[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2134882B1 - Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties - Google Patents

Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties Download PDF

Info

Publication number
EP2134882B1
EP2134882B1 EP08787931.8A EP08787931A EP2134882B1 EP 2134882 B1 EP2134882 B1 EP 2134882B1 EP 08787931 A EP08787931 A EP 08787931A EP 2134882 B1 EP2134882 B1 EP 2134882B1
Authority
EP
European Patent Office
Prior art keywords
steel
hydrogen
mechanical
resistance
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP08787931.8A
Other languages
German (de)
French (fr)
Other versions
EP2134882A2 (en
Inventor
Bernard Resiak
Mario Confente
René CATHIARD
Bernard Starck
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal Gandrange SA
LISI Automotive SAS
Original Assignee
ArcelorMittal Gandrange SA
LISI Automotive SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ArcelorMittal Gandrange SA, LISI Automotive SAS filed Critical ArcelorMittal Gandrange SA
Publication of EP2134882A2 publication Critical patent/EP2134882A2/en
Application granted granted Critical
Publication of EP2134882B1 publication Critical patent/EP2134882B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum

Definitions

  • the invention relates to micro-alloyed steels for the cold forming, particularly by striking, of assembly parts, such as screws, bolts, etc., which the automotive industry commonly uses for the assembly of engines or ground connections of rolling stock.
  • Micro-alloy steel grades for screws with very high mechanical properties (1300 MPa and more resistance) have already been proposed to improve their resistance to hydrogen. This is the case, for example, of the nuance described in the document USP 5,073,338 of December 1991 and wherein molybdenum is added in an amount up to 1% by weight with a minimum of 0.5%.
  • the document US 2003/150529 describes a bolt of high strength excellent in resistance to delayed fracture, the steel has a good resistance to embrittlement by hydrogen for forming mechanical parts very high strength.
  • Steel contains, in percentages by weight: 0.3-0.45% C, 0.35-1.5% Mo, 0.40-1.00% Mn, 0.5-1.5% Cr, 0.005 -0.030% Nb, 0.30-1.0% V, 0.005-0.030% Ti, S ⁇ 0.010%, P ⁇ 0.010%, Si ⁇ 0.10%, 0.010-0.100% Al, the remainder being iron and unavoidable impurities.
  • the object of the invention is to provide an economical micro-alloy steel, with a molybdenum content deliberately fixed for this purpose to less than 0.45% by weight, and having a good resistance to hydrogen, while achieving high mechanical characteristics on finished parts ready to use made from this steel.
  • the subject of the invention is a micro-alloyed steel with good resistance to hydrogen embrittlement for the cold forming of mechanical parts with high characteristics, characterized in that, in order to contain its weight content of molybdenum below 0.45%, its chemical composition, in addition to iron and the inevitable residual impurities resulting from the elaboration of steel, corresponds to the following analysis, given in percentages by weight: 0.3 ⁇ VS ⁇ % ⁇ 0.5 0.20 ⁇ MB ⁇ % ⁇ 0.45 0.4 ⁇ mn ⁇ % ⁇ 1.0 0.4 ⁇ Cr ⁇ % ⁇ 2.0 0.04 ⁇ Or ⁇ % ⁇ 0.8 0.02 ⁇ Nb ⁇ % ⁇ 0,045 0.03 ⁇ V ⁇ % ⁇ 0.30 0.02 ⁇ Ti ⁇ % ⁇ 0.05 ; with Ti > 3.5 NOT 0,003 ⁇ B ⁇ % 0.005 ⁇ % S ⁇ % ⁇ 0,015 P ⁇ % ⁇ 0,00
  • the subject of the invention is also a long rolled steel product (wire rod or rod) of microalloyed steel resulting from continuous casting in the form of billets or blooms and having a chemical composition in accordance with the analysis given above. in order to be able to present, after processing by cold forming and quenching and tempering heat treatment, a mechanical strength of 1200 to 1500 MPa and more, combined with good resistance to hydrogen.
  • the subject of the invention is also a ready-to-use mechanical part, formed cold, by striking in particular, and having high mechanical characteristics as well as good resistance to hydrogen, characterized in that it is micro-alloyed steel having the chemical composition given above and, preferably, produced from a long rolled steel product (bar or, more commonly, wire rod) from continuous casting in the form of billets or blooms.
  • said mechanical part is an assembly screw for assembly in the automotive industry.
  • the "ready-to-use" parts made with the steel grade according to the invention have in fact, without particular difficulties, a final ultimate strength of 1200 MPa, or even 1500 MPa (and even more, depending on the setting of the temperature that will be imposed for the final heat treatment), while initially displaying an intermediate resistance, at least half, or even a third only after a globularization annealing conducted preferentially just before the strike, for facilitate the work of this one
  • This optimized composition makes it possible to have a very good resistance to hydrogen at the same time as a final mechanical strength of the steel, once transformed into a ready-to-use hammer after final heat treatment, greater than 1200 MPa and can even exceed 1,500 MPa, while retaining the same way as usual to carry out this transformation.
  • the steel semi-finished product (bloom, or more generally, billet) is then hot-rolled in the austenitic range, according to the usual practice, until it is obtained.
  • a long rolled product ready for shipment to customers after cooling to ambient.
  • This long steel product is then in the form of bars, or more generally in the form of wire-wound machine for the selected applications.
  • the wire-machine is then transformed into screw by cold stamping, schematically in the following conventional manner:
  • the transformer receives the wire and after mechanical descaling (or chemical etching possibly followed by neutralization), it performs on the wire an annealing in a neutral atmosphere (under nitrogen for example).
  • the yarn is then defatted before undergoing a first drawing, called drawing-roughing, for which a preliminary surface coating is provided, typically phosphating and soaping. During this drawing, the diameter of the wire is reduced by about 30%.
  • the wire-blank obtained is then subjected to a globulization treatment which, by providing a temporary drop in its hardness (intermediate Rm to about 500 MPa), will facilitate its subsequent forming, when striking, preserving the tool.
  • This first heat treatment is followed by stripping, phosphating and soaping for a second drawing. This one is a finishing drawing, also called "final setting".
  • the diameter reduction is more modest than before, generally less than 10%.
  • the wire with a resistance temporarily weakened around 500 MPa, is then easily struck cold.
  • the obtained raw stamping screws are first dephosphated, then subjected to a final quenching and tempering heat treatment, as well as to a final rolling operation to give the thread its final appearance.
  • the rolling can be done either before the heat treatment or after.
  • the income can advantageously operate at temperatures higher than the usual practice, namely of the order of 400 ° C and more, without compromising the achievement of the ultimate ultimate strength expected for screws produced ready. in use, with a Rm of 1200 to 1500 MPa and more .. Of course, the higher the income will be at high temperature, the lower the final Rm will be.
  • the surface of the screws is then cleaned and coated with a layer of phosphates or, if appropriate, with any other suitable chemical or electrochemical coating.
  • Castings A and 42CD4 are known steel shades of the prior art. Castings B, C and D are examples of the steel grade according to the invention.
  • the known grade A comprises in particular a molybdenum content greater than 0.5% and the known grade 42CD4 does not contain niobium, vanadium, titanium or boron.
  • ⁇ (Z) expresses the necking: Tr (° C) Rm (MPa) ⁇ (Z) in% AT > 400 1538 ⁇ 5 B > 400 1532 ⁇ 5 VS > 400 1545 ⁇ 5 D > 400 1535 ⁇ 5 42CD4 > 400 1505 16.5
  • the second column, Tr indicates the tempering temperature after quenching of the final pieces.
  • the third column, Rm gives the tensile strength determined by pulling on standard specimens.
  • the grades of the invention B, C and D make it possible to obtain hydrogen withstand and strength results equivalent to the known grade A containing more than 0.5% molybdenum.
  • the known 42CD4 grade also containing little molybdenum, but containing no niobium, vanadium, boron or titanium, gives good results from a mechanical strength point of view, but does not offer a satisfactory performance at hydrogen.
  • microalloyed steel according to the invention is therefore remarkable in that it exhibits both good aptitude for cold mechanical deformation (forging or forging) and good resistance to hydrogen (breaking strength). delayed) and in that it makes it possible to obtain, after tempering and tempering heat treatment, ready-to-use mechanical parts having a very high breaking strength.
  • the steel grade of the invention is a raw material of choice for the industrial production of assembly parts with high mechanical properties required, such as screws for the automotive industry, when packaged in wire-machine or, more generally, in hot rolled long steel product resulting from continuous casting in the form of billets or blooms.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Description

L'invention concerne les aciers micro-alliés pour le formage à froid, par frappe en particulier, de pièces d'assemblage, tels que vis, boulons, etc...que l'industrie automobile utilise couramment pour l'assemblage des éléments de moteurs ou de liaisons au sol des véhicules roulants.The invention relates to micro-alloyed steels for the cold forming, particularly by striking, of assembly parts, such as screws, bolts, etc., which the automotive industry commonly uses for the assembly of engines or ground connections of rolling stock.

