EP2281152A2 - A device for obtaining heat - Google Patents
A device for obtaining heatInfo
- Publication number
- EP2281152A2 EP2281152A2 EP09735967A EP09735967A EP2281152A2 EP 2281152 A2 EP2281152 A2 EP 2281152A2 EP 09735967 A EP09735967 A EP 09735967A EP 09735967 A EP09735967 A EP 09735967A EP 2281152 A2 EP2281152 A2 EP 2281152A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- circuit
- heat
- brine
- storage reservoir
- heat storage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
- 239000012267 brine Substances 0.000 claims abstract description 74
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 claims abstract description 74
- 238000005338 heat storage Methods 0.000 claims abstract description 57
- 239000012080 ambient air Substances 0.000 claims abstract description 9
- 238000002156 mixing Methods 0.000 claims abstract description 9
- 238000010438 heat treatment Methods 0.000 claims description 59
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 36
- 230000003750 conditioning effect Effects 0.000 claims description 16
- 238000010257 thawing Methods 0.000 claims description 15
- 238000000034 method Methods 0.000 claims description 4
- 238000011144 upstream manufacturing Methods 0.000 claims description 3
- 239000013505 freshwater Substances 0.000 description 8
- 239000012530 fluid Substances 0.000 description 6
- 241000196324 Embryophyta Species 0.000 description 4
- 238000003303 reheating Methods 0.000 description 4
- 239000003570 air Substances 0.000 description 3
- 238000009833 condensation Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 241000271903 Achimenes grandiflora Species 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000008236 heating water Substances 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D12/00—Other central heating systems
- F24D12/02—Other central heating systems having more than one heat source
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D11/00—Central heating systems using heat accumulated in storage masses
- F24D11/02—Central heating systems using heat accumulated in storage masses using heat pumps
- F24D11/0214—Central heating systems using heat accumulated in storage masses using heat pumps water heating system
- F24D11/0221—Central heating systems using heat accumulated in storage masses using heat pumps water heating system combined with solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D19/00—Details
- F24D19/10—Arrangement or mounting of control or safety devices
- F24D19/1006—Arrangement or mounting of control or safety devices for water heating systems
- F24D19/1066—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water
- F24D19/1078—Arrangement or mounting of control or safety devices for water heating systems for the combination of central heating and domestic hot water the system uses a heat pump and solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D3/00—Hot-water central heating systems
- F24D3/08—Hot-water central heating systems in combination with systems for domestic hot-water supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D20/0034—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material
- F28D20/0039—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using liquid heat storage material with stratification of the heat storage material
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/12—Heat pump
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/14—Solar energy
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24D—DOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
- F24D2200/00—Heat sources or energy sources
- F24D2200/32—Heat sources or energy sources involving multiple heat sources in combination or as alternative heat sources
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D20/00—Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
- F28D2020/0065—Details, e.g. particular heat storage tanks, auxiliary members within tanks
- F28D2020/0086—Partitions
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/20—Solar thermal
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B10/00—Integration of renewable energy sources in buildings
- Y02B10/70—Hybrid systems, e.g. uninterruptible or back-up power supplies integrating renewable energies
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/14—Thermal energy storage
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E70/00—Other energy conversion or management systems reducing GHG emissions
- Y02E70/30—Systems combining energy storage with energy generation of non-fossil origin
Definitions
- the invention relates to a device for obtaining heat, comprising at least a first brine circuit in which a first brine pump and at least one heat pump unit with an outside register for utilizing heat of the ambient air are arranged, and at least a second brine circuit in which at least a second brine pump and at least a solar collector are arranged, with the second brine circuit being thermally connected with a heat storage reservoir.
- DE 28 09 425 Al describes a device for covering the heat requirement of the heat consumers of a building, comprising solar collectors which are flowed through by a heat transfer medium and a heat storage reservoir which can be brought into heat exchange with the heat transfer medium of the solar collectors, as well as a heat pump whose brine guided in a closed brine circuit can be brought into heat exchange with the heat storage reservoir.
- the brine circuit of the heat pump and the circuit of the solar collectors are arranged separated from one another in a hydraulic respect.
- An environmental heat source for a heat pump is further known from EP 1 248 055 A2, in which at least two of the three environmental heat sources of air collector, terrestrial heat exchanger and solar absorber are connected in series and can each be bypassed by means of a changeover valve and a bypass line.
