EP2044392B1 - Système de mesure pour un milieu s'écoulant dans un conduit de traitement - Google Patents
Système de mesure pour un milieu s'écoulant dans un conduit de traitement Download PDFInfo
- Publication number
- EP2044392B1 EP2044392B1 EP07787726.4A EP07787726A EP2044392B1 EP 2044392 B1 EP2044392 B1 EP 2044392B1 EP 07787726 A EP07787726 A EP 07787726A EP 2044392 B1 EP2044392 B1 EP 2044392B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- flow
- flow conditioner
- measuring tube
- process pipe
- measuring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims description 60
- 230000008569 process Effects 0.000 title claims description 59
- 238000009434 installation Methods 0.000 claims description 16
- 238000011144 upstream manufacturing Methods 0.000 claims description 9
- 230000008602 contraction Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 claims description 2
- 238000005259 measurement Methods 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 238000004891 communication Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004886 process control Methods 0.000 description 3
- 230000007704 transition Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000001914 calming effect Effects 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 230000001939 inductive effect Effects 0.000 description 1
- 238000003780 insertion Methods 0.000 description 1
- 230000037431 insertion Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010327 methods by industry Methods 0.000 description 1
- 238000000053 physical method Methods 0.000 description 1
- 238000004801 process automation Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000013024 troubleshooting Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/05—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects
- G01F1/20—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow
- G01F1/32—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters
- G01F1/3209—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow by using mechanical effects by detection of dynamic effects of the flow using swirl flowmeters using Karman vortices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/86—Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/86—Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure
- G01F1/88—Indirect mass flowmeters, e.g. measuring volume flow and density, temperature or pressure with differential-pressure measurement to determine the volume flow
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F15/00—Details of, or accessories for, apparatus of groups G01F1/00 - G01F13/00 insofar as such details or appliances are not adapted to particular types of such apparatus
- G01F15/18—Supports or connecting means for meters
- G01F15/185—Connecting means, e.g. bypass conduits
Definitions
- the invention relates to a measuring system for measuring at least one measured variable, esp. A mass flow, a density, a viscosity, a pressure or the like, flowing in a process line medium with a transducer and a mediating between this and the process line flow conditioner.
- process-installed measuring systems each attached directly to or in a flowed through by process line medium are.
- the respective measured quantities to be detected may be, for example, a mass flow, a volumetric flow rate, a flow rate, a density, a viscosity or a temperature or the like, of a liquid, powdery, vaporous or gaseous process medium which is in such a way , For example, designed as a pipeline, process line out or maintained.
- the measuring systems are, inter alia, those in which in-line measuring devices with magnetic-inductive transducers or the duration of ultrasound waves emitted in the flow direction, esp. Also working on the Doppler principle, transducers, with transducers of the vibration type, esp Coriolis mass flow sensors, density sensors, or the like can be used.
- the basic structure and operation of magnetic-inductive transducer is eg in the EP-A 1 039 269 . US-A 60 31 740 . US-A 55 40 103 . US-A 53 51 554 .
- US-A 45 63 904 or such ultrasonic transducer for example in the US-B 63 97 683 , the US-B 63 30 831 , the US-B 62 93 156 , the US-B 61 89 389 , the US-A 55 31 124 , the US-A 54 63 905 , the US-A 51 31 279 , the US-A 47 87 252 described sufficiently and also the skilled person also sufficiently known, can be dispensed with a more detailed explanation of these principles of measurement at this point. Further examples of such, the expert and known per se, esp. Formed by compact in-line measuring instruments, measuring systems are also, inter alia in the EP-A 984 248 . GB-A 21 42 725 .
- measuring systems of the type in question each have a corresponding transducer, which is used in the course of a medium-leading process line and which serves to generate at least one of the primary detected measured variable as accurately as possible, esp. Electric, measuring signal ,
- the transducer is usually with a in the course of the respective process line, the
- This has at least one sensor element which reacts primarily to the measured variable to be detected or else changes thereof, by means of which at least one measuring signal influenced correspondingly by the measured variable is generated during operation.
- the measuring sensor is further connected to a correspondingly suitable measuring electronics.
- the measuring electronics communicating with the transducer in a suitable manner generates at least temporarily at least one measured value currently representing the measured variable during operation of the measuring system, for example a mass flow measured value, volume flow measured value, a density measured value, a viscosity measured value , a pressure reading, a temperature reading, or the like.
- such measuring systems further comprise a corresponding electronics housing, such as in the US-A 63 97 683 or the WO-A 00/36 379 suggested, arranged away from the transducer and can be connected to this only via a flexible line:
- the electronics housing but also, as in the EP-A 903,651 or the EP-A 1 008 836 to form a compact in-line meter - for example, a Coriolis mass flow / density meter, an ultrasonic flowmeter, a vortex flowmeter, a thermal flowmeter, a magnetic flowmeter, or the like - directly on the transducer or a separate the transducer be arranged einheinenden transducer housing.
- the electronics housing such as in the EP-A 984 248 , the US-A 47 16 770 or the US-A 63 52 000 shown, often also to include some mechanical components of the transducer, such as under mechanical action operationally deforming membrane, rod, sleeve or tubular deformation or vibration body, see. this also the aforementioned US-B 63 52 000 ,
- measuring systems of the type described are usually connected to one another via a data transmission system connected to the measuring electronics and / or to corresponding process control computers, to which they supply the measured value signals, e.g. via (4 mA to 20 mA) current loop and / or via digital data bus.
