[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP2044392B1 - Système de mesure pour un milieu s'écoulant dans un conduit de traitement - Google Patents

Système de mesure pour un milieu s'écoulant dans un conduit de traitement Download PDF

Info

Publication number
EP2044392B1
EP2044392B1 EP07787726.4A EP07787726A EP2044392B1 EP 2044392 B1 EP2044392 B1 EP 2044392B1 EP 07787726 A EP07787726 A EP 07787726A EP 2044392 B1 EP2044392 B1 EP 2044392B1
Authority
EP
European Patent Office
Prior art keywords
flow
flow conditioner
measuring tube
process pipe
measuring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP07787726.4A
Other languages
German (de)
English (en)
Other versions
EP2044392A2 (fr
Inventor
Rainer Höcker
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Endress and Hauser Flowtec AG
Original Assignee
Endress and Hauser Flowtec AG
Flowtec AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE200610034296 external-priority patent/DE102006034296A1/de
Priority claimed from DE102006047815A external-priority patent/DE102006047815A1/de
Application filed by Endress and Hauser Flowtec AG, Flowtec AG filed Critical Endress and Hauser Flowtec AG
Publication of EP2044392A2 publication Critical patent/EP2044392A2/fr
Application granted granted Critical
Publication of EP2044392B1 publication Critical patent/EP2044392B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/05Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
    • G01F1/20Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
    • G01F1/32Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
    • G01F1/3209Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • G01F1/76Devices for measuring mass flow of a fluid or a fluent solid material
    • G01F1/86Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
    • G01F1/88Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F15/00Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
    • G01F15/18Supports or connecting means for meters
    • G01F15/185Connecting means, e.g. bypass conduits