Comme on le sait, l'industrie automobile vise continûment à accroître la puissance des moteurs en même temps qu'elle cherche à en réduire le poids, donc à employer des pièces de taille de plus en plus réduite. Ces pièces, qui restent soumises aux mêmes contraintes mécaniques, doivent donc présenter des caractéristiques mécaniques, de résistance à la rupture notamment, de plus en plus élevées.As we know, the automotive industry is continuously aiming to increase the power of the engines at the same time as it seeks to reduce the weight, so to use parts of smaller and smaller size. These parts, which remain subject to the same mechanical stresses, must therefore have mechanical characteristics, including breaking strength, more and more high.

Jusqu'à présent, la très grande majorité des aciers micro-alliés, utilisés par exemple en visserie automobile, permet d'obtenir des vis relevant de la classe 10.9, donc dotées d'une résistance à la rupture de 1000 MPa et davantage. Cette résistance, déjà élevée, peut être encore artificiellement accrue de quelque 100 à 200 MPa environ par le serrage des vis au moment même de l'assemblage des pièces. On comprendra qu'une telle pratique ne peut toutefois être retenue comme solution en soi à l'accroissement recherché de la limite de ruptureUntil now, the vast majority of micro-alloyed steels, used for example in automotive fasteners, makes it possible to obtain screws in class 10.9, thus having a breaking strength of 1000 MPa and more. This resistance, already high, can be further artificially increased by about 100 to 200 MPa by tightening the screws at the very moment of assembly of parts. It will be understood, however, that such a practice can not be accepted as a solution in itself to the desired increase in the limit of rupture.

Or, l'autre voie, à savoir celle "naturelle" qui s'adresse à la métallurgie de leur fabrication, se heurte rapidement à des problèmes de fragilité liée à la présence d'hydrogène dans l'acier. Comme on le sait, l'hydrogène dans l'acier est en effet à l'origine de mécanismes de rupture, différée voire immédiate parfois, qui se traduit par la casse de la pièce en service lors de l'application d'un certain niveau de contraintes.However, the other way, namely the "natural" one, which is aimed at the metallurgy of their manufacture, quickly comes up against problems of fragility linked to the presence of hydrogen in the steel. As we know, hydrogen in steel is indeed at the origin of mechanisms of rupture, delayed or even immediate sometimes, which is translated by the breakage of the part in service when the application of a certain level constraints.

Des nuances d'acier micro-allié pour vis à très hautes caractéristiques mécaniques (1 300 MPa et plus de résistance) ont déjà été proposées visant à améliorer leur tenue à l'hydrogène. C'est le cas, par exemple, de la nuance décrite dans le document USP 5 073 338 de décembre 1991 et dans laquelle du molybdène est ajouté en quantité, jusqu'à 1 % en poids avec un minimum de 0,5 %.Micro-alloy steel grades for screws with very high mechanical properties (1300 MPa and more resistance) have already been proposed to improve their resistance to hydrogen. This is the case, for example, of the nuance described in the document USP 5,073,338 of December 1991 and wherein molybdenum is added in an amount up to 1% by weight with a minimum of 0.5%.

Le document US 2003/150529 décrit un boulon de haute résistance excellent en résistance à la rupture différée, dont l'acier présente une bonne tenue à la fragilisation par hydrogène pour le formage de pièces mécaniques à très haute résistance. L'acier contient, en pourcentages pondéraux : 0,3-0,45% C, 0,35-1,5% Mo, 0,40-1,00% Mn, 0,5-1,5% Cr, 0,005-0,030% Nb, 0,30-1,0% V, 0,005-0,030% Ti, S<0,010%, P<0,010%, Si<0,10%, 0,010-0,100% Al, le reste étant du fer et des impuretés inévitables.The document US 2003/150529 describes a bolt of high strength excellent in resistance to delayed fracture, the steel has a good resistance to embrittlement by hydrogen for forming mechanical parts very high strength. Steel contains, in percentages by weight: 0.3-0.45% C, 0.35-1.5% Mo, 0.40-1.00% Mn, 0.5-1.5% Cr, 0.005 -0.030% Nb, 0.30-1.0% V, 0.005-0.030% Ti, S <0.010%, P <0.010%, Si <0.10%, 0.010-0.100% Al, the remainder being iron and unavoidable impurities.

Cependant, on peut craindre que les traitements thermiques subis par l'acier lors de la frappe conduisent à une accumulation en certains endroits de la matrice métallique de carbures de molybdène volumineux qui vont fragiliser la structure de l'acier et ne permettront donc pas toujours d'obtenir les caractéristiques mécaniques désirées. Un autre inconvénient peut être ressenti dans une certaine diminution de l'aptitude à la déformation à froid suite à l'accroissement de la dureté de l'acier due à la présence de cet élément durcissant à teneur élevée. De plus, le molybdène est un produit particulièrement onéreux sur le marché, de sorte que son introduction en quantité dans l'acier engendre un surcoût important de production.However, it is to be feared that the heat treatments suffered by the steel during the striking process lead to an accumulation in some places of the metallic matrix of bulky molybdenum carbides which will weaken the structure of the steel and therefore will not always allow obtain the desired mechanical characteristics. Another disadvantage may be felt in a certain decrease in the cold-forming ability due to the increased hardness of the steel due to the presence of this high-grade hardening element. In addition, molybdenum is a This product is particularly expensive on the market, so that its introduction in quantity into the steel generates a significant additional cost of production.

Néanmoins, malgré ces inconvénients, les nuances proposées dans la littérature pour des aciers micro-alliés destinées à la visserie semblent persévérer dans le sens d'une présence forte de molybdène afin de pouvoir atteindre des niveaux en résistance mécanique supérieurs à 1300 MPa. Il en est ainsi, par exemple, de la nuance décrite dans le document JPA 2001032044 publié en février 2001 , dans laquelle la teneur pondérale en molybdène se situe entre 1,5 et 3 %. C'est le cas encore de la nuance décrite dans le document EPA 1746177 publié en janvier 2007 dans laquelle la teneur en molybdène peut monter jusqu'à 6 %, sans pouvoir être inférieure à 0,5 %.Nevertheless, despite these disadvantages, the grades proposed in the literature for micro-alloyed steels intended for hardware seem to persevere in the sense of a strong presence of molybdenum in order to be able to reach levels in mechanical strength greater than 1300 MPa. This is the case, for example, with the nuance described in the document JPA 2001032044 published in February 2001 wherein the weight content of molybdenum is between 1.5 and 3%. This is still the case of the nuance described in the document EPA 1746177 published in January 2007 in which the molybdenum content can rise up to 6%, without being less than 0.5%.

On voit donc, au travers de ce rapide panorama de l'état connu de la technique, qu'il apparaît relativement aisé en fait d'atteindre, via la métallurgie, des aciers micro alliés pour pièces à haute résistance mécanique, sans nuire pour autant nécessairement à la tenue à l'hydrogène, mais qu'il est bien moins aisé d'obtenir un tel résultat si l'on s'assigne une teneur en molybdène volontairement basse.We thus see, through this rapid panorama of the known state of the art, that it appears relatively easy to achieve, via metallurgy, micro alloyed steels for parts with high mechanical strength, without harming necessarily with the resistance to hydrogen, but that it is much less easy to obtain such a result if one assigns a deliberately low molybdenum content.

Allant à l'opposé de la voie tracée par l'art antérieur, l'invention a pour but de proposer un acier micro-allié économique, à teneur en molybdène délibérément fixée à cet effet à moins de 0.45 % en poids, et présentant une bonne tenue à l'hydrogène, tout en permettant d'atteindre de hautes caractéristiques mécaniques sur les pièces finales prêtes à l'usage réalisées à partir de cet acier.Going against the path drawn by the prior art, the object of the invention is to provide an economical micro-alloy steel, with a molybdenum content deliberately fixed for this purpose to less than 0.45% by weight, and having a good resistance to hydrogen, while achieving high mechanical characteristics on finished parts ready to use made from this steel.

