[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1727919A2 - Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts - Google Patents

Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts

Info

Publication number
EP1727919A2
EP1727919A2 EP05742733A EP05742733A EP1727919A2 EP 1727919 A2 EP1727919 A2 EP 1727919A2 EP 05742733 A EP05742733 A EP 05742733A EP 05742733 A EP05742733 A EP 05742733A EP 1727919 A2 EP1727919 A2 EP 1727919A2
Authority
EP
European Patent Office
Prior art keywords
traces
steel
mechanical parts
carburizing
case
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05742733A
Other languages
German (de)
French (fr)
Inventor
Pascal Daguier
Pierre Dierickx
Claude Pichard
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ascometal SA
Original Assignee
Ascometal SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ascometal SA filed Critical Ascometal SA
Publication of EP1727919A2 publication Critical patent/EP1727919A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/22Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur

Definitions

  • the invention relates to the field of steel, and more particularly steels for mechanical parts such as pinions.
  • Steel for gable mills must have a high resistance to contact fatigue.
  • the parts machined from these steels undergo a carburizing or carbonitriding treatment, aimed at providing them with sufficient surface hardness and mechanical strength, while retaining good toughness at heart, thanks in particular to a carbon content of the order of 0.10 to 0.30% only.
  • the carbon content of the cemented layer can range up to around 1%.
  • gear steels intended to be case-hardened.
  • JP-A-4-21757 describes steels for gearboxes intended to be case-hardened by plasma or under reduced pressure, then shot, which may have higher Si and Mn contents than the previous ones. They have a high resistance to the surface pressure undergone by the pinion, which therefore has a long service life.
  • WO-A-03 012 156 proposes a steel for mechanical parts, such as pinions, the composition of which is: 0.12% ⁇ C ⁇ 0.30%; 0.8% ⁇ If ⁇ 1.5%; 1.0% ⁇ Mn ⁇ 1.6%; 0.4% ⁇ Cr ⁇ 1.6%; Mo ⁇ 0.30%; Ni ⁇ 0.6%; Al ⁇ 0.06%; Cu ⁇ 0.30%; S ⁇ 0.10%; P ⁇ 0.03%; Nb ⁇ 0.050%.
  • This steel has the advantage of minimizing the plastic deformations in service of the whole part, thanks, in particular, to a judicious balancing of the silicon and manganese contents.
  • the carburizing or carbonitriding must take place under non-oxidizing conditions, for example under reduced pressure, so that the relatively high contents of silicon and manganese do not lead to problems of intergranular oxidation.
  • carburizing or carbonitriding takes place at a temperature of the order of 850 to 930 ° C.
  • the current trend is to seek to perform this operation at higher temperatures (carburizing or carbonitriding at high temperature), of the order of 950 to 1050 ° C.
  • This increase in the treatment temperature makes it possible either to reduce the duration of the treatment, at equal cemented depth, or to increase the cemented depth, for equal treatment duration.
  • the productivity of the installation can be increased, or the performance of the products obtained can be increased.
  • the object of the invention is to propose to metallurgists practicing cementation or carbonitriding at high temperature of mechanical parts, in particular pinions, a steel responding to the above-mentioned problems while retaining the required mechanical properties, and which is also compatible with case-hardening and carbonitriding operations carried out at more usual temperatures.
  • the subject of the invention is a steel for mechanical parts, characterized in that its composition is, in weight percentages: - 0.19% ⁇ C ⁇ 0.25%; - 1.1% ⁇ Mn ⁇ 1.5%; - 0.8% ⁇ If ⁇ 1.2%; - 0.01% ⁇ S ⁇ 0.09%; - traces ⁇ P ⁇ 0.025%; - traces ⁇ Ni ⁇ 0.25%; - 1% ⁇ Cr ⁇ 1, 4%; - 0.10% ⁇ Mo ⁇ 0.25%; - traces ⁇ Cu ⁇ 0.30%; - 0.010% ⁇ AI ⁇ 0.045%; - 0.010% ⁇ Nb ⁇ 0.045%; - 0.0130% ⁇ N ⁇ 0.0300%; - optionally traces ⁇ Bi ⁇ 0.10% and / or traces ⁇ Pb ⁇ 0.12% andor traces ⁇ Te ⁇ 0.015% and / or traces ⁇ Se ⁇ 0.030% and / or traces ⁇
  • its composition is adjusted so that Preferably, its composition is: -0.19% ⁇ C ⁇ 0.25%; -1.2% ⁇ Mn ⁇ 1.5%; - 0.85% ⁇ If ⁇ 1.2%; -0.01% ⁇ S ⁇ 0,09%; - traces ⁇ P ⁇ 0.025%; - 0.08% ⁇ Ni ⁇ 0.25%; - 1.1% ⁇ Cr ⁇ 1.4%; - 0.10% ⁇ Mo ⁇ 0.25%; - 0.06% ⁇ Cu ⁇ 0.30%; - 0.010% ⁇ AI ⁇ 0.045%; - 0.015% ⁇ Nb ⁇ 0.045%; -0.0130% ⁇ N ⁇ 0.0300%; optionally traces ⁇ Bi ⁇ 0.07% and / or traces ⁇ Pb ⁇ 0.12% and / or traces ⁇ Te ⁇ 0.010% and / or traces ⁇ Se ⁇ 0.020% and / or traces ⁇ Ca ⁇ 0.045%, the rest being iron and the impur
  • composition is: - 0.20% ⁇ C ⁇ 0.25%; - 1.21% ⁇ Mn ⁇ 1.45%; - 0.85% ⁇ If ⁇ 1.10%; -0.01% ⁇ s ⁇ 0.08%; - traces ⁇ P ⁇ 0.020%; - 0.08% ⁇ Ni ⁇ 0.20%; - 1, 10% ⁇ Cr ⁇ 1, 40%; - 0.11% ⁇ Mo ⁇ 0.25%; - 0.08% ⁇ Cu ⁇ 0.30%; - 0.010% ⁇ AI ⁇ 0.035%; - 0.025% ⁇ Nb ⁇ 0.040%; - 0.0130% ⁇ N ⁇ 0.0220%; optionally traces ⁇ Bi ⁇ 0.07% and / or traces ⁇ Pb ⁇ 0.12% and / or traces ⁇ Te ⁇ 0.010% and / or traces ⁇ Se ⁇ 0.020% and / or traces ⁇ Ca ⁇ 0.045%, the rest being iron and the impurities resulting from processing
  • the subject of the invention is also a method of manufacturing a mechanical part made of case-hardened or carbonitrided steel, characterized in that a steel of the above type is used for this purpose on which machining, case-hardening or carbonitriding is carried out and then quenching.
  • said carburizing or carbonitriding takes place at a temperature of 950 to 1050 ° C.
  • the subject of the invention is also a mechanical steel part, such as a pinion piece, characterized in that it is obtained by the preceding process.
  • the invention is based on a precise adjustment of the ranges of contents of the main alloying elements, as well as on the simultaneous presence, in well defined contents, of aluminum, niobium and nitrogen.
  • the choice of the contents of the main alloying elements aims to obtain a Jominy curve without a significantly marked inflection point. This condition makes it possible to obtain minimum deformations during quenching. From this point of view, carburizing or carbonitriding carried out at high temperature is, as we have said, particularly demanding.
  • the Jominy curve of a steel which is obtained by means of a conventional and standardized test, characterizes the hardenability of the steel. It is obtained by measuring the hardness of a cylindrical specimen, quenched by a jet of water spraying one of its ends, along one of its generatrices.
  • the hardness is measured at several distances x (in mm) from the sprinkled end, and the corresponding value is designated by J x .
  • the average value obtained during five hardness tests at distance x is called J xm .
  • the composition of the steel must provide the mechanical properties sought for the use of the part.
  • the case-hardened depth (conventionally defined by the depth at which the hardness measured is 550 HV) can be cited, the hardness difference between the surface and the core of the case-hardened part which must be the most low possible to minimize deformation during quenching, and the core hardness which must be high so that the part has a good response to service constraints, and therefore good resistance to endurance and fatigue.
  • the steel according to the invention is primarily intended for the manufacture of highly stressed mechanical parts such as gear elements, intended to be cemented or carbonitrided (preferably at low pressure or in a non-oxidizing atmosphere to avoid oxidation of the most oxidizable), both at usual temperatures of 850-930 ° C approximately only at high temperatures of the order of 950-1050 ° C.
  • These parts must have high fatigue endurance, good toughness and be only slightly deformed during heat treatments such as quenching according to carburizing or carbonitriding. It has the following composition (all percentages are weight percentages). Its carbon content is between 0.19 and 0.25%. these contents are customary for gear steels.
  • this range allows an adjustment of the contents of the other elements which makes it possible to obtain the desired shape for the Jominy curve.
  • the minimum content of 0.19% is, moreover, justified by the hardness at heart after quenching which it makes it possible to obtain. Beyond 0.25%, the hardness may be too high to keep the steel machinability desirable.
  • the preferred range is 0.20-0.25%. Its manganese content is between 1.1 and 1.5%. The minimum value is justified by obtaining the desired Jominy curve in conjunction with the contents of the other elements. Beyond 1.5% there is the risk of the appearance of segregation, and also of band structures during the annealing. In addition, such a high content would provoke an excessive attack on the refractory lining of the steelworks bag during production.
  • the preferred range is 1.2-1.5%, better 1.21-1.45%. Its silicon content is between 0.8 and 1.2%. In this range, the desired shape of the Jominy curve can be obtained in conjunction with the contents of the other elements. The minimum value of 0.8% is justified by obtaining the desired core hardness, as well as by limiting the hardness difference between surface and core after carburizing or carbonitriding. Beyond 1.2%, there is a risk of excessive segregation appearing, since silicon, if it does not segregate itself, tends to accentuate the segregation of other elements.