- data transmission systems serve here, esp. Serial, field bus systems, such. PROFIBUS-PA, FOUNDATION FIELDBUS and the corresponding transmission protocols.
- the transmitted measured value signals can be further processed and used as corresponding measurement results, e.g. visualized on monitors and / or in control signals for process actuators, e.g. Solenoid valves, electric motors, etc., to be converted.
- in-line measuring devices and extent also measuring system of the type described may well have a more or less dependent on the type of flow measurement accuracy. Of particular interest in this connection is also an instantaneous expression of an effective flow profile in the measuring tube.
- the measuring tube optionally in such a way that it has a smaller flow area, as an inlet connected to the measuring system inlet segment of the process line.
- the flowing medium then experiences an acceleration in the direction of flow, which in turn can also increase the Reynolds number can be achieved.
- the realization of this principle has also proven itself in particular in those measuring systems which operate by means of an ultrasonic measuring device and / or by means of a vortex flowmeter and / or which are provided for the measurement of at least partially, in particular predominantly or completely, gaseous media ,
- An inlet end of the flow conditioner facing the inlet segment of the process line has a flow cross section which is greater than the flow cross section of the measuring tube, while an outlet end of the flow conditioner facing the measuring tube accordingly has a flow cross section which is smaller than the flow cross section of the inlet end.
- Another possibility for circumventing this problem is further to increase the installation length of the Strömunsgkonditionierer so as to achieve a stabilization and calming of the flow, so possible before they enter the measuring tube so far already in the flow conditioner.
- this requires, as, inter alia, from the mentioned US-A 36 86 946 can be seen, a correspondingly short measuring tube along with a positioning of the sensor elements of the measuring transducer directly at the inlet end of the measuring tube or in the vicinity, or this can lead to a considerable increase in the installation length of the entire measuring system.
- An object of the invention is therefore to provide a measuring system for a flowing medium, with the shortest possible installation length an increase in the Reynolds number of flow from the process line towards the measuring tube allows and still has a relation to any disturbances in the flowing medium upstream of the measuring system, either in the inlet segment and / or in the immediate transition region between process line and actual measuring system, largely insensitive measurement accuracy.
- the invention consists in a process line, esp. A pipeline, according to claim 1.
- a basic idea of the invention is to improve the measuring accuracy of measuring systems of the type described not only in that the flow is sufficiently accelerated and thus safely transformed into a favorable Reynolds number range, but also in that on the one hand possibly upstream of the measuring system in the flow registered disorders , as for example, in their near the tube wall edge areas "mitschwimmende" vortex largely eliminate by means of the actual transducer upstream flow conditioner and thus on the other hand by means of the flow conditioner largely störunskyes, sufficiently well reproducible for the measurement flow profile for the medium flowing into the transducer.
- a special feature of such a "virtual" nozzle is i.a. in that it largely eliminates any induced disturbances in the flow upstream of the inlet region and, moreover, builds up a largely undisturbed flow profile downstream of it virtually downstream.
- the size and strength of the toroidal vortex inevitably even adapts to the size and strength of the incoming disturbance, so that the "virtual" nozzle created in this way is practically adaptive in terms of an effective troubleshooting.
- the invention is based on the surprising finding that such a stationary, esp. Also largely stationary vortex by means of a placed in the inlet region of the measuring system, acting as a defined disturbance in a peripheral region of the lumen flowed through by the medium flow obstacle - here as sharp and as complete as possible , esp. Circular, circumferential inner edge - can be achieved.
- the effect of the "virtual" nozzle generated by means of the toroidal vortex can be further improved by the fact that another, equally stationary as possible stationary vortex is stationed in the flow conditioner upstream of the vortex generated by the inner edge, possibly also immediately before this.
- This can be achieved in the flow conditioner according to the invention in a structurally very simple manner, characterized in that a limited by the inner edge, esp. Circular largely uniformly circulating, baffle is clearly pronounced, so that they are sufficient to the inflowing medium in a sufficient for vortex formation as a flow obstacle counteracts.
- the effectively effective contour of the "virtual" nozzle thus formed is practically approximated to an S-shape, which makes the formation of a very suitable for the subsequent measurement, equally well over a wide Scope of application favorably reproducible flow profile.
- the measuring transducer can be supplied via the flow conditioner with medium having such a flow profile, which is at least largely similar to a calibrated situation.
- Fig. 1 is an optionally modular design, measuring system shown schematically, which is suitable and intended, at least one measured variable, esp. A mass flow m and / or volumetric flow v and / or a flow velocity u and / or another flow parameter in one - here not shown - process line flowing medium, such as a liquid, a gas, a vapor or the like, to measure very robust and to map in at least one corresponding measured value X M.
- the measuring system for this purpose comprises at least one in-line measuring device for flowing media, which is formed by means of a corresponding Meßauf choirs 100 and an at least temporarily electrically coupled thereto measuring electronics of the measuring system.
- the in-line measuring device comprises a measuring transducer 100 through which the medium to be measured flows during operation, and an electronics housing 200 in which a measuring electronics unit, which is electrically connected to the measuring transducer 100 and not shown here, is accommodated.