A cet effet, l'invention a pour objet un acier micro-allié à bonne tenue à la fragilisation par l'hydrogène pour le formage à froid de pièces mécaniques à hautes caractéristiques, caractérisé en ce que, afin de contenir sa teneur pondérale en molybdène en dessous de 0,45 %, sa composition chimique, outre le fer et les inévitables impuretés résiduelles résultant de l'élaboration de l'acier, répond à l'analyse suivante, donnée en pourcentages pondéraux: 0,3 C % 0,5

Figure imgb0001
0,20 Mo % < 0,45
Figure imgb0002
0,4 Mn % 1,0
Figure imgb0003
0,4 Cr % 2,0
Figure imgb0004
0,04 Ni % 0.8
Figure imgb0005
0,02 Nb % 0,045
Figure imgb0006
0,03 V % 0,30
Figure imgb0007
0,02 Ti % 0,05 ; avec Ti > 3,5 N
Figure imgb0008
0,003 B % 0,005 %
Figure imgb0009
S % 0,015
Figure imgb0010
P % 0,015 ,
Figure imgb0011
et optionnellement 0,05 ≤ Si % ≤ 0,20; Al % ≤ 0,05 et N % ≤ 0,015.For this purpose, the subject of the invention is a micro-alloyed steel with good resistance to hydrogen embrittlement for the cold forming of mechanical parts with high characteristics, characterized in that, in order to contain its weight content of molybdenum below 0.45%, its chemical composition, in addition to iron and the inevitable residual impurities resulting from the elaboration of steel, corresponds to the following analysis, given in percentages by weight: 0.3 VS % 0.5
Figure imgb0001
0.20 MB % < 0.45
Figure imgb0002
0.4 mn % 1.0
Figure imgb0003
0.4 Cr % 2.0
Figure imgb0004
0.04 Or % 0.8
Figure imgb0005
0.02 Nb % 0,045
Figure imgb0006
0.03 V % 0.30
Figure imgb0007
0.02 Ti % 0.05 ; with Ti > 3.5 NOT
Figure imgb0008
0,003 B % 0.005 %
Figure imgb0009
S % 0,015
Figure imgb0010
P % 0,015 ,
Figure imgb0011
and optionally 0.05 ≤ Si% ≤ 0.20; Al% ≤ 0.05 and N% ≤ 0.015.

L'invention a également pour objet un produit sidérurgique long laminé (fil-machine ou barre) en acier micro-allié issu de la coulée continue sous forme de billettes ou de blooms et ayant une composition chimique conforme à l'analyse donnée ci-avant afin d'être apte à présenter, après transformation par formage à froid et traitement thermique de trempe et revenu, une résistance mécanique de 1200 à 1500 MPa et plus, alliée à une bonne tenue à l'hydrogène.The subject of the invention is also a long rolled steel product (wire rod or rod) of microalloyed steel resulting from continuous casting in the form of billets or blooms and having a chemical composition in accordance with the analysis given above. in order to be able to present, after processing by cold forming and quenching and tempering heat treatment, a mechanical strength of 1200 to 1500 MPa and more, combined with good resistance to hydrogen.

L'invention a encore pour objet une pièce mécanique prête à l'emploi, formée à froid, par frappe en particulier, et présentant de hautes caractéristiques mécaniques ainsi qu'une bonne tenue à l'hydrogène, caractérisée en ce qu'elle est en acier micro-allié répondant à la composition chimique donnée ci-avant et, de préférence, produite à partir d'un produit sidérurgique long laminé (barre ou, plus couramment, fil-machine) issu de la coulée continue sous forme de billettes ou de blooms.The subject of the invention is also a ready-to-use mechanical part, formed cold, by striking in particular, and having high mechanical characteristics as well as good resistance to hydrogen, characterized in that it is micro-alloyed steel having the chemical composition given above and, preferably, produced from a long rolled steel product (bar or, more commonly, wire rod) from continuous casting in the form of billets or blooms.

De préférence encore, ladite pièce mécanique est une vis d'assemblage pour le montage dans l'industrie automobile.More preferably, said mechanical part is an assembly screw for assembly in the automotive industry.

On aura déjà compris qu'une fourchette de 0,20 à 0,45 % de Mo suffit en fait, dans le cas de l'invention, pour obtenir une synergie entre cet élément particulier et les autres éléments présents dans la composition chimique de l'acier que sont, d'un côté, le niobium, le vanadium et le titane (lesquels agissent tous à l'état précipité en faveur donc d'un durcissement du grain de la structure de l'acier et de son affinement), et de l'autre, le bore présent pour augmenter la trempabilité de la nuance et qui va permettre d'obtenir in fine une microstructure à martensite dominante dans les conditions habituelles du traitement thermique propre au formage à froid, par frappe ou autre.It will have already been understood that a range of 0.20 to 0.45% Mo is in fact sufficient, in the case of the invention, to obtain a synergy between this particular element and the other elements present in the chemical composition of the polymer. which are, on the one hand, niobium, vanadium and titanium (all of which act in the precipitated state in favor of a hardening of the grain of the steel structure and its refinement), and on the other hand, the boron present to increase the quenchability of the grade and which will ultimately allow to obtain a dominant martensite microstructure under the usual conditions of heat treatment suitable for cold forming, by striking or otherwise.

Il importe par ailleurs de noter que la voie suivie par l'invention pour l'élaboration d'une telle nuance à basse teneur en molybdène a été de créer un acier micro-allié permettant de supporter une quantité d'hydrogène plus élevée que dans l'art antérieur. Pour ce faire, la nuance a été optimisée pour répondre aux problèmes liés à l'hydrogène, non plus par l'approche classique unique, à savoir celle du piégeage de cet élément, mais par trois voies différentes conjointes. Les recherches effectuées ont pu montrer en effet que la tenue à l'hydrogène de l'acier pouvait résulter de différents facteurs indépendants, tels que la composition chimique ou la microstructure, mais aussi, et on le comprendra sans peine, la quantité d'hydrogène déjà présente dans l'acier avant la mise en service des pièces.It is also important to note that the way in which the invention has been developed for producing such a low molybdenum grade has been to create a microalloyed steel capable of withstanding a higher amount of hydrogen than in the case of molybdenum. prior art. To do this, the nuance has been optimized to answer the problems related to hydrogen, no longer by the unique classical approach, namely that of the trapping of this element, but by three different joint ways. The research carried out has shown that the hydrogen resistance of steel can result from various independent factors, such as the chemical composition or the microstructure, but also, and it is easy to understand, the amount of hydrogen already present in the steel before commissioning the parts.

L'hydrogène, selon l'invention, est donc traité par les trois voies suivantes:

  1. 1 - Le piégeage. La nuance selon l'invention présente la particularité de multiplier et diversifier les pièges à hydrogène de sorte à éviter une agglomération en un seul endroit de carbures du même type qui fragiliserait la structure et nuirait à la résistance mécanique de l'acier. Le molybdène n'est en effet plus le piège privilégié de l'hydrogène, puisque la nuance contient également à cet effet du niobium, du titane, du chrome et du vanadium.
  2. 2 - La répartition. Les éléments, tels que le bore, le niobium, le molybdène, le vanadium et le titane sont favorisés, car ils permettent d'affiner le grain, ce qui permet d'accroître la tenue à l'hydrogène. En effet, l'accroissement de la finesse des grains induisant une augmentation de la surface des joints, l'hydrogène est alors mieux réparti dans l'acier et devient de ce fait moins nocif.
  3. 3 - L'élimination. L'hydrogène, introduit dans l'acier lors des phases préparatoires de la matière en vue de la frappe, peut être en partie éliminé lors du traitement thermique final de trempe et revenu effectué sur les pièces frappées fabriquées avec de l'acier selon l'invention. L'augmentation de la température de revenu favorise ce dégazage. Cette augmentation est rendue possible par la présence d'éléments durcissants permettant d'aller en ce sens, tels que le vanadium, le titane, le molybdène, le niobium, mais également le bore par son effet synergique avec le niobium et le molybdène. La nuance selon l'invention permet d'atteindre des températures de revenu de l'ordre de 400°C ou plus.
Hydrogen, according to the invention, is therefore treated by the following three routes:
  1. 1 - Trapping . The grade according to the invention has the particularity of multiplying and diversifying the hydrogen traps so as to avoid agglomeration in one place of carbides of the same type which would weaken the structure and adversely affect the mechanical strength of the steel. Molybdenum is no longer the preferred trap of hydrogen, since the grade also contains for this purpose niobium, titanium, chromium and vanadium.
  2. 2 - The distribution . The elements, such as boron, niobium, molybdenum, vanadium and titanium are favored because they allow to refine the grain, which increases the resistance to hydrogen. Indeed, the increase in grain fineness inducing an increase in the surface of the joints, the hydrogen is then better distributed in the steel and thus becomes less harmful.
  3. 3 - Elimination . Hydrogen, introduced into the steel during the preparatory phases of the material for the purpose of striking, may be partly eliminated during the final heat treatment of quenching and tempering performed on the struck pieces made of steel according to the invention. The increase of the temperature of income favors this degassing. This increase is made possible by the presence of hardening elements to go in this direction, such as vanadium, titanium, molybdenum, niobium, but also boron by its synergistic effect with niobium and molybdenum. The grade according to the invention makes it possible to achieve tempering temperatures of the order of 400 ° C. or more.