- EP 0 931 986 Bl describes a solar-power-supplied heating and hot-water plant for a building, without an outside register for utilizing ambient air heat, comprising a solar collector and a solar distribution circuit having a flow pipe and return pipe.
- a combination heat storage reservoir and plant reservoir of downstream temperature levels are connected to a return distribution pipe in a serially activated manner.
- the plant reservoir with the lowest temperature level which is formed by a geothermal reservoir is optionally connected directly on the heat output side with a heat pump which supports the combination reservoir in a heat-injecting manner.
- DE 199 27 027 Cl discloses an arrangement for obtaining heat from solar radiation and environmental energy, consisting of solar collector, heat pump, heat exchanger, temperature difference governors, fluid reservoirs, fluid lines, valves and pumps.
- the heat pump is connected on the evaporator side with a fluid reservoir with low temperature level and on the condenser side with a fluid reservoir with high temperature level, to which the heat consumers are connected.
- a further connection of the fluid reservoirs among each other is made thermally via heat exchangers.
- the solar collector can be optionally connected with a fluid reservoir each.
- a heat exchanger can be connected upstream of the solar collector with which the flow temperature of the collector can be raised to the level of the ambient temperature.
- the brine circuit of the solar collector and the water circuit of the water pump are arranged completely separate from each other.
- EP 1 674 802 A2 discloses a multifunctional center for heating and/or cooling in residential buildings, comprising a cold store, a combination boiler, a heating circuit for heating the rooms, a device for generating hot water for domestic purposes, a water/water heat pump, an air/water heat pump, a solar brine circuit and a control device.
- the water/water heat pump is connected via lines both with the cold store as well as with the combination boiler.
- the air/water heat pump is connected with the cold store.
- the brine circuit is connected in a thermal respect both with the cold store as well as the combination boiler and is arranged to be completely separated from the circuits of the heat pumps.
- a stratified storage reservoir is known from DE 299 14 113 Ul, comprising a housing and a water storage reservoir which is arranged therein and which comprises a water return in its bottom region and a water flow in its upper region.
- the water storage reservoir is subdivided by separating elements into at least two storage zones in which a latent storage material is held with different transformation temperatures.
- first and second brine circuit can be flow-connected with each other via a first valve, preferably a mixing valve, with the first valve preferably being arranged in the first brine circuit downstream of the outside register and upstream of the heat pump unit.
- the first and second brine circuit can be coupled when necessary via the mixing valve.
- the heat sources of solar and ambient air can be utilized both serially as well as independently of each other.
- the heat storage reservoir can be used as a third heat source. It is especially advantageous when the heat storage reservoir comprises several zones, preferably three stratified one above the other and partly separated, with the second brine circuit being thermally connected with the bottom zone.
- the possibility is offered to defrost by means of solar power.
- the bottom part of the heat storage reservoir is held at low temperature, e.g. heating room temperature, which gives the solar plant the possibility to supply energy to the system at the lowest possible temperature level. Since defrosting is made from the bottom zone of the heat storage reservoir, the degree of solar coverage is very high for this purpose.
- a heating circuit can be connected with a middle zone of the heat storage reservoir. It is preferably further provided that a hot-water conditioning circuit is connected to the heat storage reservoir whose flow line starts from the upper zone of the heat storage reservoir and whose return line opens into the bottom zone of the heat storage reservoir. Heating circuit and hot-water circuit can be connected with each other via a second valve.
- the heating circuit can be connected thermally via the heat pump with the first brine circuit.
- the outside register is operated for heating directly with the heat pump and the heat generated by the heat pump is supplied to the heating circuit.
- the return of the heating circuit can be guided via the heat storage reservoir, so that the heat stored therein can be utilized.
- Rapid and efficient defrosting of the outside register of the heat pump unit can be achieved when the heating circuit can be connected via a connecting line with the bottom zone of the heat storage reservoir. It is provided that during the defrosting operation the first brine circuit is flow-connected with the second brine circuit, that the heating circuit is flow-connected via a connecting line with the bottom zone of the heat storage reservoir, and that thermal energy from the heating circuit is supplied to the first and second brine circuit via the heat exchanger.