- the transducer 100 has at least one in the course of, esp. Designed as a pipeline, process line inserted measuring tube through which at least temporarily the medium to be measured is allowed to flow through during operation of the measuring system.
- the in-line measuring device is provided in particular for generating, at least temporarily, at least one measuring signal which is from at least one physical parameters, in particular a flow velocity, a mass flow m , a volume flow v , a density r and / or a viscosity h , of the medium located in the measuring tube is influenced and in this respect correspondingly corresponds to the measured variable.
- a sensor arrangement of the in-line measuring device is provided on the measuring tube and / or in its vicinity which reacts at least indirectly to changes in the at least one measured variable of the medium in a manner correspondingly influencing the at least one measuring signal.
- the measuring electronics is further designed so that in operation the measuring system with a higher-level measured value processing unit, such as a programmable logic controller (PLC), a personal computer and / or a workstation, via data transmission system, for example, a fieldbus system, measuring and / or other operating data, in particular also the at least one measured value X M , can exchange.
- a higher-level measured value processing unit such as a programmable logic controller (PLC), a personal computer and / or a workstation
- PLC programmable logic controller
- the measuring system is provided for coupling to a fieldbus or other communication system, the meter electronics on a corresponding communication interface for data communication, eg for sending the measured data to the aforementioned programmable logic controller or a higher-level process control system, on.
- standard interfaces can be used, for example, in industrial measuring and automation technology.
- the external power supply can be connected to the fieldbus system and supply the measuring system in the manner described above with energy directly via fieldbus system.
- a vortex flow meter serves as an in-line meter, which is well known for the measurement of gases, the physical measurement, esp. The mass flow m , the density r and / or the viscosity h , to be measured High-precision recording of media.
- in-line meters equally well established in process automation technology may be used to determine the measurand, such as magnetic inductive flowmeters, Coriolis flowmeters, thermal flowmeters, differential pressure flowmeters, ultrasonic flowmeters, or the like.
- FIGS. 2 and 3 shown and used in the overview perspective views of an embodiment of a vortex transducer according to the Vortex principle, seen on the one hand in the flow direction ( Fig. 2 ) and on the other hand seen against the flow direction ( Fig. 3 ), a partially cut Meßsaufillon 1 a vortex flowmeter with a fixed to a tube wall 21 of a measuring tube 2 and projecting through a bore 22 through vortex sensor 3.
- This can, for example, a dynamically compensated vortex sensor with a capacitive sensor element, as in the US-A 60 03 384 is described.
- a baffle body 4 is arranged in the interior of which is firmly connected to the measuring tube 2 to form a first fixing point 41 and a hidden second fixing 41 *.
- the center of the bore 22 and the center of the fixing point 41 lie on a generatrix of the measuring tube. 2
- the bluff body 4 has a baffle 42 against which a medium to be measured during operation, for. As a liquid, a gas or a vapor, flows to.
- the bluff body 4 also has two side surfaces, of which only one (front) side surface 43 in the Fig. 1 and 2 you can see. From the baffle 42 and the side surfaces two tear-off edges are formed, of which only one (front) tear-off edge 44 and a (rear) tear-off edge 45 hinted in Fig. 1 you can see.
- the baffle 4 of Fig. 1 and 2 has substantially the shape of a straight triangle column, so a column with a triangular cross-section.
- bluff body may be used in the invention.
- a Kärmän'sche vortex street characterized in that tear off at each trailing edge alternately vortex and taken away by the flowing medium.
- These vortices produce local pressure fluctuations in the flowing medium whose time-related demolition frequency, ie their so-called vortex frequency, is a measure of the flow velocity and / or the volume flow rate of the medium.
- the pressure fluctuations are converted by means of the vortex sensor 3 in a serving as an electrical measurement signal vortex signal, which housed in the electronics housing - but not shown here and not explained in detail - measuring electronics is supplied from the example, the flow rate and / or the volumetric flow of the flowing medium calculated accordingly.
- the vortex sensor 3 is inserted downstream of the bluff body 4 in the bore 22 of the tube wall 21 of the measuring tube 2 and seals the bore 22 from the lateral surface of the measuring tube 2 out, to which the vortex sensor 3 is screwed to the tube wall 21.
- the sensor flag 31 has major surfaces, of which in the Fig. 1 and 2 only the main surface 311 can be seen.
- the major surfaces are aligned with the aforementioned generatrix of the measuring tube 2 and form a front edge 313.
- the sensor flag 31 may have other suitable spatial shapes; so she can z. B. have two parallel major surfaces that form two parallel front edges.
- the sensor flag 31 is shorter than the diameter of the measuring tube 2; it is also rigid and has a blind hole 314 (only in Fig. 4 to see). So that the blind hole 314 has a sufficient diameter, emerging from the main surfaces wall parts, of which in Fig. 3 the wall part 315 is indicated.
- the blind hole 314 extends to the vicinity of the front edge 313 and has a floor there.
- the vortex sensor 3 further includes a membrane 33 covering the bore 22 with a first surface 331 facing the medium and a second surface 332 remote from the medium, see FIG Fig. 3 and 4
- the sensor flag 31 is fixed and on the surface 332, a sensor element 36
- metal esp. Stainless steel.
- the sensor element 36 generates the above-mentioned signal whose frequency is proportional to the volume flow of the flowing medium.
