[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2045827B1 - Circuit breaker interruptor tube with double compression volume - Google Patents

Circuit breaker interruptor tube with double compression volume Download PDF

Info

Publication number
EP2045827B1
EP2045827B1 EP08165337.0A EP08165337A EP2045827B1 EP 2045827 B1 EP2045827 B1 EP 2045827B1 EP 08165337 A EP08165337 A EP 08165337A EP 2045827 B1 EP2045827 B1 EP 2045827B1
Authority
EP
European Patent Office
Prior art keywords
chamber
compression chamber
compression
current interrupting
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP08165337.0A
Other languages
German (de)
French (fr)
Other versions
EP2045827A1 (en
Inventor
Denis Dufournet
Dan Penache
Michel Tresy
Michel Perret
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Technology GmbH
Original Assignee
Alstom Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Technology AG filed Critical Alstom Technology AG
Publication of EP2045827A1 publication Critical patent/EP2045827A1/en
Application granted granted Critical
Publication of EP2045827B1 publication Critical patent/EP2045827B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H33/905Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism the compression volume being formed by a movable cylinder and a semi-mobile piston
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/906Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism with pressure limitation in the compression volume, e.g. by valves or bleeder openings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/70Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid
    • H01H33/88Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts
    • H01H33/90Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism
    • H01H2033/908Switches with separate means for directing, obtaining, or increasing flow of arc-extinguishing fluid the flow of arc-extinguishing fluid being produced or increased by movement of pistons or other pressure-producing parts this movement being effected by or in conjunction with the contact-operating mechanism using valves for regulating communication between, e.g. arc space, hot volume, compression volume, surrounding volume

Definitions

  • the invention relates to the field of breaking chambers of power circuit breakers, and more particularly that of double volume compression breaking chambers.
  • the invention is particularly suitable for high-voltage use, for example for voltages greater than or equal to about 72.5 kV.
  • circuit breakers In the field of circuit breakers, and particularly that of power circuit breakers, it is important to use the least possible operating energy to cut off currents, whether fault currents, for example short-circuit currents, or load currents such as vacuum line currents.
  • the documents US 4,559,425 and US 3,975,602 disclose self-blowing circuit breakers that compress a dielectric gas to blow an arc that is formed between arcing contacts during a power failure operation, or opening operation of the circuit breaker. Compression is generally performed by an operating member actuating a moving part, such as a piston, in the breaking chamber.
  • These circuit breakers also use the energy provided by the arc under heat, thereby reducing external power consumption compared to conventional gas compression circuit breakers.
  • the stroke of the moving part of the breaking chamber producing the compression is approximately proportional to the nominal voltage of the circuit breaker.
  • the energy provided by the arc is much less important than when the current is high, and if moreover the duration of the arc is long (between about 13 and 20 ms), there is a risk that the blowing is insufficient to ensure the interruption of the current.
  • EP 0 821 382 A discloses a current-breaking chamber according to the preamble of claim 1.
  • the document FR 2,892,851 discloses a current breaking chamber of a circuit breaker having two compression chambers cooperating during an opening operation of the circuit breaker.
  • the second compression chamber injects dielectric fluid into the first compression chamber during a portion of the circuit breaker opening operation, when the pressure in the first compression chamber is less than the pressure in the second compression chamber.
  • the cooperation between the two compression chambers makes it possible, during a strong power failure, to preserve the advantages of a reduced compression stroke produced by the first compression chamber, and when a cut of a weak current, to achieve this cut without unnecessarily increasing the external power consumption whatever the duration of the arc, and in particular when the duration of arc is long.
  • a dielectric breakdown can occur at the circuit breaker, in particular between the circuit breaker arcing contacts, during the breaking of the capacitive currents if the dielectric strength between contacts is lower than the voltage restored after cutoff imposed by the network. If this breakdown occurs between the instant corresponding to the cutoff and a quarter of the period of the mains voltage imposed on the circuit breaker after the cut-off time, this breakdown causes the circuit-breaker to re-ignite. Such a reignition does not produce an overvoltage on the network but can lead to damage to the insulators, for example that used for the circuit breaker nozzle.
  • the object of the present invention is to provide a breaking chamber, used in particular in a power circuit breaker, for cutting off both strong and low currents, while avoiding unnecessarily increasing the external energy consumption by the circuit breaker, be there duration of the arc, and also to cut optimally capacitive currents.
  • the invention proposes a current cutoff chamber, intended to be used in a circuit breaker, filled with a dielectric fluid.
  • This chamber comprises a movable assembly, moving axially between a start position and an end of operation opening position of the circuit breaker.
  • the moving assembly comprises at least a first compression chamber whose volume decreases between the opening operation opening position of the circuit breaker and a compression end position of the first compression chamber.
  • the movable assembly also comprises a hollow actuating tube comprising at one end at least a first arcing contact, intended to cooperate with a second arcing contact, and openings communicating the inside of the operating tube with the outside the current-breaking chamber, the inside of the operating tube communicating with the first compression chamber between a separation position of the two arcing contacts and the end-of-operation position of opening of the circuit breaker.
  • the movable assembly further comprises a second compression chamber, communicating at a first end with the first compression chamber, the volume of which decreases between the position of separation of the contacts and the end position of the opening operation of the circuit breaker, for injecting dielectric fluid into the first compression chamber between the separation position of the two arcing contacts and the end-of-operation position of opening of the circuit breaker, when the pressure in the first compression chamber is lower than the pressure in the second compression chamber.
  • the moving assembly also comprises means obstructing the openings of the operating tube from the opening operation opening position of the circuit breaker to an intermediate position reached between the position of separation of the two arcing contacts and the position of end of opening operation of the circuit breaker.
  • the compression end position of the first compression chamber is reached before the end of the circuit breaker opening operation position, and a compression end position of the second compression chamber is reached after the compression end position of the first compression chamber.
  • the cooperation between the two compression chambers makes it possible, during a strong power failure, to retain the advantages of a reduced compression stroke produced by the first compression chamber, and during a cutoff of a low current, to achieve this break without unnecessarily increasing the external power consumption of the circuit breaker, regardless of the duration of the arc and in particular when the arc duration is long.
  • the second compression chamber allows to maintain the blowing of the arc, initially produced by the first compression chamber, during the entire arc duration, and this by avoiding excessive external energy consumption thanks to the use of the energy supplied by the arc for the duration of the blowing.
  • the power cutoff chamber may include a first compression volume that becomes a thermal expansion volume for arc blowing when the compression in that volume is complete, and further comprises a second compression volume.
  • the first compression chamber can be quickly put under overpressure using the displacement of the arcing contacts during only a first part of the total stroke of the moving assembly. The compression in the first chamber is therefore performed during a reduced compression stroke, allowing a rapid increase in pressure, and involving blowing performance higher than those devices whose compression is performed during the entire displacement stroke.
  • the second compression chamber then intervenes as needed to contribute to the end-of-stroke blow-out of the arcing contacts.
  • the use of the breaking chamber according to the invention in a circuit breaker makes it possible to use operating members comprising a spring mechanism requiring little energy.
  • the means obstructing the openings of the operating tube from the opening operation opening position of the circuit breaker to an intermediate position reached between a position of separation of the two arcing contacts and the end position of opening operation of the circuit breaker, or between the position of separation of the two arcing contacts and an opening position of the first compression chamber obtained during the separation of one of the arcing contacts with a nozzle (this contact arc and the nozzle cooperating to close the first compression chamber at one of its ends), allow the volume of the operating tube to be overpressured at the same time as the first compression chamber before the separation of the contacts arc and practically keep this overpressure for a few milliseconds after the separation of the contacts, and thus maintain a high density of gas between the arcing contacts during the critical period of time.
  • the dimensions and the positioning of the obstruction means of the openings relative to the maneuvering tube may be such that the intermediate position is reached after a duration of between about 2 ms and 7 ms, after the position of separation of the two arc contacts. . After this time, the arcing contacts can be quite far apart, thus eliminating the risk of dielectric breakdown occurring between the arcing contacts.
  • the means for obstructing the openings of the maneuvering tube may comprise at least one deflector disposed inside the operating tube.
  • the baffle may be movable relative to the maneuvering tube.
  • the first compression chamber may be formed by at least a first tubular element.
  • the second compression chamber may be formed by at least two second coaxial tubular members.
  • One of the two second tubular elements may at least partly form the operating tube.
  • the second compression chamber may be closed at a second end by at least one sleeve disposed between the two second coaxial tubular elements.
  • the means for obstructing the openings of the maneuvering tube may comprise the sleeve.
  • the maneuvering tube may be movable relative to the sleeve.
  • the first compression chamber may comprise at one end a nozzle intended to cooperate with the second arcing contact to effect an opening of the first compression chamber between said intermediate position and the end position of the opening operation of the circuit breaker.
  • the second compression chamber can communicate with the first compression chamber via at least one valve.
  • the first and second arcing contacts may be axially movable relative to each other.
  • the invention also relates to a circuit breaker comprising a current-breaking chamber as described above.
  • the figure 1 represents a current-breaking chamber 100 according to a particular embodiment.
  • the breaking chamber 100 is in the engaged position, that is to say in the position in which is the interrupting chamber 100 at the beginning of a power failure operation, that is to say at the beginning of an operation of opening of the circuit breaker including the breaking chamber 100.
  • the breaking chamber 100 comprises a casing 102 filled with a dielectric fluid, here a dielectric gas, under pressure.
  • a dielectric fluid here a dielectric gas
  • This gas may for example be sulfur hexafluoride ( SF 6 ), nitrogen ( N 2 ), dry air, carbon dioxide ( CO 2 ) or a gaseous mixture.
  • the cutting chamber 100 comprises a first tubular element 104 forming a first compression chamber 106.
  • This first compression chamber 106 is closed in particular at a first end by an operating tube 108.
  • the first tubular element 104 forms, at the level of a second end of the first compression chamber 106, a nozzle 110.
  • the interrupting chamber 100 also comprises a first and a second arcing contact, respectively 112 and 114, movable relative to each other along an axis AA.
  • the second arc contact 114 cooperates with the nozzle 110 to close the first compression chamber 106 at its second end.
  • the first arcing contact 112 is movable and the second arcing contact 114 is fixed.
  • the first arcing contact 112, here integrated at one end of the operating tube 108 is disposed inside the first compression chamber 106.
  • the breaking chamber 100 comprises at least two second tubular elements 116 and 118, coaxial with respect to the axis AA.
  • One of the two second tubular elements 116 forms part of the operating tube 108.
  • the space between the two second tubular elements 116 and 118 forms a second compression chamber 120.
  • the volume of the second compression chamber 120 is less than that of the first compression chamber 106.
  • the second compression chamber 120 communicates with the first compression chamber 106, at a first end, with at least one valve 122, for example a one-way valve, integrated with the operating tube 108.
  • This valve 122 opens only when the pressure in the second compression chamber 120 is greater than that in the first compression chamber 106.
  • the second compression chamber 120 is closed at a second end by a sleeve 124 having a filling valve 126 used after the operation. opening circuit breaker, so that gas can enter the second compression chamber 120 when the interrupting chamber 100 returns to the engaged position.
  • the interrupting chamber 100 also has permanent contacts 128, 130 causing the current to flow through the circuit breaker when the interrupting chamber 100 is in the engaged position.
  • the permanent contacts 128, 130 are axially movable relative to each other along the axis AA. In the mode of embodiment described here, only the contact 130, integrated with the first tubular element 104, is movable.
  • the first tubular element 104 is connected to a rod 132 from which operating means of the circuit breaker, not shown on the figure 1 , can realize the opening of the circuit breaker.
  • This rod 132 is integral with a deflector 134 disposed inside the operating tube 108, and here inside the second tubular element 116, and closes the inside of the operating tube 108 at one end, other end being closed by the arcing contacts 112 and 114.
  • the deflector 134 is also movable relative to the operating tube 108 along the axis AA.
  • Openings 136 are made through the second tubular element 116 and make it possible to communicate the inside of the operating tube 108 with the rest of the envelope 102. figure 1 these openings 136 are obstructed by the deflector 134 and the sleeve 124.
  • the first tubular element 104, the operating tube 108, the second tubular elements 116, 118, the rod 132 and the deflector 134 form a mobile assembly 138 adapted to be displaced along the axis AA in the casing 2 during the operation circuit breaker opening, or the power failure operation.
  • the figure 2 represents the interrupting chamber 100 in the compression end position of the first compression chamber 106.
  • the first tubular element 104, the rod 132 and the deflector 134 have been moved along the axis AA by operating means, not shown, connected to the rod 132.
  • the displacement of the first tubular element 104 here reduces the volume of the first compression chamber 106 because the operating tube 108 and the second tubular elements 116, 118 remain stationary, thus increasing the pressure inside the first compression chamber 106
  • metal balls as on the Figure 2A of the document FR 2892851 ; but other means are possible.
  • the axial displacement stroke achieved during this portion of the circuit breaker opening operation is about one third to one half of the total axial displacement stroke of a circuit breaker opening operation.
  • the permanent contacts 128 and 130 are no longer in contact with each other, unlike the arcing contacts 112, 114 which are still in contact with each other. Therefore, in the compression end position of the first compression chamber 106, the current passes only through the arcing contacts 112, 114. The arcing contacts 112, 114 therefore remain in contact during the entire compression phase. of the first chamber 106.
  • the deflector 134 has been moved axially inside the operating tube 108, here over a distance equivalent to that traveled by the first tubular element 104. On the figure 2 the deflector 134 no longer closes the openings 136. However, these openings 136 are still obstructed by the sleeve 124.
  • the figure 3 represents the breaking chamber 100 after the separation of the arc contacts 112, 114.
  • the moving assembly 138 With respect to the compression end position of the first compression chamber 106, the moving assembly 138 has moved along the axis AA relative to the fixed elements of the circuit breaker, here the second arcing contact 114, the permanent contact 128 and the sleeve 124.
  • the arcing contacts 112 and 114 are no longer in contact with each other.
  • the operating tube 108 and the second tubular elements 116, 118 are driven in movement along the axis AA by the first tubular element 104.
  • the separation of the arcing contacts 112, 114 causes the formation of an arc between these two arcing contacts 112, 114, as well as the setting in communication of the volume of the first compression chamber 106 with that of the inside of the operating tube 108.
  • the openings 136 are no longer obstructed by the deflector 134 but only by the sleeve 124.
  • the volume formed by that of the first compression chamber 106 and that of the inside of the maneuvering tube is thus closed at a first end by the deflector 134 and the sleeve 124, and at a second end by the second arc contact 114 cooperating with the nozzle 110.
  • the volume of the second chamber of compression 120 has also been reduced by the displacement of the tubular elements 116, 118 relative to the sleeve 124, thus increasing the pressure inside the second chamber 120. Since the compression in the first compression chamber 106 is complete and that the compression of the gas takes place only in the second chamber, the energy used for the displacement of the moving assembly 138 is less than that used for the compression of the first chamber 106.
  • the figure 4 represents the breaking chamber 100 in a position where the openings 136 are no longer obstructed.
  • the volume formed by that of the first compression chamber 106 and that of the inside of the operating tube 108 is therefore always closed at its second end by the nozzle 110 and the second arc contact 114, but is open at level of its first end through the openings 136 which are no longer obstructed.
  • an intermediate position from which the openings 136 are no longer obstructed corresponds to a position reached between that represented on the figure 3 and the one represented on the figure 4 , or between a position of separation of the arcing contacts and a position of opening end of the circuit breaker, or between a position of separation of the arcing contacts and an opening position of the first compression chamber 106 by the separation of the nozzle 110 and the second arc contact 114.
  • the duration corresponding to the passage of the separation position of the two arcing contacts 112, 114 to the intermediate position can be adjusted thanks to the dimensions of the openings 136, the deflector 134 and the sleeve 124, and the positioning of these elements. one against another.
  • This duration may in particular be adjusted so that it is between about a quarter of a period and half a period of a mains voltage applied to the circuit breaker after the position of separation of the two arcing contacts 112, 114.
  • this duration is between about 5 ms and 10 ms in the case of a mains voltage whose frequency is equal to 50 Hz, and is between about 4.2 ms and 8.3 ms in the case of a mains voltage whose frequency is equal to 60 Hz.
  • this duration is adjusted so that it is between about 2 ms and 7 ms after the position of separation of the two arcing contacts 112, 114.
  • the openings 136 are no longer obstructed because the distance between the arcing contacts 112, 114 is such that there is no longer any risk of dielectric breakdown between the arcing contacts 112, 114 during a capacitive power failure.
  • the figure 5 represents the interrupting chamber 100 in the end position of the circuit breaker opening operation, corresponding to a compression end position of the second compression chamber 120.
  • the blowing carried out by the first compression chamber 106 is sufficient to extinguish the arc.
  • the energy provided by the arc is sufficient for the blowing created by the first compression chamber 106 extinguishes the arc.
  • the duration of the arc is long, and the value of the current is weak, that is to say less than approximately 30% of the default value, the energy brought by the arc is insufficient. for the blowing created by the first compression chamber 106 extinguishes the arc.
  • the arc is therefore always present after the decompression of the gas present in the first chamber 106.
  • the pressure in the first compression chamber 106 is then lower than that in the second compression chamber 120, which causes the opening of the valve 122. Gas is then blown from the second compression chamber 120, and this continuous blowing until the moving assembly 138 reaches the end of travel or the arc goes out.
  • the present invention also relates to a circuit breaker 200, shown in FIG. figure 6 , comprising a breaking chamber 100 as described above.
  • This circuit breaker 200 is, for example, a high or medium voltage power circuit breaker, that is to say used for voltages greater than about 52 kV.
  • the interrupting chamber 100 is connected to an actuator 202 for actuating the compression in the interrupting chamber 100 and the opening of the circuit breaker 200.