- the connecting line opens via at least one nozzle into the bottom zone, with preferably the nozzle being directed against the heat exchanger.
- the connecting line advantageously originates from the feed line of the heating circuit.
- the flow through the connecting line can be adjusted via a second valve which is preferably arranged as a four-way valve.
- the heat pump can be used for reheating the fresh water circuit by actuating the second valve.
- thermoelectric circuit An especially rapid defrosting of the outside register is possible when a hot-water conditioning circuit is connected to the heat storage reservoir whose flow originates from an upper zone of the heat storage reservoir and whose return opens into the bottom zone of the heat storage reservoir, with preferably the heating circuit being connectable with the hot water conditioning circuit via the second valve which is arranged as a multiple-way valve.
- the temperature of the heating circuit can be adjusted via a third valve arranged as a mixing valve.
- the feed from the heat storage reservoir to the heating circuit can be controlled by means of the third valve.
- the feed can be adjusted and mixed continuously for example between two feed lines originating from different areas of the heat storage reservoir.
- Fig. 1 shows the device in accordance with the invention in a schematic view
- Fig. 2 shows the device in a first operating state
- Fig. 3 shows the device in a second operating state
- Fig. 4 shows the device in a third operating state
- Fig. 5 shows the device in a fourth operating state
- Fig. 6 shows the device in a fifth operating state
- Fig. 7 shows the device in an alternative operating state
- Fig. 8 shows the device in a sixth operating state
- Fig. 9 shows the device in a seventh operating state
- Fig. 10 shows the device in an eighth operating state
- Fig. 11 shows the device in a ninth operating state
- Fig. 12 shows a device for obtaining heat in accordance with the invention in an embodiment.
- device 1 for obtaining heat comprises in each embodiment a first brine circuit 2 with a first brine pump 3, as well as a heat pump unit 40 with a heat pump 4 and an outside register 5 which is subjected to ambient air via a fan 6.
- a second brine circuit 7 is provided with solar collectors 8 and a second brine pump 9, with said second brine circuit 7 being thermally connected with the bottom zone 10 of heat storage reservoir 11.
- the heat storage reservoir 11 comprises a total of three vertically stratified zones which are separated from each other by perforated plates for example, with a middle zone 12 being adjacent to a bottom zone 10 and an upper zone 13 being adjacent to the middle zone.
- the middle zone 12 of the heat storage reservoir 11 is connected with a heating circuit 14 for heating a building 15.
- Reference numeral 16 indicates a circulating pump of the heating circuit 14.
- the temperature in the heating circuit is set via a mixing valve 17 and a temperature sensor 18.
- Device 1 further comprises a hot water conditioning circuit 19 with a circulating pump 20, with the hot water conditioning circuit 19 originating from the upper zone 13 of the heat storage reservoir 11 and opening into the bottom zone 10 of the heat storage reservoir 11.
- the hot water conditioning circuit 19 is thermally connected with a fresh water module 21 whose fresh water inlets and outlets are designated with reference numerals 22 and 23.
- the pumps 3, 9 and 16 can be arranged with variable speed.
- the first and second brine circuit 2, 7 are filled with a brine, e.g. with glycol.
- the heating circuit 14 and the hot water conditioning circuit 19 on the other hand are filled with heating water.
- the first brine circuit 2 can be flow-connected with the second brine circuit 7 via a first valve 24 arranged as a mixing valve.
- the heating circuit 14 can be connected with the hot water conditioning circuit 19 via a second valve 25, e.g. a switching valve, and a connecting line 25a.
- Reference numerals 26 indicate further temperature sensors.
- the formation of condensation water in the solar collector 8 at low ambient temperatures can be prevented for example in such a way that the second brine circuit 7 is heated by the first brine circuit 2 with the heat pump unit 40 and the outside register 5.
- the large variability in the possibilities for switching and operating states is obtained especially in such a way that the heat sources of solar and ambient air can be utilized both in a serial manner as well as independent from each other.
- the heat pump unit 40 is deactivated.
- the second brine circuit 7 is separated from the first brine circuit 2 by the first valve 24. Heat is supplied to the heat storage reservoir 11 via the second brine circuit 7, with the heat of the heat storage reservoir 11 being supplied to the heating circuit 14 and/or the heat water conditioning circuit 19. The energy is obtained on the one hand via the heating circuit 14 and on the other hand via the fresh water module 21.