- the measuring medium to be measured esp. Essentially straight, measuring tube has a smaller flow area A1, as an inlet side connected to the measuring system inlet segment 400 of the process line. Therefore, the measuring system further comprises an inlet side of the measuring tube, between this and the inlet segment of the Process line mediating flow conditioner 300, which has a tapered towards the measuring tube 2, in the operation of the medium flowed through lumen.
- An inlet end of the flow conditioner facing the inlet segment of the process line has a flow cross section a which is greater than the flow cross section A1 of the measuring tube, while an outlet end of the flow conditioner facing the measuring tube has a flow cross section which is smaller than the flow cross section of the inlet end of the flow conditioner.
- the flow conditioner has at least one inner edge K, which is arranged upstream of its outlet end and projects into the lumen of the flow conditioner, in particular along a generatrix of the flow conditioner, which has flowed during operation of the medium conveyed therein.
- the inner edge K is a substantially toroidal, at least in the stationary state largely stationary first vortex w1.
- the inner edge K is formed and arranged in the flow conditioner, that it is aligned substantially transversely to an imaginary longitudinal axis of the flow conditioner and / or transversely to an imaginary longitudinal axis of the measuring tube.
- the inner edge esp. Circular, circumferentially and so far closed in itself.
- the inner edge is also arranged in the, in particular.
- this invention has an edge radius which is less than 2 mm, in particular less than 0.6 mm.
- an impact area P which is delimited by the inner edge of the flow conditioner and serves to accumulate medium flowing thereon, in an annular area of the flow conditioner, especially in addition to the first vortex w1, forms a substantially toroidal, at least in the stationary state equally largely stationary second vortex w2, in such a way that the largest imaginary main axis of inertia of each of the two vortices w1, w2 substantially coincide with each other.
- the baffle P is arranged and aligned in the flow conditioner such that it is at least partially substantially perpendicular to an imaginary longitudinal axis of the flow conditioner and / or that it extends in sections substantially perpendicular to an imaginary longitudinal axis of the measuring tube. Since particularly good results can be achieved with a pronounced baffle, this has according to an advantageous embodiment of the invention in the radial direction to a height h2, which is at least 1 mm.
- the baffle P may be formed, for example, as a substantially planar annular surface or conical, tapering toward the measuring tube or widening towards the process line.
- the vortex-generating inner edge K is formed by the fact that the impact surface P abuts a guide surface L which extends in the direction of the outlet end of the flow conditioner and serves to guide media flowing in the flow conditioner, which in this respect is likewise delimited by the inner edge K.
- the tapered to the measuring tube guide surface L can, for example, as well as in the 4 to 6 shown to be substantially conically shaped, esp. So that at least partially convex and / or partially concave shaped
- the medium to be measured from the inlet segment is flowed into the flow conditioner in the inventive method. It is accelerated due to the smaller flow cross-section in the direction of the imaginary longitudinal axis of the flow conditioner of the flow conditioner.
- the first vortex w1 is formed within the medium flowing in the inlet region of the flow conditioner in such a way that a largest imaginary main axis of inertia of the vortex w1 with the imaginary longitudinal axis of the Strömungsungskonditionerers and / or an imaginary longitudinal axis of the measuring tube essentially coincident.
- the latter acts both in cross-section narrowing and also in the direction of the guide surface L and thus stabilizes the flow profile.
- At least one further substantially stationary, esp. Essentially stationary, toroidal vortex is induced in the inlet region of the Strömungskonditionieres, effectively results in an additional cross-sectional constriction and extent an increased acceleration of the flow.
Landscapes
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- General Physics & Mathematics (AREA)
- Measuring Volume Flow (AREA)
- Examining Or Testing Airtightness (AREA)
Claims (12)
- Conduite de process, notamment une tuyauterie, avec un système de mesure inséré dans son tracé, lequel système est destiné à mesurer au moins une grandeur de mesure, notamment un débit massique, un débit volumique, une vitesse d'écoulement, une masse volumique, une viscosité, une pression, une température, etc., d'un produit s'écoulant dans une conduite de process, et avec un segment d'alimentation (400) raccordé côté entrée au système de mesure,- le système de mesure comprenant :-- un capteur (100)--- avec un tube de mesure (2) servant au guidage du produit à mesurer, notamment pour l'essentiel droit, qui présente une section d'écoulement (A1) inférieure au segment d'alimentation de la conduite de process, raccordée côté entrée au système de mesure, et--- avec un dispositif capteur,--- qui comprend au minimum un élément capteur réagissant de façon primaire à une grandeur à mesurer, notamment aux changements de celle-ci, et--- qui délivre, au moyen de l'au moins un élément capteur, un signal de mesure influencé par la grandeur à mesurer,-- une électronique de mesure