid et revetue de zinc ou d'alliage de zinc, procede de fabrication et utilisation d'une telle tole
JP4700764B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度亜鉛めっき鋼板、高強度合金化溶融亜鉛めっき鋼板、及びそれらの製造方法
JP4737319B2 (ja) 加工性および耐疲労特性に優れた高強度合金化溶融亜鉛めっき鋼板およびその製造方法
CA2742671C (en) High-strength cold-rolled steel sheet having excellent formability, high-strength galvanized steel sheet, and methods for manufacturing the same
EP2171112B1 (de) Verfahren zur herstellung eines stahlblechs mit sehr hohen festigkeits- und biegbarkeitseigenschaften und in diesem verfahren hergestellte bleche
RU2684655C1 (ru) Сверхпрочная многофазная сталь и способ производства холоднокатаной стальной полосы из нее
EP3146083B1 (de) Doppelgeglühtes stahlblech mit hoher mechanischer festigkeit und duktilität, verfahren zur herstellung und verwendung solcher bleche
EP3307921A2 (de) Hochfester stahl und herstellungsverfahren
JP4542515B2 (ja) 成形性と溶接性に優れた高強度冷延鋼板、高強度溶融亜鉛めっき鋼板及び高強度合金化溶融亜鉛めっき鋼板、並びに、高強度冷延鋼板の製造方法、高強度溶融亜鉛めっき鋼板の製造方法、高強度合金化溶融亜鉛めっき鋼板の製造方法
JP5412746B2 (ja) 溶接性と伸びフランジ性の良好な高強度鋼板
JP2005256089A (ja) 成形性および穴拡げ性に優れた溶融亜鉛めっき複合高強度鋼板およびその製造方法
JP2008291304A (ja) 深絞り性と強度−延性バランスに優れた高強度冷延鋼板および高強度溶融亜鉛めっき鋼板ならびにその製造方法
JP2011225978A (ja) 加工性に優れた高張力溶融亜鉛めっき鋼板およびその製造方法

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20101221

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA RS

RIN1 Information on inventor provided before grant (corrected)

Inventor name: VINCI, CATHERINE

Inventor name: RESTREPO GARCES, GLORIA

Inventor name: HEBERT, VERONIQUE

Inventor name: GOUNE, MOHAMED

Inventor name: WATERSCHOOT, TOM

Inventor name: MOULIN, ANTOINE

RIN1 Information on inventor provided before grant (corrected)

Inventor name: GOUNE, MOHAMED

Inventor name: RESTREPO GARCES, GLORIA

Inventor name: HEBERT, VERONIQUE

Inventor name: VINCI, CATHERINE

Inventor name: WATERSCHOOT, TOM

Inventor name: MOULIN, ANTOINE

RAX Requested extension states of the european patent have changed

Extension state: BA

Payment date: 20101221

17Q First examination report despatched

Effective date: 20110802

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIN1 Information on inventor provided before grant (corrected)

Inventor name: HEBERT, VERONIQUE

Inventor name: RESTREPO GARCES, GLORIA

Inventor name: GOUNE, MOHAMED

Inventor name: VINCI, CATHERINE

Inventor name: WATERSCHOOT, TOM

Inventor name: MOULIN, ANTOINE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: BA

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 555225

Country of ref document: AT

Kind code of ref document: T

Effective date: 20120515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602009006632

Country of ref document: DE

Effective date: 20120621

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2386701

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20120827

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20120425

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 12090

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120726

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120827

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120531

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E014846

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602009006632

Country of ref document: DE

Effective date: 20130128

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120425

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120725

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120515

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 8

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240418

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240418

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20240603

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20240423

Year of fee payment: 16

Ref country code: AT

Payment date: 20240419

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20240423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: RO

Payment date: 20240513

Year of fee payment: 16

Ref country code: IT

Payment date: 20240418

Year of fee payment: 16

Ref country code: FR

Payment date: 20240418

Year of fee payment: 16

Ref country code: FI

Payment date: 20240418

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20240423

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20240430

Year of fee payment: 16

Ref country code: SE

Payment date: 20240418

Year of fee payment: 16

Ref country code: HU

Payment date: 20240509

Year of fee payment: 16

Ref country code: BE

Payment date: 20240418

Year of fee payment: 16