Landscapes

  • Circuit Breakers (AREA)
  • Arc-Extinguishing Devices That Are Switches (AREA)

Description

DOMAINE TECHNIQUETECHNICAL AREA

L'invention concerne le domaine des chambres de coupure de disjoncteurs de puissance, et plus particulièrement celui des chambres de coupure à double volume de compression. L'invention est particulièrement adaptée pour une utilisation haute-tension, par exemple pour des tensions supérieures ou égales à environ 72,5 kV.The invention relates to the field of breaking chambers of power circuit breakers, and more particularly that of double volume compression breaking chambers. The invention is particularly suitable for high-voltage use, for example for voltages greater than or equal to about 72.5 kV.

ÉTAT DE LA TECHNIQUE ANTÉRIEURESTATE OF THE PRIOR ART

Dans le domaine des disjoncteurs, et particulièrement celui des disjoncteurs de puissance, il est important d'utiliser le moins d'énergie de manoeuvre possible pour couper des courants, que ce soit des courants de défaut, par exemple en court-circuit, ou des courants de charges tels que des courants de lignes à vide. Les documents US 4 559 425 et US 3 975 602 décrivent des disjoncteurs à auto-soufflage réalisant une compression d'un gaz diélectrique permettant de souffler un arc qui se forme entre des contacts d'arc lors d'une opération de coupure de courant, ou opération d'ouverture du disjoncteur. La compression est en général réalisée par un organe de manoeuvre actionnant une partie mobile, telle qu'un piston, dans la chambre de coupure. Ces disjoncteurs utilisent également l'énergie fournie par l'arc sous forme de chaleur, diminuant ainsi la consommation d'énergie externe par rapport à des disjoncteurs à compression de gaz classiques. Dans un tel disjoncteur, la course de la partie mobile de la chambre de coupure réalisant la compression est approximativement proportionnelle à la tension nominale du disjoncteur. Plus la tension nominale est élevée, notamment lorsque cette tension est supérieure à environ 245 kV, plus la course est importante, ce qui augmente l'énergie nécessaire au disjoncteur pour couper le courant.In the field of circuit breakers, and particularly that of power circuit breakers, it is important to use the least possible operating energy to cut off currents, whether fault currents, for example short-circuit currents, or load currents such as vacuum line currents. The documents US 4,559,425 and US 3,975,602 disclose self-blowing circuit breakers that compress a dielectric gas to blow an arc that is formed between arcing contacts during a power failure operation, or opening operation of the circuit breaker. Compression is generally performed by an operating member actuating a moving part, such as a piston, in the breaking chamber. These circuit breakers also use the energy provided by the arc under heat, thereby reducing external power consumption compared to conventional gas compression circuit breakers. In such a circuit breaker, the stroke of the moving part of the breaking chamber producing the compression is approximately proportional to the nominal voltage of the circuit breaker. The higher the nominal voltage, especially when this voltage is greater than about 245 kV, the greater the stroke, which increases the energy required for the circuit breaker to cut the current.