communiquant avec le capteur (100), laquelle électronique génère, en utilisant l'au moins un signal de mesure, au minimum temporairement une valeur mesurée représentant momentanément la grandeur à mesurer, notamment une valeur mesurée de débit massique, une valeur mesurée de débit volumique, une valeur mesurée de masse volumique, une valeur mesurée de viscosité, une valeur mesurée de pression, une valeur mesurée de température, ainsi que-- un conditionneur d'écoulement (300) disposé côté entrée du tube de mesure, entre celui-ci et le segment d'alimentation de la conduite de process, lequel conditionneur comporte un canal intérieur parcouru, en fonctionnement, par le produit et qui se rétrécit en direction du tube de mesure (2) ;- une extrémité d'entrée du conditionneur d'écoulement (300), qui fait face au segment d'alimentation (400) de la conduite de process, présentant une section d'écoulement (a) supérieure à la section d'écoulement (A1) du tube de mesure (2), et une extrémité de sortie du conditionneur d'écoulement (300), qui fait face au tube de mesure (2), présentant une section d'écoulement (b) inférieure à la section d'écoulement de l'extrémité d'entrée du conditionneur d'écoulement (300), et- le conditionneur d'écoulement (300) présentant au minimum un bord intérieur (K), disposé en amont de l'extrémité de sortie du conditionneur et pénétrant dans le canal intérieur du conditionneur d'écoulement (300), lequel bord est balayé, en fonctionnement, par le produit qui y est guidé ;- l'au moins un bord intérieur (K), qui pénètre dans le canal intérieur du conditionneur d'écoulement (300), étant formé, notamment de façon circulaire et périphérique, fermé sur lui-même, et présentant un rayon inférieur à 2 mm, notamment inférieur à 0,6 mm ;- l'au moins un bord intérieur (K), qui pénètre dans le canal intérieur du conditionneur d'écoulement (300), servant à accumuler le produit, qui s'écoule au niveau de ce bord, dans une surface d'impact (P) du conditionneur d'écoulement (300), disposée dans une zone marginale, notamment circulaire et périphérique, du conditionneur d'écoulement (300), et limitant une surface de guidage du conditionneur d'écoulement (300), qui s'étend en direction de l'extrémité de sortie du conditionneur d'écoulement (300) et qui sert à guider le produit s'écoulant dans le conditionneur d'écoulement (300) ;- la surface d'impact (P) et le bord intérieur (K) étant formés au moins partiellement, côté entrée du conditionneur d'écoulement (300), par un deuxième cône intérieur, s'étendant notamment jusqu'à son extrémité d'entrée, lequel premier cône intérieur présente un angle de flanc (σ), si bien que la surface d'impact (P) est formée de manière à s'élargir en direction de l'extrémité d'entrée du conditionneur d'écoulement (300) ;- la surface d'impact (P) et le bord intérieur (K) étant formés au moins partiellement, côté entrée du conditionneur d'écoulement (300), par un premier cône intérieur, s'étendant notamment jusqu'à son extrémité de sortie, lequel deuxième cône intérieur présente un angle de flanc (β) supérieur à 2°, notamment supérieur à 4°, et inférieur à 45°, notamment inférieur à 10° ;- l'angle de flanc (σ) du premier cône intérieur étant supérieur à l'angle de flanc (β) du deuxième cône intérieur ;- et l'au moins un élément capteur, notamment immergé en fonctionnement dans le produit, étant disposé, à une distance (Lm) de l'extrémité d'entrée du tube de mesure (2), dans et/ou, notamment directement, sur le tube de mesure, de telle sorte qu'un rapport entre la distance (Lm) et un calibre (D1) du tube de mesure (2) est maintenu supérieur à un.
- Conduite de process selon l'une des revendications précédentes, pour laquelle un rapport des sections (A2/A1) entre la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process et la section d'écoulement (A1) du tube de mesure est supérieur à 1,5 et/ou inférieur à 10, notamment maintenu dans une plage comprise entre 1,66 et 9,6.
- Conduite de process selon la revendication précédente,- pour laquelle une section (a) limitée par l'au moins un bord intérieur du canal intérieur du conditionneur d'écoulement (300), s'étendant dans le canal intérieur du conditionneur d'écoulement (300), est inférieure à la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process ;- et pour lequel un rapport de striction (a/A2) entre la section (a) limitée par le bord intérieur et la section d'écoulement (A2) du segment d'alimentation (400) de la conduite de process est inférieur à 0,9 et/ou supérieur à 0,1, notamment maintenu dans une plage comprise entre 0,25 et 0,85.
- Conduite de process selon la revendication précédente, pour laquelle une différence (A2/A1-a/A2) entre le rapport des sections (A2/A1) et le rapport de striction (a/A2) est supérieure à 0,5 et/ou inférieure à 10, notamment maintenue supérieure à 0,83 et inférieure à 9,5.
- Conduite de process selon l'une des revendications 2 à 4, pour laquelle un rapport de contraction (a/A1) entre la section (a) limitée par le bord intérieur et la section d'écoulement (A1) du tube de mesure (2) est supérieur à 1,2 et/ou inférieur à 5, notamment maintenu dans une plage comprise entre 1,3 et 3.
- Conduite de process selon la revendication précédente, pour laquelle une différence (A2/A1 -a/A1) entre le rapport des sections (A2/A1) et le rapport de contraction (a/A1) est supérieure à 0,2 et/ou inférieure à 10, notamment maintenue dans une plage comprise entre 0,25 et 8.
- Conduite de process selon l'une des revendications précédentes, pour laquelle le tube de mesure présente un calibre (D1) inférieur à un segment d'alimentation (400) raccordé côté entrée au système de mesure.