Definitions

  • the invention relates to a measuring system for measuring at least one measured variable, esp. A mass flow, a density, a viscosity, a pressure or the like, flowing in a process line medium with a transducer and a mediating between this and the process line flow conditioner.
  • process-installed measuring systems each attached directly to or in a flowed through by process line medium are.
  • the respective measured quantities to be detected may be, for example, a mass flow, a volumetric flow rate, a flow rate, a density, a viscosity or a temperature or the like, of a liquid, powdery, vaporous or gaseous process medium which is in such a way , For example, designed as a pipeline, process line out or maintained.
  • the measuring systems are, inter alia, those in which in-line measuring devices with magnetic-inductive transducers or the duration of ultrasound waves emitted in the flow direction, esp. Also working on the Doppler principle, transducers, with transducers of the vibration type, esp Coriolis mass flow sensors, density sensors, or the like can be used.
  • the basic structure and operation of magnetic-inductive transducer is eg in the EP-A 1 039 269 . US-A 60 31 740 . US-A 55 40 103 . US-A 53 51 554 .
  • US-A 45 63 904 or such ultrasonic transducer for example in the US-B 63 97 683 , the US-B 63 30 831 , the US-B 62 93 156 , the US-B 61 89 389 , the US-A 55 31 124 , the US-A 54 63 905 , the US-A 51 31 279 , the US-A 47 87 252 described sufficiently and also the skilled person also sufficiently known, can be dispensed with a more detailed explanation of these principles of measurement at this point. Further examples of such, the expert and known per se, esp. Formed by compact in-line measuring instruments, measuring systems are also, inter alia in the EP-A 984 248 . GB-A 21 42 725 .
  • measuring systems of the type in question each have a corresponding transducer, which is used in the course of a medium-leading process line and which serves to generate at least one of the primary detected measured variable as accurately as possible, esp. Electric, measuring signal ,
  • the transducer is usually with a in the course of the respective process line, the
  • This has at least one sensor element which reacts primarily to the measured variable to be detected or else changes thereof, by means of which at least one measuring signal influenced correspondingly by the measured variable is generated during operation.
  • the measuring sensor is further connected to a correspondingly suitable measuring electronics.
  • the measuring electronics communicating with the transducer in a suitable manner generates at least temporarily at least one measured value currently representing the measured variable during operation of the measuring system, for example a mass flow measured value, volume flow measured value, a density measured value, a viscosity measured value , a pressure reading, a temperature reading, or the like.
  • such measuring systems further comprise a corresponding electronics housing, such as in the US-A 63 97 683 or the WO-A 00/36 379 suggested, arranged away from the transducer and can be connected to this only via a flexible line:
  • the electronics housing but also, as in the EP-A 903,651 or the EP-A 1 008 836 to form a compact in-line meter - for example, a Coriolis mass flow / density meter, an ultrasonic flowmeter, a vortex flowmeter, a thermal flowmeter, a magnetic flowmeter, or the like - directly on the transducer or a separate the transducer be arranged einheinenden transducer housing.
  • the electronics housing such as in the EP-A 984 248 , the US-A 47 16 770 or the US-A 63 52 000 shown, often also to include some mechanical components of the transducer, such as under mechanical action operationally deforming membrane, rod, sleeve or tubular deformation or vibration body, see. this also the aforementioned US-B 63 52 000 ,
  • measuring systems of the type described are usually connected to one another via a data transmission system connected to the measuring electronics and / or to corresponding process control computers, to which they supply the measured value signals, e.g. via (4 mA to 20 mA) current loop and / or via digital data bus.
  • data transmission systems serve here, esp. Serial, field bus systems, such. PROFIBUS-PA, FOUNDATION FIELDBUS and the corresponding transmission protocols.
  • the transmitted measured value signals can be further processed and used as corresponding measurement results, e.g. visualized on monitors and / or in control signals for process actuators, e.g. Solenoid valves, electric motors, etc., to be converted.
  • in-line measuring devices and extent also measuring system of the type described may well have a more or less dependent on the type of flow measurement accuracy. Of particular interest in this connection is also an instantaneous expression of an effective flow profile in the measuring tube.
  • the measuring tube optionally in such a way that it has a smaller flow area, as an inlet connected to the measuring system inlet segment of the process line.
  • the flowing medium then experiences an acceleration in the direction of flow, which in turn can also increase the Reynolds number can be achieved.
  • the realization of this principle has also proven itself in particular in those measuring systems which operate by means of an ultrasonic measuring device and / or by means of a vortex flowmeter and / or which are provided for the measurement of at least partially, in particular predominantly or completely, gaseous media ,
  • An inlet end of the flow conditioner facing the inlet segment of the process line has a flow cross section which is greater than the flow cross section of the measuring tube, while an outlet end of the flow conditioner facing the measuring tube accordingly has a flow cross section which is smaller than the flow cross section of the inlet end.
  • Another possibility for circumventing this problem is further to increase the installation length of the Strömunsgkonditionierer so as to achieve a stabilization and calming of the flow, so possible before they enter the measuring tube so far already in the flow conditioner.
  • this requires, as, inter alia, from the mentioned US-A 36 86 946 can be seen, a correspondingly short measuring tube along with a positioning of the sensor elements of the measuring transducer directly at the inlet end of the measuring tube or in the vicinity, or this can lead to a considerable increase in the installation length of the entire measuring system.
  • An object of the invention is therefore to provide a measuring system for a flowing medium, with the shortest possible installation length an increase in the Reynolds number of flow from the process line towards the measuring tube allows and still has a relation to any disturbances in the flowing medium upstream of the measuring system, either in the inlet segment and / or in the immediate transition region between process line and actual measuring system, largely insensitive measurement accuracy.
  • the invention consists in a process line, esp. A pipeline, according to claim 1.
  • a basic idea of the invention is to improve the measuring accuracy of measuring systems of the type described not only in that the flow is sufficiently accelerated and thus safely transformed into a favorable Reynolds number range, but also in that on the one hand possibly upstream of the measuring system in the flow registered disorders , as for example, in their near the tube wall edge areas "mitschwimmende" vortex largely eliminate by means of the actual transducer upstream flow conditioner and thus on the other hand by means of the flow conditioner largely störunskyes, sufficiently well reproducible for the measurement flow profile for the medium flowing into the transducer.
  • a special feature of such a "virtual" nozzle is i.a. in that it largely eliminates any induced disturbances in the flow upstream of the inlet region and, moreover, builds up a largely undisturbed flow profile downstream of it virtually downstream.
  • the size and strength of the toroidal vortex inevitably even adapts to the size and strength of the incoming disturbance, so that the "virtual" nozzle created in this way is practically adaptive in terms of an effective troubleshooting.
  • the invention is based on the surprising finding that such a stationary, esp. Also largely stationary vortex by means of a placed in the inlet region of the measuring system, acting as a defined disturbance in a peripheral region of the lumen flowed through by the medium flow obstacle - here as sharp and as complete as possible , esp. Circular, circumferential inner edge - can be achieved.
  • the effect of the "virtual" nozzle generated by means of the toroidal vortex can be further improved by the fact that another, equally stationary as possible stationary vortex is stationed in the flow conditioner upstream of the vortex generated by the inner edge, possibly also immediately before this.
  • This can be achieved in the flow conditioner according to the invention in a structurally very simple manner, characterized in that a limited by the inner edge, esp. Circular largely uniformly circulating, baffle is clearly pronounced, so that they are sufficient to the inflowing medium in a sufficient for vortex formation as a flow obstacle counteracts.
  • the effectively effective contour of the "virtual" nozzle thus formed is practically approximated to an S-shape, which makes the formation of a very suitable for the subsequent measurement, equally well over a wide Scope of application favorably reproducible flow profile.
  • the measuring transducer can be supplied via the flow conditioner with medium having such a flow profile, which is at least largely similar to a calibrated situation.
  • Fig. 1 is an optionally modular design, measuring system shown schematically, which is suitable and intended, at least one measured variable, esp. A mass flow m and / or volumetric flow v and / or a flow velocity u and / or another flow parameter in one - here not shown - process line flowing medium, such as a liquid, a gas, a vapor or the like, to measure very robust and to map in at least one corresponding measured value X M.
  • the measuring system for this purpose comprises at least one in-line measuring device for flowing media, which is formed by means of a corresponding Meßauf choirs 100 and an at least temporarily electrically coupled thereto measuring electronics of the measuring system.
  • the in-line measuring device comprises a measuring transducer 100 through which the medium to be measured flows during operation, and an electronics housing 200 in which a measuring electronics unit, which is electrically connected to the measuring transducer 100 and not shown here, is accommodated.