  • the preferred range is 0.85-1.20%, better 0.85-1.10%. Its sulfur content is between 0.01 and 0.09%. the minimum value is justified for obtaining correct machinability. Beyond 0.09% there is a risk of too marked a reduction in hot forgeability. The preferred range is 0.01-0.08%. Its phosphorus content is between traces and 0.025%. In general, the standards in force tend to require a maximum phosphorus content of this order. In addition, beyond this value, there is a risk of synergy with niobium causing embrittlement of the steel during hot forming and / or continuous casting of the steel in the form of blooms or billets.
  • the phosphorus content is at most 0.020%. Its nickel content is between traces and 0.25%. This element, intentionally introduced at higher contents, would unnecessarily increase the cost of the metal. In practice, it will be possible to be satisfied with the nickel content resulting naturally from the melting of the raw materials of the casting, without voluntary addition.
  • the preferred range is 0.08-0.20%. Its chromium content is between 1.00 and 1.40%. In this range, in conjunction with the contents of the other elements, we can obtain the shape of the desired Jominy curve. In addition, the minimum content of 1.00% makes it possible to obtain good hardness at heart. Beyond 1.40%, the cost of preparation would be unnecessarily increased.
  • the preferred range is 1.10-1.40%.
  • molybdenum content is between 0.10 and 0.25%. In this range, in conjunction with the contents of the other elements, we obtain the shape of the Jominy curve and the hardness at heart desired.
  • the preferred range is 0.1 1-0.25%.
  • copper content is between traces and 0.30%.
  • nickel the content obtained after melting the raw materials will generally be kept purely and simply. Above 0.30%, the ductility and toughness at the core of the part would be degraded.
  • the preferred range is 0.06-0.30%, better 0.03-0.30%, so as to optimize the shape of the Jominy curve and the hardness after quenching. Its aluminum, niobium and nitrogen contents must be controlled within precise limits.
  • This fineness is desirable for obtaining good toughness in the cemented or carbonitrided layer, good fatigue resistance and a reduction in dispersion. deformation during quenching.
  • Controlling the grain size is, in the context of the invention, all the more important since the steel must be capable of undergoing carburizing or carbonitriding at high temperature without excessive growth in grain size occurring. This grain control is essentially done by the precipitation of aluminum nitrides and carbonitrides and / or niobium.
  • the aluminum content must be between 0.010 and 0.045%.
  • this element controls the deoxidation of steel and its cleanliness in terms of oxide inclusions. Below 0.010%, its effects, from these latter points of view, would be insufficient. Above 0.045%, cleanliness with oxide inclusions may be insufficient for the priority applications. The preferred range is 0.010-0.035%.
  • the niobium content must be between 0.010 and 0.045%. Below 0.010% the grain control effect would not be sufficient, especially for the lower aluminum contents.
  • the preferred range is 0.015-0.045%, better 0.015-0.040%.
  • the nitrogen content must be between 0.0130 and 0.0300% (130 to 300 ppm), so that the adjustment of the grain size and the shape of the desired Jominy curve are obtained.
  • the preferred range is 0.0130- 0.0220%. If this appears desirable, one or more of the elements conventionally known to improve its machinability can be added to the steel: lead, tellurium, selenium, calcium, bismuth in particular.
  • Figure 10 attached shows the Jominy curves of four steels whose compositions are given in Table 1.
  • Steels A, B, C and D are reference steels.
  • Steels E, F and G are themselves in accordance with the invention.
  • Table 1 Compositions of the samples 15
  • the quantity ⁇ as defined above is equal to 8.7
  • the quantity ⁇ as defined above is equal to 19.1. They therefore lie far above the maximum required by the invention.
  • the Jominy curve has a very marked inflection point.
  • is equal to 2.38 and ⁇ is equal to 11.1. ⁇ therefore does not comply with the requirements of the invention, and the Jominy curve also has a significant inflection point, although this steel contains niobium and nitrogen within the prescribed limits. The main reason is that its silicon content is insufficient.
  • is equal to 3.38 and ⁇ is equal to 10.7.
  • ⁇ nor ⁇ are within the prescribed limits, and the Jominy curve has a marked inflection point. Cr and Mo are just below the minimum values required, and above all the nitrogen content is insufficient. In the case of sample D, ⁇ is equal to 2.845 and (3 is equal to 9.5, which again is outside the prescribed limits. The Jominy curve has a marked inflection point, due to the contents However, for sample E according to the invention, ⁇ is equal to 0.41 and ⁇ is equal to 2. The required conditions are satisfied and it can be seen that the Jominy curve is almost straight and Similarly, for the sample F according to the invention, ⁇ is equal to 0.23 and ⁇ is equal to 3.
  • the aim was thus to obtain a surface hardness of 700 to 800 HV and a cemented depth (namely the depth at which the hardness is of 550 HV) of 0.50 mm.
  • the results are given in Table 2 (tests at 5 bar) and in Table 3 (tests at 20 bar).
  • the steel according to the invention is the one which, for given carburizing conditions, will best lend itself to high fatigue endurance in service.
  • carburizing tests at high temperature (980 ° C) on cylindrical samples of steels A and D of reference and E according to the invention described above. Again the cemented surface had a carbon content of 0.75%.
  • the quenching in a gaseous medium (nitrogen) which followed cementation took place under a pressure of 20 bars for steels A and D and only 1.5 bars for steel E.
  • the results are presented in table 4. It also presents grain size estimates according to the ASTM standard.
  • the two steels make it possible to achieve the target surface hardness.
  • the invention makes it possible to obtain a substantially greater cemented depth than in the case of reference A, although the latter has been quenched under much more severe conditions which are known to increase the cemented depth, all things being equal. elsewhere.
  • the core hardness is higher in the case of the invention than in the case of the reference, despite a much lower quench medium pressure.
  • the consequences on improving the fatigue endurance in service mentioned above for quenching at usual temperature are also found here.
  • the steel according to the invention has a finer ASTM grain size than the reference steels A and D. Therefore, it is less sensitive to the risks of magnification grain during case hardening at high temperature. This is a very significant advantage, because the enlargement of the grain on cemented parts has an extremely harmful effect on the fatigue strength at the base of the tooth and on the tenacity of the cemented parts.
  • the steels according to the invention are therefore perfectly suitable for being used to manufacture gear parts (or any other parts for which comparable characteristics are required) cemented or carbonitrided at high temperature, with all the economic advantages that this entails, without sacrificing the performance of said parts.
  • the steel according to the invention thanks to its controlled quenchability also makes it possible to reduce the pressure of the quenching gases to obtain an identical depth of cementation, which makes it possible to further reduce or eliminate the deformations on cemented parts and to obtain gains and simplifications on gas quenching technologies for parts in the enclosures of gas quenching ovens.
  • the fact of using a steel according to the invention for carrying out case hardening at high temperature, intended to obtain a given case hardened depth does not penalize, quite the contrary, the tenacity of case hardened parts produced with this steel compared to the use of a reference steel, also case-hardened at high temperature or at the usual case-hardening temperature to obtain the same case-hardened depth.
  • the difference in hardness at heart between the 2 steels is not penalizing from this point of view.
  • the steels according to the invention are particularly suitable for case hardening at high temperature, both to reduce the case hardening times, to increase the productivity and to reduce the cost of case hardening, compared to known steels case hardened at usual temperature or at high temperature.
  • the steels according to the invention are particularly suitable for case-hardening at high temperature both to reduce the case-hardening times, to increase the productivity, to reduce the costs of case-hardening, compared with known steels case-hardened at usual temperature, without penalizing the properties of use obtained on parts such as the fatigue-bending behavior at the base of the tooth of a cemented pinion or gear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