- Conduite de process selon la revendication précédente,- pour laquelle l'extrémité d'entrée du conditionneur d'écoulement (300), qui fait face au segment d'alimentation (400) de la conduite de process, présente un calibre supérieur à un calibre (D1) du tube de mesure (2), et pour laquelle l'extrémité de sortie du conditionneur d'écoulement (300), faisant face au tube de mesure (2), présente un calibre inférieur au calibre de l'extrémité d'entrée du conditionneur d'écoulement (300) ; et/ou- pour laquelle l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300) est formé de telle sorte que le diamètre intérieur de l'extrémité d'entrée (d) du conditionneur d'écoulement (300) est maintenu plus petit que le calibre (D2) du segment d'alimentation (400) de la conduite de process ; et/ou- pour laquelle une section, limitée par l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300), du canal intérieur du conditionneur d'écoulement (300) présente un diamètre (d) inférieur au calibre (D2) du segment d'alimentation (400) de la conduite de process ; et/ou- pour laquelle un rapport des sections (D2/D1) entre le calibre (D2) du segment d'alimentation (400) et le calibre (D1) du tube de mesure (2) est maintenu supérieur à 1,1 et/ou inférieur à 5, notamment dans une plage comprise entre 1,2 et 3,1.
- Conduite de process selon l'une des revendications 7 à 8, pour laquelle le tube de mesure (2) présente une longueur de montage (L1) supérieure à la longueur de montage (L2) du conditionneur d'écoulement (300), de telle sorte qu'un rapport des longueurs (L2/L1) entre la longueur de montage (L2) du conditionneur d'écoulement (300) et la longueur de montage (L1) du tube de mesure (2) est maintenu inférieur à un.
- Conduite de process selon la revendication précédente, pour laquelle un rapport des sections (D2/D1) entre le calibre (D2) du segment d'alimentation (400) de la conduite de process et le calibre (D1) du tube de mesure (2) correspond à au moins 10 % du rapport des longueurs de montage (L2/L1) entre la longueur de montage (L2) du conditionneur d'écoulement (300) et la longueur de montage (L1) du tube de mesure (2).
- Conduite de process selon l'une des revendications précédentes,- pour laquelle l'au moins un bord intérieur (K) pénétrant dans le canal intérieur du conditionneur d'écoulement (300) est conçu et disposé dans le conditionneur d'écoulement (300) de telle sorte qu'il soit pour l'essentiel aligné perpendiculairement à un axe longitudinal imaginaire du conditionneur d'écoulement (300) et/ou perpendiculairement à un axe longitudinal imaginaire du tube de mesure (2) ; et/ou- pour laquelle le conditionneur d'écoulement (300) est formé au minimum dans une zone d'entrée pour l'essentiel de façon cylindrique circulaire ; et/ou- pour laquelle le tube de mesure (2) est formé au minimum dans une zone d'entrée pour l'essentiel de façon cylindrique circulaire ; et/ou- pour laquelle le conditionneur d'écoulement (300) est formé au minimum dans une zone de sortie pour l'essentiel de façon cylindrique circulaire ; et/ou- pour laquelle le tube de mesure (2), notamment de forme cylindrique circulaire, est pour l'essentiel droit ; et/ou- pour laquelle il s'agit, concernant le capteur (100), d'un capteur de débit vortex, notamment d'un capteur de débit vortex de Karman ; et/ou- pour laquelle le capteur (100) comprend au minimum un corps de retenue (4) disposé dans le tube de mesure (2), et pour laquelle l'au moins un élément capteur du dispositif capteur, notamment pénétrant au moins partiellement dans le tube de mesure (2), est disposé en aval de l'au moins un corps de retenue (4).
- Conduite de process selon l'une des revendications précédentes,- pour laquelle la surface d'impact (P) présente en direction axiale une hauteur, qui s'élève à au moins 1 mm ;
et/ou- pour laquelle la surface d'impact (P) est conçue sous la forme d'une surface d'anneau de cercle ; et/ou- pour laquelle le premier cône intérieur présente un angle de flanc (σ), qui est supérieur à 45°, notamment supérieur à 60°, et/ou qui est inférieur à 90°, notamment inférieur à 88 °C.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200610034296 DE102006034296A1 (de) | 2006-07-21 | 2006-07-21 | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
DE102006047815A DE102006047815A1 (de) | 2006-10-06 | 2006-10-06 | Meßsystem für ein in einer Prozeßleitung strömendes Medium |
PCT/EP2007/057468 WO2008009720A2 (fr) | 2006-07-21 | 2007-07-19 | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
Publications (2)
Publication Number | Publication Date |