Toutefois, pour couper des courants forts, c'est-à-dire des courants dont la valeur est supérieure à environ 30% de la valeur du pouvoir de coupure assigné au disjoncteur, il n'est pas nécessaire de réaliser la compression du gaz durant toute l'opération d'ouverture du disjoncteur car l'énergie fournie par l'arc est suffisante pour souffler l'arc et l'interrompre, sans que la course de compression soit complètement effectuée. Les documents EP 0 897 185 et EP 0 591 039 décrivent des disjoncteurs à auto-soufflage et à course de compression réduite. Ces disjoncteurs réalisent la compression du gaz seulement pendant une partie de la course. Mais lorsque le courant est faible, par exemple inférieur ou égal à environ 30% de la valeur du pouvoir de coupure, l'énergie fournie par l'arc est beaucoup moins importante que lorsque le courant est élevé, et si de plus la durée de l'arc est longue (comprise entre environ 13 et 20 ms), il y a un risque que le soufflage soit insuffisant pour assurer l'interruption du courant.However, in order to cut off strong currents, that is to say currents whose value is greater than about 30% of the value of the breaking capacity assigned to the circuit breaker, it is not necessary to carry out the compression of the gas during the whole opening operation of the circuit breaker because the energy provided by the arc is sufficient to blow the arc and interrupt, without the compression stroke is completed. The documents EP 0 897 185 and EP 0 591 039 describe self-blowing circuit breakers with reduced compression stroke. These circuit breakers perform the compression of the gas only during a part of the race. But when the current is low, for example less than or equal to about 30% of the value of the breaking capacity, the energy provided by the arc is much less important than when the current is high, and if moreover the duration of the arc is long (between about 13 and 20 ms), there is a risk that the blowing is insufficient to ensure the interruption of the current.

Le document " EP 0 821 382 A " décrit une chambre de coupure de courant selon le préambule de la revendication 1.The document " EP 0 821 382 A "discloses a current-breaking chamber according to the preamble of claim 1.

Le document FR 2 892 851 décrit une chambre de coupure de courant d'un disjoncteur comportant deux chambres de compression coopérant durant une opération d'ouverture du disjoncteur. La seconde chambre de compression injecte du fluide diélectrique dans la première chambre de compression durant une partie de l'opération d'ouverture du disjoncteur, lorsque la pression dans la première chambre de compression est inférieure à la pression dans la seconde chambre de compression.The document FR 2,892,851 discloses a current breaking chamber of a circuit breaker having two compression chambers cooperating during an opening operation of the circuit breaker. The second compression chamber injects dielectric fluid into the first compression chamber during a portion of the circuit breaker opening operation, when the pressure in the first compression chamber is less than the pressure in the second compression chamber.

Dans cette chambre de coupure de courant, la coopération entre les deux chambres de compression permet, lors d'une coupure de courant fort, de conserver les avantages d'une course de compression réduite réalisée par la première chambre de compression, et lors d'une coupure d'un courant faible, de réaliser cette coupure sans augmenter inutilement la consommation d'énergie externe quelque soit la durée de l'arc, et notamment lorsque la durée d'arc est longue.In this current-breaking chamber, the cooperation between the two compression chambers makes it possible, during a strong power failure, to preserve the advantages of a reduced compression stroke produced by the first compression chamber, and when a cut of a weak current, to achieve this cut without unnecessarily increasing the external power consumption whatever the duration of the arc, and in particular when the duration of arc is long.

Il existe également des courants, appelés courants capacitifs, pouvant apparaître lorsque la ligne du réseau reliée au disjoncteur est ouverte à une extrémité, ou que des condensateurs de réglage d'échange de puissance sont connectés au réseau. La coupure de ces courants, dont la valeur est par exemple inférieure à 500 A, est une opération que la plupart des disjoncteurs doivent effectuer. Cette coupure de courants capacitifs est réussie si la tension tenue entre les contacts du disjoncteur est supérieure à la tension rétablie imposée par le réseau.There are also currents, called capacitive currents, that can occur when the line of the network connected to the circuit breaker is open at one end, or that power exchange adjustment capacitors are connected to the network. The breaking of these currents, whose value is for example less than 500 A, is an operation that most circuit breakers must perform. This breaking of capacitive currents is successful if the voltage held between the contacts of the circuit breaker is greater than the restored voltage imposed by the network.

Toutefois, un claquage diélectrique peut se produire au niveau du disjoncteur, notamment entre les contacts d'arc du disjoncteur, au cours de la coupure des courants capacitifs si la tenue diélectrique entre contacts est inférieure à la tension rétablie après coupure imposée par le réseau. Si ce claquage a lieu entre l'instant correspondant à la coupure et un quart de période de la tension du réseau imposée au disjoncteur après l'instant de coupure, ce claquage entraîne un réallumage du disjoncteur. Un tel réallumage ne produit pas de surtension sur le réseau mais peut entraîner un endommagement des isolants, par exemple de celui qui est utilisé pour la buse du disjoncteur.However, a dielectric breakdown can occur at the circuit breaker, in particular between the circuit breaker arcing contacts, during the breaking of the capacitive currents if the dielectric strength between contacts is lower than the voltage restored after cutoff imposed by the network. If this breakdown occurs between the instant corresponding to the cutoff and a quarter of the period of the mains voltage imposed on the circuit breaker after the cut-off time, this breakdown causes the circuit-breaker to re-ignite. Such a reignition does not produce an overvoltage on the network but can lead to damage to the insulators, for example that used for the circuit breaker nozzle.

Si le claquage a lieu plus d'un quart de période de la tension du réseau imposée au disjoncteur après l'instant de coupure, ce claquage entraîne un réamorçage du disjoncteur produisant une surtension excessive sur le réseau, ce qui peut entraîner d'importants dommages sur les appareils reliés au réseau. Ces réamorçages sont donc interdits lors des essais du type de ceux exigés par les normes internationales.If the breakdown occurs more than a quarter of the period of the mains voltage imposed on the circuit breaker after the cut-off time, this breakdown causes a reboot of the circuit breaker producing an excessive overvoltage on the network, which can lead to significant damage on devices connected to the network. These reboots are therefore prohibited during tests of the type required by international standards.

EXPOSÉ DE L'INVENTIONSTATEMENT OF THE INVENTION

La présente invention a pour but de proposer une chambre de coupure, utilisée notamment dans un disjoncteur de puissance, permettant de couper des courants aussi bien forts que faibles, tout en évitant d'augmenter inutilement la consommation d'énergie externe par le disjoncteur, quelque soit la durée de l'arc, et permettant également de couper de manière optimale les courants capacitifs.The object of the present invention is to provide a breaking chamber, used in particular in a power circuit breaker, for cutting off both strong and low currents, while avoiding unnecessarily increasing the external energy consumption by the circuit breaker, be there duration of the arc, and also to cut optimally capacitive currents.

Pour cela, l'invention propose une chambre de coupure de courant, destinée à être utilisée dans un disjoncteur, remplie d'un fluide diélectrique. Cette chambre comporte un ensemble mobile, se déplaçant axialement entre une position de début et une position de fin d'opération d'ouverture du disjoncteur.For this, the invention proposes a current cutoff chamber, intended to be used in a circuit breaker, filled with a dielectric fluid. This chamber comprises a movable assembly, moving axially between a start position and an end of operation opening position of the circuit breaker.

L'ensemble mobile comprend au moins une première chambre de compression dont le volume diminue entre la position de début d'opération d'ouverture du disjoncteur et une position de fin de compression de la première chambre de compression.The moving assembly comprises at least a first compression chamber whose volume decreases between the opening operation opening position of the circuit breaker and a compression end position of the first compression chamber.

L'ensemble mobile comprend également un tube de manoeuvre creux comportant à une extrémité au moins un premier contact d'arc, destiné à coopérer avec un second contact d'arc, et des ouvertures faisant communiquer l'intérieur du tube de manoeuvre avec l'extérieur de la chambre de coupure de courant, l'intérieur du tube de manoeuvre communiquant avec la première chambre de compression entre une position de séparation des deux contacts d'arc et la position de fin d'opération d'ouverture du disjoncteur.The movable assembly also comprises a hollow actuating tube comprising at one end at least a first arcing contact, intended to cooperate with a second arcing contact, and openings communicating the inside of the operating tube with the outside the current-breaking chamber, the inside of the operating tube communicating with the first compression chamber between a separation position of the two arcing contacts and the end-of-operation position of opening of the circuit breaker.

L'ensemble mobile comporte en outre une seconde chambre de compression, communiquant à une première extrémité avec la première chambre de compression, dont le volume diminue entre la position de séparation des contacts et la position de fin d'opération d'ouverture du disjoncteur, destinée à injecter du fluide diélectrique dans la première chambre de compression, entre la position de séparation des deux contacts d'arc et la position de fin d'opération d'ouverture du disjoncteur, lorsque la pression dans la première chambre de compression est inférieure à la pression dans la seconde chambre de compression.The movable assembly further comprises a second compression chamber, communicating at a first end with the first compression chamber, the volume of which decreases between the position of separation of the contacts and the end position of the opening operation of the circuit breaker, for injecting dielectric fluid into the first compression chamber between the separation position of the two arcing contacts and the end-of-operation position of opening of the circuit breaker, when the pressure in the first compression chamber is lower than the pressure in the second compression chamber.