  • the transducer 100 has at least one in the course of, esp. Designed as a pipeline, process line inserted measuring tube through which at least temporarily the medium to be measured is allowed to flow through during operation of the measuring system.
  • the in-line measuring device is provided in particular for generating, at least temporarily, at least one measuring signal which is from at least one physical parameters, in particular a flow velocity, a mass flow m , a volume flow v , a density r and / or a viscosity h , of the medium located in the measuring tube is influenced and in this respect correspondingly corresponds to the measured variable.
  • a sensor arrangement of the in-line measuring device is provided on the measuring tube and / or in its vicinity which reacts at least indirectly to changes in the at least one measured variable of the medium in a manner correspondingly influencing the at least one measuring signal.
  • the measuring electronics is further designed so that in operation the measuring system with a higher-level measured value processing unit, such as a programmable logic controller (PLC), a personal computer and / or a workstation, via data transmission system, for example, a fieldbus system, measuring and / or other operating data, in particular also the at least one measured value X M , can exchange.
  • a higher-level measured value processing unit such as a programmable logic controller (PLC), a personal computer and / or a workstation
  • PLC programmable logic controller
  • the measuring system is provided for coupling to a fieldbus or other communication system, the meter electronics on a corresponding communication interface for data communication, eg for sending the measured data to the aforementioned programmable logic controller or a higher-level process control system, on.
  • standard interfaces can be used, for example, in industrial measuring and automation technology.
  • the external power supply can be connected to the fieldbus system and supply the measuring system in the manner described above with energy directly via fieldbus system.
  • a vortex flow meter serves as an in-line meter, which is well known for the measurement of gases, the physical measurement, esp. The mass flow m , the density r and / or the viscosity h , to be measured High-precision recording of media.
  • in-line meters equally well established in process automation technology may be used to determine the measurand, such as magnetic inductive flowmeters, Coriolis flowmeters, thermal flowmeters, differential pressure flowmeters, ultrasonic flowmeters, or the like.
  • FIGS. 2 and 3 shown and used in the overview perspective views of an embodiment of a vortex transducer according to the Vortex principle, seen on the one hand in the flow direction ( Fig. 2 ) and on the other hand seen against the flow direction ( Fig. 3 ), a partially cut Meßsaufillon 1 a vortex flowmeter with a fixed to a tube wall 21 of a measuring tube 2 and projecting through a bore 22 through vortex sensor 3.
  • This can, for example, a dynamically compensated vortex sensor with a capacitive sensor element, as in the US-A 60 03 384 is described.
  • a baffle body 4 is arranged in the interior of which is firmly connected to the measuring tube 2 to form a first fixing point 41 and a hidden second fixing 41 *.
  • the center of the bore 22 and the center of the fixing point 41 lie on a generatrix of the measuring tube. 2
  • the bluff body 4 has a baffle 42 against which a medium to be measured during operation, for. As a liquid, a gas or a vapor, flows to.
  • the bluff body 4 also has two side surfaces, of which only one (front) side surface 43 in the Fig. 1 and 2 you can see. From the baffle 42 and the side surfaces two tear-off edges are formed, of which only one (front) tear-off edge 44 and a (rear) tear-off edge 45 hinted in Fig. 1 you can see.
  • the baffle 4 of Fig. 1 and 2 has substantially the shape of a straight triangle column, so a column with a triangular cross-section.
  • bluff body may be used in the invention.
  • a Kärmän'sche vortex street characterized in that tear off at each trailing edge alternately vortex and taken away by the flowing medium.
  • These vortices produce local pressure fluctuations in the flowing medium whose time-related demolition frequency, ie their so-called vortex frequency, is a measure of the flow velocity and / or the volume flow rate of the medium.
  • the pressure fluctuations are converted by means of the vortex sensor 3 in a serving as an electrical measurement signal vortex signal, which housed in the electronics housing - but not shown here and not explained in detail - measuring electronics is supplied from the example, the flow rate and / or the volumetric flow of the flowing medium calculated accordingly.
  • the vortex sensor 3 is inserted downstream of the bluff body 4 in the bore 22 of the tube wall 21 of the measuring tube 2 and seals the bore 22 from the lateral surface of the measuring tube 2 out, to which the vortex sensor 3 is screwed to the tube wall 21.
  • the sensor flag 31 has major surfaces, of which in the Fig. 1 and 2 only the main surface 311 can be seen.
  • the major surfaces are aligned with the aforementioned generatrix of the measuring tube 2 and form a front edge 313.
  • the sensor flag 31 may have other suitable spatial shapes; so she can z. B. have two parallel major surfaces that form two parallel front edges.
  • the sensor flag 31 is shorter than the diameter of the measuring tube 2; it is also rigid and has a blind hole 314 (only in Fig. 4 to see). So that the blind hole 314 has a sufficient diameter, emerging from the main surfaces wall parts, of which in Fig. 3 the wall part 315 is indicated.
  • the blind hole 314 extends to the vicinity of the front edge 313 and has a floor there.
  • the vortex sensor 3 further includes a membrane 33 covering the bore 22 with a first surface 331 facing the medium and a second surface 332 remote from the medium, see FIG Fig. 3 and 4
  • the sensor flag 31 is fixed and on the surface 332, a sensor element 36
  • metal esp. Stainless steel.
  • the sensor element 36 generates the above-mentioned signal whose frequency is proportional to the volume flow of the flowing medium.
  • the measuring medium to be measured esp. Essentially straight, measuring tube has a smaller flow area A1, as an inlet side connected to the measuring system inlet segment 400 of the process line. Therefore, the measuring system further comprises an inlet side of the measuring tube, between this and the inlet segment of the Process line mediating flow conditioner 300, which has a tapered towards the measuring tube 2, in the operation of the medium flowed through lumen.
  • An inlet end of the flow conditioner facing the inlet segment of the process line has a flow cross section a which is greater than the flow cross section A1 of the measuring tube, while an outlet end of the flow conditioner facing the measuring tube has a flow cross section which is smaller than the flow cross section of the inlet end of the flow conditioner.
  • the flow conditioner has at least one inner edge K, which is arranged upstream of its outlet end and projects into the lumen of the flow conditioner, in particular along a generatrix of the flow conditioner, which has flowed during operation of the medium conveyed therein.
  • the inner edge K is a substantially toroidal, at least in the stationary state largely stationary first vortex w1.
  • the inner edge K is formed and arranged in the flow conditioner, that it is aligned substantially transversely to an imaginary longitudinal axis of the flow conditioner and / or transversely to an imaginary longitudinal axis of the measuring tube.
  • the inner edge esp. Circular, circumferentially and so far closed in itself.
  • the inner edge is also arranged in the, in particular.
  • this invention has an edge radius which is less than 2 mm, in particular less than 0.6 mm.
  • an impact area P which is delimited by the inner edge of the flow conditioner and serves to accumulate medium flowing thereon, in an annular area of the flow conditioner, especially in addition to the first vortex w1, forms a substantially toroidal, at least in the stationary state equally largely stationary second vortex w2, in such a way that the largest imaginary main axis of inertia of each of the two vortices w1, w2 substantially coincide with each other.
  • the baffle P is arranged and aligned in the flow conditioner such that it is at least partially substantially perpendicular to an imaginary longitudinal axis of the flow conditioner and / or that it extends in sections substantially perpendicular to an imaginary longitudinal axis of the measuring tube. Since particularly good results can be achieved with a pronounced baffle, this has according to an advantageous embodiment of the invention in the radial direction to a height h2, which is at least 1 mm.
  • the baffle P may be formed, for example, as a substantially planar annular surface or conical, tapering toward the measuring tube or widening towards the process line.
  • the vortex-generating inner edge K is formed by the fact that the impact surface P abuts a guide surface L which extends in the direction of the outlet end of the flow conditioner and serves to guide media flowing in the flow conditioner, which in this respect is likewise delimited by the inner edge K.
  • the tapered to the measuring tube guide surface L can, for example, as well as in the 4 to 6 shown to be substantially conically shaped, esp. So that at least partially convex and / or partially concave shaped
  • the medium to be measured from the inlet segment is flowed into the flow conditioner in the inventive method. It is accelerated due to the smaller flow cross-section in the direction of the imaginary longitudinal axis of the flow conditioner of the flow conditioner.
  • the first vortex w1 is formed within the medium flowing in the inlet region of the flow conditioner in such a way that a largest imaginary main axis of inertia of the vortex w1 with the imaginary longitudinal axis of the Strömungsungskonditionerers and / or an imaginary longitudinal axis of the measuring tube essentially coincident.
  • the latter acts both in cross-section narrowing and also in the direction of the guide surface L and thus stabilizes the flow profile.
  • At least one further substantially stationary, esp. Essentially stationary, toroidal vortex is induced in the inlet region of the Strömungskonditionieres, effectively results in an additional cross-sectional constriction and extent an increased acceleration of the flow.