---|---|
EP2044392A2 EP2044392A2 (fr) | 2009-04-08 |
EP2044392B1 true EP2044392B1 (fr) | 2019-05-08 |
Family
ID=38895863
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07787726.4A Active EP2044392B1 (fr) | 2006-07-21 | 2007-07-19 | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
EP07787725.6A Active EP2044391B1 (fr) | 2006-07-21 | 2007-07-19 | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP07787725.6A Active EP2044391B1 (fr) | 2006-07-21 | 2007-07-19 | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
Country Status (4)
Country | Link |
---|---|
US (6) | US7600436B2 (fr) |
EP (2) | EP2044392B1 (fr) |
RU (2) | RU2414686C2 (fr) |
WO (2) | WO2008009719A2 (fr) |
Families Citing this family (41)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7533579B2 (en) * | 2006-01-19 | 2009-05-19 | Invensys Systems, Inc. | Reduced bore vortex flowmeter having a stepped intake |
EP2044392B1 (fr) * | 2006-07-21 | 2019-05-08 | Endress + Hauser Flowtec AG | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
US7810401B2 (en) * | 2008-03-07 | 2010-10-12 | Cameron International Corporation | Apparatus and method for operation in the laminar, transition, and turbulent flow regimes |
ATE511606T1 (de) * | 2008-10-01 | 2011-06-15 | Grundfos Management As | Kreiselpumpenaggregat |
JP5295377B2 (ja) * | 2008-10-29 | 2013-09-18 | ローズマウント インコーポレイテッド | 後方に向いた表面に溝を持つ渦流量計ボディ |
DE102008056871A1 (de) * | 2008-11-12 | 2010-06-10 | Abb Technology Ag | Durchflussmessgerät |
US7905153B2 (en) * | 2009-04-24 | 2011-03-15 | Mann+Hummel Gmbh | Flow vortex suppression apparatus for a mass air flow sensor |
RU2534718C2 (ru) * | 2009-12-31 | 2014-12-10 | Эндресс + Хаузер Флоутек Аг | Измерительная система для среды, протекающей в трубопроводах, и способ измерения разности давлений внутри протекающей среды |
JP5793644B2 (ja) | 2010-11-11 | 2015-10-14 | パナソニックIpマネジメント株式会社 | 超音波式流量計測装置 |
US9354095B2 (en) | 2012-10-02 | 2016-05-31 | Honeywell International Inc. | Modular flow sensor |
SE538092C2 (sv) * | 2012-12-04 | 2016-03-01 | Scania Cv Ab | Luftmassemätarrör |
US9016138B2 (en) | 2013-03-13 | 2015-04-28 | Rosemount Inc. | Flanged reducer vortex flowmeter |
WO2014172518A1 (fr) | 2013-04-17 | 2014-10-23 | Cummins Filtration Ip, Inc. | Cartouches de filtration d'air pourvues d'une rectification de flux d'air et procédés de fabrication associés |
DE102013105363A1 (de) * | 2013-05-24 | 2014-11-27 | Endress + Hauser Flowtec Ag | Wirbelströmungsmesssensor und Wirbelströmungsmessaufnehmer zur Messung der Strömungsgeschwindigkeit eines Fluids |
DE102013106157A1 (de) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts |
DE102013106155A1 (de) | 2013-06-13 | 2014-12-18 | Endress + Hauser Flowtec Ag | Meßsystem mit einem Druckgerät sowie Verfahren zur Überwachung und/oder Überprüfung eines solchen Druckgeräts |
US9279706B2 (en) * | 2013-07-23 | 2016-03-08 | Yokogawa Corporation Of America | Flow area reduction in Vortex flowmeters using bore reduction techniques |
US9322683B2 (en) | 2014-05-12 | 2016-04-26 | Invensys Systems, Inc. | Multivariable vortex flowmeter |
US9410830B2 (en) * | 2014-06-30 | 2016-08-09 | Micro Motion, Inc. | Magnetic flowmeter flowtube assembly with interchangeable liner/electrode module |
DE102014112558A1 (de) | 2014-09-01 | 2016-03-03 | Endress + Hauser Flowtec Ag | Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem |
US9599493B2 (en) * | 2014-10-31 | 2017-03-21 | Invensys Systems, Inc. | Split flow vortex flowmeter |
WO2016176224A1 (fr) | 2015-04-27 | 2016-11-03 | Kim Lewis | Diagnostics par débitmètre pour fluide |
US20180100611A1 (en) * | 2015-05-20 | 2018-04-12 | Green Hvac Ducts Usa, Llc | Duct technologies |
DE102015112930B4 (de) * | 2015-08-06 | 2022-05-19 | Krohne Ag | Magnetisch-induktives Durchflussmessgerät |
DE102015116147A1 (de) | 2015-09-24 | 2017-03-30 | Endress + Hauser Flowtec Ag | Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem |
DE102015122553A1 (de) | 2015-12-22 | 2017-06-22 | Endress+Hauser Flowtec Ag | Wandlervorrichtung sowie mittels einer solchen Wandlervorrichtung gebildetes Meßsystem |
DE102016104423A1 (de) | 2016-03-10 | 2017-09-14 | Endress+Hauser Flowtec Ag | Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem |
CN106295203B (zh) * | 2016-08-15 | 2020-01-07 | 上海交通大学 | 基于上端差应达值实时计算的机组热经济性在线评估方法 |
CN106248133B (zh) * | 2016-08-15 | 2019-05-24 | 上海交通大学 | 一种加热器全工况上端差和下端差应达值的在线估计方法 |
US20190204133A1 (en) * | 2016-09-19 | 2019-07-04 | Flow Devices And Systems Inc. | Variable Restriction for Flow Measurement |