Dès lors, dans le cas, par exemple, de la production de vis d'assemblage par frappe à froid, il a pu être recherché une plus grande résistance mécanique des vis avant serrage. Les pièces "prêtes à l'emploi" réalisées avec la nuance d'acier selon l'invention présentent en effet, sans difficultés particulières, une résistance à la rupture finale de 1200 MPa, voire 1500 MPa (et même davantage, selon le réglage de la température que l'on imposera pour le traitement thermique final), tout en affichant au préalable une résistance intermédiaire, de moitié au moins, voire du tiers seulement à l'issue d'un recuit de globulisation mené préférentiellement juste avant la frappe, pour faciliter le travail de celle-ciTherefore, in the case, for example, the production of cold-knuckle assembly screws, it has been possible to seek greater mechanical strength of the screws before tightening. The "ready-to-use" parts made with the steel grade according to the invention have in fact, without particular difficulties, a final ultimate strength of 1200 MPa, or even 1500 MPa (and even more, depending on the setting of the temperature that will be imposed for the final heat treatment), while initially displaying an intermediate resistance, at least half, or even a third only after a globularization annealing conducted preferentially just before the strike, for facilitate the work of this one

L'invention sera bien comprise et d'autres aspects et avantages apparaîtront plus clairement au vu de la description qui suit, donnée uniquement à titre d'exemple de réalisation de vis pour l'industrie automobile.The invention will be well understood and other aspects and advantages will appear more clearly in view of the description which follows, given solely as an example of embodiment of screws for the automotive industry.

On produit à l'aciérie, par coulée continue, des demi-produits longs (billettes ou blooms) en un acier micro-allié ayant, outre le fer, et moins de 0,45 % de molybdène que l'on s'assigne, la composition chimique suivante, en teneurs pondérales:

  • de 0,3 à 0,5 % de carbone.
Pour des teneurs inférieures à 0,3 %, les très hautes résistances désirées ne peuvent être atteintes compte tenu de la teneur des autres éléments présents dans la nuance et des températures de revenu élevées visées. Pour des teneurs supérieures à 0,5 % le risque de fragilité augmente du fait de l'augmentation de la dureté.
  • 0,20 % au moins de molybdène, mais sans jamais atteindre dépasser 0.45 % pour les raisons indiquées.
Le molybdène manifeste une forte interaction avec le phosphore dont il limite ainsi l'effet néfaste en limitant sa ségrégation aux joints de grains. De plus, il affiche un comportement carburigène marqué. Il autorise, pour des caractéristiques mécaniques données, des températures de revenu plus élevées, favorisant du coup le développement des carbures qui seront des pièges à hydrogène. C'est donc un élément qui renforce la résistance à la rupture différée.
  • de 0,4 à 1,0 % de manganèse.
L'accroissement de la teneur en manganèse tend , en règle générale, à diminuer la résistance à la rupture différée de l'acier. Ceci pourrait provenir de son interaction avec le soufre conduisant à la formation de sulfures de manganèse. Lorsqu'on dépasse des seuils voisins de 1 % de manganèse, cette interaction avec le soufre pourrait même conduire à augmenter la fragilité de l'acier à l'hydrogène, ce, bien entendu, en l'absence de dispositions adéquates prises pour l'éviter. Le manganèse a cependant un effet bénéfique sur la trempabilité de l'acier et donc sur l'obtention des caractéristiques mécaniques finales recherchées sur les pièces réalisées.
  • moins de 0,015 % de phosphore.
L'effet du phosphore est particulièrement nocif dans les aciers selon l'invention et ce pour plusieurs raisons. Par un effet contrariant de la recombinaison de l'hydrogène, il contribue à une plus haute concentration d'hydrogène atomique susceptible de pouvoir pénétrer dans le matériau, donc à un risque accru de rupture différée de la pièce en usage. De surcroît, en ségrégant aux joints de grain, il diminue leur cohésion. Sa teneur doit donc impérativement être maintenue très basse. On veillera à cet effet à ce que l'acier soit déphosphoré lors de son élaboration à l'état liquide.
  • de 0,05 à 0,2 % de silicium.
Le silicium agit comme désoxydant de l'acier lors de son élaboration, à l'état liquide. Présent en solution solide dans le métal solidifié, il permet également d'augmenter la résistance de l'acier. Toutefois, à teneur trop élevée (plus de 0,2 %), il peut avoir un effet néfaste. Lors des traitements thermiques, tel un traitement de globulisation, le silicium a tendance en effet à former des oxydes intergranulaires et diminue ainsi la cohésion des joints de grains. Une trop forte teneur en silicium diminue également l'aptitude de l'acier à la déformation à froid en durcissant excessivement la matrice. C'est principalement pour cette raison que, dans le cas de la nuance d'acier selon l'invention, sa teneur maximale a été fixée à 0.2%.
  • 0,05 % maximum d'aluminium.
L'aluminium est un désoxydant de l'acier à l'état liquide. Il contribue ensuite, sous forme de nitrures, à contrôler le grossissement du grain austénitique lors du laminage à chaud. En revanche, présent en trop grande quantité, il peut conduire à un grossissement des inclusions de type aluminates dans l'acier qui peuvent s'avérer néfastes aux propriétés du métal, notamment sa résilience.
  • de 0,4 à 2,0 % de chrome.
Le chrome est recherché généralement pour son effet durcissant. Comme le molybdène, il retarde l'adoucissement au revenu, permettant des températures de revenu plus élevées ce qui favorise le dégazage mais aussi la formation de carbures piégeant l'hydrogène. A teneur trop élevée, en accroissant excessivement la dureté de l'acier, il rend délicat sa mise en forme par frappe.
  • de 0.04 à 0.8% de nickel.
Cet élément procure une augmentation de la résistance du métal et a des effets bénéfiques sur la résistance à la rupture fragile. Il améliore également, de manière bien connue, la résistance de l'acier à la corrosion.
  • de 0,02 à 0,045 % de niobium, de 0,03 à 0,30 % de vanadium, et de 0,02 à 0,05 % de titane.
Ces trois éléments sont souvent ajoutés à l'acier liquide pour accroître la dureté du matériau. Ici, dans les fourchettes indiquées, ils vont aussi accroître la résistance à la rupture différée de plusieurs façons. Ils vont aider à un affinement du grain austénitique et forment des précipités qui piègent l'hydrogène. En outre, le niobium piège le phosphore. Enfin, l'effet durcissant de chacun permet d'effectuer des revenus à plus haute température. Leur teneur maximale est fixée ici pour éviter l'obtention de précipités de taille trop importante qui serait alors néfaste vis-à-vis de la résistance de l'acier à la rupture différée.
Le niobium, en particulier, lorsqu'il est rajouté en trop forte quantité conduit à un risque accru de défauts de type "fissures" à la surface des billettes et des blooms brutes de coulée continue. Ces défauts, s'ils ne peuvent être totalement éliminés, peuvent s'avérer très néfastes au respect de l'intégrité des caractéristiques de la pièce finale, notamment pour ce qui concerne la tenue à la fatigue et la tenue à l'hydrogène. C'est la raison pour laquelle, dans le cas de la nuance selon l'invention, sa teneur a dû être contenue en dessous de 0.045 %.
  • de 0,003 à 0,005 % de bore.
En ségrégant aux anciens joints de grains austénitiques, le bore, même à très faibles teneurs, permet d'accroître la résistance à la rupture différée induite par l'hydrogène. Il augmente fortement la trempabilité de l'acier et permet ainsi de limiter la teneur en carbone nécessaire pour l'obtention de la microstructure martensitique désirée. Il augmente la cohésion du joint de grain par son effet intrinsèque, mais également en rendant plus difficile la ségrégation du phosphore à ces joints de grain. Enfin, le bore agit en synergie avec le molybdène et le niobium, augmentant ainsi l'efficacité de ces éléments et leurs influences propres que permettent leurs teneurs respectives. Un excès de bore (au delà de 0.005%) conduirait toutefois à la formation de boro-carbures de fer fragiles.
  • moins de 0,015 % de soufre.
Le soufre est, pour l'acier, un poison qui exprime toute sa nocivité en présence d'hydrogène, car il a un effet additif, c'est-à-dire coopératif avec lui en formant notamment du H2S, qui en milieu humide en particulier conduit imparablement à une dégradation physique rapide des pièces. Son effet est d'ailleurs à cet égard bien plus marqué que celui du phosphore. Sa teneur doit donc être limitée tant que faire se peut, le plus proche de zéro si possible, en tous cas ne pas excéder la limite des 0,015 % édictée ici. L'acier doit donc être soigneusement désulfuré lors de son élaboration à l'état liquide à l'aciérie.
  • moins de 150 ppm d'azote.
L'azote est considéré comme néfaste. Il piège le bore par formation de nitrures de bore, ce qui rend inefficace le rôle de cet élément sur la trempabilité de l'acier. Néanmoins, ajouté en faibles quantités, il permet, par formation notamment de nitrures de titane (TiN) et de nitrures d'aluminium (AlN), d'éviter un trop fort grossissement du grain austénitique lors des traitements thermiques subis par l'acier. De même, il permet aussi dans ce cas la formation de précipités de carbonitrures qui vont aider au piégeage de l'hydrogène.At the steelworks, by continuous casting, long semi-products (billets or blooms) are produced in a micro-alloyed steel having, besides iron, and less than 0.45% of molybdenum that is assigned, the following chemical composition, in terms of weight:
  • 0.3 to 0.5% carbon.
For contents of less than 0.3%, the very high desired strengths can not be attained in view of the content of the other elements present in the grade and the targeted high-income temperatures. For contents above 0.5% the risk of brittleness increases because of the increase in hardness.
  • At least 0.20% molybdenum but never reach more than 0.45% for the reasons indicated.
Molybdenum exhibits a strong interaction with phosphorus, limiting its harmful effect by limiting its segregation at the grain boundaries. In addition, it displays a marked carburigenic behavior. It allows, for given mechanical characteristics, higher temperatures of income, favoring suddenly the development of the carbides which will be traps with hydrogen. It is therefore an element that enhances the resistance to delayed fracture.
  • from 0.4 to 1.0% manganese.
Increasing the manganese content tends, as a rule, to decrease the delayed fracture strength of the steel. This could be due to its interaction with sulfur leading to the formation of manganese sulphides. When we exceed thresholds of 1% of manganese, this interaction with sulfur could even lead to increase the fragility of steel with hydrogen, this, of course, in the absence of adequate provisions for the to avoid. However, manganese has a beneficial effect on the hardenability of steel and thus on the achievement of the final mechanical characteristics sought on the parts produced.
  • less than 0.015% phosphorus.
The effect of phosphorus is particularly harmful in the steels according to the invention for several reasons. By a contrarian effect of the hydrogen recombination, it contributes to a higher concentration of atomic hydrogen likely to be able to penetrate into the material, thus to an increased risk of delayed rupture of the part in use. In addition, segregating at the grain boundaries, it decreases their cohesion. Its content must therefore be kept very low. To this end, it will be ensured that the steel is dephosphorized when it is prepared in the liquid state.
  • from 0.05 to 0.2% silicon.
Silicon acts as deoxidizer of the steel during its elaboration, in the liquid state. Present in solid solution in solidified metal, it also increases the strength of steel. However, at too high a content (more than 0.2%), it can have a detrimental effect. During heat treatments, such as a globulization treatment, silicon tends to form intergranular oxides and thus reduces the cohesion of the grain boundaries. Too high a silicon content also decreases the ability of the steel to cold deformation by excessively hardening the matrix. It is mainly for this reason that, in the case of the steel grade according to the invention, its maximum content has been set at 0.2%.
  • 0.05% maximum of aluminum.
Aluminum is a deoxidizer of steel in the liquid state. It then contributes, in the form of nitrides, to control the magnification of the austenitic grain during hot rolling. On the other hand, present in too great a quantity, it can lead to a magnification of inclusions of aluminates type in the steel which can be detrimental to the properties of the metal, in particular its resilience.
  • 0.4 to 2.0% chromium.
Chromium is generally sought for its hardening effect. Like molybdenum, it delays the softening of the income, allowing higher tempering temperatures which favors degassing but also the formation of carbides trapping hydrogen. At too high a content, by increasing the hardness of the steel excessively, it makes delicate its formatting by striking.
  • from 0.04 to 0.8% nickel.
This element provides an increase in the strength of the metal and has beneficial effects on the brittle fracture resistance. It also improves, in a well known manner, the resistance of steel to corrosion.
  • 0.02 to 0.045% niobium, 0.03 to 0.30% vanadium, and 0.02 to 0.05% titanium.
These three elements are often added to the liquid steel to increase the hardness of the material. Here, within the indicated ranges, they will also increase the delayed breaking strength in several ways. They will help to refine the austenitic grain and form precipitates that trap hydrogen. In addition, niobium traps phosphorus. Finally, the hardening effect of each makes it possible to earn income at a higher temperature. Their maximum content is set here to avoid obtaining too large precipitates which would then be harmful vis-à-vis the resistance of the steel to delayed failure.
In particular, niobium, when added in excess, leads to an increased risk of "crack" defects on the surface of billets and continuous casting blooms. These defects, if they can not be completely eliminated, can be very detrimental to the respect of the integrity of the characteristics of the final part, in particular with regard to the resistance to fatigue and the resistance to hydrogen. This is the reason why, in the case of the grade according to the invention, its content had to be contained below 0.045%.
  • from 0.003 to 0.005% boron.
By segregating with old austenitic grain boundaries, boron, even at very low levels, increases the hydrogen-induced delayed fracture strength. It greatly increases the hardenability of the steel and thus makes it possible to limit the carbon content necessary to obtain the desired martensitic microstructure. It increases the cohesion of the grain boundary by its intrinsic effect, but also by making it more difficult to segregate phosphorus at these grain boundaries. Finally, boron acts in synergy with molybdenum and niobium, thus increasing the efficiency of these elements and their own influences that allow their respective contents. An excess However, boron (above 0.005%) would lead to the formation of brittle iron boro-carbides.
  • less than 0.015% sulfur.
Sulfur is, for steel, a poison that expresses all its harmfulness in the presence of hydrogen, because it has an additive effect, that is to say, cooperative with it, forming in particular H 2 S, which in the middle wet in particular leads unstoppably to rapid physical degradation of parts. Its effect is in this respect much more marked than that of phosphorus. Its content must therefore be limited as far as possible, the closest to zero if possible, in any case not to exceed the limit of 0.015% enacted here. Steel must therefore be carefully desulphurized when it is prepared in the liquid state at the steelworks.
  • less than 150 ppm nitrogen.
Nitrogen is considered harmful. It traps boron by forming boron nitrides, which renders ineffective the role of this element on the hardenability of steel. However, added in small amounts, it allows, particularly by formation of titanium nitride (TiN) and aluminum nitride (AlN), to avoid too high austenitic grain magnification during heat treatments on steel. Similarly, it also allows in this case the formation of carbonitride precipitates which will help the trapping of hydrogen.

Cette composition optimisée permet d'avoir une très bonne tenue à l'hydrogène en même temps qu'une résistance mécanique finale de l'acier, une fois transformé en pièce frappée prête à l'usage après traitement thermique final, supérieure à 1200 MPa et pouvant même dépasser les 1 500 MPa, et ce en conservant à l'identique la manière habituelle de procéder à cette transformation.This optimized composition makes it possible to have a very good resistance to hydrogen at the same time as a final mechanical strength of the steel, once transformed into a ready-to-use hammer after final heat treatment, greater than 1200 MPa and can even exceed 1,500 MPa, while retaining the same way as usual to carry out this transformation.

Après réchauffage au dessus de 1 100°C si besoin est, le demi-produit sidérurgique (bloom, ou plus généralement, billette) est alors laminé à chaud dans le domaine austénitique, selon la pratique habituelle, jusqu'à l'obtention d'un produit long laminé, prêt à l'expédition en clientèle après refroidissement à l'ambiante. Ce produit sidérurgique long se présente alors sous forme de barres, ou plus généralement sous forme de fil-machine bobiné pour les applications retenues.After reheating above 1100 ° C., if necessary, the steel semi-finished product (bloom, or more generally, billet) is then hot-rolled in the austenitic range, according to the usual practice, until it is obtained. a long rolled product, ready for shipment to customers after cooling to ambient. This long steel product is then in the form of bars, or more generally in the form of wire-wound machine for the selected applications.