Landscapes

  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • General Physics & Mathematics (AREA)
  • Measuring Volume Flow (AREA)
  • Examining Or Testing Airtightness (AREA)

Claims (12)

  1. Conduite de process, notamment une tuyauterie, avec un système de mesure inséré dans son tracé, lequel système est destiné à mesurer au moins une grandeur de mesure, notamment un débit massique, un débit volumique, une vitesse d'écoulement, une masse volumique, une viscosité, une pression, une température, etc., d'un produit s'écoulant dans une conduite de process, et avec un segment d'alimentation (400) raccordé côté entrée au système de mesure,
    - le système de mesure comprenant :
    -- un capteur (100)
    --- avec un tube de mesure (2) servant au guidage du produit à mesurer, notamment pour l'essentiel droit, qui présente une section d'écoulement (A1) inférieure au segment d'alimentation de la conduite de process, raccordée côté entrée au système de mesure, et
    --- avec un dispositif capteur,
    --- qui comprend au minimum un élément capteur réagissant de façon primaire à une grandeur à mesurer, notamment aux changements de celle-ci, et
    --- qui délivre, au moyen de l'au moins un élément capteur, un signal de mesure influencé par la grandeur à mesurer,
    -- une électronique de mesure communiquant avec le capteur (100), laquelle électronique génère, en utilisant l'au moins un signal de mesure, au minimum temporairement une valeur mesurée représentant momentanément la grandeur à mesurer, notamment une valeur mesurée de débit massique, une valeur mesurée de débit volumique, une valeur mesurée de masse volumique, une valeur mesurée de viscosité, une valeur mesurée de pression, une valeur mesurée de température, ainsi que
    -- un conditionneur d'écoulement (300) disposé côté entrée du tube de mesure, entre celui-ci et le segment d'alimentation de la conduite de process, lequel conditionneur comporte un canal intérieur parcouru, en fonctionnement, par le produit et qui se rétrécit en direction du tube de mesure (2) ;
    - une extrémité d'entrée du conditionneur d'écoulement (300), qui fait face au segment d'alimentation (400) de la conduite de process, présentant une section d'écoulement (a) supérieure à la section d'écoulement (A1) du tube de mesure (2), et une extrémité de sortie du conditionneur d'écoulement (300), qui fait face au tube de mesure (2), présentant une section d'écoulement (b) inférieure à la section d'écoulement de l'extrémité d'entrée du conditionneur d'écoulement (300), et
    - le conditionneur d'écoulement (300) présentant au minimum un bord intérieur (K), disposé en amont de l'extrémité de sortie du conditionneur et pénétrant dans le canal intérieur du conditionneur d'écoulement (300), lequel bord est balayé, en fonctionnement, par le produit qui y est guidé ;
    - l'au moins un bord intérieur (K), qui pénètre dans le canal intérieur du conditionneur d'écoulement (300), étant formé, notamment de façon circulaire et périphérique, fermé sur lui-même, et présentant un rayon inférieur à 2 mm, notamment inférieur à 0,6 mm ;
    - l'au moins un bord intérieur (K), qui pénètre dans le canal intérieur du conditionneur d'écoulement (300), servant à accumuler le produit, qui s'écoule au niveau de ce bord, dans une surface d'impact (P) du conditionneur d'écoulement (300), disposée dans une zone marginale, notamment circulaire et périphérique, du conditionneur d'écoulement (300), et limitant une surface de guidage du conditionneur d'écoulement (300), qui s'étend en direction de l'extrémité de sortie du conditionneur d'écoulement (300) et qui sert à guider le produit s'écoulant dans le conditionneur d'écoulement (300) ;
    - la surface d'impact (P) et le bord intérieur (K) étant formés au moins partiellement, côté entrée du conditionneur d'écoulement (300), par un deuxième cône intérieur, s'étendant notamment jusqu'à son extrémité d'entrée, lequel premier cône intérieur présente un angle de flanc (σ), si bien que la surface d'impact (P) est formée de manière à s'élargir en direction de l'extrémité d'entrée du conditionneur d'écoulement (300) ;
    - la surface d'impact (P) et le bord intérieur (K) étant formés au moins partiellement, côté entrée du conditionneur d'écoulement (300), par un premier cône intérieur, s'étendant notamment jusqu'à son extrémité de sortie, lequel deuxième cône intérieur présente un angle de flanc (β) supérieur à 2°, notamment supérieur à 4°, et inférieur à 45°, notamment inférieur à 10° ;
    - l'angle de flanc (σ) du premier cône intérieur étant supérieur à l'angle de flanc (β) du deuxième cône intérieur ;
    - et l'au moins un élément capteur, notamment immergé en fonctionnement dans le produit, étant disposé, à une distance (Lm) de l'extrémité d'entrée du tube de mesure (2), dans et/ou, notamment directement, sur le tube de mesure, de telle sorte qu'un rapport entre la distance (Lm) et un calibre (D1) du tube de mesure (2) est maintenu supérieur à un.
  2. Conduite de process selon l'une des revendications précédentes, pour laquelle un rapport des sections (A2/A1) entre la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process et la section d'écoulement (A1) du tube de mesure est supérieur à 1,5 et/ou inférieur à 10, notamment maintenu dans une plage comprise entre 1,66 et 9,6.
  3. Conduite de process selon la revendication précédente,
    - pour laquelle une section (a) limitée par l'au moins un bord intérieur du canal intérieur du conditionneur d'écoulement (300), s'étendant dans le canal intérieur du conditionneur d'écoulement (300), est inférieure à la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process ;
    - et pour lequel un rapport de striction (a/A2) entre la section (a) limitée par le bord intérieur et la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process est inférieur à 0,9 et/ou supérieur à 0,1, notamment maintenu dans une plage comprise entre 0,25 et 0,85.