- the connecting line 25a between the heating circuit 14 and the hot water conditioning circuit 19 is deactivated.
- the desired temperature in the heating circuit 14 can be set via the mixing valve 17 and the temperature sensor 18.
- This state occurs when on the one hand there is insufficient solar input and on the other hand the bottom zone 10 of the heat storage reservoir 11 is not at a sufficiently high temperature level.
- the outside register is operated in this operating state and the heat generated by the heat pump unit 40 is supplied directly to the heating circuit 14.
- the return of the heating circuit 14 is guided via the middle zone 12 of the heat storage reservoir 11, so that the heat stored therein can be utilized.
- the second brine circuit 7 with the solar collectors 8 is in operation, as is indicated by the broken lines.
- the hot water conditioning circuit 19 can be activated or deactivated, as required.
- the retrieval of fresh water via the fresh water module 21 is possible at any time.
- the connecting line 25a is deactivated via the valve 25.
- the first valve 24 interrupts the connection to the second brine circuit 7 and only releases the path to the outside register 5.
- the outside register 5 is used for generating heat.
- the outside register 5 is in operation and withdraws heat from the ambient air. It is supplied via the heat pump unit 4 to the heating circuit 14.
- the connecting line 25a to the hot water conditioning circuit 19 is activated via valve 25, so that the medium of the heating circuit 14 is not guided to the line branch leading to the building 15, but via the connecting line 25a to the upper zone 13 of the heat storage reservoir 11. This leads to a direct heating of the upper zone 13 of the heat storage reservoir, through which hot water can be withdrawn very quickly from the fresh water module 21.
- the connection between the first brine circuit 2 and the second brine circuit 7 is interrupted through the first valve 24.
- first and second brine circuit 2, 7 This concerns a combined operation of first and second brine circuit 2, 7 and the heat storage reservoir 11.
- Energy is withdrawn from the ambient air primarily by means of the outside register 5.
- the first valve 24 is controlled in such a way that exactly so much energy reaches the second brine circuit 7 via the brine as can be taken "passively" from the heat storage reservoir 11 by means of the speed-controlled pump 9 of the second brine circuit 7, so that the solar collector 8 is not operated beneath the ambient temperature.
- condensation in the solar collector 8 is avoided.
- the upper zone 13 can be reloaded for hot water conditioning in operating state 4, in analogy to operating state 3.
- This operating state substantially corresponds to the operating state 4, with the difference that the heating circuit 14 is supplied with energy.
- the connecting line 25a is deactivated via the valve 25 and is switched to the heating path 14a leading to the building 15.
- Fig. 7 shows an embodiment as an alternative to the operating states 4 and 5, in which the middle zone 12 of the heat storage reservoir 11 is supplied with energy.
- the heating circuit 14 is bridged via a bypass line 28 by means of valve 25, so that the heating medium is not supplied to the building 15, but directly to the heat storage reservoir 11.
- the second brine circuit 7 is operated without any admixing from the heat storage reservoir 11. It is relevant in this respect that the temperature in the line of the brine circuit 7 to the solar collector 8 does not exceed a threshold fixed in a controller (not shown). Heat is supplied to the heating circuit 14 via the heat pump unit 40.
- the state of defrosting occurs when too much ice forms on the outside register 5. Then it needs to be defrosted. This occurs in the present case by means of energy disposed in the heat storage reservoir 11. In this process, a compressor (not shown) as well as the fan 6 of the outside register 5 are switched off. The brine which is pumped to the outside register 5 is adjusted to approximately 15°.
- the present device 1 offers the possibility to discharge heat via the outside register 5 to the ambient environment. Protection from burning is important, so that the maximum temperature of the heat exchanger in the outside register 5 is set to 40° or 5° to 10° over the ambient temperature.
- the precondition is that sufficient energy is present in the heat storage reservoir 11, so that the heat pump unit 4 can be provided with energy for the heating circuit 14. This occurs for such a time until the heating room temperature plus a predetermined distance has been reached. Since the energy which is contained in the bottom zone 10 of the heat storage reservoir 11 is originated predominately by solar input, the efficiency of the overall system of device 1 can be increased substantially by this measure.