The inventive steel for mechanical parts is characterised by the composition thereof expressed in the following percentages by weight: 0.19 % = C = 0.25 %; 1.1 % = Mn = 1.5 %; 0.8 % = Si = 1.,2 %; 0.01 % = S = 0.09 %; traces = P = 0.025 %; traces = Ni = 0.25 %; 1 % = Cr = 1.4 %; 0.10 % = Mo = 0,25 %; traces = Cu = 0.30 %; 0.01 % = Al = 0.045 %; 0.010 % = Nb = 0.045 %; 0.0130 % = N = 0.0300 %; optionally traces = Bi = 0.10 % and/or traces = Pb = 0.12 % and/or traces = Te = 0.015 % and/or traces = Se = 0.030 % and/or traces = Ca = 0.0050 %. The rest being iron and impurities resulting from preparation, a chemical composition being adjusted in such a way that mean values J3m, J11m, J15m et J25m of five Jominy tests are such as α = | J11m - J3m x 14/22 - J25m x 8/22 |= 2.5 HRC; and ß = J3m - J15m = 9 HRC. A method for producing a mechanical part from said steel and the thus obtainable mechanical part are also disclosed.

Description

Acier pour pièces mécaniques, procédé de fabrication de pièces mécaniques l'utilisant et pièces mécaniques ainsi réalisées L'invention concerne le domaine de la sidérurgie, et plus particulièrement les aciers pour pièces mécaniques telles que des pignons. Les aciers pour pignonnerie doivent avoir une grande résistance à la fatigue de contact. La plupart du temps, les pièces usinées à partir de ces aciers subissent un traitement de cémentation ou de carbonitruration, visant à leur procurer une dureté superficielle et une résistance mécanique suffisantes, tout en leur conservant une bonne ténacité à cœur grâce, notamment, à une teneur en carbone de l'ordre de 0,10 à 0,30% seulement. La teneur en carbone de la couche cémentée peut aller jusqu'à 1% environ. Divers documents décrivent des aciers de pignonnerie destinés à être cémentés. On peut citer US-A-5 518 685, dans lequel les teneurs en Si et Mn sont maintenues dans des limites relativement basses (0,45 à 1 % et 0,40 à 0,70% respectivement) pour éviter une oxydation intergranulaire lors de la cémentation. JP-A-4-21757 décrit des aciers pour pignonnerie destinés à être cémentés par plasma ou sous pression réduite, puis grenailles, pouvant avoir des teneurs en Si et Mn plus élevées que les précédents. Ils ont une haute résistance à la pression superficielle subie par le pignon, dont la durée de vie est ainsi élevée. WO-A-03 012 156 propose un acier pour pièces mécaniques, telles que des pignons, dont la composition est : 0,12% < C < 0,30% ; 0,8% < Si < 1 ,5% ; 1 ,0% < Mn < 1,6% ; 0,4% < Cr < 1 ,6% ; Mo < 0,30% ; Ni < 0,6% ; Al < 0,06% ; Cu < 0,30% ; S < 0,10% ; P < 0,03% ; Nb < 0,050%. Cet acier présente l'avantage de minimiser les déformations plastiques en service de l'ensemble de la pièce, grâce, notamment, à un équilibrage judicieux des teneurs en silicium et manganèse. De préférence, la cémentation ou la carbonitruration doit avoir lieu dans des conditions non-oxydantes, par exemple sous pression réduite, pour que les teneurs relativement élevées en silicium et manganèse ne conduisent pas à des problèmes d'oxydation intergranulaire. Habituellement, la cémentation ou la carbonitruration a lieu à une température de l'ordre de 850 à 930°C. Cependant, la tendance actuelle est de chercher à effectuer cette opération à des températures plus élevées (cémentation ou carbonitruration à haute température), de l'ordre de 950 à 1050°C. Cette augmentation de la température de traitement permet soit de réduire la durée du traitement, à profondeur cémentée égale, soit d'augmenter la profondeur cémentée, à durée de traitement égale. Au choix du producteur, on peut ainsi augmenter la productivité de l'installation, ou augmenter les performances des produits obtenus. Cependant, l'application d'une cémentation ou carbonitruration haute température aux aciers connus qui ont été décrits pose plusieurs problèmes. En premier lieu, la température élevée peut conduire à une croissance des grains mal maîtrisée, néfaste pour les propriétés mécaniques de la pièce. D'autre part, la cémentation ou la carbonitruration est suivie d'une trempe au cours de laquelle la pièce subit des déformations. Celles-ci peuvent nécessiter une reprise d'usinage de la pièce, voire dans les cas les plus graves, entraîner sa mise au rebut. Ces problèmes sont accentués lorsque la trempe a lieu sur une pièce venant de subir une cémentation ou une carbonitruration à haute température et non à une température plus habituelle. Le but de l'invention est de proposer aux métallurgistes pratiquant la cémentation ou la carbonitruration à haute température de pièces mécaniques, notamment des pignons, un acier répondant aux problèmes précédemment cités tout en conservant les propriétés mécaniques requises, et qui soit également compatible avec les opérations de cémentation et carbonitruration effectuées à des températures plus habituelles. A cet effet, l'invention a pour objet un acier pour pièces mécaniques, caractérisé en ce que sa composition est, en pourcentages pondéraux : - 0,19% < C < 0,25% ; - 1 ,1 % < Mn < 1 ,5% ; - 0,8% < Si < 1 ,2% ; - 0,01 % ≤ S ≤ 0,09% ; - traces < P ≤ 0,025% ; - traces < Ni < 0,25% ; - 1 % < Cr < 1 ,4% ; - 0,10% < Mo < 0,25% ; - traces < Cu < 0,30% ; - 0,010% ≤ AI ≤ 0,045% ; - 0,010% ≤ Nb ≤ 0,045% ; - 0,0130% <N< 0,0300%; - optionnellement traces ≤ Bi ≤ 0,10% et/ou traces ≤Pb ≤ 0,12% etou traces ≤ Te < 0,015% et/ou traces < Se ≤ 0,030% et/ou traces < Ca ≤ 0,0050% ; le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique étant ajustée pour que les valeurs moyennes J3rn, Jum, J.5m et J25m de cinq essais Jominy soient telles que : α = |Jnm - J3m x 14/22 - J25m x 8/22 | ≤ 2,5 HRC ; et β = J3m — J 15m ≤ 9 HRC. De préférence, sa composition est ajustée pour que De préférence, sa composition est : -0,19% ≤C≤ 0,25%; -1,2%<Mn<1,5%; - 0,85% ≤ Si ≤ 1,2%; -0,01%≤S≤0,09%; - traces ≤ P ≤ 0,025% ; - 0,08% ≤ Ni ≤ 0,25% ; - 1,1% ≤Cr≤ 1,4% ; - 0,10% ≤ Mo ≤ 0,25%; - 0,06% ≤ Cu ≤ 0,30% ; - 0,010% ≤AI≤ 0,045%; - 0,015% ≤Nb≤ 0,045%; -0,0130%<N≤ 0,0300%; optionnellement traces < Bi < 0,07% et/ou traces < Pb < 0,12% et/ou traces < Te < 0,010% et/ou traces < Se < 0,020% et/ou traces < Ca < 0,045%, le reste étant du fer et les impuretés résultant de l'élaboration. Optimalement, sa composition est : - 0,20% ≤C≤ 0,25% ; - 1,21% ≤Mn≤ 1,45%; - 0,85% ≤ Si ≤ 1,10%; -0,01%≤S<0,08%; - traces ≤ P ≤ 0,020% ; - 0,08% ≤ Ni ≤ 0,20% ; - 1 ,10% ≤ Cr ≤ 1 ,40% ; - 0,11% ≤ Mo ≤ 0,25% ; - 0,08% ≤ Cu ≤ 0,30% ; - 0,010% ≤ AI ≤ 0,035% ; - 0,025% < Nb ≤ 0,040% ; - 0,0130% ≤ N ≤ 0,0220% ; optionnellement traces < Bi < 0,07% et/ou traces < Pb ≤ 0,12% et/ou traces ≤ Te < 0,010% et/ou traces < Se < 0,020% et/ou traces < Ca < 0,045%, le reste étant du fer et les impuretés résultant de l'élaboration. L'invention a également pour objet un procédé de fabrication d'une pièce mécanique en acier cémentée ou carbonitrurée, caractérisé en ce qu'on utilise à cet effet un acier du type précédent sur lequel on réalise un usinage, une cémentation ou une carbonitruration puis une trempe. De préférence, ladite cémentation ou carbonitruration a lieu à une température de 950 à 1050°C. L'invention a également pour objet une pièce mécanique en acier, telle qu'une pièce de pignonnerie, caractérisée en ce qu'elle est obtenue par le procédé précédent. Comme on l'aura compris, l'invention repose sur un ajustement précis des fourchettes de teneurs des principaux éléments d'alliages, ainsi que sur la présence simultanée, dans des teneurs bien définies, d'aluminium, niobium et azote. Les effets recherchés sont essentiellement de deux ordres. En premier lieu, le choix des teneurs en les principaux éléments d'alliage vise à obtenir une courbe Jominy sans point d'inflexion significativement marqué. Cette condition permet d'obtenir des déformations minimales au cours de la trempe. De ce point de vue, la cémentation ou la carbonitruration effectuée à haute température est, comme on l'a dit, particulièrement exigeante. On rappelle que la courbe Jominy d'un acier, qui est obtenue au moyen d'un essai classique et normalisé, caractérise la trempabilité de l'acier. Elle est obtenue en mesurant la dureté d'une éprouvette cylindrique, trempée par un jet d'eau arrosant l'une de ses extrémités, le long d'une de ses génératrices. La dureté est mesurée à plusieurs distances x (en mm) de l'extrémité arrosée, et la valeur correspondante est désignée par Jx. On appelle Jxm la valeur moyenne obtenue au cours de cinq essais de mesure de la dureté à la distance x. Comme exposé dans le document EP-A-0 890 653 auquel le lecteur est invité à se reporter pour de plus amples détails, la demanderesse avait montré qu'une composition de l'acier procurant une courbe Jominy sans point d'inflexion était favorable à l'obtention de déformations très réduites au cours de la trempe suivant une cémentation ou une carbonitruration. Cette courbe Jominy sans point d'inflexion est obtenue lorsque les valeurs Jnm, J3m, J25m et Jι5m satisfont les relations suivantes : - α = | J11m - J3m * 14/22 - J25m x 8/22 | ≤ 2,5 HRC ; - β = J3m - Jis ≤ 9 HRC, ou mieux < 8 HRC. La composition de l'acier selon la présente invention est donc ajustée pour que cette relation soit également obtenue dans son cas. La composition est également ajustée, notamment grâce à la présence conjointe d'aluminium, niobium et azote dans des teneurs définies, pour q ue la taille des grains demeure contrôlée, même lorsque la cémentation ou la carbonitruration a lieu à haute température. Enfin, bien entendu, la composition de l'acier doit procurer les propriétés mécaniques recherchées pour l'utilisation de la pièce. Parmi les critères à surveiller plus particulièrement on peut citer la profondeur cémentée (classiquement définie par la profondeur à laquelle la dureté mesurée est de 550 HV), l'écart de dureté entre la surface et le cœur de la pièce cémentée qui doit être le plus faible possible pour minimiser les déformations à la trempe, et la dureté à cœur qui doit être élevée pour que la pièce ait une bonne réponse aux contraintes en service, et donc une bonne tenue en endurance et en fatigue. L'invention sera mieux comprise à la lecture de la description qui suit, donnée en référence à la figure annexée, qui montre les courbes Jominy de quatre aciers de référence et de trois aciers conformes à l'invention. L'acier selon l'invention est destiné prioritairement à la fabrication de pièces mécaniques fortement sollicitées telles que des éléments de pignonnerie, destinées à être cémentées ou carbonitrurées (de préférence à basse pression ou sous atmosphère non oxydante pour éviter une oxydation des éléments les plus oxydables), aussi bien à des températures usuelles de 850-930°C environ qu'à des hautes températures de l'ordre de 950-1050°C. Ces pièces doivent présenter une haute endurance en fatigue, une bonne ténacité et n'être que faiblement déformées lors des traitements thermiques tels que la trempe suivant la cémentation ou la carbonitruration. Il a la composition suivante (tous les pourcentages sont des pourcentages pondéraux). Sa teneur en carbone est comprise entre 0,19 et 0,25%. ces teneurs sont usuelles pour des aciers de pignonnerie. D'autre part, cette plage autorise un ajustement des teneurs des autres éléments qui permet d'obtenir la forme désirée pour la courbe Jominy. La teneur minimale de 0,19% est, de plus, justifiée par la dureté à cœur après trempe qu'elle permet d'obtenir. Au-delà de 0,25%, la dureté risque d'être trop élevée pour conserver à l'acier l'usinabilité souhaitable. La gamme préférentielle est 0,20-0,25%. Sa teneur en manganèse est comprise entre 1 ,1 et 1 ,5%. La valeur minimale est justifiée par l'obtention de la courbe Jominy désirée en conjonction avec les teneurs des autres éléments. Au-delà de 1 ,5% il y a le risque d'apparition de ségrégations, et aussi de structures de bandes pendant les recuits. De plus une teneur aussi élevée provoquerait lors de l'élaboration une attaque excessive du revêtement réfractaire de la poche d'aciérie. Il ne serait pas souhaitable de resserrer davantage cette gamme de teneurs, car l'obtention à l'aciérie de la nuance précise désirée pourrait être exagérément difficile. La gamme préférentielle est 1 ,2-1 ,5%, mieux 1 ,21-1 ,45%. Sa teneur en silicium est comprise entre 0,8 et 1 ,2%. Dans cette gamme, la forme désirée de la cou rbe Jominy peut être obtenue en conjonction avec les teneurs des autres élém nts. La valeur minimale de 0,8% est justifiée par l'obtention de la dureté à cœur désirée, ainsi que par la limitation de l'écart de dureté entre surface et cœur a rès cémentation ou carbonitruration. Au-delà de 1 ,2%, il y a un risque d'apparition de ségrégations excessives, car le silicium, s'il