  4. Conduite de process selon la revendication précédente, pour laquelle une différence (A2/A1-a/A2) entre le rapport des sections (A2/A1) et le rapport de striction (a/A2) est supérieure à 0,5 et/ou inférieure à 10, notamment maintenue supérieure à 0,83 et inférieure à 9,5.
  5. Conduite de process selon l'une des revendications 2 à 4, pour laquelle un rapport de contraction (a/A1) entre la section (a) limitée par le bord intérieur et la section d'écoulement (A1) du tube de mesure (2) est supérieur à 1,2 et/ou inférieur à 5, notamment maintenu dans une plage comprise entre 1,3 et 3.
  6. Conduite de process selon la revendication précédente, pour laquelle une différence (A2/A1 -a/A1) entre le rapport des sections (A2/A1) et le rapport de contraction (a/A1) est supérieure à 0,2 et/ou inférieure à 10, notamment maintenue dans une plage comprise entre 0,25 et 8.
  7. Conduite de process selon l'une des revendications précédentes, pour laquelle le tube de mesure présente un calibre (D1) inférieur à un segment d'alimentation (400) raccordé côté entrée au système de mesure.
  8. Conduite de process selon la revendication précédente,
    - pour laquelle l'extrémité d'entrée du conditionneur d'écoulement (300), qui fait face au segment d'alimentation (400) de la conduite de process, présente un calibre supérieur à un calibre (D1) du tube de mesure (2), et pour laquelle l'extrémité de sortie du conditionneur d'écoulement (300), faisant face au tube de mesure (2), présente un calibre inférieur au calibre de l'extrémité d'entrée du conditionneur d'écoulement (300) ; et/ou
    - pour laquelle l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300) est formé de telle sorte que le diamètre intérieur de l'extrémité d'entrée (d) du conditionneur d'écoulement (300) est maintenu plus petit que le calibre (D2) du segment d'alimentation (400) de la conduite de process ; et/ou
    - pour laquelle une section, limitée par l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300), du canal intérieur du conditionneur d'écoulement (300) présente un diamètre (d) inférieur au calibre (D2) du segment d'alimentation (400) de la conduite de process ; et/ou
    - pour laquelle un rapport des sections (D2/D1) entre le calibre (D2) du segment d'alimentation (400) et le calibre (D1) du tube de mesure (2) est maintenu supérieur à 1,1 et/ou inférieur à 5, notamment dans une plage comprise entre 1,2 et 3,1.
  9. Conduite de process selon l'une des revendications 7 à 8, pour laquelle le tube de mesure (2) présente une longueur de montage (L1) supérieure à la longueur de montage (L2) du conditionneur d'écoulement (300), de telle sorte qu'un rapport des longueurs (L2/L1) entre la longueur de montage (L2) du conditionneur d'écoulement (300) et la longueur de montage (L1) du tube de mesure (2) est maintenu inférieur à un.
  10. Conduite de process selon la revendication précédente, pour laquelle un rapport des sections (D2/D1) entre le calibre (D2) du segment d'alimentation (400) de la conduite de process et le calibre (D1) du tube de mesure (2) correspond à au moins 10 % du rapport des longueurs de montage (L2/L1) entre la longueur de montage (L2) du conditionneur d'écoulement (300) et la longueur de montage (L1) du tube de mesure (2).
  11. Conduite de process selon l'une des revendications précédentes,
    - pour laquelle l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300) est conçu et disposé dans le conditionneur d'écoulement (300) de telle sorte qu'il soit pour l'essentiel aligné perpendiculairement à un axe longitudinal imaginaire du conditionneur d'écoulement (300) et/ou perpendiculairement à un axe longitudinal imaginaire du tube de mesure (2) ; et/ou
    - pour laquelle le conditionneur d'écoulement (300) est formé au minimum dans une zone d'entrée pour l'essentiel de façon cylindrique circulaire ; et/ou
    - pour laquelle le tube de mesure (2) est formé au minimum dans une zone d'entrée pour l'essentiel de façon cylindrique circulaire ; et/ou
    - pour laquelle le conditionneur d'écoulement (300) est formé au minimum dans une zone de sortie pour l'essentiel de façon cylindrique circulaire ; et/ou
    - pour laquelle le tube de mesure (2), notamment de forme cylindrique circulaire, est pour l'essentiel droit ; et/ou
    - pour laquelle il s'agit, concernant le capteur (100), d'un capteur de débit vortex, notamment d'un capteur de débit vortex de Karman ; et/ou
    - pour laquelle le capteur (100) comprend au minimum un corps de retenue (4) disposé dans le tube de mesure (2), et pour laquelle l'au moins un élément capteur du dispositif capteur, notamment pénétrant au moins partiellement dans le tube de mesure (2), est disposé en aval de l'au moins un corps de retenue (4).
  12. Conduite de process selon l'une des revendications précédentes,
    - pour laquelle la surface d'impact (P) présente en direction axiale une hauteur, qui s'élève à au moins 1 mm ;
    et/ou
    - pour laquelle la surface d'impact (P) est conçue sous la forme d'une surface d'anneau de cercle ; et/ou
    - pour laquelle le premier cône intérieur présente un angle de flanc (σ), qui est supérieur à 45°, notamment supérieur à 60°, et/ou qui est inférieur à 90°, notamment inférieur à 88 °C.
EP07787726.4A 2006-07-21 2007-07-19 Système de mesure pour un milieu s'écoulant dans un conduit de traitement Active EP2044392B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE200610034296 DE102006034296A1 (de) 2006-07-21 2006-07-21 Meßsystem für ein in einer Prozeßleitung strömendes Medium
DE102006047815A DE102006047815A1 (de) 2006-10-06 2006-10-06 Meßsystem für ein in einer Prozeßleitung strömendes Medium
PCT/EP2007/057468 WO2008009720A2 (fr) 2006-07-21 2007-07-19 Système de mesure pour un milieu s'écoulant dans un conduit de traitement

Publications (2)

Publication Number Publication Date
EP2044392A2 EP2044392A2 (fr) 2009-04-08
EP2044392B1 true EP2044392B1 (fr) 2019-05-08

Family

ID=38895863

Family Applications (2)