L'ensemble mobile comporte également des moyens obstruant les ouvertures du tube de manoeuvre depuis la position de début d'opération d'ouverture du disjoncteur jusqu'à une position intermédiaire atteinte entre la position de séparation des deux contacts d'arc et la position de fin d'opération d'ouverture du disjoncteur.The moving assembly also comprises means obstructing the openings of the operating tube from the opening operation opening position of the circuit breaker to an intermediate position reached between the position of separation of the two arcing contacts and the position of end of opening operation of the circuit breaker.

Dans cette chambre de coupure de courant, la position de fin de compression de la première chambre de compression est atteinte avant la position de fin d'opération d'ouverture du disjoncteur, et une position de fin de compression de la seconde chambre de compression étant atteinte après la position de fin de compression de la première chambre de compression.In this power failure chamber, the compression end position of the first compression chamber is reached before the end of the circuit breaker opening operation position, and a compression end position of the second compression chamber is reached after the compression end position of the first compression chamber.

La coopération entre les deux chambres de compression permet, lors d'une coupure de courant fort, de conserver les avantages d'une course de compression réduite réalisée par la première chambre de compression, et lors d'une coupure d'un courant faible, de réaliser cette coupure sans augmenter inutilement la consommation d'énergie externe du disjoncteur, quelque soit la durée de l'arc et notamment lorsque la durée d'arc est longue.The cooperation between the two compression chambers makes it possible, during a strong power failure, to retain the advantages of a reduced compression stroke produced by the first compression chamber, and during a cutoff of a low current, to achieve this break without unnecessarily increasing the external power consumption of the circuit breaker, regardless of the duration of the arc and in particular when the arc duration is long.

En effet, lorsque le courant est faible et que la durée de l'arc est importante, la seconde chambre de compression permet de maintenir le soufflage de l'arc, réalisé dans un premier temps par la première chambre de compression, pendant toute la durée d'arc, et cela en évitant une trop grande consommation d'énergie externe grâce à l'utilisation de l'énergie fournie par l'arc pendant toute la durée du soufflage.Indeed, when the current is low and the duration of the arc is important, the second compression chamber allows to maintain the blowing of the arc, initially produced by the first compression chamber, during the entire arc duration, and this by avoiding excessive external energy consumption thanks to the use of the energy supplied by the arc for the duration of the blowing.

La chambre de coupure de courant peut comprendre un premier volume de compression qui devient un volume d'expansion thermique servant au soufflage de l'arc lorsque la compression dans ce volume est terminée, elle comprend en outre un deuxième volume de compression. La première chambre de compression peut être mise rapidement en surpression en utilisant le déplacement des contacts d'arc pendant une première partie seulement de la course totale de l'ensemble mobile. La compression dans la première chambre est donc réalisée pendant une course de compression réduite, permettant d'avoir une montée en pression rapide, et impliquant des performances de soufflage supérieures à celles des dispositifs dont la compression est réalisée pendant toute la course de déplacement. La seconde chambre de compression intervient alors au besoin pour contribuer au soufflage en fin de course des contacts d'arc.The power cutoff chamber may include a first compression volume that becomes a thermal expansion volume for arc blowing when the compression in that volume is complete, and further comprises a second compression volume. The first compression chamber can be quickly put under overpressure using the displacement of the arcing contacts during only a first part of the total stroke of the moving assembly. The compression in the first chamber is therefore performed during a reduced compression stroke, allowing a rapid increase in pressure, and involving blowing performance higher than those devices whose compression is performed during the entire displacement stroke. The second compression chamber then intervenes as needed to contribute to the end-of-stroke blow-out of the arcing contacts.

Le fait que la compression soit d'abord réalisée dans la première chambre, puis dans la seconde chambre, qui possède une section de piston plus réduite que la première et dont la surpression maximale est atteinte en fin de course des contacts, permet de réduire l'énergie utilisée pour la manoeuvre de la chambre de coupure.The fact that the compression is first performed in the first chamber, then in the second chamber, which has a smaller piston section than the first and whose maximum pressure is reached at the end of travel of the contacts, reduces the energy used to maneuver the breaking chamber.

Ainsi, l'utilisation de la chambre de coupure selon l'invention dans un disjoncteur rend par exemple possible l'utilisation d'organes de manoeuvre comportant un mécanisme à ressorts demandant peu d'énergie.Thus, for example, the use of the breaking chamber according to the invention in a circuit breaker makes it possible to use operating members comprising a spring mechanism requiring little energy.

De plus, les moyens obstruant les ouvertures du tube de manoeuvre depuis la position de début d'opération d'ouverture du disjoncteur jusqu'à une position intermédiaire atteinte entre une position de séparation des deux contacts d'arc et la position de fin d'opération d'ouverture du disjoncteur, ou entre la position de séparation des deux contacts d'arc et une position d'ouverture de la première chambre de compression obtenue lors de la séparation d'un des contacts d'arc avec une buse (ce contact d'arc et la buse coopérant pour fermer la première chambre de compression à une de ses extrémités), permettent au volume du tube de manoeuvre d'être mis en surpression en même temps que la première chambre de compression avant la séparation des contacts d'arc et de pratiquement conserver cette surpression pendant quelques millisecondes après la séparation des contacts, et donc de maintenir une grande densité de gaz entre les contacts d'arc durant la période critique pendant laquelle peut se produire un claquage diélectrique entre les contacts d'arc, et cela quelque soit la durée de l'arc. Cette augmentation de la densité de gaz empêche ainsi l'apparition d'un tel claquage diélectrique. Cette obstruction des ouvertures formées dans le tube de manoeuvre permet d'éviter un soufflage à travers ces ouvertures pendant cette période critique.In addition, the means obstructing the openings of the operating tube from the opening operation opening position of the circuit breaker to an intermediate position reached between a position of separation of the two arcing contacts and the end position of opening operation of the circuit breaker, or between the position of separation of the two arcing contacts and an opening position of the first compression chamber obtained during the separation of one of the arcing contacts with a nozzle (this contact arc and the nozzle cooperating to close the first compression chamber at one of its ends), allow the volume of the operating tube to be overpressured at the same time as the first compression chamber before the separation of the contacts arc and practically keep this overpressure for a few milliseconds after the separation of the contacts, and thus maintain a high density of gas between the arcing contacts during the critical period of time. This can cause a dielectric breakdown between the arcing contacts, regardless of the duration of the arc. This increase in the density of gas thus prevents the occurrence of such a dielectric breakdown. This obstruction of the openings formed in the maneuvering tube makes it possible to avoid blowing through these openings during this critical period.

Cela s'applique notamment lorsque la coupure des courants capacitifs est particulièrement critique, c'est-à-dire lorsqu'elle est effectuée avec une durée d'arc minimale, par exemple une durée d'arc égale ou inférieure à environ 1 ms car dans ce cas, les contacts d'arc sont les plus proches l'un de l'autre lorsque la tension rétablie atteint sa valeur maximale (par exemple 10 ms après l'instant de coupure pour un réseau à 50 Hz), augmentant le risque d'un claquage diélectrique. L'importante densité de gaz diélectrique dans la première chambre et dans le tube de manoeuvre permet de limiter ce risque.This applies in particular when the breaking of the capacitive currents is particularly critical, that is to say when it is performed with a minimum arc duration, for example an arc duration equal to or less than approximately 1 ms because in this case, the arcing contacts are closest to each other when the restored voltage reaches its maximum value (for example 10 ms after the cut-off time for a 50 Hz network), increasing the risk a dielectric breakdown. The high density of dielectric gas in the first chamber and in the maneuvering tube limits this risk.

Lorsque les ouvertures ne sont plus obstruées, celles-ci font communiquer l'intérieur du tube de manoeuvre avec l'extérieur de la chambre de coupure de courant, le plein soufflage est alors restauré pour la coupure des forts courants.When the openings are no longer obstructed, they make the interior of the operating tube communicate with the outside of the current cut-off chamber, the full blowing is then restored for the breaking of the strong currents.

Les dimensions et le positionnement des moyens d'obstruction des ouvertures par rapport au tube de manoeuvre peuvent être tels que la position intermédiaire soit atteinte après une durée comprise entre environ 2 ms et 7 ms, après la position de séparation des deux contacts d'arc. Après cette durée, les contacts d'arc peuvent être assez éloignés l'un de l'autre, supprimant ainsi le risque d'apparition d'un claquage diélectrique entre les contacts d'arc.The dimensions and the positioning of the obstruction means of the openings relative to the maneuvering tube may be such that the intermediate position is reached after a duration of between about 2 ms and 7 ms, after the position of separation of the two arc contacts. . After this time, the arcing contacts can be quite far apart, thus eliminating the risk of dielectric breakdown occurring between the arcing contacts.

Les moyens d'obstruction des ouvertures du tube de manoeuvre peuvent comporter au moins un déflecteur disposé à l'intérieur du tube de manoeuvre.The means for obstructing the openings of the maneuvering tube may comprise at least one deflector disposed inside the operating tube.

Le déflecteur peut être mobile par rapport au tube de manoeuvre.The baffle may be movable relative to the maneuvering tube.

La première chambre de compression peut être formée par au moins un premier élément tubulaire.The first compression chamber may be formed by at least a first tubular element.

La seconde chambre de compression peut être formée par au moins deux seconds éléments tubulaires coaxiaux. L'un des deux seconds éléments tubulaires peut former au moins en partie le tube de manoeuvre.The second compression chamber may be formed by at least two second coaxial tubular members. One of the two second tubular elements may at least partly form the operating tube.

Dans ce cas, la seconde chambre de compression peut être fermée à une seconde extrémité par au moins un manchon disposé entre les deux seconds éléments tubulaires coaxiaux. Les moyens d'obstruction des ouvertures du tube de manoeuvre peuvent comporter le manchon.In this case, the second compression chamber may be closed at a second end by at least one sleeve disposed between the two second coaxial tubular elements. The means for obstructing the openings of the maneuvering tube may comprise the sleeve.