ségrège peu lui-même, tend à accentuer la ségrégation d'autres éléments. Il y aurait également un risque accru d'oxydation lors de la cémentation ou de la carbonitruration. La gamme préférentielle est 0,85-1 ,20%, mieux 0,85-1 ,10%. Sa teneur en soufre est comprise entre 0,01 et 0,09%. la valeur minimale se justifie pour l'obtention d'une usinabilité correcte. Au-delà de 0,09% il y a un risque de diminution trop sensible de la forgeabilité à chaud. La gamme préférentielle est 0,01-0,08%. Sa teneur en phosphore est comp rise entre des traces et 0,025%. De manière générale, les normes en vigueur tendent à requérir une teneur maximale en phosphore de cet ordre. De p lus, au-delà de cette valeur, il y a un risque de synergie avec le niobium provoquant une fragilisation de l'acier lors de la mise en forme à chaud et/ou de la coulée continue de l'acier sous forme de blooms ou de billettes. De préférence, la teneur en phosphore est d'au plus 0,020%. Sa teneur en nickel est comprise entre des traces et 0,25%. Cet élément, introduit volontairement à des teneurs plus élevées, augmenterait inutilement le coût du métal. Dans la pratique, on pourra se contenter de la teneur en nickel résultant naturellement de la fusion des matières premières de la coulée, sans ajout volontaire. La gamme préférentielle est 0,08-0,20%. Sa teneur en chrome est comprise entre 1 ,00 et 1 ,40%. Dans cette gamme, en conjonction avec les teneurs des autres éléments, on peut obtenir la forme de la courbe Jominy désirée. De plus, la teneur minimale de 1 ,00% permet d'obtenir une bonne dureté à cœur. Au-delà de 1 ,40%, on augmenterait inutilement le coût de l'élaboration. La gamme préférentielle est 1 ,10-1 ,40%. Sa teneur en molybdène est comprise entre 0,10 et 0,25%. Dans cette gamme, en conjonction avec les teneurs des autres éléments, on obtient la forme de la courbe Jominy et la dureté à cœur désirées. La gamme préférentielle est 0,1 1-0,25%. Sa teneur en cuivre est comprise e ntre des traces et 0,30%. Là encore, comme pour le nickel, on conservera généralement purement et simplement la teneur obtenue après fusion des matières premières. Au-delà de 0,30%, on dégraderait la ductilité et la ténacité à cœur de la pièce. La gamme préférentielle est 0,06-0,30%, mieux 0,03-0,30%, de manière à optimiser la forme de la courbe Jominy et la dureté après trempe. Ses teneurs en aluminium, niobium et azote doivent être contrôlées dans des limites précises. En effet, ce so nt des éléments qui, en interaction, procurent un contrôle de la finesse du grain du métal. Cette finesse est désirable pour l'obtention d'une bonne ténacité dans la couche cémentée ou carbonitrurée, d'une bonne tenue en fatigue et d'une réduction de la dispersion de la déformation lors de la trempe. De plus, elle a aussi son importance dans l'obtention de la forme désirée de la courbe Jominy. Le contrôle de la taille du grain est, dans le cadre de l'invention, d'autant plus important que l'acier doit être capable de subir une cémentation ou carbonitruration à haute température sans que survienne une croissance excessive de la taille du grain. Ce contrôle du grain se fait essentiellement par la précipitation de nitrures et carbonitrures d'aluminium et/ou de niobium. Pour l'obtenir, il faut donc une présence significative de ces deux éléments, ainsi que d'azote à une teneur sensiblement supérieure à celle que l'on obtient habituellement à la suite d'une élaboration effectuée dans des conditions normales. La teneur en aluminium doit être comprise entre 0,010 et 0,045%. Outre sa fonction de contrôle du grain déjà citée, cet élément pilote la désoxydation de l'acier et sa propreté en termes d'inclusions d'oxydes. En- dessous de 0,010%, ses effets, de ces derniers points de vue, seraient insuffisants. Au-dessus de 0,045%, la propreté en i nclusions d'oxydes risque d'être insuffisante pour les applications visées prioritairement. La gamme préférentielle est 0,010-0,035%. La teneur en niobium doit être comprise entre 0,010 et 0,045%. En- dessous de 0,010% l'effet de contrôle du grain ne serait pas suffisant, en particulier pour les plus basses teneurs en aluminium. Au-dessus de 0,045%, il y a un risque d'apparition de criques lors de la coulée continue de l'acier, notamment si une synergie avec le phosphore peut se produire, comme on l'a signalé plus haut. La gamme préférentielle est 0,015-0,045%, mieux 0,015- 0,040%. En conjonction avec les teneurs en aluminium et niobium telles qu'elles ont été citées, la teneur en azote doit être comprise entre 0,0130 et 0,0300% (130 à 300 ppm), afin que l'ajustement de la taille du grain et la forme de la courbe Jominy désirés soient obtenus. La gamme préférentielle est 0,0130- 0,0220%. Si cela apparaît désirable, on peut ajouter à l'acier un ou plusieurs des éléments classiquement connus pour améliorer son usinabilité : plomb, tellure, sélénium, calcium, bismuth notamment. Leurs teneu rs maximales sont 0,10%, mieux 0,07%, pour Bi, 0, 12% pour Pb, 0,015%, mieux 0,010%, pour Te, 0,030%, mieux 0,020%, pour Se et 0,0050%, mieux 0,0045%, pour Ca. Les autres éléments sont ceux habituellem ent présents dans l'acier en tant qu'impuretés résultant de l'élaboration, et ne sont pas rajoutés volontairement. Il faut, en particulier, veiller à ce que la teneur en titane ne dépasse pas 0,005%. En effet, comme l'acier selon l'invention est très riche en azote, au-delà de cette teneur il y aurait un risque de formation de nitrures et/ou de carbonitrures de titane grossiers, visibles par micrographie, qui diminueraient la tenue en fatigue et altéreraient l'usinabilité. De plus le titane capterait ainsi de l'azote qui ne serait plus disponibl e pour le contrôle du grain. L'invention va être à présent illustrée au moyen d'exemples. La figure 10 annexée montre les courbes Jominy de quatre aciers dont les compositions sont données dans le tableau 1. Les aciers A, B, C et D sont des aciers de référence. Les aciers E, F et G sont, eux, conformes à l'invention.Steel for mechanical parts, process for manufacturing mechanical parts using it and mechanical parts thus produced The invention relates to the field of steel, and more particularly steels for mechanical parts such as pinions. Steel for gable mills must have a high resistance to contact fatigue. Most of the time, the parts machined from these steels undergo a carburizing or carbonitriding treatment, aimed at providing them with sufficient surface hardness and mechanical strength, while retaining good toughness at heart, thanks in particular to a carbon content of the order of 0.10 to 0.30% only. The carbon content of the cemented layer can range up to around 1%. Various documents describe gear steels intended to be case-hardened. One can cite US-A-5,518,685, in which the contents of Si and Mn are kept within relatively low limits (0.45 to 1% and 0.40 to 0.70% respectively) to avoid intergranular oxidation during cementation. JP-A-4-21757 describes steels for gearboxes intended to be case-hardened by plasma or under reduced pressure, then shot, which may have higher Si and Mn contents than the previous ones. They have a high resistance to the surface pressure undergone by the pinion, which therefore has a long service life. WO-A-03 012 156 proposes a steel for mechanical parts, such as pinions, the composition of which is: 0.12% <C <0.30%; 0.8% <If <1.5%; 1.0% <Mn <1.6%; 0.4% <Cr <1.6%; Mo <0.30%; Ni <0.6%; Al <0.06%; Cu <0.30%; S <0.10%; P <0.03%; Nb <0.050%. This steel has the advantage of minimizing the plastic deformations in service of the whole part, thanks, in particular, to a judicious balancing of the silicon and manganese contents. Preferably, the carburizing or carbonitriding must take place under non-oxidizing conditions, for example under reduced pressure, so that the relatively high contents of silicon and manganese do not lead to problems of intergranular oxidation. Usually carburizing or carbonitriding takes place at a temperature of the order of 850 to 930 ° C. However, the current trend is to seek to perform this operation at higher temperatures (carburizing or carbonitriding at high temperature), of the order of 950 to 1050 ° C. This increase in the treatment temperature makes it possible either to reduce the duration of the treatment, at equal cemented depth, or to increase the cemented depth, for equal treatment duration. At the choice of the producer, the productivity of the installation can be increased, or the performance of the products obtained can be increased. However, the application of high temperature carburizing or carbonitriding to the known steels which have been described poses several problems. First, the high temperature can lead to poorly controlled grain growth, detrimental to the mechanical properties of the part. On the other hand, carburizing or carbonitriding is followed by a quenching during which the part undergoes deformations. These may require a resumption of machining of the part, or even in the most serious cases, lead to its scrapping. These problems are accentuated when the quenching takes place on a part which has just undergone carburizing or carbonitriding at high temperature and not at a more usual temperature. The object of the invention is to propose to metallurgists practicing cementation or carbonitriding at high temperature of mechanical parts, in particular pinions, a steel responding to the above-mentioned problems while retaining the required mechanical properties, and which is also compatible with case-hardening and carbonitriding operations carried out at more usual temperatures. To this end, the subject of the invention is a steel for mechanical parts, characterized in that its composition is, in weight percentages: - 0.19% <C <0.25%; - 1.1% <Mn <1.5%; - 0.8% <If <1.2%; - 0.01% ≤ S ≤ 0.09%; - traces <P ≤ 0.025%; - traces <Ni <0.25%; - 1% <Cr <1, 4%; - 0.10% <Mo <0.25%; - traces <Cu <0.30%; - 0.010% ≤ AI ≤ 0.045%; - 0.010% ≤ Nb ≤ 0.045%; - 0.0130% <N <0.0300%; - optionally traces ≤ Bi ≤ 0.10% and / or traces ≤Pb ≤ 0.12% andor traces ≤ Te <0.015% and / or traces <Se ≤ 0.030% and / or traces <Ca ≤ 0.0050%; the remainder being iron and impurities resulting from the production, the chemical composition being adjusted so that the average values J 3rn , Jum, J. 5 m and J2 5 m of five Jominy tests are such that: α = | Jnm - J 3m x 14/22 - J 25m x 8/22 | ≤ 2.5 HRC; and β = J3m - J 15m ≤ 9 HRC. Preferably, its composition is adjusted so that Preferably, its composition is: -0.19% ≤C≤ 0.25%; -1.2% <Mn <1.5%; - 0.85% ≤ If ≤ 1.2%; -0.01% ≤S≤0,09%; - traces ≤ P ≤ 0.025%; - 0.08% ≤ Ni ≤ 0.25%; - 1.1% ≤Cr≤ 1.4%; - 0.10% ≤ Mo ≤ 0.25%; - 0.06% ≤ Cu ≤ 0.30%; - 0.010% ≤AI≤ 0.045%; - 0.015% ≤Nb≤ 0.045%; -0.0130% <N≤ 0.0300%; optionally traces <Bi <0.07% and / or traces <Pb <0.12% and / or traces <Te <0.010% and / or traces <Se <0.020% and / or traces <Ca <0.045%, the rest being iron and the impurities resulting from processing. Optimally, its composition is: - 0.20% ≤C≤ 0.25%; - 1.21% ≤Mn≤ 1.45%; - 0.85% ≤ If ≤ 1.10%; -0.01% ≤s <0.08%; - traces ≤ P ≤ 0.020%; - 0.08% ≤ Ni ≤ 0.20%; - 1, 10% ≤ Cr ≤ 1, 40%; - 0.11% ≤ Mo ≤ 0.25%; - 0.08% ≤ Cu ≤ 0.30%; - 0.010% ≤ AI ≤ 0.035%; - 0.025% <Nb ≤ 0.040%; - 0.0130% ≤ N ≤ 0.0220%; optionally traces <Bi <0.07% and / or traces <Pb ≤ 0.12% and / or traces ≤ Te <0.010% and / or traces <Se <0.020% and / or traces <Ca <0.045%, the rest being iron and the impurities resulting from processing. The subject of the invention is also a method of manufacturing a mechanical part made of case-hardened or carbonitrided steel, characterized in that a steel of the above type is used for this purpose on which machining, case-hardening or carbonitriding is carried out and then quenching. Preferably, said carburizing or carbonitriding takes place at a temperature of 950 to 1050 ° C. The subject of the invention is also a mechanical steel part, such as a pinion piece, characterized in that it is obtained by the preceding process. As will be understood, the invention is based on a precise adjustment of the ranges of contents of the main alloying elements, as well as on the simultaneous presence, in well defined contents, of aluminum, niobium and nitrogen. The effects sought are essentially of two types. First, the choice of the contents of the main alloying elements aims to obtain a Jominy curve without a significantly marked inflection point. This condition makes it possible to obtain minimum deformations during quenching. From this point of view, carburizing or carbonitriding carried out at high temperature is, as we have said, particularly demanding. It is recalled that the Jominy curve of a steel, which is obtained