Le fil-machine est ensuite transformé en vis par frappe à froid, schématiquement de la manière classique suivante:
Le transformateur réceptionne le fil et après décalaminage mécanique (ou décapage chimique éventuellement suivi d'une neutralisation), il effectue sur le fil un recuit sous atmosphère neutre (sous azote par exemple). Le fil est alors dégraissé avant de subir un premier tréfilage, dit tréfilage-ébauche, pour lequel une enduction de surface préalable est prévue, classiquement une phosphatation et un savonnage. Lors de ce tréfilage, le diamètre du fil est réduit de 30 % environ.
The wire-machine is then transformed into screw by cold stamping, schematically in the following conventional manner:
The transformer receives the wire and after mechanical descaling (or chemical etching possibly followed by neutralization), it performs on the wire an annealing in a neutral atmosphere (under nitrogen for example). The yarn is then defatted before undergoing a first drawing, called drawing-roughing, for which a preliminary surface coating is provided, typically phosphating and soaping. During this drawing, the diameter of the wire is reduced by about 30%.

Le fil-ébauche obtenu est soumis alors à un traitement de globulisation qui, en procurant une chute temporaire de sa dureté (Rm intermédiaire à 500 MPa environ), permettra de faciliter son formage ultérieur, lors de la frappe, en préservant l'outil. Ce premier traitement thermique est suivi par un décapage, phosphatation et savonnage en vue d'un second tréfilage. Celui-ci est un tréfilage de finition, appelé également "de mise à la côte finale". La réduction de diamètre est plus modeste qu'auparavant, généralement inférieure à 10 %.The wire-blank obtained is then subjected to a globulization treatment which, by providing a temporary drop in its hardness (intermediate Rm to about 500 MPa), will facilitate its subsequent forming, when striking, preserving the tool. This first heat treatment is followed by stripping, phosphating and soaping for a second drawing. This one is a finishing drawing, also called "final setting". The diameter reduction is more modest than before, generally less than 10%.

Le fil, doté d'une résistance temporairement affaiblie autour de 500 MPa, est alors aisément frappé à froid. Les vis obtenues brutes de frappe sont d'abord déphosphatées, puis soumises à un traitement thermique final de trempe et revenu, ainsi qu'à une opération de roulage finale pour donner au filetage son aspect définitif. Le roulage peut se faire soit avant le traitement thermique, soit après. Le revenu peut avantageusement s'opérer à des températures plus élevées que la pratique habituelle, à savoir de l'ordre de 400°C et plus, sans obérer pour autant l'obtention de la résistance à la rupture finale attendue pour les vis produites prêtes à l'usage, soit avec un Rm de 1200 à 1500 MPa et plus.. Bien entendu, plus le revenu se fera à température forte, moins le Rm final sera élevé.The wire, with a resistance temporarily weakened around 500 MPa, is then easily struck cold. The obtained raw stamping screws are first dephosphated, then subjected to a final quenching and tempering heat treatment, as well as to a final rolling operation to give the thread its final appearance. The rolling can be done either before the heat treatment or after. The income can advantageously operate at temperatures higher than the usual practice, namely of the order of 400 ° C and more, without compromising the achievement of the ultimate ultimate strength expected for screws produced ready. in use, with a Rm of 1200 to 1500 MPa and more .. Of course, the higher the income will be at high temperature, the lower the final Rm will be.

La surface des vis est ensuite nettoyée et revêtue par une couche de phosphates ou, le cas échéant, par tout autre revêtement chimique ou électrochimique adéquat.The surface of the screws is then cleaned and coated with a layer of phosphates or, if appropriate, with any other suitable chemical or electrochemical coating.

On notera que si la nuance de l'acier a été spécialement élaborée pour offrir une bonne résistance à l'hydrogène, il est bien entendu également souhaitable d'introduire le moins d'hydrogène possible durant le procédé de transformation du fil-machine. Or, ces procédés de transformation en pièces frappées et revêtues sont habituellement, par nature, générateurs de prise d'hydrogène. Par exemple, lors du décapage, les paramètres de bain (température, nature et concentration en acide, pollution en fer, teneur en inhibiteur...) ont un effet sur l'introduction d'hydrogène dans l'acier. De même, le traitement de phosphatation étant générateur d'hydrogène, il conviendra d'optimiser les paramètres du traitement pour limiter au mieux la prise d'hydrogène par le métal à ce stade de la transformation. Le savoir-faire de l'homme du métier jouera également un rôle important lors de l'étape d'austénisation avant trempe. Il a en effet été montré que cette étape du procédé de formage peut conduire, lorsque les précautions adéquates ne sont pas prises, à une pénétration non négligeable d'hydrogène dans l'acier.Note that if the grade of steel has been specially developed to provide good resistance to hydrogen, it is of course also desirable to introduce as little hydrogen as possible during the process of converting the wire rod. However, these processes of transformation into struck and coated parts are usually, by nature, generating hydrogen uptake. For example, during pickling, bath parameters (temperature, nature and acid concentration, iron pollution, inhibitor content, etc.) have an effect on the introduction of hydrogen into the steel. Similarly, the phosphating treatment being hydrogen generating, it will be necessary to optimize the treatment parameters to minimize the uptake of hydrogen by the metal at this stage of the transformation. The know-how of the skilled person will also play an important role during the austenization step before quenching. It has been shown that this step of the forming process can lead, when the proper precautions are not taken, to a non-negligible penetration of hydrogen into the steel.

On donne à présent quelques indications chiffrées, à l'aide des tableaux de valeurs ci-après, relatives à la nuance d'acier micro-alliée conforme à l'invention en positionnant celle-ci par rapport à des nuances connues.We now give some figures, using the following tables of values, relating to the grade of micro-alloy steel according to the invention by positioning it with respect to known grades.

Des essais en laboratoire ont été effectués sur des coulées de composition chimique suivante (en pourcentages pondéraux): C Mn P S Si Ni Cr Mo Nb V Ti B A 0,36 0,48 0,006 0,008 0,07 0,35 1,17 0,55 0,035 0,13 0,02 0,0025 B 0,37 0,79 0,014 0,01 0,08 0,25 1,20 0,31 0,033 0,11 0,02 0,0026 C 0,36 0,64 0,013 0,01 0,08 0,39 1,11 0,45 0,037 0,11 0,02 0,0025 D 0,38 0,79 0,006 0,007 0,07 0,39 1,16 0,20 0,035 0,14 0,02 0,0024 42CD4 0,41 0,87 0,011 0,005 0,22 0,08 1,04 0,15 -- -- -- -- Laboratory tests were carried out on flows of the following chemical composition (in percentages by weight): VS mn P S Yes Or Cr MB Nb V Ti B AT 0.36 0.48 0.006 0,008 0.07 0.35 1.17 0.55 0,035 0.13 0.02 0.0025 B 0.37 0.79 0.014 0.01 0.08 0.25 1.20 0.31 0.033 0.11 0.02 0.0026 VS 0.36 0.64 0,013 0.01 0.08 0.39 1.11 0.45 0,037 0.11 0.02 0.0025 D 0.38 0.79 0.006 0,007 0.07 0.39 1.16 0.20 0,035 0.14 0.02 0.0024 42CD4 0.41 0.87 0,011 0.005 0.22 0.08 1.04 0.15 - - - -

Avec à chaque fois Al ≤ 0,05 % et N ≤ 0,015 %.With each time Al ≤ 0.05% and N ≤ 0.015%.

On notera également que, selon son procédé de fabrication, et notamment lorsqu'il est élaboré à partir de ferrailles, l'acier peut contenir jusqu'à 0,15 % de cuivre.Note also that, according to its manufacturing process, and especially when it is made from scrap steel can contain up to 0.15% copper.

Les coulées A et 42CD4 sont des nuances d'acier connues de l'art antérieur. Les coulées B, C et D sont des exemples de la nuance d'acier selon l'invention.Castings A and 42CD4 are known steel shades of the prior art. Castings B, C and D are examples of the steel grade according to the invention.

La nuance connue A comprend notamment une teneur en molybdène supérieure à 0,5 % et la nuance connue 42CD4 ne contient pas de niobium, ni de vanadium, ni de titane, ni de bore.The known grade A comprises in particular a molybdenum content greater than 0.5% and the known grade 42CD4 does not contain niobium, vanadium, titanium or boron.