Le tube de manoeuvre peut être mobile par rapport au manchon.The maneuvering tube may be movable relative to the sleeve.

La première chambre de compression peut comporter à une extrémité une buse destinée à coopérer avec le second contact d'arc pour réaliser une ouverture de la première chambre de compression entre ladite position intermédiaire et la position de fin d'opération d'ouverture du disjoncteur.The first compression chamber may comprise at one end a nozzle intended to cooperate with the second arcing contact to effect an opening of the first compression chamber between said intermediate position and the end position of the opening operation of the circuit breaker.

La seconde chambre de compression peut communiquer avec la première chambre de compression par l'intermédiaire d'au moins une valve.The second compression chamber can communicate with the first compression chamber via at least one valve.

Les premier et second contacts d'arc peuvent être mobiles axialement l'un par rapport à l'autre.The first and second arcing contacts may be axially movable relative to each other.

L'invention concerne également un disjoncteur comportant une chambre de coupure de courant telle que décrite précédemment.The invention also relates to a circuit breaker comprising a current-breaking chamber as described above.

BRÈVE DESCRIPTION DES DESSINSBRIEF DESCRIPTION OF THE DRAWINGS

La présente invention sera mieux comprise à la lecture de la description d'exemples de réalisation donnés à titre purement indicatif et nullement limitatif en faisant référence aux dessins annexés sur lesquels :

  • les figures 1 à 5 représentent une chambre de coupure de courant, objet de la présente invention, selon un mode de réalisation particulier, au cours de différentes étapes d'une opération d'ouverture de disjoncteur,
  • la figure 6 représente un disjoncteur, également objet de la présente invention, comportant une chambre de coupure de courant selon l'invention.
The present invention will be better understood on reading the description of exemplary embodiments given purely by way of indication and in no way limiting, with reference to the appended drawings in which:
  • the Figures 1 to 5 represent a current-breaking chamber, object of the present invention, according to a particular embodiment, during different stages of a circuit breaker opening operation,
  • the figure 6 represents a circuit breaker, also object of the present invention, comprising a current breaking chamber according to the invention.

Des parties identiques, similaires ou équivalentes des différentes figures décrites ci-après portent les mêmes références numériques de façon à faciliter le passage d'une figure à l'autre.Identical, similar or equivalent parts of the different figures described below bear the same numerical references so as to facilitate the passage from one figure to another.

Les différentes parties représentées sur les figures ne le sont pas nécessairement selon une échelle uniforme, pour rendre les figures plus lisibles.The different parts shown in the figures are not necessarily in a uniform scale, to make the figures more readable.

Les différentes possibilités (variantes et modes de réalisation) doivent être comprises comme n'étant pas exclusives les unes des autres et peuvent se combiner entre elles.The different possibilities (variants and embodiments) must be understood as not being exclusive of each other and can be combined with one another.

EXPOSÉ DÉTAILLÉ DE MODES DE RÉALISATION PARTICULIERSDETAILED PRESENTATION OF PARTICULAR EMBODIMENTS

La figure 1 représente une chambre de coupure de courant 100 selon un mode de réalisation particulier. Sur cette figure, la chambre de coupure 100 est en position enclenchée, c'est-à-dire en position dans laquelle se trouve la chambre de coupure 100 en début d'une opération de coupure de courant, c'est-à-dire en début d'une opération d'ouverture du disjoncteur comportant la chambre de coupure 100.The figure 1 represents a current-breaking chamber 100 according to a particular embodiment. In this figure, the breaking chamber 100 is in the engaged position, that is to say in the position in which is the interrupting chamber 100 at the beginning of a power failure operation, that is to say at the beginning of an operation of opening of the circuit breaker including the breaking chamber 100.

La chambre de coupure 100 comporte une enveloppe 102 remplie d'un fluide diélectrique, ici un gaz diélectrique, sous pression. Ce gaz peut par exemple être de l'hexafluorure de soufre (SF 6), de l'azote (N 2), de l'air sec, du gaz carbonique (CO 2) ou encore un mélange gazeux.The breaking chamber 100 comprises a casing 102 filled with a dielectric fluid, here a dielectric gas, under pressure. This gas may for example be sulfur hexafluoride ( SF 6 ), nitrogen ( N 2 ), dry air, carbon dioxide ( CO 2 ) or a gaseous mixture.

La chambre de coupure 100 comporte un premier élément tubulaire 104 formant une première chambre de compression 106. Cette première chambre de compression 106 est notamment fermée à une première extrémité par un tube de manoeuvre 108. Le premier élément tubulaire 104 forme, au niveau d'une seconde extrémité de la première chambre de compression 106, une buse 110. La chambre de coupure 100 comporte également un premier et un second contacts d'arc, respectivement 112 et 114, mobiles l'un par rapport à l'autre selon un axe AA. Sur cette figure 1, le second contact d'arc 114 coopère avec la buse 110 pour fermer la première chambre de compression 106 au niveau de sa seconde extrémité. Dans le mode de réalisation particulier décrit ici, le premier contact d'arc 112 est mobile et le second contact d'arc 114 est fixe. Le premier contact d'arc 112, ici intégré à une extrémité du tube de manoeuvre 108, est disposé à l'intérieur de la première chambre de compression 106.The cutting chamber 100 comprises a first tubular element 104 forming a first compression chamber 106. This first compression chamber 106 is closed in particular at a first end by an operating tube 108. The first tubular element 104 forms, at the level of a second end of the first compression chamber 106, a nozzle 110. The interrupting chamber 100 also comprises a first and a second arcing contact, respectively 112 and 114, movable relative to each other along an axis AA. On this figure 1 the second arc contact 114 cooperates with the nozzle 110 to close the first compression chamber 106 at its second end. In the particular embodiment described herein, the first arcing contact 112 is movable and the second arcing contact 114 is fixed. The first arcing contact 112, here integrated at one end of the operating tube 108, is disposed inside the first compression chamber 106.

La chambre de coupure 100 comporte au moins deux seconds éléments tubulaires 116 et 118, coaxiaux par rapport à l'axe AA. L'un des deux seconds éléments tubulaires 116 forme en partie le tube de manoeuvre 108. L'espace entre les deux seconds éléments tubulaires 116 et 118 forme une seconde chambre de compression 120. Typiquement, le volume de la seconde chambre de compression 120 est inférieur à celui de la première chambre de compression 106. Sur la figure 1, la seconde chambre de compression 120 communique avec la première chambre de compression 106, à une première extrémité, par au moins une valve 122, par exemple une valve unidirectionnelle, intégrée au tube de manoeuvre 108. Cette valve 122 ne s'ouvre que lorsque la pression dans la seconde chambre de compression 120 est supérieure à celle dans la première chambre de compression 106. La seconde chambre de compression 120 est fermée à une seconde extrémité par un manchon 124 comportant un clapet de remplissage 126 utilisé après l'opération d'ouverture de disjoncteur, afin que du gaz puisse entrer dans la seconde chambre de compression 120 lorsque la chambre de coupure 100 revient en position enclenchée.The breaking chamber 100 comprises at least two second tubular elements 116 and 118, coaxial with respect to the axis AA. One of the two second tubular elements 116 forms part of the operating tube 108. The space between the two second tubular elements 116 and 118 forms a second compression chamber 120. Typically, the volume of the second compression chamber 120 is less than that of the first compression chamber 106. On the figure 1 , the second compression chamber 120 communicates with the first compression chamber 106, at a first end, with at least one valve 122, for example a one-way valve, integrated with the operating tube 108. This valve 122 opens only when the pressure in the second compression chamber 120 is greater than that in the first compression chamber 106. The second compression chamber 120 is closed at a second end by a sleeve 124 having a filling valve 126 used after the operation. opening circuit breaker, so that gas can enter the second compression chamber 120 when the interrupting chamber 100 returns to the engaged position.

La chambre de coupure 100 comporte également des contacts permanents 128, 130 faisant circuler le courant à travers le disjoncteur lorsque la chambre de coupure 100 est en position enclenchée. Comme les contacts d'arc 112, 114, les contacts permanents 128, 130 sont mobiles axialement l'un par rapport à l'autre selon l'axe AA. Dans le mode de réalisation décrit ici, seul le contact 130, intégré au premier élément tubulaire 104, est mobile.The interrupting chamber 100 also has permanent contacts 128, 130 causing the current to flow through the circuit breaker when the interrupting chamber 100 is in the engaged position. Like the arcing contacts 112, 114, the permanent contacts 128, 130 are axially movable relative to each other along the axis AA. In the mode of embodiment described here, only the contact 130, integrated with the first tubular element 104, is movable.

Le premier élément tubulaire 104 est relié à une tige 132 à partir de laquelle des moyens de manoeuvre du disjoncteur, non représentés sur la figure 1, peuvent réaliser l'ouverture du disjoncteur. Cette tige 132 est solidaire d'un déflecteur 134 disposé à l'intérieur du tube de manoeuvre 108, et ici à l'intérieur du second élément tubulaire 116, et ferme l'intérieur du tube de manoeuvre 108 à une de ses extrémités, l'autre extrémité étant fermée par les contacts d'arc 112 et 114. Le déflecteur 134 est également mobile par rapport au tube de manoeuvre 108 selon l'axe AA.The first tubular element 104 is connected to a rod 132 from which operating means of the circuit breaker, not shown on the figure 1 , can realize the opening of the circuit breaker. This rod 132 is integral with a deflector 134 disposed inside the operating tube 108, and here inside the second tubular element 116, and closes the inside of the operating tube 108 at one end, other end being closed by the arcing contacts 112 and 114. The deflector 134 is also movable relative to the operating tube 108 along the axis AA.

Des ouvertures 136 sont réalisées à travers le second élément tubulaire 116 et permettent de faire communiquer l'intérieur du tube de manoeuvre 108 avec le reste de l'enveloppe 102. Sur la figure 1, ces ouvertures 136 sont obstruées par le déflecteur 134 et par le manchon 124.Openings 136 are made through the second tubular element 116 and make it possible to communicate the inside of the operating tube 108 with the rest of the envelope 102. figure 1 these openings 136 are obstructed by the deflector 134 and the sleeve 124.