- This mode occurs in analogy to the operating state 9, with the difference that it is not the heating system that is thermally loaded, but the upper zone 13 of the heat storage reservoir 11.
- the connecting line 25a is activated by the valve 25.
- Fig. 12 shows a device which is suitable for extended defrosting. Depending on the actual solar radiation it may occur that effective defrosting of the outside register 5 with solar power is not possible or advisable. Heat can be withdrawn from the heat storage reservoir 11 by means of the heat exchanger 27 of the second brine circuit 7 and be supplied to the first brine circuit 2 and thus the outside register 5. If the heat stored in the heat storage reservoir 11 is too low, then this measure is also not sufficient for effective defrosting of the outside register 5.
- the heating circuit 14 is connected with the bottom zone 10 of the heat storage reservoir 11 via the second valve 25 and the connecting line 28, with the connecting line 28 opening into the heat storage reservoir 11 via a nozzle 29 facing the heat exchanger 27 of the second brine circuit 7.
- the thus occurring turbulent flow of the incoming heating medium heats the heat exchanger 27 formed by the heating coils and thus the brine of the second brine circuit 7 circulating therein, and subsequently the outside register 5 via the first brine circuit 2.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Water Supply & Treatment (AREA)
- Central Heating Systems (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
Description
Claims
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT0065008A AT507709A1 (en) | 2008-04-24 | 2008-04-24 | DEVICE FOR HEAT GAIN |
AT0176208A AT507710B1 (en) | 2008-11-13 | 2008-11-13 | DEVICE FOR HEAT GAIN |
PCT/EP2009/054925 WO2009130294A2 (en) | 2008-04-24 | 2009-04-24 | A device for obtaining heat |
Publications (1)
Publication Number | Publication Date |
---|---|
EP2281152A2 true EP2281152A2 (en) | 2011-02-09 |
Family
ID=41217188
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP09735967A Withdrawn EP2281152A2 (en) | 2008-04-24 | 2009-04-24 | A device for obtaining heat |
Country Status (4)
Country | Link |
---|---|
US (1) | US20110083462A1 (en) |
EP (1) | EP2281152A2 (en) |
CA (1) | CA2722355A1 (en) |
WO (1) | WO2009130294A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2457051B (en) * | 2008-01-31 | 2012-08-08 | Faith Louise Ltd | Heating system |
EP2333430A3 (en) * | 2009-11-30 | 2014-01-15 | Vaillant GmbH | Heat pump |
FR2955380B1 (en) * | 2010-01-15 | 2012-03-02 | Electricite De France | THERMAL SOLAR SYSTEM AND METHOD FOR HEATING A HABITABLE SPACE |
DE102010009081A1 (en) * | 2010-02-24 | 2011-08-25 | Helmut Bälz GmbH, 74076 | Heat generator group with jet pump control |
WO2011116736A1 (en) * | 2010-03-22 | 2011-09-29 | Vng - Verbundnetz Gas Ag | Method and system for providing hot water |
KR101040693B1 (en) * | 2011-03-10 | 2011-06-10 | 윤석구 | The central heating and hot water supply systems for saving energy |
AU2013266938A1 (en) * | 2012-05-21 | 2014-12-18 | Soletaer Ab | Heating arrangement for heating a fluid utilizing a solar panel |
ITMO20120138A1 (en) * | 2012-05-28 | 2013-11-29 | Ca Pi S S R L | METHOD OF INTERVENTION TO INCREASE THE EFFICIENCY OF A HEATING SYSTEM. |
ITMO20120137A1 (en) * | 2012-05-28 | 2013-11-29 | Ca Pi S S R L | PLANT FOR THE PRODUCTION OF HOT WATER. |
KR101333143B1 (en) * | 2012-09-26 | 2013-11-26 | (주)센도리 | The regenrative air conditioning apparatust |
US9464840B2 (en) * | 2013-06-05 | 2016-10-11 | Hill Phoenix, Inc. | Gas defrosting system for refrigeration units using fluid cooled condensers |
EP3267131B1 (en) * | 2013-12-17 | 2019-03-06 | Mayekawa Mfg. Co., Ltd. | Refrigeration apparatus and cooling unit with a defrost system |