Application Number Title Priority Date Filing Date
EP07787726.4A Active EP2044392B1 (fr) 2006-07-21 2007-07-19 Système de mesure pour un milieu s'écoulant dans un conduit de traitement
EP07787725.6A Active EP2044391B1 (fr) 2006-07-21 2007-07-19 Système de mesure pour un milieu s'écoulant dans un conduit de traitement

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP07787725.6A Active EP2044391B1 (fr) 2006-07-21 2007-07-19 Système de mesure pour un milieu s'écoulant dans un conduit de traitement

Country Status (4)

Country Link
US (6) US7600436B2 (fr)
EP (2) EP2044392B1 (fr)
RU (2) RU2414686C2 (fr)
WO (2) WO2008009719A2 (fr)

Families Citing this family (41)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7533579B2 (en) * 2006-01-19 2009-05-19 Invensys Systems, Inc. Reduced bore vortex flowmeter having a stepped intake
EP2044392B1 (fr) * 2006-07-21 2019-05-08 Endress + Hauser Flowtec AG Système de mesure pour un milieu s'écoulant dans un conduit de traitement
US7810401B2 (en) * 2008-03-07 2010-10-12 Cameron International Corporation Apparatus and method for operation in the laminar, transition, and turbulent flow regimes
ATE511606T1 (de) * 2008-10-01 2011-06-15 Grundfos Management As Kreiselpumpenaggregat
JP5295377B2 (ja) * 2008-10-29 2013-09-18 ローズマウント インコーポレイテッド 後方に向いた表面に溝を持つ渦流量計ボディ
DE102008056871A1 (de) * 2008-11-12 2010-06-10 Abb Technology Ag Durchflussmessgerät
US7905153B2 (en) * 2009-04-24 2011-03-15 Mann+Hummel Gmbh Flow vortex suppression apparatus for a mass air flow sensor
RU2534718C2 (ru) * 2009-12-31 2014-12-10 Эндресс + Хаузер Флоутек Аг Измерительная система для среды, протекающей в трубопроводах, и способ измерения разности давлений внутри протекающей среды
JP5793644B2 (ja) 2010-11-11 2015-10-14 パナソニックIpマネジメント株式会社 超音波式流量計測装置
US9354095B2 (en) 2012-10-02 2016-05-31 Honeywell International Inc. Modular flow sensor
SE538092C2 (sv) * 2012-12-04 2016-03-01 Scania Cv Ab Luftmassemätarrör
US9016138B2 (en) 2013-03-13 2015-04-28 Rosemount Inc. Flanged reducer vortex flowmeter
WO2014172518A1 (fr) 2013-04-17 2014-10-23 Cummins Filtration Ip, Inc. Cartouches de filtration d'air pourvues d'une rectification de flux d'air et procédés de fabrication associés
DE102013105363A1 (de) * 2013-05-24 2014-11-27 Endress + Hauser Flowtec Ag Wirbelströmungsmesssensor und Wirbelströmungsmessaufnehmer zur Messung der Strömungsgeschwindigkeit eines Fluids
DE102013106157A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Flowtec Ag Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts
DE102013106155A1 (de) 2013-06-13 2014-12-18 Endress + Hauser Flowtec Ag Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts
US9279706B2 (en) * 2013-07-23 2016-03-08 Yokogawa Corporation Of America Flow area reduction in Vortex flowmeters using bore reduction techniques
US9322683B2 (en) 2014-05-12 2016-04-26 Invensys Systems, Inc. Multivariable vortex flowmeter
US9410830B2 (en) * 2014-06-30 2016-08-09 Micro Motion, Inc. Magnetic flowmeter flowtube assembly with interchangeable liner/electrode module
DE102014112558A1 (de) 2014-09-01 2016-03-03 Endress + Hauser Flowtec Ag Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem
US9599493B2 (en) * 2014-10-31 2017-03-21 Invensys Systems, Inc. Split flow vortex flowmeter
WO2016176224A1 (fr) 2015-04-27 2016-11-03 Kim Lewis Diagnostics par débitmètre pour fluide
US20180100611A1 (en) * 2015-05-20 2018-04-12 Green Hvac Ducts Usa, Llc Duct technologies
DE102015112930B4 (de) * 2015-08-06 2022-05-19 Krohne Ag Magnetisch-induktives Durchflussmessgerät
DE102015116147A1 (de) 2015-09-24 2017-03-30 Endress + Hauser Flowtec Ag Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem
DE102015122553A1 (de) 2015-12-22 2017-06-22 Endress+Hauser Flowtec Ag Wandlervorrichtung sowie mittels einer solchen Wandlervorrichtung gebildetes Meßsystem
DE102016104423A1 (de) 2016-03-10 2017-09-14 Endress+Hauser Flowtec Ag Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem
CN106295203B (zh) * 2016-08-15 2020-01-07 上海交通大学 基于上端差应达值实时计算的机组热经济性在线评估方法
CN106248133B (zh) * 2016-08-15 2019-05-24 上海交通大学 一种加热器全工况上端差和下端差应达值的在线估计方法
US20190204133A1 (en) * 2016-09-19 2019-07-04 Flow Devices And Systems Inc. Variable Restriction for Flow Measurement
DE102018101278A1 (de) * 2018-01-22 2019-07-25 SIKA Dr. Siebert & Kühn GmbH & Co. KG Strömungsmesser
DE102018132311A1 (de) 2018-12-14 2020-06-18 Endress + Hauser Flowtec Ag Meßsystem zum Messen eines Strömungsparameters eines in einer Rohrleitung strömenden Fluids
US10866127B2 (en) * 2019-01-18 2020-12-15 Sensus Spectrum, Llc Dual class ultrasonic gas meters and related flowtubes
JPWO2020208697A1 (fr) * 2019-04-09 2020-10-15
CN115244366A (zh) * 2020-03-05 2022-10-25 高准有限公司 流量计联接系统
JP7456366B2 (ja) 2020-12-14 2024-03-27 横河電機株式会社 診断装置、測定装置、診断方法、および診断プログラム
DE102020134264A1 (de) 2020-12-18 2022-06-23 Endress+Hauser Flowtec Ag Sensor zum Erfassen von Druckschwankungen in einem strömenden Fluid sowie damit gebildetes Meßsystem
DE102021117707A1 (de) 2021-07-08 2023-01-12 Endress+Hauser Flowtec Ag Meßsystem zum Messen eines Strömungsparameters eines in einer Rohrleitung strömenden fluiden Meßstoffs
DE102022105199A1 (de) 2022-03-04 2023-09-07 Endress+Hauser Flowtec Ag Sensor sowie damit gebildetes Meßsystem
DE102022114875A1 (de) 2022-06-13 2023-12-14 Endress+Hauser SE+Co. KG Messsystem
DE102022119145A1 (de) 2022-07-29 2024-02-01 Endress+Hauser Flowtec Ag Anschlussschaltung für ein Feldgerät und Feldgerät