Le premier élément tubulaire 104, le tube de manoeuvre 108, les seconds éléments tubulaires 116, 118, la tige 132 et le déflecteur 134 forment un ensemble mobile 138 adapté pour être déplacé selon l'axe AA dans l'enveloppe 2 durant l'opération d'ouverture de disjoncteur, ou l'opération de coupure de courant.The first tubular element 104, the operating tube 108, the second tubular elements 116, 118, the rod 132 and the deflector 134 form a mobile assembly 138 adapted to be displaced along the axis AA in the casing 2 during the operation circuit breaker opening, or the power failure operation.

La figure 2 représente la chambre de coupure 100 en position de fin de compression de la première chambre de compression 106. Dans cette position, par rapport à la position enclenchée représentée sur la figure 1, le premier élément tubulaire 104, la tige 132 et le déflecteur 134 ont été déplacés le long de l'axe AA par des moyens de manoeuvre, non représentés, reliés à la tige 132.The figure 2 represents the interrupting chamber 100 in the compression end position of the first compression chamber 106. In this position, with respect to the engaged position represented on the figure 1 , the first tubular element 104, the rod 132 and the deflector 134 have been moved along the axis AA by operating means, not shown, connected to the rod 132.

Le déplacement du premier élément tubulaire 104 réduit ici le volume de la première chambre de compression 106 car le tube de manoeuvre 108 et les seconds éléments tubulaires 116, 118 restent immobiles, augmentant ainsi la pression à l'intérieur de la première chambre de compression 106. Pour immobiliser le tube de manoeuvre, on peut mettre en oeuvre des billes métalliques, comme sur la figure 2A du document FR 2892851 ; mais d'autres moyens sont possibles.The displacement of the first tubular element 104 here reduces the volume of the first compression chamber 106 because the operating tube 108 and the second tubular elements 116, 118 remain stationary, thus increasing the pressure inside the first compression chamber 106 To immobilize the operating tube, it is possible to use metal balls, as on the Figure 2A of the document FR 2892851 ; but other means are possible.

En général, la course du déplacement axial réalisé pendant cette partie de l'opération d'ouverture de disjoncteur représente entre environ un tiers et la moitié de la course du déplacement axial total d'une opération d'ouverture de disjoncteur.In general, the axial displacement stroke achieved during this portion of the circuit breaker opening operation is about one third to one half of the total axial displacement stroke of a circuit breaker opening operation.

Sur la figure 2, les contacts permanents 128 et 130 ne sont plus en contact l'un avec l'autre, contrairement aux contacts d'arc 112, 114 qui sont toujours en contact l'un avec l'autre. Donc, en position de fin de compression de la première chambre de compression 106, le courant ne passe plus que par les contacts d'arc 112, 114. Les contacts d'arc 112, 114 restent donc en contact pendant toute la phase de compression de la première chambre 106.On the figure 2 the permanent contacts 128 and 130 are no longer in contact with each other, unlike the arcing contacts 112, 114 which are still in contact with each other. Therefore, in the compression end position of the first compression chamber 106, the current passes only through the arcing contacts 112, 114. The arcing contacts 112, 114 therefore remain in contact during the entire compression phase. of the first chamber 106.

De plus, pendant cette partie de l'opération d'ouverture du disjoncteur, le déflecteur 134 a été déplacé axialement à l'intérieur du tube de manoeuvre 108, ici sur une distance équivalente à celle parcourue par le premier élément tubulaire 104. Sur la figure 2, le déflecteur 134 n'obstrue plus les ouvertures 136. Toutefois, ces ouvertures 136 sont toujours obstruées par le manchon 124.In addition, during this part of the opening operation of the circuit breaker, the deflector 134 has been moved axially inside the operating tube 108, here over a distance equivalent to that traveled by the first tubular element 104. On the figure 2 the deflector 134 no longer closes the openings 136. However, these openings 136 are still obstructed by the sleeve 124.

La figure 3 représente la chambre de coupure 100 après la séparation des contacts d'arc 112, 114. Par rapport à la position de fin de compression de la première chambre de compression 106, l'ensemble mobile 138 s'est déplacé le long de l'axe AA par rapport aux éléments fixes du disjoncteur, ici le second contact d'arc 114, le contact permanent 128 et le manchon 124. Sur cette figure 3, les contacts d'arc 112 et 114 ne sont plus en contact l'un avec l'autre. Le tube de manoeuvre 108 ainsi que les seconds éléments tubulaires 116, 118 sont entraînés en mouvement le long de l'axe AA par le premier élément tubulaire 104.The figure 3 represents the breaking chamber 100 after the separation of the arc contacts 112, 114. With respect to the compression end position of the first compression chamber 106, the moving assembly 138 has moved along the axis AA relative to the fixed elements of the circuit breaker, here the second arcing contact 114, the permanent contact 128 and the sleeve 124. On this figure 3 the arcing contacts 112 and 114 are no longer in contact with each other. The operating tube 108 and the second tubular elements 116, 118 are driven in movement along the axis AA by the first tubular element 104.

Dans le cas d'une coupure d'un courant la séparation des contacts d'arc 112, 114 entraîne la formation d'un arc entre ces deux contacts d'arc 112, 114, ainsi que la mise en communication du volume de la première chambre de compression 106 avec celui de l'intérieur du tube de manoeuvre 108. Dans cette position, les ouvertures 136 ne sont plus obstruées par le déflecteur 134 mais uniquement par le manchon 124. Le volume formé par celui de la première chambre de compression 106 et celui de l'intérieur du tube de manoeuvre est donc fermé à une première extrémité par le déflecteur 134 et par le manchon 124, et à une second extrémité par le second contact d'arc 114 coopérant avec la buse 110. Par rapport à la position représentée sur la figure 2, le volume de la seconde chambre de compression 120 a également été réduit de part le déplacement des éléments tubulaires 116, 118 par rapport au manchon 124, augmentant ainsi la pression à l'intérieur de la seconde chambre 120. Etant donné que la compression dans la première chambre de compression 106 est terminée et que la compression du gaz ne s'effectue que dans la seconde chambre, l'énergie utilisée pour le déplacement de l'ensemble mobile 138 est inférieure à celle utilisée pour la compression de la première chambre 106.In the case of a cut of a current the separation of the arcing contacts 112, 114 causes the formation of an arc between these two arcing contacts 112, 114, as well as the setting in communication of the volume of the first compression chamber 106 with that of the inside of the operating tube 108. In this position, the openings 136 are no longer obstructed by the deflector 134 but only by the sleeve 124. The volume formed by that of the first compression chamber 106 and that of the inside of the maneuvering tube is thus closed at a first end by the deflector 134 and the sleeve 124, and at a second end by the second arc contact 114 cooperating with the nozzle 110. With respect to the position represented on the figure 2 , the volume of the second chamber of compression 120 has also been reduced by the displacement of the tubular elements 116, 118 relative to the sleeve 124, thus increasing the pressure inside the second chamber 120. Since the compression in the first compression chamber 106 is complete and that the compression of the gas takes place only in the second chamber, the energy used for the displacement of the moving assembly 138 is less than that used for the compression of the first chamber 106.

Dans le cas d'une coupure de courant capacitif, dont la valeur est par exemple inférieure à environ 100 A, étant donné que les ouvertures 136 sont toujours obstruées par le manchon 124, une importante densité de gaz diélectrique est présente dans la première chambre de compression 106 et à l'intérieur du tube de manoeuvre 108. Cette importante densité de gaz empêche l'apparition d'un claquage diélectrique entre les contacts d'arc 112, 114. L'obstruction des ouvertures 136 réalisée ici permet d'éviter un soufflage inutile à travers l'intérieur du tube de manoeuvre 108 et à travers les ouvertures 136, pendant une période où la distance entre contacts est insuffisante pour avoir une coupure de forts courants.In the case of a capacitive power failure, whose value is for example less than about 100 A, since the openings 136 are still obstructed by the sleeve 124, a high density of dielectric gas is present in the first chamber of compression 106 and inside the operating tube 108. This large density of gas prevents the occurrence of a dielectric breakdown between the arc contacts 112, 114. The obstruction of the openings 136 made here avoids a unnecessary blowing through the interior of the operating tube 108 and through the openings 136, during a period where the distance between contacts is insufficient to have a break of strong currents.

La figure 4 représente la chambre de coupure 100 dans une position où les ouvertures 136 ne sont plus obstruées. Ainsi, le volume formé par celui de la première chambre de compression 106 et celui de l'intérieur du tube de manoeuvre 108 est donc toujours fermé au niveau de sa seconde extrémité par la buse 110 et le second contact d'arc 114, mais est ouvert au niveau de sa première extrémité de par les ouvertures 136 qui ne sont plus obstruées.The figure 4 represents the breaking chamber 100 in a position where the openings 136 are no longer obstructed. Thus, the volume formed by that of the first compression chamber 106 and that of the inside of the operating tube 108 is therefore always closed at its second end by the nozzle 110 and the second arc contact 114, but is open at level of its first end through the openings 136 which are no longer obstructed.

Ainsi, une position intermédiaire à partir de laquelle les ouvertures 136 ne sont plus obstruées correspond à une position atteinte entre celle représentée sur la figure 3 et celle représentée sur la figure 4, ou entre une position de séparation des contacts d'arc et une position de fin d'ouverture du disjoncteur, ou encore entre une position de séparation des contacts d'arc et une position d'ouverture de la première chambre de compression 106 par la séparation de la buse 110 et du second contact d'arc 114.Thus, an intermediate position from which the openings 136 are no longer obstructed corresponds to a position reached between that represented on the figure 3 and the one represented on the figure 4 , or between a position of separation of the arcing contacts and a position of opening end of the circuit breaker, or between a position of separation of the arcing contacts and an opening position of the first compression chamber 106 by the separation of the nozzle 110 and the second arc contact 114.