CN103742966B (en) * | 2014-01-06 | 2016-01-06 | 昆明东启科技股份有限公司 | A kind of CO2 heat pump and solar energy complementary operation central heating system |
GB2540167B (en) * | 2015-07-08 | 2018-07-25 | Arriba Cooltech Ltd | Combined heating and cooling systems |
CN208170588U (en) * | 2017-01-26 | 2018-11-30 | 特灵国际有限公司 | The water cooler for having ice storage |
CZ31064U1 (en) * | 2017-01-27 | 2017-10-03 | Almeva Ag | A combined system of service water heating and a heating medium for domestic heating |
FI130059B (en) * | 2020-11-30 | 2023-01-13 | Auris Energiaratkaisut Oy | A hybrid heating arrangement and a method of operating a hybrid heating arrangement |
Family Cites Families (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1482518A (en) * | 1974-10-24 | 1977-08-10 | Evans J | Solar heating system |
US4011731A (en) * | 1974-11-15 | 1977-03-15 | Gershon Meckler | Air conditioning apparatus utilizing solar energy and method |
US4007776A (en) * | 1974-12-23 | 1977-02-15 | Universal Oil Products Company | Heating and cooling system utilizing solar energy |
DK141027B (en) * | 1975-03-10 | 1979-12-24 | Henning Brinch Madsen | Heat pump systems. |
US4052587A (en) * | 1975-03-19 | 1977-10-04 | Milton Eaton | Htw heating system having an electrode steam boiler as the direct source of htw |
US4061267A (en) * | 1975-08-18 | 1977-12-06 | Lof George O G | Solar heating system and operation thereof |
US3996759A (en) * | 1975-11-03 | 1976-12-14 | Milton Meckler | Environment assisted hydronic heat pump system |
US4024908A (en) * | 1976-01-29 | 1977-05-24 | Milton Meckler | Solar powered heat reclamation air conditioning system |
DE2619744C2 (en) * | 1976-05-05 | 1982-05-19 | Robert Bosch Gmbh, 7000 Stuttgart | System for heating a building and for hot water preparation |
US4123003A (en) * | 1976-09-03 | 1978-10-31 | Theodore Winston | Solar energy collection panels and energy recovery systems |
DE2712822A1 (en) * | 1977-03-23 | 1978-09-28 | Vama Vertrieb | SOLAR HOT WATER TANK |
NL7707915A (en) * | 1977-07-15 | 1979-01-17 | Patlico Rights Nv | HEAT STORAGE AND DISCHARGE DEVICE FOR HEAT FROM A SUN HEATED FLUIDUM. |
US4187687A (en) * | 1978-01-16 | 1980-02-12 | Savage Harry A | System for utilizing solar energy and ambient air in air conditioners during the heating mode |
DE2809425A1 (en) * | 1978-03-04 | 1979-09-06 | Happel Kg | Multiple medium hot water and house heating system - has valves controlling flow through heat pump with electric and solar heating |
FR2451005A1 (en) * | 1979-03-05 | 1980-10-03 | Dosmond Rene | CENTRAL HEATING AND / OR DOMESTIC OR INDUSTRIAL HOT WATER PRODUCTION INSTALLATION |
FR2495741A2 (en) * | 1979-05-04 | 1982-06-11 | Olivet Jean | Seasonal storage of solar heat - has central heat exchanger surrounded by peripheral heat exchanger set in ground underneath building basement |
US4336692A (en) * | 1980-04-16 | 1982-06-29 | Atlantic Richfield Company | Dual source heat pump |
US4357932A (en) * | 1980-05-29 | 1982-11-09 | Creare Incorporated | Self pumped solar energy collection system |
US4375831A (en) * | 1980-06-30 | 1983-03-08 | Downing Jr James E | Geothermal storage heating and cooling system |
IL66014A0 (en) * | 1982-06-09 | 1982-09-30 | ||
US4714821A (en) * | 1982-10-26 | 1987-12-22 | Leif Jakobsson | Heat accumulator |
DE8303845U1 (en) * | 1983-02-11 | 1983-06-16 | Bindl Jun., Max, 8491 Katzelsried | LIQUID BOILER, IN PARTICULAR HOT WATER BOILER. |
US4749447A (en) * | 1983-05-06 | 1988-06-07 | Lew Hyok S | Evacuated evaporation-pressurized condensation solar still |
US4738305A (en) * | 1985-02-04 | 1988-04-19 | Bacchus Rockney D | Air conditioner and heat dispenser |
US4918933A (en) * | 1988-11-14 | 1990-04-24 | Dyer David F | Add-on refrigerant boiler for electric heat pump |