by means of a conventional and standardized test, characterizes the hardenability of the steel. It is obtained by measuring the hardness of a cylindrical specimen, quenched by a jet of water spraying one of its ends, along one of its generatrices. The hardness is measured at several distances x (in mm) from the sprinkled end, and the corresponding value is designated by J x . The average value obtained during five hardness tests at distance x is called J xm . As explained in document EP-A-0 890 653 to which the reader is invited to refer for further details, the applicant had shown that a composition of the steel providing a Jominy curve without inflection point was favorable to obtaining very reduced deformations during quenching following cementation or carbonitriding. This Jominy curve without inflection point is obtained when the values Jn m , J 3m , J 25 m and Jι 5m satisfy the following relationships: - α = | J 11m - J 3m * 14/22 - J 25m x 8/22 | ≤ 2.5 HRC; - β = J 3m - Jis ≤ 9 HRC, or better <8 HRC. The composition of the steel according to the present invention is therefore adjusted so that this relationship is also obtained in his case. The composition is also adjusted, in particular thanks to the joint presence of aluminum, niobium and nitrogen in defined contents, so that the grain size remains controlled, even when the carburizing or carbonitriding takes place at high temperature. Finally, of course, the composition of the steel must provide the mechanical properties sought for the use of the part. Among the criteria to be monitored more particularly, the case-hardened depth (conventionally defined by the depth at which the hardness measured is 550 HV) can be cited, the hardness difference between the surface and the core of the case-hardened part which must be the most low possible to minimize deformation during quenching, and the core hardness which must be high so that the part has a good response to service constraints, and therefore good resistance to endurance and fatigue. The invention will be better understood on reading the following description, given with reference to the appended figure, which shows the Jominy curves of four reference steels and three steels according to the invention. The steel according to the invention is primarily intended for the manufacture of highly stressed mechanical parts such as gear elements, intended to be cemented or carbonitrided (preferably at low pressure or in a non-oxidizing atmosphere to avoid oxidation of the most oxidizable), both at usual temperatures of 850-930 ° C approximately only at high temperatures of the order of 950-1050 ° C. These parts must have high fatigue endurance, good toughness and be only slightly deformed during heat treatments such as quenching according to carburizing or carbonitriding. It has the following composition (all percentages are weight percentages). Its carbon content is between 0.19 and 0.25%. these contents are customary for gear steels. On the other hand, this range allows an adjustment of the contents of the other elements which makes it possible to obtain the desired shape for the Jominy curve. The minimum content of 0.19% is, moreover, justified by the hardness at heart after quenching which it makes it possible to obtain. Beyond 0.25%, the hardness may be too high to keep the steel machinability desirable. The preferred range is 0.20-0.25%. Its manganese content is between 1.1 and 1.5%. The minimum value is justified by obtaining the desired Jominy curve in conjunction with the contents of the other elements. Beyond 1.5% there is the risk of the appearance of segregation, and also of band structures during the annealing. In addition, such a high content would provoke an excessive attack on the refractory lining of the steelworks bag during production. It would not be desirable to further tighten this range of contents, since obtaining the desired precise grade at the steelworks could be exaggeratedly difficult. The preferred range is 1.2-1.5%, better 1.21-1.45%. Its silicon content is between 0.8 and 1.2%. In this range, the desired shape of the Jominy curve can be obtained in conjunction with the contents of the other elements. The minimum value of 0.8% is justified by obtaining the desired core hardness, as well as by limiting the hardness difference between surface and core after carburizing or carbonitriding. Beyond 1.2%, there is a risk of excessive segregation appearing, since silicon, if it does not segregate itself, tends to accentuate the segregation of other elements. There would also be an increased risk of oxidation during case hardening or carbonitriding. The preferred range is 0.85-1.20%, better 0.85-1.10%. Its sulfur content is between 0.01 and 0.09%. the minimum value is justified for obtaining correct machinability. Beyond 0.09% there is a risk of too marked a reduction in hot forgeability. The preferred range is 0.01-0.08%. Its phosphorus content is between traces and 0.025%. In general, the standards in force tend to require a maximum phosphorus content of this order. In addition, beyond this value, there is a risk of synergy with niobium causing embrittlement of the steel during hot forming and / or continuous casting of the steel in the form of blooms or billets. Preferably, the phosphorus content is at most 0.020%. Its nickel content is between traces and 0.25%. This element, intentionally introduced at higher contents, would unnecessarily increase the cost of the metal. In practice, it will be possible to be satisfied with the nickel content resulting naturally from the melting of the raw materials of the casting, without voluntary addition. The preferred range is 0.08-0.20%. Its chromium content is between 1.00 and 1.40%. In this range, in conjunction with the contents of the other elements, we can obtain the shape of the desired Jominy curve. In addition, the minimum content of 1.00% makes it possible to obtain good hardness at heart. Beyond 1.40%, the cost of preparation would be unnecessarily increased. The preferred range is 1.10-1.40%. Its molybdenum content is between 0.10 and 0.25%. In this range, in conjunction with the contents of the other elements, we obtain the shape of the Jominy curve and the hardness at heart desired. The preferred range is 0.1 1-0.25%. Its copper content is between traces and 0.30%. Here again, as with nickel, the content obtained after melting the raw materials will generally be kept purely and simply. Above 0.30%, the ductility and toughness at the core of the part would be degraded. The preferred range is 0.06-0.30%, better 0.03-0.30%, so as to optimize the shape of the Jominy curve and the hardness after quenching. Its aluminum, niobium and nitrogen contents must be controlled within precise limits. Indeed, these are elements which, in interaction, provide a control of the fineness of the grain of the metal. This fineness is desirable for obtaining good toughness in the cemented or carbonitrided layer, good fatigue resistance and a reduction in dispersion. deformation during quenching. In addition, it is also important in obtaining the desired shape of the Jominy curve. Controlling the grain size is, in the context of the invention, all the more important since the steel must be capable of undergoing carburizing or carbonitriding at high temperature without excessive growth in grain size occurring. This grain control is essentially done by the precipitation of aluminum nitrides and carbonitrides and / or niobium. To obtain it, it is therefore necessary to have a significant presence of these two elements, as well as nitrogen at a content appreciably greater than that which is usually obtained following an elaboration carried out under normal conditions. The aluminum content must be between 0.010 and 0.045%. In addition to its grain control function already mentioned, this element controls the deoxidation of steel and its cleanliness in terms of oxide inclusions. Below 0.010%, its effects, from these latter points of view, would be insufficient. Above 0.045%, cleanliness with oxide inclusions may be insufficient for the priority applications. The preferred range is 0.010-0.035%. The niobium content must be between 0.010 and 0.045%. Below 0.010% the grain control effect would not be sufficient, especially for the lower aluminum contents. Above 0.045%, there is a risk of cracks appearing during the continuous casting of the steel, in particular if a synergy with phosphorus can occur, as mentioned above. The preferred range is 0.015-0.045%, better 0.015-0.040%. In conjunction with the aluminum and niobium contents as mentioned, the nitrogen content must be between 0.0130 and 0.0300% (130 to 300 ppm), so that the adjustment of the grain size and the shape of the desired Jominy curve are obtained. The preferred range is 0.0130- 0.0220%. If this appears desirable, one or more of the elements conventionally known to improve its machinability can be added to the steel: lead, tellurium, selenium, calcium, bismuth in particular. Their maximum contents are 0.10%, better 0.07%, for Bi, 0.12% for Pb, 0.015%, better 0.010%, for Te, 0.030%, better 0.020%, for Se and 0.0050% , better 0.0045%, for Ca. The other elements are those usually present in the steel as impurities resulting from the production, and are not added voluntarily. In particular, care should be taken that the titanium content does not exceed 0.005%. Indeed, as the steel according to the invention is very rich in nitrogen, beyond this content there would be a risk of formation of coarse titanium nitrides and / or carbonitrides, visible by micrography, which would reduce the resistance in fatigue and impair machinability. In addition, the titanium would thus capture nitrogen which would no longer be available for grain control. The invention will now be illustrated by means of examples. Figure 10 attached shows the Jominy curves of four steels whose compositions are given in Table 1. Steels A, B, C and D are reference steels. Steels E, F and G are themselves in accordance with the invention.
Tableau 1 : Compositions des échantillons 15 Dans le cas de l'échantillon A, la grandeur α telle que définie plus haut est égale à 8,7, et la grandeur β telle que définie plus haut est égale à 19,1. Elles se situent donc très au-dessus du maximum exigé par l'invention. De fait, on voit que la courbe Jominy présente un point d'inflexion très marqué. Dans le cas de l'échantillon B, α est égale à 2,38 et β est égale à 11 ,1 . β n'est donc pas conforme aux exigences de l'invention, et la courbe Jominy présente elle aussi un point d'inflexion significatif, bien que cet acier contienne du niobium et de l'azote dans les limites prescrites. La raison essentielle en est que sa teneur en silicium est insuffisante. Dans le cas de l'échantillon C, α est égale à 3,38 et β est égale à 10,7. Ni α, ni β ne sont dans les limites prescrites, et la courbe Jominy présente un point d'inflexion marqué. Cr et Mo sont juste en dessous des valeurs minimales exigées, et surtout la teneur en azote est insuffisante. Dans le cas de l'échantillon D, α est égale à 2,845 et (3 est égale à 9,5, ce qui là encore est en dehors des limites prescrites. Le courbe Jominy présente un point d'inflexion marqué, en raison de teneurs en Cr et azote insuffisantes. En revanche, pour l'échantillon E selon l'invention α est égale à 0,41 et β est égale à 2,7. Les conditions requises sont satisfaites et on voit que la courbe Jominy est quasiment rectiligne et dépourvue de point d'inflexion. De même, pour l'échantillon F selon l'invention, α est égale à 0,23 et β est égale à 3,7. Là encore, sa courbe Jominy est quasiment rectiligne et dépourvue de point d'inflexion. De même, pour l'échantillon G selon l'invention, α est égale à 0,83 et β est égale à 6,6. Sa courbe Jominy est quasiment rectiligne et dépourvue de point d'inflexion marqué. On a également étudié le comportement à la cémentation des aciers A, B et E du tableau 1 , dans des conditions de température usuelles et à haute température. Des cémentations à température usuelle (930°C) ont été réalisées sous basse pression dans des conditions similaires sur des échantillons cylindriques pour conférer à la surface cémentée une teneur en carbone de 0,75%. Ces cémentations ont été suivies de trempes en milieu gazeux (en l'occurrence dans de l'azote, mais un mélange azote-hydrogène à 10% d'hydrogène aurait, par exemple, pu être utilisé) dans deux conditions de pression différentes : 5 bars et 20 bars. On visait ainsi à obtenir une dureté superficielle de 700 à 800 HV et une profondeur cémentée (à savoir la profondeur à laquelle la dureté est de 550 HV) de 0,50 