La durée correspondant au passage de la position de séparation des deux contacts d'arc 112, 114 à la position intermédiaire peut être ajustée grâce aux dimensions des ouvertures 136, du déflecteur 134 et du manchon 124, ainsi qu'au positionnement de ces éléments les uns par rapport aux autres. Cette durée peut notamment être ajustée pour qu'elle soit comprise entre environ un quart de période et une demi-période d'une tension de réseau appliquée sur le disjoncteur après la position de séparation des deux contacts d'arc 112, 114. Par exemple, cette durée est comprise entre environ 5 ms et 10 ms dans le cas d'une tension de réseau dont la fréquence est égale à 50 Hz, et est comprise entre environ 4,2 ms et 8,3 ms dans le cas d'une tension de réseau dont la fréquence est égale à 60 Hz. De manière préférentielle, cette durée est ajustée pour qu'elle soit comprise entre environ 2 ms et 7 ms après la position de séparation des deux contacts d'arc 112, 114. En effet, après cette durée, les ouvertures 136 ne sont plus obstruées car la distance entre les contacts d'arc 112, 114 est telle qu'il n'existe plus de risque de claquage diélectrique entre les contacts d'arc 112, 114 durant une coupure de courant capacitif. Cela s'applique notamment lorsque la coupure des courants capacitifs est particulièrement critique, c'est à dire lorsqu'elle est effectuée avec la durée d'arc minimale, par exemple une durée d'arc égale ou inférieure à environ 1 ms car dans ce cas, les contacts d'arc sont les plus proches l'un de l'autre après la coupure de l'arc, pour une durée après coupure donnée.The duration corresponding to the passage of the separation position of the two arcing contacts 112, 114 to the intermediate position can be adjusted thanks to the dimensions of the openings 136, the deflector 134 and the sleeve 124, and the positioning of these elements. one against another. This duration may in particular be adjusted so that it is between about a quarter of a period and half a period of a mains voltage applied to the circuit breaker after the position of separation of the two arcing contacts 112, 114. For example , this duration is between about 5 ms and 10 ms in the case of a mains voltage whose frequency is equal to 50 Hz, and is between about 4.2 ms and 8.3 ms in the case of a mains voltage whose frequency is equal to 60 Hz. Preferably, this duration is adjusted so that it is between about 2 ms and 7 ms after the position of separation of the two arcing contacts 112, 114. Indeed after this period, the openings 136 are no longer obstructed because the distance between the arcing contacts 112, 114 is such that there is no longer any risk of dielectric breakdown between the arcing contacts 112, 114 during a capacitive power failure. This applies in particular when the breaking of the capacitive currents is particularly critical, that is to say when it is performed with the minimum arc duration, for example an arc duration equal to or less than approximately 1 ms because in this case In this case, the arc contacts are closest to one another after the arc has been cut off, for a given duration after a break.

La figure 5 représente la chambre de coupure 100 en position de fin d'opération d'ouverture de disjoncteur, correspondant à une position de fin de compression de la seconde chambre de compression 120.The figure 5 represents the interrupting chamber 100 in the end position of the circuit breaker opening operation, corresponding to a compression end position of the second compression chamber 120.

Dans le cas d'une coupure de courant de défaut en court-circuit le soufflage de l'arc se produit lorsque le contact d'arc 114 ne coopère plus avec la buse 110 pour fermer la première chambre de compression 106. En effet, lorsque la première chambre de compression 106 s'ouvre au niveau de la buse 110, la surpression créée dans la première chambre de compression 106 provoque un soufflage du volume de gaz contenu dans la première chambre 106 vers l'enveloppe 102 à travers la buse 110.In the case of a fault current short-circuit arc blowing occurs when the arc contact 114 no longer cooperates with the nozzle 110 to close the first compression chamber 106. Indeed, when the first compression chamber 106 opens at the nozzle 110, the overpressure created in the first compression chamber 106 causes a blowing of the volume of gas contained in the first chamber 106 to the casing 102 through the nozzle 110.

Si la durée de l'arc est courte, le soufflage réalisé par la première chambre de compression 106 est suffisant pour éteindre l'arc.If the duration of the arc is short, the blowing carried out by the first compression chamber 106 is sufficient to extinguish the arc.

Si la durée de l'arc est longue, et que la valeur du courant est proche de la valeur de défaut, l'énergie apportée par l'arc est suffisante pour que le soufflage créé par la première chambre de compression 106 éteigne l'arc.If the duration of the arc is long, and the current value is close to the fault value, the energy provided by the arc is sufficient for the blowing created by the first compression chamber 106 extinguishes the arc.

Par contre, si la durée de l'arc est longue, et que la valeur du courant est faible, c'est-à-dire inférieure à environ 30% de la valeur de défaut, l'énergie apportée par l'arc est insuffisante pour que le soufflage créé par la première chambre de compression 106 éteigne l'arc. L'arc est donc toujours présent après la décompression du gaz présent dans la première chambre 106. La pression dans la première chambre de compression 106 est alors inférieure à celle dans la seconde chambre de compression 120, ce qui provoque l'ouverture de la valve 122. Du gaz est alors soufflé depuis la seconde chambre de compression 120, et ce soufflage continu jusqu'à ce que l'ensemble mobile 138 arrive en fin de course ou que l'arc s'éteigne.On the other hand, if the duration of the arc is long, and the value of the current is weak, that is to say less than approximately 30% of the default value, the energy brought by the arc is insufficient. for the blowing created by the first compression chamber 106 extinguishes the arc. The arc is therefore always present after the decompression of the gas present in the first chamber 106. The pressure in the first compression chamber 106 is then lower than that in the second compression chamber 120, which causes the opening of the valve 122. Gas is then blown from the second compression chamber 120, and this continuous blowing until the moving assembly 138 reaches the end of travel or the arc goes out.

Sur cette figure 5 on peut voir qu'il reste un volume mort dans lequel on peut conserver le gaz comprimé et le faire contribuer au soufflage lorsque la pression dans le volume 106 a baissé.On this figure 5 it can be seen that there remains a dead volume in which the compressed gas can be kept and contributed to the blowing when the pressure in the volume 106 has dropped.

La présente invention concerne également un disjoncteur 200, représenté sur la figure 6, comportant une chambre de coupure 100 telle que décrite précédemment. Ce disjoncteur 200 est, par exemple, un disjoncteur de puissance à haute ou moyenne tension, c'est-à-dire utilisé pour des tensions supérieures à environ 52 kV. La chambre de coupure 100 est reliée à un organe de manoeuvre 202 permettant d'actionner la compression dans la chambre de coupure 100 et l'ouverture du disjoncteur 200.The present invention also relates to a circuit breaker 200, shown in FIG. figure 6 , comprising a breaking chamber 100 as described above. This circuit breaker 200 is, for example, a high or medium voltage power circuit breaker, that is to say used for voltages greater than about 52 kV. The interrupting chamber 100 is connected to an actuator 202 for actuating the compression in the interrupting chamber 100 and the opening of the circuit breaker 200.

Bien que plusieurs modes de réalisation de la présente invention aient été décrits de façon détaillée, on comprendra que différents changements et modifications puissent être apportés sans sortir du cadre de l'invention définie dans les revendications.Although several embodiments of the present invention have been described in detail, it will be understood that various changes and modifications can be made without departing from the scope of the invention defined in the claims.

Il est également possible de réaliser des moyens déplaçant le second contact d'arc dans une direction opposée au déplacement de l'ensemble mobile durant l'opération d'ouverture du disjoncteur. Le principe décrit est donc applicable de la même manière dans le cas où les deux contacts d'arc sont mobiles).It is also possible to produce means displacing the second arcing contact in a direction opposite to the movement of the moving assembly during the opening operation of the circuit breaker. The principle described is therefore applicable in the same way in the case where the two arc contacts are movable).

Claims (13)

  1. A current interrupting chamber (100), for use in a circuit-breaker (200) and filled with a dielectric fluid, including:
    a moving assembly (138) which is axially displaceable between a start position and an end position of an operation of opening the circuit-breaker (200), characterized in that it comprises at least:
    a) a first compression chamber (106), the volume of which diminishes between the start position of an operation of opening the circuit-breaker (200) and a position corresponding to the completion of the compression process in the first compression chamber (106);
    b) a hollow drive tube (108) having at one end at least one first arcing contact (112) adapted to cooperate with a second arcing contact (114), and further having ports (136) for bringing the interior of the drive tube (108) into communication with the outside of the current interrupting chamber (100), the interior of the drive tube (108) being in communication with the first compression chamber (106) between a position corresponding to the separation of the two arcing contacts (112, 114) and the end position of an operation of opening the circuit-breaker (200);
    c) a second compression chamber (120), which is in communication at a first end thereof with the first compression chamber (106), and the volume of which diminishes between the start position and the end position of an operation of opening the circuit-breaker (200), adapted to inject dielectric fluid into the first compression chamber (106) between the position corresponding to the separation of the two arcing contacts (112, 114) and the end position of an operation of opening the circuit-breaker (200), when the pressure in the first compression chamber (106) is lower than the pressure in the second compression chamber (120); and
    d) means (124, 134) for obstructing the ports (136) in the drive tube (108) as from the start position of an operation of opening the circuit-breaker (200) and up to an intermediate position which is attained between the position corresponding to the separation of the two arcing contacts (112, 114) and the end position of an operation of opening the circuit-breaker (200);
    the position corresponding to the completion of the compression process in the first compression chamber (106) being attained before the end position of an operation of opening the circuit-breaker (200), and a position corresponding to the completion of the compression process in the second compression chamber (120) being attained after the position corresponding to the completion of the compression process in the first compression chamber (106).
  2. A current interrupting chamber (100) according to claim 1, wherein the dimensions and positioning of the means (124, 134) for obstructing the ports (136) relative to the drive tube (108) are such that the intermediate position is attained after a period of time lying in the range about 2 ms to 7 ms after the position corresponding to the separation of the two arcing contacts (112, 114).
  3. A current interrupting chamber (100) according to any preceding claim, wherein the means for obstructing the ports (136) of the drive tube (108) include at least one deflector (134) which is disposed inside the drive tube (108).
  4. A current interrupting chamber (100) according to claim 3, wherein the deflector (134) is movable relative to the drive tube (108).
  5. A current interrupting chamber (100) according to any preceding claim, wherein the first compression chamber (106) comprises at least one first tubular element (104).
  6. A current interrupting chamber (100) according to any preceding claim, wherein the second compression chamber (120) comprises at least two coaxial second tubular elements (116, 118), one of the two second tubular elements (116) partly constituting the drive tube (108).
  7. A current interrupting chamber (100) according to claim 6, wherein the second compression chamber (120) is closed at a second end thereof by at least one sleeve (124) which is disposed between the two coaxial second tubular elements (116, 118).
  8. A current interrupting chamber (100) according to claim 7, wherein the means for obstructing the ports (136) in the drive tube (108) comprise the sleeve (124).
  9. A current interrupting chamber (100) according to claim 7 or claim 8, wherein the drive tube (108) is movable relative to the sleeve (124).
  10. A current interrupting chamber (100) according to any preceding claim, wherein the first compression chamber (106) includes at one end thereof a nozzle (110) which is adapted to cooperate with the second arcing contact (114), whereby to define an opening of the first compression chamber (106) between said intermediate position and the end position of an operation of opening the circuit-breaker (200).
  11. A current interrupting chamber (100) according to any preceding claim, wherein the second compression chamber (120) is in communication with the first compression chamber (106) through at least one valve (122).
  12. A current interrupting chamber (100) according to any preceding claim, wherein the first and second arcing contacts (112, 114) are movable axially relative to each other.
  13. A circuit-breaker (200) including a current interrupting chamber (100) according to any preceding claim.
EP08165337.0A 2007-10-03 2008-09-29 Circuit breaker interruptor tube with double compression volume Not-in-force EP2045827B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0706923A FR2922043B1 (en) 2007-10-03 2007-10-03 BREAKER BREAKER CHAMBER WITH DOUBLE VOLUME OF COMPRESSION