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686946A (en) * 1970-06-22 1972-08-29 Gen Signal Corp Flow metering devices of the pressure differential producing type

Family Cites Families (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US453238A (en) * 1891-06-02 Perm utation-lock
US2704555A (en) * 1955-03-22 Low loss venturi tube
US517671A (en) * 1894-04-03 Charles g
US453416A (en) * 1891-06-02 Electric annunciator system
US2995933A (en) * 1959-12-23 1961-08-15 Firestone Tire & Rubber Co Device for measuring the flow of liquids
US3433069A (en) 1965-10-01 1969-03-18 Technology Inc Mass flowmeter structure
US3736797A (en) * 1969-05-21 1973-06-05 W Brown Venturi device
US3894562A (en) * 1973-12-20 1975-07-15 Jr Charles D Moseley Fluid flow controller
US4015472A (en) * 1976-03-09 1977-04-05 Fischer & Porter Co. Two-wire transmission system for vortex flowmeter
DE2933116A1 (de) * 1979-08-16 1981-02-26 Rico Ges Fuer Microelektronik Einrichtung zur messung des atemluftstromes von patienten
JPS5754868A (en) 1980-09-19 1982-04-01 Tokico Ltd Flow velocity and flow rate measuring device
US4453416A (en) * 1981-12-15 1984-06-12 The Babcock & Wilcox Company Vortex shedding flow measurement
GB2142725A (en) 1983-06-21 1985-01-23 United Gas Industries Ltd Fluid flow meter
US4528847A (en) * 1983-10-04 1985-07-16 D. Halmi And Associates, Inc. Flow metering device with recessed pressure taps
US4592240A (en) * 1983-10-07 1986-06-03 The Foxboro Company Electrical-charge sensing flowmeter
US4516434A (en) * 1983-10-20 1985-05-14 D. Halmi And Associates Inc. Flow metering device with low energy loss
US4838092A (en) * 1986-03-15 1989-06-13 Oval Engineering Co., Ltd. Vortex flow meter
GB8628747D0 (en) * 1986-12-02 1987-01-07 Moore Barrett & Redwood Vortex-shedding flowmeters
DE8814611U1 (de) 1988-11-23 1989-01-05 Honsberg & Co Kg, 5630 Remscheid Vorrichtung zur Überwachung und/oder Messung des Durchflusses in von flüssigen Medien durchströmten Räumen
DE4013351A1 (de) * 1989-04-25 1990-10-31 Mitsubishi Motors Corp Wirbelstroemungsmesser
US5123285A (en) * 1989-12-12 1992-06-23 Lew Hyok S Piezo electric impulse sensor
EP0458341A1 (fr) * 1990-05-24 1991-11-27 Mazda Motor Corporation Culoisse de cylindre d'un moteur du type à double arbre à cames
US5127173A (en) * 1990-10-12 1992-07-07 Allied-Signal Inc. Volumetric fluid flowmeter and method
US5170671A (en) * 1991-09-12 1992-12-15 National Science Council Disk-type vortex flowmeter and method for measuring flow rate using disk-type vortex shedder
US5326468A (en) * 1992-03-02 1994-07-05 Cox Dale W Water remediation and purification method and apparatus
US5396808A (en) 1992-04-29 1995-03-14 Schlumberger Industries, S.A. Fluidic oscillator
GB9215043D0 (en) 1992-07-15 1992-08-26 Flow Inc K Fluid mass flow meters
AUPM333394A0 (en) 1994-01-13 1994-02-03 Meyer, David Jeffrey Improved flow conditioners for fire fighting nozzles
FR2717897B1 (fr) 1994-03-23 1996-06-07 Schlumberger Ind Sa Compteur de fluide à tourbillons comportant une conduite profilée.
US5808209A (en) 1994-03-23 1998-09-15 Schlumberger Industries, S.A. Vortex fluid meter including a profiled pipe
DE4441874A1 (de) 1994-11-24 1996-05-30 Bosch Gmbh Robert Vorrichtung zur Messung der Masse eines strömenden Mediums
US5533549A (en) * 1995-01-26 1996-07-09 Hydronic Components, Inc. Ball valve with integrated removable flow venturi, flow balancing means, and pipe union means
US5596969A (en) 1995-10-02 1997-01-28 Cummins Engine Company, Inc. Flow conditioning gas mass sensor
WO1997048971A1 (fr) * 1996-06-21 1997-12-24 Hughes Technology Group L.L.C. Debimetre massique
EP0841545B1 (fr) 1996-11-08 1999-04-28 Endress + Hauser Flowtec AG Capteur de débit à tourbillon
DE19729563A1 (de) 1997-07-10 1999-01-14 Volkswagen Ag Fluidisches Verteilerventil
DE19742295A1 (de) 1997-09-25 1999-04-01 Ruhrgas Ag Verfahren sowie Vorrichtung zur Vergleichmäßigung einer Rohrströmung
WO1999056091A1 (fr) * 1998-04-23 1999-11-04 Bg Intellectual Property Limited Procede de mesure d'une fraction de masse gazeuse
JP3385307B2 (ja) * 1998-05-11 2003-03-10 三菱電機株式会社 流量センサ
GB9821159D0 (en) 1998-09-29 1998-11-25 Scient Generics Ltd Metering device
DE19845898A1 (de) 1998-10-06 2000-04-27 Voith Sulzer Papiertech Patent Drallbrecher
JP3475853B2 (ja) * 1998-12-21 2003-12-10 三菱電機株式会社 流量測定装置
US6095196A (en) 1999-05-18 2000-08-01 Fisher Controls International, Inc. Tortuous path fluid pressure reduction device
GB0017840D0 (en) * 2000-07-21 2000-09-06 Bg Intellectual Pty Ltd A meter for the measurement of multiphase fluids and wet glass
JP3706300B2 (ja) * 2000-10-13 2005-10-12 三菱電機株式会社 流量測定装置
US20020178837A1 (en) * 2001-06-01 2002-12-05 Brandt Robert O. Apparatus and method for measuring fluid flow
US6910673B2 (en) 2002-01-28 2005-06-28 Valve Teck, Inc. Valve with calibrated flow orifice insert
US6868741B2 (en) * 2003-03-05 2005-03-22 Veris, Inc. Device and method enabling fluid characteristic measurement utilizing fluid acceleration
US6920784B2 (en) 2003-06-18 2005-07-26 Visteon Global Technologies, Inc. Flow conditioning device
DE10327934B3 (de) * 2003-06-20 2005-02-24 Dräger Medical AG & Co. KGaA Messvorrichtung zur Messung des Durchflusses und/oder von Stoffeigenschaften eines Gasstroms
US7082840B2 (en) 2003-11-03 2006-08-01 Rosemount Inc. Flanged vortex flowmeter with unitary tapered expanders
US6886413B1 (en) * 2004-05-10 2005-05-03 Chien-Tang Chang Flow rate sensor
EP2044392B1 (fr) * 2006-07-21 2019-05-08 Endress + Hauser Flowtec AG Système de mesure pour un milieu s'écoulant dans un conduit de traitement