mm. Les résultats sont donnés dans le tableau 2 (essais à 5 bars) et dans le tableau 3 (essais à 20 bars). Table 1: Compositions of the samples 15 In the case of sample A, the quantity α as defined above is equal to 8.7, and the quantity β as defined above is equal to 19.1. They therefore lie far above the maximum required by the invention. In fact, we see that the Jominy curve has a very marked inflection point. In the case of sample B, α is equal to 2.38 and β is equal to 11.1. β therefore does not comply with the requirements of the invention, and the Jominy curve also has a significant inflection point, although this steel contains niobium and nitrogen within the prescribed limits. The main reason is that its silicon content is insufficient. In the case of sample C, α is equal to 3.38 and β is equal to 10.7. Neither α nor β are within the prescribed limits, and the Jominy curve has a marked inflection point. Cr and Mo are just below the minimum values required, and above all the nitrogen content is insufficient. In the case of sample D, α is equal to 2.845 and (3 is equal to 9.5, which again is outside the prescribed limits. The Jominy curve has a marked inflection point, due to the contents However, for sample E according to the invention, α is equal to 0.41 and β is equal to 2. The required conditions are satisfied and it can be seen that the Jominy curve is almost straight and Similarly, for the sample F according to the invention, α is equal to 0.23 and β is equal to 3. Again, its Jominy curve is almost straight and devoid of point d Similarly, for the sample G according to the invention, α is equal to 0.83 and β is equal to 6.6. Its Jominy curve is almost straight and devoid of any marked inflection point. studied the cementation behavior of steels A, B and E in Table 1, under usual temperature conditions and at ha ute temperature Cementation at usual temperature (930 ° C) was carried out under low pressure under similar conditions on cylindrical samples to give the cemented surface a carbon content of 0.75%. These cementations were followed by quenching in a gaseous medium (in this case in nitrogen, but a nitrogen-hydrogen mixture at 10% hydrogen could, for example, have been used) under two different pressure conditions: 5 bars and 20 bars. The aim was thus to obtain a surface hardness of 700 to 800 HV and a cemented depth (namely the depth at which the hardness is of 550 HV) of 0.50 mm. The results are given in Table 2 (tests at 5 bar) and in Table 3 (tests at 20 bar).
Tableau 2: Comportement à la cémentation dans le cas d'une trempe en milieux gazeux à 5 bars Table 2: Behavior in case hardening in the case of quenching in gaseous media at 5 bars
Tableau 3: Comportement à la cémentation dans le cas d'une trempe en milieux gazeux à 20 bars Table 3: Behavior in case hardening in the case of quenching in gaseous media at 20 bars
Ces essais montrent que l'acier de référence A ne permet pas d'atteindre aisément la profondeur cémentée recherchée. Cela est dû à son manque de trempabilité. Les aciers de référence B et C et l'acier selon l'invention E perm ettent tous trois d'obtenir la profondeur cémentée visée, dans des conditions de température de cémentation usuelles. L'écart ΔHV entre la dureté superficielle et la dureté à cœur est très comparable, pour un milieu de trempe à 5 bars, dans les cas de l'acier de référence B et de l'acier selon l'invention E (ΔHV = respectivement 352 et 354), et très inférieur à ce qu'il est pour l'acier de référence A (ΔHV = 497). Pour un milieu de trempe à 20 bars, en revanche, ΔHV est nettement moins favorable pour les aciers de référence B et C que pour l'acier de l'invention E (ΔHV = respectivement 297, 330 et 226). Il en résulte que les contraintes résiduelles générées par ces écarts de dureté, qui sont à l'origine des déformations lors de la trempe dans des conditions sévères sur les pièces cémentées, peuvent être minimisées par l'utilisation d'aciers selon l'invention. Enfin, les duretés à cœur les plus élevées sont obtenues avec l'acier E selon l'invention. Donc, dans le cas de pièces de pignonnerie fortement sollicitées en service pour lesquelles sont recherchées des caractéristiques mécaniques élevées (notamment des duretés élevées sous la couche cémentée et à cœur), supérieures aux contraintes auxquelles la pièce est soumise en service, de façon à assurer une bonne endurance en fatigue en service, l'acier selon l'invention est celui qui, pour des conditions de cémentation données, se prêtera le mieux à une endurance en fatigue élevée en service. On a également réalisé des essais de cémentation à haute température (980°C) sur des échantillons cylindriques des aciers A et D de référence et E selon l'invention décrits précédemment. Là encore la surface cémentée avait une teneur en carbone de 0,75%. Dans les deux cas, on visait une dureté superficielle de 700 à 800 HV et une profondeur cémentée, à dureté de 550 HV, de 0,50 mm. La trempe en milieu gazeux (azote) qui a suivi la cémentation a eu lieu sous une pression de 20 bars pour les aciers A et D et seulement 1 ,5 bar pour l'acier E. Les résultats sont présentés dans le tableau 4. On y présente aussi des évaluations de la taille de grain selon la norme ASTM.These tests show that the reference steel A does not allow the desired cemented depth to be easily reached. This is due to its lack of hardenability. The reference steels B and C and the steel according to the invention E all allow the target cemented depth to be obtained, under usual cementation temperature conditions. The difference ΔHV between the surface hardness and the core hardness is very comparable, for a quenching medium at 5 bars, in the case of the reference steel B and the steel according to the invention E (ΔHV = respectively 352 and 354), and much lower than it is for the reference steel A (ΔHV = 497). For a quenching medium at 20 bars, on the other hand, ΔHV is clearly less favorable for the reference steels B and C than for the steel of invention E (ΔHV = 297, 330 and 226 respectively). It follows that the residual stresses generated by these differences in hardness, which are the source of deformations during quenching under severe conditions on the cemented parts, can be minimized by the use of steels according to the invention. Finally, the highest core hardnesses are obtained with the steel E according to the invention. Therefore, in the case of gable parts heavily stressed in service for which high mechanical characteristics are sought (in particular high hardnesses under the cemented layer and at the core), greater than the stresses to which the part is subjected in service, so as to ensure good fatigue endurance in service, the steel according to the invention is the one which, for given carburizing conditions, will best lend itself to high fatigue endurance in service. We also carried out carburizing tests at high temperature (980 ° C) on cylindrical samples of steels A and D of reference and E according to the invention described above. Again the cemented surface had a carbon content of 0.75%. In both cases, we aimed for a surface hardness of 700 to 800 HV and a cemented depth, at a hardness of 550 HV, of 0.50 mm. The quenching in a gaseous medium (nitrogen) which followed cementation took place under a pressure of 20 bars for steels A and D and only 1.5 bars for steel E. The results are presented in table 4. It also presents grain size estimates according to the ASTM standard.
Tableau 4: Comportement à la cémentation dans le cas d'une trempe en milieux gazeux à 20 bars (aciers A et C) et 1 ,5 bar (acier E) Table 4: Behavior in case hardening in the case of quenching in gaseous media at 20 bar (steels A and C) and 1.5 bar (steel E)
Comme dans le cas de la cémentation à température usuelle de 930°C, les deux aciers permettent d'atteindre la dureté superficielle visée. L'invention permet d'obtenir une profondeur cémentée sensiblement plus importante que dans le cas de la référence A, bien que celle-ci ait été trempée dans des conditions beaucoup plus sévères qui sont connues pour faire augmenter la profondeur cémentée toutes choses étant égales par ailleurs. L'écart de dureté entre surface et cœur est nettement plus faible dans le cas de l'invention que dans le cas des références A et D (ΔHV = respectivement 240 pour E, 428 pour A et 274 pour D). Les avantages cités plus haut en matière de déformations lors de la trempe après une cémentation à température usuelle se retrouvent également ici, encore plus accentués. La dureté à cœur est plus élevée dans le cas de l'invention que dans le cas de la référence, malgré une pression du milieu de trempe beaucoup plus faible. Les conséquences sur l'amélioration de l'endurance en fatigue en service citées plus haut pour la trempe à température usuelle se retrouvent également ici. Enfin, tant dans la zone cémentée que hors de la zone cémentée, l'acier selon l'invention a une taille de grain ASTM plus fine que les aciers de référence A et D. De ce fait, il est moins sensible aux risques de grossissement du grain lors d'une cémentation à haute température. Ceci est un avantage très significatif, car le grossissement du grain sur pièces cémentées a un effet extrêmement néfaste sur la tenue en fatigue en pied de dent et sur la ténacité des pièces cémentées. Les aciers selon l'invention sont donc parfaitement aptes à être utilisés pour fabriquer des pièces de pignonnerie (ou de toutes autres pièces pour lesquelles des caractéristiques comparables sont exigées) cémentées ou carbonitrurées à haute température, avec tous les avantages économiques que cela entraîne, sans aucunement sacrifier les performances desdites pièces. On a également procédé à d'autres essais de cémentation sous basse pression sur l'acier de référence A et sur l'acier E suivant l'invention. Pour une cémentation sous basse pression effectuée à 930°C sur l'acier A suivie d'une trempe gaz sous 20 bars, il faut 72mn de cémentation pour obtenir la profondeur de cémentation visée de 0,50mm pour HV = 550. Avec l'acier E suivant l'invention, en cémentation basse pression à 930°C suivie d'une trempe gaz (même gaz que pour l'acier A) sous 1 ,5 bar, 30mn de cémentation sont suffisantes pour obtenir la même profondeur cémentée de 0,50mm pour HV = 550. Pour une cémentation sous basse pression à haute température à 980°C effectuée sur l'acier A de référence, il faut 30mn de cémentation et une trempe gaz sous 20 bars pour obtenir la profondeur de cémentation visée de 0,50mm pour HV = 550. 20mn de temps de cémentation sous basse pression à 980°C sont suffisantes pour obtenir la même profondeur de cémentation de 0,5mm pour HV = 550 pour l'acier E suivant l'invention et ceci avec une trempe gaz sous une pression de seulement 1 ,5 bar. Le gaz de trempe utilisé pour les aciers A et E est bien sûr le même. Ceci montre que l'acier E suivant l'invention permet de réduire les temps de cémentation aussi bien à température de cémentation usuelleAs in the case of cementation at the usual temperature of 930 ° C, the two steels make it possible to achieve the target surface hardness. The invention makes it possible to obtain a substantially greater cemented depth than in the case of reference A, although the latter has been quenched under much more severe conditions which are known to increase the cemented depth, all things being equal. elsewhere. The difference in hardness between surface and core is much smaller in the case of the invention than in the case of references A and D (ΔHV = 240 for E, 428 for A and 274 for D respectively). The advantages mentioned above in terms of deformations during quenching after carburizing at usual temperature are also found here, even more accentuated. The core hardness is higher in the case of the invention than in the case of the reference, despite a much lower quench medium pressure. The consequences on improving the fatigue endurance in service mentioned above for quenching at usual temperature are also found here. Finally, both in the cemented zone and outside the cemented zone, the steel according to the invention has a finer ASTM grain size than the reference steels A and D. Therefore, it is less sensitive to the risks of magnification grain during case hardening at high temperature. This is a very significant advantage, because the enlargement of the grain on cemented parts has an extremely harmful effect on the fatigue strength at the base of the tooth and on the tenacity of the cemented parts. The steels according to the invention are therefore perfectly suitable for being used to manufacture gear parts (or any other parts for which comparable characteristics are required) cemented or carbonitrided at high temperature, with all the economic advantages that this entails, without sacrificing the performance of said parts. Other cementation tests were also carried out under low pressure on the reference steel A and on the steel E according to the invention. For low pressure carburizing carried out at 930 ° C on steel A followed by gas quenching at 20 bars, it takes 72 minutes of carburizing to obtain the targeted carburizing depth of 0.50mm for HV = 550. With the steel E according to the invention, in low pressure carburizing at 930 ° C followed by gas quenching (same gas as for steel A) under 1.5 bar, 30 minutes of carburizing are sufficient to obtain the same carburized depth of 0 , 50mm for HV = 550. For carburizing under low pressure at high temperature at 980 ° C performed on steel A of reference, 30 minutes of carburizing and a gas quenching under 20 bars are required to obtain the targeted carburizing depth of 0 , 50mm for HV = 550. 20 minutes of carburizing time under low pressure at 980 ° C are sufficient to obtain the same carburizing depth of 0.5mm for HV = 550 for steel E according to the invention and this with quenching gas at a pressure of only 1.5 bar. The quenching gas used for steels A and E is of course the same. This shows that the steel E according to the invention makes it possible to reduce the carburizing times as well at the usual carburizing temperature.