Les caractéristiques mécaniques des pièces finales obtenues sont les suivantes, où Δ (Z) exprime la striction: Tr (°C) Rm (MPa) Δ (Z) en % A > 400 1538 < 5 B > 400 1532 < 5 C > 400 1545 < 5 D > 400 1535 < 5 42CD4 > 400 1505 16,5 The mechanical characteristics of the final pieces obtained are as follows, where Δ (Z) expresses the necking: Tr (° C) Rm (MPa) Δ (Z) in% AT > 400 1538 <5 B > 400 1532 <5 VS > 400 1545 <5 D > 400 1535 <5 42CD4 > 400 1505 16.5

La seconde colonne, Tr, indique la température de revenu après trempe des pièces finales. La troisième colonne, Rm, donne la résistance à la rupture déterminée par traction sur éprouvettes normalisées.The second column, Tr, indicates the tempering temperature after quenching of the final pieces. The third column, Rm, gives the tensile strength determined by pulling on standard specimens.

Pour ce qui concerne la résistance à la rupture différée (dernière colonne), ces résultats ont été obtenus par des essais de traction lente (0,005 à 0,01 mm/min contre 5 mm/min habituellement) sur des éprouvettes normalisées chargées et non chargées en hydrogène. Les conditions de chargement en hydrogène sont identiques pour l'ensemble des cinq nuances testées. La quantité d'hydrogène introduite dans les éprouvettes est supérieure à celle introduite par l'opération de frappe. La tenue à la rupture différée est exprimée par le Δ (Z), à savoir le Z moyen des éprouvettes non chargées diminué du Z moyen des éprouvettes chargées, Z étant la mesure de la striction de l'éprouvette lors de sa rupture au cours de son allongement. Autrement dit, plus la diminution de la striction est importante quand l'acier est chargé en hydrogène (et donc plus le Δ (Z) est élevé), moins l'acier est résistant à la rupture différée.With respect to delayed fracture strength (last column), these results were obtained by slow tensile tests (0.005 to 0.01 mm / min versus 5 mm / min usually) on loaded and unloaded standard specimens. in hydrogen. The hydrogen loading conditions are identical for all five shades tested. The quantity of hydrogen introduced into the test pieces is greater than that introduced by the striking operation. Deferred breaking behavior is expressed by the Δ (Z), namely the average Z of the uncharged samples decreased by the mean Z of the loaded test pieces, Z being the measurement of the necking of the test piece during its rupture during its elongation. In other words, the greater the reduction in necking is important when the steel is loaded with hydrogen (and therefore the higher the Δ (Z)), the less the steel is resistant to delayed failure.

Comme on peut le constater, les nuances de l'invention B, C et D permettent d'obtenir des résultats de tenue à l'hydrogène et de résistance mécanique équivalentes à la nuance connue A contenant plus de 0,5 % de molybdène. La nuance 42CD4 connue, contenant également peu de molybdène, mais ne contenant ni niobium, ni vanadium, ni bore, ni titane, donne de bons résultats d'un point de vue de la résistance mécanique, mais n'offre pas une tenue satisfaisante à l'hydrogène.As can be seen, the grades of the invention B, C and D make it possible to obtain hydrogen withstand and strength results equivalent to the known grade A containing more than 0.5% molybdenum. The known 42CD4 grade, also containing little molybdenum, but containing no niobium, vanadium, boron or titanium, gives good results from a mechanical strength point of view, but does not offer a satisfactory performance at hydrogen.

La présence des éléments tels que le titane, le bore, le vanadium et le niobium dans les conditions définies par l'invention est donc indispensable pour l'obtention de nuances à hautes caractéristiques mécaniques et présentant une résistance à la rupture différée améliorée pour des nuances d'acier à basse teneur en molybdène.The presence of elements such as titanium, boron, vanadium and niobium under the conditions defined by the invention is therefore essential for obtaining grades with high mechanical characteristics and having improved delayed breaking strength for shades. of low molybdenum steel.

L'acier micro-allié selon l'invention est donc remarquable en ce qu'il présente à la fois une bonne aptitude à la déformation mécanique à froid (frappe ou forge), et une bonne tenue à l'hydrogène (résistance à la rupture différée) et en ce qu'il permet d'obtenir, après traitement thermique de trempe et revenu, des pièces mécaniques prêtes à l'usage présentant une résistance à la rupture très élevée.The microalloyed steel according to the invention is therefore remarkable in that it exhibits both good aptitude for cold mechanical deformation (forging or forging) and good resistance to hydrogen (breaking strength). delayed) and in that it makes it possible to obtain, after tempering and tempering heat treatment, ready-to-use mechanical parts having a very high breaking strength.

Il permet, en effet de maintenir temporairement une résistance faible (disons inférieure à 550 Mpa) et une ductilité élevée sur le fil-machine qui se présente à la frappe à froid, et ensuite, après sa transformation en pièces prêtes à l'emploi, de porter, par un traitement thermique classique de trempe revenu, cette même résistance mécanique à des niveaux trois fois supérieurs (1500 MPa et plus) et de conserver une bonne ductilité .It makes it possible, in fact, to temporarily maintain a low resistance (say less than 550 MPa) and a high ductility on the wire-machine that comes to the cold stamping, and then, after its transformation into pieces ready for use, to bring, by a conventional tempering heat treatment back, this same mechanical resistance to levels three times higher (1500 MPa and more) and to maintain good ductility.

Aussi, la nuance d'acier de l'invention constitue t'elle une matière première de choix pour la production industrielle de pièces d'assemblage à hautes caractéristiques mécaniques requises, comme les vis pour l'industrie automobile, lorsqu'il est conditionné en fil-machine ou, plus généralement, en produit sidérurgique long laminé à chaud issu de la coulée continue sous forme de billettes ou de blooms.Also, the steel grade of the invention is a raw material of choice for the industrial production of assembly parts with high mechanical properties required, such as screws for the automotive industry, when packaged in wire-machine or, more generally, in hot rolled long steel product resulting from continuous casting in the form of billets or blooms.

Il va de soi que l'invention ne saurait se limiter aux exemples qui viennent d'être décrits, mais qu'elle s'étend à de multiples variantes et équivalents dans la mesure où est respectée sa définition donnée dans les revendications jointes.It goes without saying that the invention can not be limited to the examples just described, but that it extends to multiple variants and equivalents to the extent that its definition given in the appended claims is respected.

Ainsi, si elle a été conçue initialement pour répondre à un besoin spécifique exprimé par l'industrie automobile confrontée à des questions de tenue dans le temps des organes vitaux des véhicules roulants, elle n'en reste pas moins d'application plus générale à la production de toutes pièces mécaniques de petite et moyenne taille, comme des rivets, clips, agrafes, attaches diverses, etc...dès lors qu'il est recherché une limite de rupture normalisée élevée (Rm de 1200 MPa et d'avantage) alliée à une bonne résistance à la fragilisation par l'hydrogène.Thus, although it was initially designed to meet a specific need expressed by the automotive industry faced with the issue of the durability of the vital organs of motor vehicles, it nevertheless remains of more general application to the production of all mechanical parts of small and medium size, such as rivets, clips, staples, various fasteners, etc ... since it is sought a high normalized rupture limit (Rm of 1200 MPa and more) combined with good resistance to embrittlement by hydrogen .

Claims (7)