JP3918786B2 (en) * | 2003-07-30 | 2007-05-23 | 株式会社デンソー | Hot water storage type heat pump water heater |
PT103400B (en) * | 2005-12-14 | 2008-01-25 | Luis Henrique De Andre Godinho | LOW PRESSURE AND LOW TEMPERATURE SYSTEM FOR SOLAR ENERGY THERMAL CAPABILITY |
BRPI0915029A2 (en) * | 2008-06-10 | 2012-12-25 | Phillip C Watts | integrated power system for home or entire building |
US20100031953A1 (en) * | 2008-08-07 | 2010-02-11 | Krassimire Mihaylov Penev | Hybrid Water Heating System |
-
2009
- 2009-04-24 WO PCT/EP2009/054925 patent/WO2009130294A2/en active Application Filing
- 2009-04-24 EP EP09735967A patent/EP2281152A2/en not_active Withdrawn
- 2009-04-24 CA CA2722355A patent/CA2722355A1/en not_active Abandoned
- 2009-04-24 US US12/988,692 patent/US20110083462A1/en not_active Abandoned
Non-Patent Citations (1)
Title |
---|
See references of WO2009130294A3 * |
Also Published As
Publication number | Publication date |
---|---|
CA2722355A1 (en) | 2009-10-29 |
WO2009130294A2 (en) | 2009-10-29 |
US20110083462A1 (en) | 2011-04-14 |
WO2009130294A3 (en) | 2011-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20110083462A1 (en) | Device for obtaining heat | |
EP2213949B1 (en) | Liquid circulation heating system | |
US8037931B2 (en) | Hybrid water heating system | |
US8640474B2 (en) | System and method for increasing the efficiency of a solar heating system | |
CN102239372B (en) | System for providing steam compression circulation and method for controlling steam compression circulation | |
US20130104574A1 (en) | Hybrid Space And Hot Water Heating Heat Pump | |
EP2239513B1 (en) | Hot water circulation system with a heat pump | |
CN104165414B (en) | A kind of temperature-adjusting device | |
GB2247072A (en) | Heating or cooling system | |
KR101058908B1 (en) | Solar cooling and heating system | |
KR20180126941A (en) | Control system for a solar assisted heat pump system with hybrid solar collectors | |
KR101548073B1 (en) | Heating-apparatus and Water-heater storing heat capable of using the hot heat of heat-source separated from heat storing tank directly | |
JP2001194012A (en) | Solar heat utilization hot water supply/heating apparatus | |
KR20100004436A (en) | The solar collector and heating system using a solarcollector | |
US20110041833A1 (en) | Solar heat exchanger controller | |
EP3201535A1 (en) | System for winter heating and summer cooling of environments | |
EP2722596B1 (en) | Heating installation and method related thereto | |
KR101430590B1 (en) | Cooling system for watertank | |
KR101265937B1 (en) | Cooling and heating system for building | |
KR20150035012A (en) | Heat Storaging Type Heat Pump Boiler System | |
JP5909102B2 (en) | Air conditioning system | |
KR102009297B1 (en) | heat pump boiler system with Artificial Intelligence Type | |
JP2017067299A (en) | Cold/hot heat generation device | |
KR101562461B1 (en) | Solar heat utilization system | |
KR101475718B1 (en) | Heating device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20101019 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA RS |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: BICHLER, CHRISTIAN Inventor name: JEDREJCIC, STEFAN Inventor name: OBKIRCHER, LEO Inventor name: PRACHAR, THOMAS Inventor name: ENGELHART, KLAUS |
|
R17D | Deferred search report published (corrected) |
Effective date: 20110512 |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20140423 |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: F24D 11/02 20060101ALI20150407BHEP Ipc: F24D 3/08 20060101AFI20150407BHEP Ipc: F28D 20/00 20060101ALI20150407BHEP Ipc: F24D 19/10 20060101ALI20150407BHEP Ipc: F24D 12/02 20060101ALI20150407BHEP |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20150518 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150929 |