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3686946A (en) * 1970-06-22 1972-08-29 Gen Signal Corp Flow metering devices of the pressure differential producing type

Also Published As

Publication number Publication date
US7600436B2 (en) 2009-10-13
RU2009106090A (ru) 2010-08-27
US20100037704A1 (en) 2010-02-18
WO2008009720A2 (fr) 2008-01-24
WO2008009720A3 (fr) 2008-03-20
US20080072686A1 (en) 2008-03-27
US20100043566A1 (en) 2010-02-25
US20080072688A1 (en) 2008-03-27
US7878073B2 (en) 2011-02-01
RU2419769C2 (ru) 2011-05-27
US20100011878A1 (en) 2010-01-21
RU2414686C2 (ru) 2011-03-20
EP2044391B1 (fr) 2019-05-01
US7926361B2 (en) 2011-04-19
WO2008009719A3 (fr) 2008-03-20
EP2044391A2 (fr) 2009-04-08
US20100011879A1 (en) 2010-01-21
US8079271B2 (en) 2011-12-20
US7603914B2 (en) 2009-10-20
RU2009106087A (ru) 2010-08-27
WO2008009719A2 (fr) 2008-01-24
US7946186B2 (en) 2011-05-24
EP2044392A2 (fr) 2009-04-08

Similar Documents

Publication Publication Date Title
EP2044392B1 (fr) Système de mesure pour un milieu s'écoulant dans un conduit de traitement
EP2227677B1 (fr) Système de mesure pour un fluide s'écoulant dans une conduite de processus
DE102006034296A1 (de) Meßsystem für ein in einer Prozeßleitung strömendes Medium
EP0046965B1 (fr) Procédé et appareil pour la détermination dynamique du débit massique independant de la densité
DE69711846T2 (de) Bypass-durchflussmesser
DE102004053142B4 (de) Flanschwirbeldurchflußmesser mit unitären zulaufenden Erweiterungsstücken
EP2742325B1 (fr) Capteur de mesure et/ou de monitorage d'un paramètre d'un medium coulant dans une conduite et système de mesure comprenant un tel capteur
WO2016034417A1 (fr) Module de détection destiné à un capteur, capteur et système de mesure formé dudit capteur
DE102016104423A1 (de) Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem
EP3194900B1 (fr) Procédé de fabrication d'un débitmètre à induction magnétique de section transversale réduite
DE10240189A1 (de) Verfahren zum Ermitteln eines Massendurchflusses eines in einer Rohrleitung strömenden Fluids
EP2871449A1 (fr) Débitmètre à ultra sons
DE102015116147A1 (de) Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem
DE102006047815A1 (de) Meßsystem für ein in einer Prozeßleitung strömendes Medium
WO2019129480A1 (fr) Tuyau pour un transducteur, transducteur comprenant un tuyau de ce type et système de mesure ainsi formé
DE19648784C2 (de) Ultraschall-Durchflußmesser
EP3748309A1 (fr) Débitmètre à ultrasons, utilisation d'un débitmètre à ultrasons dans un organe d'arrêt et organe d'arrêt
EP3894798A1 (fr) Système de mesure pour mesurer un paramètre d'écoulement d'un fluide qui s'écoule dans une conduite tubulaire
EP3514505A1 (fr) Débitmètre
DE2702816C3 (de) Gerät zum Messen des Durchflusses eines Fluids durch eine Leitung
EP0842400A1 (fr) Debitmetre a ultrasons
DE10314024B4 (de) Vorrichtung und Verfahren zum Bestimmen eines Fluidstroms
EP4367483A1 (fr) Système de mesure de paramètre d'écoulement d'une substance de mesure fluide circulant dans une canalisation
DE102008059510B4 (de) Infusor und Durchflußmeßgerät
DE202018105414U1 (de) Strömungsmessung mit Ultraschall

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20090118

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK RS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20150721

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502007016675

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: G01F0001000000

Ipc: G01F0001320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: G01F 15/18 20060101ALI20181122BHEP

Ipc: G01F 15/00 20060101ALI20181122BHEP

Ipc: G01F 1/86 20060101ALI20181122BHEP

Ipc: G01F 1/32 20060101AFI20181122BHEP

Ipc: G01F 1/88 20060101ALI20181122BHEP

INTG Intention to grant announced

Effective date: 20181214

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1130875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190515

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502007016675

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20190508

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190809

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190808

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502007016675

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

26N No opposition filed

Effective date: 20200211

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20190731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190719

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190731

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190719

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 1130875

Country of ref document: AT

Kind code of ref document: T

Effective date: 20190719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20070719

Ref country code: MT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20190508

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20210728

Year of fee payment: 15

Ref country code: IT

Payment date: 20210727

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210722

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220719

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220719

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240719

Year of fee payment: 18