  1. Micro-alloyed steel with good resistance to embrittlement by hydrogen for the cold forming of mechanical parts with very high characteristics, characterized in that, in order to contain its weight content of molybdenum below 0.45%, its chemical composition, in addition to iron and the inevitable residual impurities resulting from the preparation of the steel, corresponds to the following analysis, given in percentages by weight: 0.3 C % 0.5
    Figure imgb0056
    0.20 Mo % < 0.45
    Figure imgb0057
    0.4 Mn % 1.0
    Figure imgb0058
    0.4 Cr % 2.0
    Figure imgb0059
    0.04 Ni % 0.8
    Figure imgb0060
    0.02 Nb % 0.045
    Figure imgb0061
    0.03 V % 0.30
    Figure imgb0062
    0.02 Ti % 0.05 , with Ti > 3.5 N
    Figure imgb0063
    0.003 B % 0.005 %
    Figure imgb0064
    S % 0.015
    Figure imgb0065
    P % 0.015 ,
    Figure imgb0066
    and optionally 0.05 ≤ Si% ≤ 0.20; Al% ≤ 0.05 and N% ≤ 0.015.
  2. Steel according to claim 1, characterized in that it is in the form of a hot-rolled bar or wire rod from continuous casting in the form of blooms or billets.
  3. Steel wire rod or bar, characterized in that it is made of micro-alloyed steel according to claim 1 in order to be able to present, by cold forming processing and quenching and tempering heat treatment, mechanical resistance of 1200 to 1500 MPa and above, combined with good resistance to hydrogen.
  4. Mechanical part ready for use characterized in that it is obtained by cold forming a wire rod according to claim 3.
  5. Mechanical part ready for use, cold formed and having high mechanical characteristics and resistance to hydrogen, characterized in that it is micro-alloyed steel having, in order to contain its weight content of molybdenum below 0.45%, a chemical composition which, in addition to iron and the inevitable residual impurities resulting from the preparation of steel, corresponds to the following analysis, given in percentages by weight: 0.3 C % 0.5
    Figure imgb0067
    0.20 Mo % < 0.45
    Figure imgb0068
    0.4 Mn % 1.0
    Figure imgb0069
    0.4 Cr % 2.0
    Figure imgb0070
    0.04 Ni % 0.8
    Figure imgb0071
    0.02 Nb % 0.045
    Figure imgb0072
    0.03 V % 0.30
    Figure imgb0073
    0.02 Ti % 0.05 , with Ti > 3.5 N
    Figure imgb0074
    0.003 B % 0.005 %
    Figure imgb0075
    S % 0.015
    Figure imgb0076
    P % 0.015 ,
    Figure imgb0077
    and optionally 0.05 ≤ Si% ≤ 0.20; Al% ≤ 0.05 and N% ≤ 0.015.
  6. Mechanical part according to claim 5, characterized in that it is an assembly screw.
  7. Screw according to claim 6, characterized in that it is a component part of assemblies of motor elements or ground connections of motor vehicles produced by the automotive industry.
EP08787931.8A 2007-04-12 2008-04-09 Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties Active EP2134882B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0702666A FR2914929B1 (en) 2007-04-12 2007-04-12 STEEL WITH GOOD HYDROGEN RESISTANCE FOR THE FORMING OF VERY HIGH CHARACTERISTIC MECHANICAL PARTS.
PCT/FR2008/000496 WO2008142275A2 (en) 2007-04-12 2008-04-09 Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties

Publications (2)

Publication Number Publication Date
EP2134882A2 EP2134882A2 (en) 2009-12-23
EP2134882B1 true EP2134882B1 (en) 2019-10-30

Family

ID=38521328

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08787931.8A Active EP2134882B1 (en) 2007-04-12 2008-04-09 Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties

Country Status (7)

Country Link
US (1) US9194018B2 (en)
EP (1) EP2134882B1 (en)
JP (1) JP5687898B2 (en)
KR (1) KR20090128547A (en)
CN (1) CN101688281B (en)
FR (1) FR2914929B1 (en)
WO (1) WO2008142275A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788982C1 (en) * 2019-07-16 2023-01-26 Арселормиттал Steel part and method for its production

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101051241B1 (en) * 2010-08-30 2011-07-21 유니슨 주식회사 Method for manufacturing plastic die steel with improved uniformity hardness distribution and mechanical strength
EP2628807A1 (en) 2012-02-14 2013-08-21 Swiss Steel AG Tempered pin-shaped connection element and method for producing same
CN105401072B (en) * 2015-12-18 2018-01-02 马鞍山钢铁股份有限公司 Containing 12.9 grades of track traffic Mobile Equipment steel for fastener of niobium and its Technology for Heating Processing
WO2021009543A1 (en) * 2019-07-16 2021-01-21 Arcelormittal Method for producing a steel part and steel part
US12054817B1 (en) 2020-11-10 2024-08-06 United States Of America, Represented By The Secretary Of The Navy High-strength and high-toughness austenitic steel
EP4190934A1 (en) 2021-12-02 2023-06-07 KAMAX Holding GmbH & Co. KG Component of b-zr-alloy steel

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61130456A (en) * 1984-11-29 1986-06-18 Honda Motor Co Ltd High-strength bolt and its production
JP2614659B2 (en) * 1989-05-31 1997-05-28 株式会社神戸製鋼所 High strength bolt steel with delayed fracture resistance and cold forgeability
JPH11270531A (en) * 1998-03-19 1999-10-05 Nippon Steel Corp High strength bolt having good delayed fracture characteristic and manufacture thereof
JP3718369B2 (en) * 1999-05-13 2005-11-24 新日本製鐵株式会社 Steel for high strength bolt and method for producing high strength bolt
JP3857835B2 (en) * 1999-07-26 2006-12-13 新日本製鐵株式会社 Steel for high strength bolt and method for producing high strength bolt
JP4142853B2 (en) * 2001-03-22 2008-09-03 新日本製鐵株式会社 High strength bolt with excellent delayed fracture resistance
JP3905332B2 (en) * 2001-07-10 2007-04-18 株式会社住友金属小倉 Steel for high strength bolts
CN1266298C (en) * 2004-09-14 2006-07-26 钢铁研究总院 High strength bolting steel with excellent delayed fracture resistance and cold working performance
JP4427012B2 (en) * 2005-07-22 2010-03-03 新日本製鐵株式会社 High strength bolt excellent in delayed fracture resistance and method for producing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2788982C1 (en) * 2019-07-16 2023-01-26 Арселормиттал Steel part and method for its production

Also Published As

Publication number Publication date
US9194018B2 (en) 2015-11-24
WO2008142275A3 (en) 2009-01-22
WO2008142275A4 (en) 2009-03-05
CN101688281A (en) 2010-03-31
WO2008142275A8 (en) 2009-10-15
EP2134882A2 (en) 2009-12-23
KR20090128547A (en) 2009-12-15
FR2914929B1 (en) 2010-10-29
JP2010523825A (en) 2010-07-15
US20100135745A1 (en) 2010-06-03
CN101688281B (en) 2012-11-21
WO2008142275A2 (en) 2008-11-27
FR2914929A1 (en) 2008-10-17
JP5687898B2 (en) 2015-03-25

Similar Documents

Publication Publication Date Title
EP0851038B1 (en) Steel and process for forming a steel article by cold plastic working
EP1966407B1 (en) Spring steel, method for producing a spring using said steel and a spring made from such steel
EP1913169B1 (en) Manufacture of steel sheets having high resistance and excellent ductility, products thereof
EP2155915B2 (en) Process for manufacturing cold-rolled and annealed steel sheets with very high strength, and sheets thus produced
EP1819461B1 (en) Method of producing austentic iron/carbon/manganese steel sheets having very high strength and elongation characteristics and excellent homogeneity
EP2707513B1 (en) Method for the production of very-high-strength martensitic steel and sheet or part thus obtained
JP6816738B2 (en) Steel wire manufacturing method
EP2134882B1 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
EP3704280B1 (en) Martensitic stainless steel and method for producing same
KR20160047489A (en) Steel for spring, and method for producing spring
JP5207805B2 (en) Steel parts with excellent bending fatigue strength and manufacturing method thereof
EP0209437B1 (en) Lightly alloyed, forged steel cylinder for cold rolling
EP3274483B1 (en) Parts with a bainitic structure having high strength properties and manufacturing process
JP6344423B2 (en) Case-hardened steel and method for producing case-hardened steel
FR2850399A1 (en) Steel for use in a high strength pinion shaft for a motor vehicle guidance system after high frequency hardening
JP6319212B2 (en) Gear part and manufacturing method of gear part
FR3064282A1 (en) STEEL, PROCESS FOR THE MANUFACTURE OF MECHANICAL PARTS IN THIS STEEL, AND PARTS SO MANUFACTURED
EP1565587B1 (en) Ready-use low-carbon steel mechanical component for plastic deformation and method for making same
JP3623313B2 (en) Carburized gear parts
EP1727919A2 (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
WO1985004906A1 (en) Method for producing steel bars or rod wire and corresponding products
EP4347903A1 (en) Hot-formed steel part and manufacturing method
EP1725689A2 (en) Forged or stamped average or small size mechanical part

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090819

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20110907

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 602008061538

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C22C0038220000

Ipc: C22C0038040000

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/44 20060101ALI20181119BHEP

Ipc: C21D 8/06 20060101ALI20181119BHEP

Ipc: C22C 38/48 20060101ALI20181119BHEP

Ipc: C22C 38/04 20060101AFI20181119BHEP

Ipc: C22C 38/46 20060101ALI20181119BHEP

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20190108

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20190523

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1196202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191115

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008061538

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200302

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200130

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200131

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20200229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008061538

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1196202

Country of ref document: AT

Kind code of ref document: T

Effective date: 20191030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20200731

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008061538

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20201103

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20200430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200430

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200409

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20191030