Publications (2)

Publication Number Publication Date
EP2045827A1 EP2045827A1 (en) 2009-04-08
EP2045827B1 true EP2045827B1 (en) 2013-07-17

Family

ID=39226635

Family Applications (1)

Application Number Title Priority Date Filing Date
EP08165337.0A Not-in-force EP2045827B1 (en) 2007-10-03 2008-09-29 Circuit breaker interruptor tube with double compression volume

Country Status (5)

Country Link
US (1) US8044318B2 (en)
EP (1) EP2045827B1 (en)
JP (1) JP5155086B2 (en)
CN (1) CN101404229B (en)
FR (1) FR2922043B1 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2947377B1 (en) * 2009-06-29 2011-07-22 Areva T & D Sa DISCHARGE VALVE VALVE FOR DISCHARGING A DIELECTRIC GAS BETWEEN TWO VOLUMES OF A HIGH OR MEDIUM VOLTAGE BREAKER BREAK CHAMBER
EP2455957B1 (en) * 2010-11-22 2014-03-26 ABB Research Ltd. Gas insulated circuit breaker
WO2013013112A1 (en) * 2011-07-20 2013-01-24 Pennsylvania Breaker, Llc Gas blast interrupter
DE102013200913A1 (en) * 2013-01-22 2014-07-24 Siemens Aktiengesellschaft switching arrangement
KR101763451B1 (en) * 2014-04-09 2017-08-01 현대일렉트릭앤에너지시스템(주) Circuit breaker of gas insulation switchgear
CN104124086B (en) * 2014-08-18 2016-05-25 上海耐吉输配电设备有限公司 A kind of electric arc-control device
CN109196615B (en) * 2016-03-24 2020-12-22 Abb电网瑞士股份公司 Electric circuit breaker device
CN106328430B (en) * 2016-08-25 2018-08-07 中国西电电气股份有限公司 A kind of arc-chutes of series connection plenum chamber
CN111863521B (en) * 2020-06-11 2022-05-20 南方电网科学研究院有限责任公司 SF6 quick circuit breaker

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2411897A1 (en) 1974-03-12 1975-09-18 Siemens Ag ARRANGEMENT FOR EXTINGUISHING AN ARC IN A GAS FLOW SWITCH
JPS55157826A (en) * 1979-05-28 1980-12-08 Mitsubishi Electric Corp Switch
CH645754A5 (en) 1979-06-14 1984-10-15 Sprecher & Schuh Ag Gas-blast circuit breaker
JPS5750930U (en) * 1980-09-05 1982-03-24
US4440997A (en) 1982-05-28 1984-04-03 Brown Boveri Electric Inc. Puffer interrupter with arc energy assist
JPS6013642U (en) * 1983-07-08 1985-01-30 株式会社日立製作所 Patshua type gas shield disconnector
CH662443A5 (en) 1983-10-28 1987-09-30 Bbc Brown Boveri & Cie EXHAUST GAS SWITCH.
US4665289A (en) 1985-05-08 1987-05-12 Kabushiki Kaisha Toshiba Puffer type gas insulated circuit breaker
FR2639147B1 (en) * 1988-09-16 1990-12-14 Alsthom Gec HIGH VOLTAGE CIRCUIT BREAKER WITH DIELECTRIC GAS USED FOR BLOWING
FR2646013B1 (en) * 1989-04-17 1996-02-23 Alsthom Gec MEDIUM VOLTAGE CIRCUIT BREAKER
FR2696274B1 (en) 1992-09-29 1994-11-04 Alsthom Gec Self-blowing high voltage circuit breaker having a reduced gas compression interrupting chamber.
FR2748598B1 (en) * 1996-05-13 1998-06-05 Gec Alsthom T & D Sa HIGH-VOLTAGE SELF-BLOWING CIRCUIT BREAKER
FR2751782B1 (en) * 1996-07-23 1998-08-28 Gec Alsthom T & D Sa HIGH VOLTAGE CIRCUIT BREAKER WITH SELF-BLOWING ARC
FR2756413B1 (en) * 1996-11-28 1998-12-31 Gec Alsthom T & D Sa SEMI-MOBILE PISTON CIRCUIT BREAKER
FR2767221B1 (en) 1997-08-11 1999-09-10 Gec Alsthom T & D Sa SELF-BLOWING AND REDUCED COMPRESSION CIRCUIT BREAKER
JPH1167026A (en) * 1997-08-27 1999-03-09 Toshiba Corp Puffer type gas circuit-breaker
JP4174094B2 (en) 1998-01-29 2008-10-29 株式会社東芝 Gas circuit breaker
DE19958645C5 (en) * 1999-12-06 2011-05-26 Abb Technology Ag Hybrid circuit breaker
FR2892851B1 (en) 2005-11-03 2013-12-06 Areva T & D Sa CURRENT CURRENT CHAMBER WITH DOUBLE COMPRESSION CHAMBER

Also Published As

Publication number Publication date
EP2045827A1 (en) 2009-04-08
US8044318B2 (en) 2011-10-25
FR2922043A1 (en) 2009-04-10
FR2922043B1 (en) 2009-12-11
CN101404229A (en) 2009-04-08
JP5155086B2 (en) 2013-02-27
JP2009094067A (en) 2009-04-30
CN101404229B (en) 2013-03-20
US20090090697A1 (en) 2009-04-09

Similar Documents

Publication Publication Date Title
EP2045827B1 (en) Circuit breaker interruptor tube with double compression volume
EP1943657B1 (en) Interrupting chamber with double compression chamber
EP1271590B1 (en) Hybrid circuit breaker for middle or high voltage with vacuum and gas
EP1369888B1 (en) Hybrid circuit breaker for middle or high voltage with vacuum and gas
EP2332160B1 (en) Cutoff chamber for high-voltage circuit breaker with improved arc quenching
EP0302390B1 (en) High or medium voltage gas blast circuit breaker with opening energy taken from the arc energy
EP0458236B1 (en) Medium high voltage circuit breaker
EP0456025B1 (en) High voltage circuit interrupter with arc in series
EP2402970B1 (en) Arc chamber for a medium- or high-voltage circuit breaker with reduced operating energy and dimensions
WO2018069627A1 (en) Co2 switch for a high voltage dc grid
EP2237301B1 (en) Interruptor chamber with mobile contact and independently movable blowing nozzle, by pass interruptor and substation with HVDC converter comprising such chamber
EP1148528B1 (en) Puffer-type gas-blast circuit interrupter with a dual volume arc chamber
EP3251140A1 (en) Circuit breaker equipped with an extensible exhaust cover
FR2783088A1 (en) SWITCH WITH A LONG-TERM INSERTION RESISTOR INSERTION SYSTEM
FR2949170A1 (en) BREAKER CHAMBER FOR A MEDIUM OR HIGH VOLTAGE CIRCUIT BREAKER WITH REDUCED HANDLING ENERGY
FR2563372A1 (en) HIGH VOLTAGE ARC FLOW CIRCUIT BREAKER
FR2839193A1 (en) Hybrid high voltage switch mechanism having dielectric gas filled/vacuum switch envelope with contact breakers connection mechanism connected.
EP2237300B1 (en) Interrupting chamber with mobile contact having interior arc-blowing provision, HVDC bypass interruptor and HVDC-conversion substation with such a chamber
FR2980033A1 (en) BREAK CHAMBER FOR CIRCUIT BREAKER
FR3008541A1 (en) OPTIMIZED PISTON BLOWING CIRCUIT BREAKER
CH689884A5 (en) Breaker opening assisted by dynamic electronic effect.
EP0009446A1 (en) Compressed-gas high tension circuit interruptor

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MT NL NO PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA MK RS

17P Request for examination filed

Effective date: 20090424

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AREVA T&D SAS

AKX Designation fees paid

Designated state(s): CH DE FR IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM GRID SAS

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM TECHNOLOGY LTD

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602008026021

Country of ref document: DE

Effective date: 20130912

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20130717

26N No opposition filed

Effective date: 20140422

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602008026021

Country of ref document: DE

Effective date: 20140422

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20160927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160928

Year of fee payment: 9

Ref country code: FR

Payment date: 20160926

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160928

Year of fee payment: 9

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602008026021

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180404

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170930