(930°C) qu'à haute température (980°C), ce qui permet de réduire les coûts de cémentation (quantité de gaz de cémentation, temps de cémentation,...) et d'augmenter la productivité pour la fabrication des pièces cémentées. L'acier suivant l'invention grâce à sa trempabilité maîtrisée permet aussi de réduire la pression des gaz de trempe pour obtenir une profondeur de cémentation identique, ce qui permet de réduire encore plus ou de supprimer les déformations sur pièces cémentées et d'obtenir des gains et des simplifications sur les technologies de trempe gaz des pièces dans les enceintes des fours de trempe gaz. On a aussi procédé à la cémentation sous basse pression d'éprouvettes de résilience non entaillées (Dimensions : L = 55mm, section 10x10mm) à haute température (980°C), d'une part sur l'acier A de référence avant une trempe gaz sous une pression de 20 bars, et d'autre part sur l'acier E selon l'invention mais ici avant une trempe gaz sous une pression de 1 ,5 bars seulement. Les profondeurs cémentées visées étaient identiques, de même que la nature du gaz de trempe. Les eprouvettes ainsi cémentées et trempées ont été ensuite rompues par choc à température ambiante. Les réultats d'énergie de rupture ainsi obtenus ont été respectivement de : - 19 Joules pour l'acier A de référence - 29 Joules pour l'acier E selon l'invention. Parallèlement on a cémenté sous basse pression à température usuelle (930°C) des eprouvettes de résilience de l'acier A de référence, pour obtenir la même profondeur cémentée que ci-dessus. Elles ont ensuite été trempées avec le même gaz, sous une pression de 20 bars. Ces eprouvettes ont été rompues comme ci-dessus à température ambiante et l'énergie de rupture ainsi obtenue a été de 17 Joules, soit très sensiblement moins que pour l'acier E selon l'invention cémenté à haute température. Ceci montre que malgré une dureté à cœur de l'éprouvette de l'acier A de référence (312 HV) plus faible que pour l'acier E selon l'invention (500 HV) la ténacité de l'acier E cémenté à haute température est plus élevée que celle de l'acier A de référence cémenté à haute température ou à température usuelle, pour la même profondeur cémentée finale. En d'autres termes, le fait d'utiliser un acier selon l'invention pour effectuer une cémentation à haute température, destinée à obtenir une profondeur cémentée donnée, ne pénalise pas, bien au contraire, la ténacité de pièces cémentées réalisées avec cet acier par rapport à l'utilisation d'un acier de référence, cémenté également à haute température ou à température de cémentation usuelle pour obtenir la même profondeur cémentée. L'écart de dureté à cœur entre les 2 aciers n'est pas pénalisant de ce point de vue. Ceci montre également que les aciers selon l'invention sont particulièrement adaptés à la cémentation à haute température, à la fois pour réduire les temps de cémentation, augmenter la productivité et réduire les coûts de cémentation, par rapport aux aciers connus cémentés à température usuelle ou à haute température. Les propriétés d'usage obtenues sur pièces, telles la ténacité, ne sont pas dégradées par rapport aux aciers de référence. On a aussi procédé dans les conditions déjà précisées à la cémentation sous basse pression à haute température (980°C) d'éprouvettes de fatigue-flexion de l'acier E selon l'invention comportant en leur centre une entaille en U évasée. Elle a été suivie d'une trempe gaz sous pression de 1 ,5 bars seulement, les profondeurs cémentées visées étant les mêmes, ainsi que la nature du gaz de trempe, que pour les essais sur eprouvettes de résilience. De la même façon on a effectué une cémentation gazeuse à la température usuelle de cémentation de 930°C sur l'acier A selon l'art antérieur, en visant la même profondeur cémentée que ci-dessus, sur des eprouvettes de fatigue- flexion identiques à celles de l'acier E. On leur a fait subir après cémentation une trempe à l'huile de façon à augmenter la dureté et la teneur en fatigue- flexion de l'acier A. On a ensuite comparé les limites d'endurance des deux lots d'éprouvettes d'acier E et A ainsi cémentées en fatigue-flexion 4 points, l'entaille en U évasée de ces eprouvettes étant centrée au droit de la charge appliquée en fatigue-flexion. Les essais de fatigue-flexion ont été conduits pour chaque acier A et E cémentés et trempés dans les conditions ci-dessus jusqu'à 10 millions de cycles. Dans ces conditions, la limite d'endurance à 10 millions de cycles de l'acier E suivant l'invention a été de 1405 MPa, et celle de l'acier A de 1165 MPa seulement. Cela montre que le fait d'utiliser un acier selon l'invention pour effectuer une cémentation à haute température, destinée à obtenir une profondeur cémentée donnée, ne pénalise pas la tenue en fatigue-flexion, mais au contraire lui est très favorable par rapport à une cémentation conventionnelle effectuée à température de cémentation usuelle sur un acier suivant l'art antérieur cémenté pour la même profondeur, et même trempé à l'huile pour augmenter sa tenue en fatigue-flexion. Il convient d'ajouter ici que ces essais de fatigue-flexion sont destinés à simuler la tenue en fatigue d'un pied de dent de pignon, engrenage ou pièce de pignonnerie en service dans une boite de vitesse de véhicule automobile. Ceci montre à nouveau que les aciers selon l'invention sont particulièrement adaptés à la cémentation à haute température à la fois pour réduire les temps de cémentation, augmenter la productivité, réduire les coûts de cémentation, par rapport aux aciers connus cémentés à température usuelle, sans pénaliser les propriétés d'usage obtenues sur pièces telle la tenue en fatigue-flexion en pied de dent d'un pignon ou engrenage cémenté. (930 ° C) than at high temperature (980 ° C), which reduces the cost of carburizing (quantity of carburizing gas, carburizing time, ...) and increasing the productivity for the manufacture of cemented parts. The steel according to the invention, thanks to its controlled quenchability also makes it possible to reduce the pressure of the quenching gases to obtain an identical depth of cementation, which makes it possible to further reduce or eliminate the deformations on cemented parts and to obtain gains and simplifications on gas quenching technologies for parts in the enclosures of gas quenching ovens. We also proceeded with the cementation under low pressure of notched impact specimens (Dimensions: L = 55mm, section 10x10mm) at high temperature (980 ° C), on the one hand on the reference steel A before gas quenching under a pressure of 20 bars, and on the other hand on steel E according to the invention but here before gas quenching under a pressure of only 1.5 bars. The target depths were identical, as was the nature of the quench gas. The thus cemented and quenched specimens were then broken by shock at room temperature. The fracture energy results thus obtained were respectively: - 19 Joules for the reference steel A - 29 Joules for the steel E according to the invention. In parallel, the resilience test pieces of reference steel A were cemented under low pressure at usual temperature (930 ° C.), in order to obtain the same cemented depth as above. They were then quenched with the same gas, under a pressure of 20 bars. These test pieces were broken as above at ambient temperature and the breaking energy thus obtained was 17 Joules, ie very substantially less than for the steel E according to the invention cemented at high temperature. This shows that despite a hardness at the heart of the test piece of reference steel A (312 HV) lower than for steel E according to the invention (500 HV) the toughness of steel E case hardened at high temperature is higher than that of the reference steel A cemented at high temperature or at usual temperature, for the same final cemented depth. In other words, the fact of using a steel according to the invention for carrying out case hardening at high temperature, intended to obtain a given case hardened depth, does not penalize, quite the contrary, the tenacity of case hardened parts produced with this steel compared to the use of a reference steel, also case-hardened at high temperature or at the usual case-hardening temperature to obtain the same case-hardened depth. The difference in hardness at heart between the 2 steels is not penalizing from this point of view. This also shows that the steels according to the invention are particularly suitable for case hardening at high temperature, both to reduce the case hardening times, to increase the productivity and to reduce the cost of case hardening, compared to known steels case hardened at usual temperature or at high temperature. The usage properties obtained on parts, such as toughness, are not degraded compared to reference steels. We also proceeded under the conditions already specified to the hardening under low pressure at high temperature (980 ° C) of fatigue-bending test pieces of steel E according to the invention comprising in their center a flared U-shaped notch. It was followed by a gas quenching under pressure of only 1.5 bars, the case-hardened depths being the same, as well as the nature of the quenching gas, as for the tests on impact specimens. In the same way, a gas carburizing was carried out at the usual carburizing temperature of 930 ° C. on steel A according to the prior art, aiming for the same carburized depth as above, on identical fatigue-bending test pieces. to those of steel E. They were subjected after cementation to oil quenching so as to increase the hardness and the fatigue-bending content of steel A. We then compared the limits of endurance of two batches of steel test pieces E and A thus cemented in 4-point fatigue-bending, the flared U-shaped notch of these test pieces being centered at the load applied to fatigue-bending. The fatigue-flexion tests were carried out for each steel A and E case-hardened and hardened under the above conditions up to 10 million cycles. Under these conditions, the endurance limit at 10 million cycles of the steel E according to the invention was 1405 MPa, and that of the steel A of only 1165 MPa. This shows that the fact of using a steel according to the invention to carry out carburizing at high temperature, intended to obtain a given cemented depth, does not penalize the resistance to fatigue-bending, but on the contrary is very favorable to it compared to a conventional carburizing carried out at usual carburizing temperature on a steel according to the prior art cemented for the same depth, and even soaked in oil to increase its resistance to fatigue-bending. It should be added here that these fatigue-flexion tests are intended to simulate the fatigue life of a pinion tooth foot, gear or piece of gear in service in a motor vehicle gearbox. This again shows that the steels according to the invention are particularly suitable for case-hardening at high temperature both to reduce the case-hardening times, to increase the productivity, to reduce the costs of case-hardening, compared with known steels case-hardened at usual temperature, without penalizing the properties of use obtained on parts such as the fatigue-bending behavior at the base of the tooth of a cemented pinion or gear.

Claims

REVENDICATIONS
1. Acier pour pièces mécaniques, caractérisé en ce que sa composition est, en pourcentages pondéraux : -0,19% ≤C≤ 0,25%; -1,1%<Mn<1,5%; -0,8%<Si<1,2%; -0,01%<S<0,09%; - traces ≤ P ≤ 0,025% ; - traces ≤ Ni ≤ 0,25% ; -1%≤Cr≤1,4%; - 0,10% ≤ Mo < 0,25%; - traces ≤ Cu ≤ 0,30% ; - 0,010% ≤AI≤ 0,045%; - 0,010% ≤Nb≤ 0,045%; - 0,0130% <N< 0,0300%; - optionnellement traces ≤ Bi ≤ 0,10% et/ou traces ≤Pb ≤ 0,12% et/ou traces ≤ Te ≤ 0,015% et/ou traces ≤ Se < 0,030% et/ou traces ≤ Ca ≤ 0,0050% ; le reste étant du fer et des impuretés résultant de l'élaboration, la composition chimique étant ajustée pour que les valeurs moyennes J3m, Jum, Jism et J25m de cinq essais Jominy soient telles que : α = | Jum - Jsm x 14/22 - J25m x 8/22 | ≤ 2,5 HRC ; et 1. Steel for mechanical parts, characterized in that its composition is, in weight percentages: -0.19% ≤C≤ 0.25%; -1.1% <Mn <1.5%; -0.8% <Si <1.2%; -0.01% <S <0.09%; - traces ≤ P ≤ 0.025%; - traces ≤ Ni ≤ 0.25%; -1% ≤Cr≤1,4%; - 0.10% ≤ Mo <0.25%; - traces ≤ Cu ≤ 0.30%; - 0.010% ≤AI≤ 0.045%; - 0.010% ≤Nb≤ 0.045%; - 0.0130% <N <0.0300%; - optionally traces ≤ Bi ≤ 0.10% and / or traces ≤Pb ≤ 0.12% and / or traces ≤ Te ≤ 0.015% and / or traces ≤ Se <0.030% and / or traces ≤ Ca ≤ 0.0050% ; the remainder being iron and impurities resulting from the production, the chemical composition being adjusted so that the mean values J 3m , Jum, Jism and J25m of five Jominy tests are such that: α = | Jum - Jsm x 14/22 - J 25m x 8/22 | ≤ 2.5 HRC; and
2. Acier pour pièces mécaniques selon la revendication 1, caractérisé en ce que sa composition est ajustée pour que 2. Steel for mechanical parts according to claim 1, characterized in that its composition is adjusted so that
3. Acier pour pièces mécaniques selon la revendication 1 ou 2, caractérisé en ce que sa composition est : -0,19% ≤C≤ 0,25%; -1,2%≤Mn≤1,5%; - 0,85% ≤ Si ≤ 1,2%; -0,01%≤S≤0,09%; - traces ≤ P ≤ 0,025% ; - 0,08% ≤ Ni ≤ 0,25% ; -1,1%≤Cr≤1,4%; - 0,10% ≤ Mo ≤ 0,25%; - 0,06% ≤ Cu ≤ 0,30% ; - 0,010% ≤AI≤ 0,045%; - 0,015% ≤Nb≤ 0,045%; -0,0130%≤N≤0,0300% ; - optionnellement traces < Bi < 0,07% et/ou traces < Pb < 0,12% et/ou traces < Te ≤ 0,010% et/ou traces ≤ Se ≤ 0,020% et/ou traces ≤ Ca ≤ 0,045%, le reste étant du fer et les impuretés résultant de l'élaboration.3. Steel for mechanical parts according to claim 1 or 2, characterized in that its composition is: -0.19% ≤C≤ 0.25%; -1.2% ≤Mn≤1,5%; - 0.85% ≤ If ≤ 1.2%; -0.01% ≤S≤0,09%; - traces ≤ P ≤ 0.025%; - 0.08% ≤ Ni ≤ 0.25%; -1.1% ≤Cr≤1,4%; - 0.10% ≤ Mo ≤ 0.25%; - 0.06% ≤ Cu ≤ 0.30%; - 0.010% ≤AI≤ 0.045%; - 0.015% ≤Nb≤ 0.045%; -0.0130% ≤N≤0.0300%; - optionally traces <Bi <0.07% and / or traces <Pb <0.12% and / or traces <Te ≤ 0.010% and / or traces ≤ Se ≤ 0.020% and / or traces ≤ Ca ≤ 0.045%, the remainder being iron and impurities resulting from processing.
4. Acier pour pièces mécaniques selon la revendication 3, caractérisé en ce que sa composition est : - 0,20% ≤C≤ 0,25% ; - 1,21% ≤Mn≤ 1,45%; - 0,85% ≤ Si ≤ 1,10%; -0,01%≤S≤0,08%; - traces ≤ P ≤ 0,020% ; - 0,08% ≤ Ni ≤ 0,20% ; - 1,10% ≤Cr≤ 1,40%; - 0,11% ≤ Mo ≤ 0,25%; - 0,08% ≤ Cu ≤ 0,30% ; - 0,010% ≤ Al ≤ 0,035%; - 0,025% ≤ Nb ≤ 0,040% ; -0,0130%≤N≤0,0220%; - optionnellement traces < Bi < 0,07% et/ou traces ≤ Pb ≤ 0,12% et/ou traces < Te < 0,010% et/ou traces < Se ≤ 0,020% et/ou traces < Ca ≤ 0,045%, le reste étant du fer et les impuretés résultant de l'élaboration.4. Steel for mechanical parts according to claim 3, characterized in that its composition is: - 0.20% ≤C≤ 0.25%; - 1.21% ≤Mn≤ 1.45%; - 0.85% ≤ If ≤ 1.10%; -0.01% ≤S≤0,08%; - traces ≤ P ≤ 0.020%; - 0.08% ≤ Ni ≤ 0.20%; - 1.10% ≤Cr≤ 1.40%; - 0.11% ≤ Mo ≤ 0.25%; - 0.08% ≤ Cu ≤ 0.30%; - 0.010% ≤ Al ≤ 0.035%; - 0.025% ≤ Nb ≤ 0.040%; -0.0130% ≤N≤0,0220%; - optionally traces <Bi <0.07% and / or traces ≤ Pb ≤ 0.12% and / or traces <Te <0.010% and / or traces <Se ≤ 0.020% and / or traces <Ca ≤ 0.045%, the remainder being iron and impurities resulting from processing.
5. Procédé de fabrication d'une pièce mécanique en acier cémentée ou carbonitrurée, caractérisé en ce qu'on utilise à cet effet un acier selon l'une des revendications 1 à 4 sur lequel on réalise un usinage, une cémentation ou une carbonitruration puis une trempe.5. A method of manufacturing a mechanical part of case-hardened or carbonitrided steel, characterized in that a steel is used for this purpose according to one of Claims 1 to 4, on which machining, carburizing or carbonitriding is carried out, followed by quenching.
6. Procédé selon la revendication 5, caractérisé en ce que ladite cémentation ou carbonitruration a lieu à une température de 950 à 1050°C.6. Method according to claim 5, characterized in that said carburizing or carbonitriding takes place at a temperature of 950 to 1050 ° C.
7. Pièce mécanique en acier, caractérisée en ce qu'elle est obtenue par le procédé selon la revendication 5 ou 6.7. Mechanical steel part, characterized in that it is obtained by the method according to claim 5 or 6.
8. Pièce mécanique selon la revendication 7, caractérisée en ce qu'il s'agit d'une pièce de pignonnerie. 8. Mechanical part according to claim 7, characterized in that it is a gear room.
EP05742733A 2004-03-24 2005-03-21 Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts Withdrawn EP1727919A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0403038A FR2868083B1 (en) 2004-03-24 2004-03-24 STEEL FOR MECHANICAL PARTS, PROCESS FOR MANUFACTURING MECHANICAL PARTS USING THE SAME, AND MECHANICAL PARTS THUS PRODUCED
PCT/FR2005/000684 WO2005098070A2 (en) 2004-03-24 2005-03-21 Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts

Publications (1)

Publication Number Publication Date
EP1727919A2 true EP1727919A2 (en) 2006-12-06

Family

ID=34944604

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05742733A Withdrawn EP1727919A2 (en) 2004-03-24 2005-03-21 Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts

Country Status (14)

Country Link
US (1) US20070193658A1 (en)
EP (1) EP1727919A2 (en)
JP (1) JP5020066B2 (en)
CN (1) CN100519811C (en)
AR (1) AR049793A1 (en)
AU (1) AU2005232002B2 (en)
BR (1) BRPI0508776A (en)
CA (1) CA2559562C (en)
FR (1) FR2868083B1 (en)
RU (1) RU2381295C2 (en)
TW (1) TWI352126B (en)
UA (1) UA84195C2 (en)
WO (1) WO2005098070A2 (en)
ZA (1) ZA200607903B (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2935988B1 (en) 2008-09-12 2010-10-08 Ascometal Sa STEEL, IN PARTICULAR FOR BEARINGS AND MECHANICAL PARTS SUITABLE FOR CEMENTATION OR CARBONITURATION, AND PARTS PRODUCED WITH SAID STEEL.
DE102009041041B4 (en) * 2009-09-10 2011-07-14 ALD Vacuum Technologies GmbH, 63450 Method and apparatus for hardening workpieces, as well as work hardened workpieces
JP5432105B2 (en) * 2010-09-28 2014-03-05 株式会社神戸製鋼所 Case-hardened steel and method for producing the same
JP5458048B2 (en) * 2011-03-29 2014-04-02 株式会社神戸製鋼所 Case-hardened steel, its manufacturing method, and machine structural parts using case-hardened steel
CN108531804A (en) * 2018-03-20 2018-09-14 马鞍山钢铁股份有限公司 A kind of sulfur-bearing al-killed pinion steel and its Morphology of Sulfide control method
JP7323791B2 (en) * 2019-08-09 2023-08-09 日本製鉄株式会社 Carburized gear steel, carburized gear, and method for manufacturing carburized gear
WO2024003593A1 (en) 2022-06-28 2024-01-04 Arcelormittal Forged part of steel and a method of manufacturing thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2634894B2 (en) * 1989-01-23 1997-07-30 新日本製鐵株式会社 Carburizing-steel for shot peening
JP2945714B2 (en) * 1990-05-15 1999-09-06 日産自動車株式会社 High surface pressure gear
US5746842A (en) * 1995-09-29 1998-05-05 Toa Steel Co., Ltd. Steel gear
JP2769135B2 (en) * 1995-10-11 1998-06-25 トーア・スチール株式会社 Low distortion type steel material for carburized hardened gears
JP3517515B2 (en) * 1996-04-23 2004-04-12 エヌケーケー条鋼株式会社 High-strength, low heat-treated deformed gear and manufacturing method thereof
JP3329210B2 (en) * 1996-10-16 2002-09-30 住友金属工業株式会社 Method for producing case hardened steel and case hardened steel manufactured by the method
FR2765890B1 (en) * 1997-07-10 1999-08-20 Ascometal Sa PROCESS FOR MANUFACTURING A MECHANICAL PART IN CEMENTED OR CARBONITRIDE STEEL AND STEEL FOR THE MANUFACTURE OF SUCH A PART
JP4050829B2 (en) * 1998-07-30 2008-02-20 新日本製鐵株式会社 Carburized material with excellent rolling fatigue characteristics
WO2000044953A1 (en) * 1999-01-28 2000-08-03 Sumitomo Metal Industries, Ltd. Machine structural steel product
JP2000273574A (en) * 1999-03-25 2000-10-03 Mitsubishi Seiko Muroran Tokushuko Kk Steel for carburizing or carbonitriding treatment
JP3954772B2 (en) * 2000-04-26 2007-08-08 新日本製鐵株式会社 Shaped material for high-temperature carburized parts with excellent grain coarsening prevention characteristics and manufacturing method thereof
EP1167561A3 (en) * 2000-06-28 2009-03-04 Mitsubishi Steel Muroran Inc. Carburizing and carbonitriding steel
JP3932102B2 (en) * 2001-07-17 2007-06-20 大同特殊鋼株式会社 Case-hardened steel and carburized parts using the same
FR2827875B1 (en) * 2001-07-24 2006-09-15 Ascometal Sa STEEL FOR MECHANICAL PARTS, AND MECHANICAL CEMENTIC OR CARBONITURAL PARTS PRODUCED THEREFROM

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005098070A3 *

Also Published As

Publication number Publication date
FR2868083B1 (en) 2006-07-21
FR2868083A1 (en) 2005-09-30
CA2559562A1 (en) 2005-10-20
WO2005098070A2 (en) 2005-10-20
JP5020066B2 (en) 2012-09-05
RU2381295C2 (en) 2010-02-10
UA84195C2 (en) 2008-09-25
TW200600589A (en) 2006-01-01
AU2005232002A1 (en) 2005-10-20
US20070193658A1 (en) 2007-08-23
AU2005232002B2 (en) 2010-07-29
ZA200607903B (en) 2008-03-26
RU2006137376A (en) 2008-05-10
BRPI0508776A (en) 2007-09-04
JP2007530780A (en) 2007-11-01
CN1950533A (en) 2007-04-18
CA2559562C (en) 2013-09-03
WO2005098070A3 (en) 2006-10-05
CN100519811C (en) 2009-07-29
TWI352126B (en) 2011-11-11
AR049793A1 (en) 2006-09-06

Similar Documents

Publication Publication Date Title
EP2310546B1 (en) Hardened martensitic steel having a low cobalt content, process for manufacturing a part from this steel, and part thus obtained
EP2164998B1 (en) Hardened martensitic steel having a low or zero content of cobalt, process for manufacturing a part from this steel, and part thus obtained
EP1874973B1 (en) Tempered martensitic steel, method of producing a part from said steel and part thus obtained
EP1896624B1 (en) Martensitic stainless steel composition, method for making a mechanical part from said steel and resulting part
CA2984131C (en) Steel, product made of said steel, and manufacturing method thereof
WO2015098106A1 (en) Carburized-steel-component production method, and carburized steel component
EP3765646B1 (en) Steel composition
EP0890653B1 (en) Process for manufacturing of articles from carburized or carbonitrided steel and steel for the manufacturing of said articles
WO2017216500A1 (en) Steel composition
JP4102866B2 (en) Gear manufacturing method
CA2559562C (en) Steel for mechanical parts, method for producing mechanical parts from said steel and the thus obtainable mechanical parts
JP5381171B2 (en) Manufacturing method of high strength case hardening steel parts
EP2134882A2 (en) Microalloyed steel with good resistance to hydrogen for the cold-forming of machine parts having high properties
JP6601358B2 (en) Carburized parts and manufacturing method thereof
JP5683348B2 (en) Carburized member, steel for carburized member, and method for manufacturing carburized member
EP1114199B1 (en) Steel for making a ball bearing part
JP2004285384A (en) High strength carburized component
FR2827875A1 (en) Steel used in fabrication of mechanical components comprises specified amounts of carbon, silicon, manganese, chromium, molybdenum, nickel, aluminum, copper, sulfur, phosphorus, niobium and the rest is iron and impurities
JPH0578782A (en) Rolling bearing
JP2024108521A (en) Steel component
BE468057A (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060919

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20081119

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20151001