DE102018101278A1 (de) * | 2018-01-22 | 2019-07-25 | SIKA Dr. Siebert & Kühn GmbH & Co. KG | Strömungsmesser |
DE102018132311A1 (de) | 2018-12-14 | 2020-06-18 | Endress + Hauser Flowtec Ag | Meßsystem zum Messen eines Strömungsparameters eines in einer Rohrleitung strömenden Fluids |
US10866127B2 (en) * | 2019-01-18 | 2020-12-15 | Sensus Spectrum, Llc | Dual class ultrasonic gas meters and related flowtubes |
JPWO2020208697A1 (fr) * | 2019-04-09 | 2020-10-15 | ||
CN115244366A (zh) * | 2020-03-05 | 2022-10-25 | 高准有限公司 | 流量计联接系统 |
JP7456366B2 (ja) | 2020-12-14 | 2024-03-27 | 横河電機株式会社 | 診断装置、測定装置、診断方法、および診断プログラム |
DE102020134264A1 (de) | 2020-12-18 | 2022-06-23 | Endress+Hauser Flowtec Ag | Sensor zum Erfassen von Druckschwankungen in einem strömenden Fluid sowie damit gebildetes Meßsystem |
DE102021117707A1 (de) | 2021-07-08 | 2023-01-12 | Endress+Hauser Flowtec Ag | Meßsystem zum Messen eines Strömungsparameters eines in einer Rohrleitung strömenden fluiden Meßstoffs |
DE102022105199A1 (de) | 2022-03-04 | 2023-09-07 | Endress+Hauser Flowtec Ag | Sensor sowie damit gebildetes Meßsystem |
DE102022114875A1 (de) | 2022-06-13 | 2023-12-14 | Endress+Hauser SE+Co. KG | Messsystem |
DE102022119145A1 (de) | 2022-07-29 | 2024-02-01 | Endress+Hauser Flowtec Ag | Anschlussschaltung für ein Feldgerät und Feldgerät |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3686946A (en) * | 1970-06-22 | 1972-08-29 | Gen Signal Corp | Flow metering devices of the pressure differential producing type |
Family Cites Families (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US453238A (en) * | 1891-06-02 | Perm utation-lock | ||
US2704555A (en) * | 1955-03-22 | Low loss venturi tube | ||
US517671A (en) * | 1894-04-03 | Charles g | ||
US453416A (en) * | 1891-06-02 | Electric annunciator system | ||
US2995933A (en) * | 1959-12-23 | 1961-08-15 | Firestone Tire & Rubber Co | Device for measuring the flow of liquids |
US3433069A (en) | 1965-10-01 | 1969-03-18 | Technology Inc | Mass flowmeter structure |
US3736797A (en) * | 1969-05-21 | 1973-06-05 | W Brown | Venturi device |
US3894562A (en) * | 1973-12-20 | 1975-07-15 | Jr Charles D Moseley | Fluid flow controller |
US4015472A (en) * | 1976-03-09 | 1977-04-05 | Fischer & Porter Co. | Two-wire transmission system for vortex flowmeter |
DE2933116A1 (de) * | 1979-08-16 | 1981-02-26 | Rico Ges Fuer Microelektronik | Einrichtung zur messung des atemluftstromes von patienten |
JPS5754868A (en) | 1980-09-19 | 1982-04-01 | Tokico Ltd | Flow velocity and flow rate measuring device |
US4453416A (en) * | 1981-12-15 | 1984-06-12 | The Babcock & Wilcox Company | Vortex shedding flow measurement |
GB2142725A (en) | 1983-06-21 | 1985-01-23 | United Gas Industries Ltd | Fluid flow meter |
US4528847A (en) * | 1983-10-04 | 1985-07-16 | D. Halmi And Associates, Inc. | Flow metering device with recessed pressure taps |
US4592240A (en) * | 1983-10-07 | 1986-06-03 | The Foxboro Company | Electrical-charge sensing flowmeter |
US4516434A (en) * | 1983-10-20 | 1985-05-14 | D. Halmi And Associates Inc. | Flow metering device with low energy loss |
US4838092A (en) * | 1986-03-15 | 1989-06-13 | Oval Engineering Co., Ltd. | Vortex flow meter |
GB8628747D0 (en) * | 1986-12-02 | 1987-01-07 | Moore Barrett & Redwood | Vortex-shedding flowmeters |
DE8814611U1 (de) | 1988-11-23 | 1989-01-05 | Honsberg & Co Kg, 5630 Remscheid | Vorrichtung zur Überwachung und/oder Messung des Durchflusses in von flüssigen Medien durchströmten Räumen |
DE4013351A1 (de) * | 1989-04-25 | 1990-10-31 | Mitsubishi Motors Corp | Wirbelstroemungsmesser |
US5123285A (en) * | 1989-12-12 | 1992-06-23 | Lew Hyok S | Piezo electric impulse sensor |
EP0458341A1 (fr) * | 1990-05-24 | 1991-11-27 | Mazda Motor Corporation | Culoisse de cylindre d'un moteur du type à double arbre à cames |
US5127173A (en) * | 1990-10-12 | 1992-07-07 | Allied-Signal Inc. | Volumetric fluid flowmeter and method |
US5170671A (en) * | 1991-09-12 | 1992-12-15 | National Science Council | Disk-type vortex flowmeter and method for measuring flow rate using disk-type vortex shedder |
US5326468A (en) * | 1992-03-02 | 1994-07-05 | Cox Dale W | Water remediation and purification method and apparatus |
US5396808A (en) | 1992-04-29 | 1995-03-14 | Schlumberger Industries, S.A. | Fluidic oscillator |
GB9215043D0 (en) | 1992-07-15 | 1992-08-26 | Flow Inc K | Fluid mass flow meters |
AUPM333394A0 (en) | 1994-01-13 | 1994-02-03 | Meyer, David Jeffrey | Improved flow conditioners for fire fighting nozzles |
FR2717897B1 (fr) | 1994-03-23 | 1996-06-07 | Schlumberger Ind Sa | Compteur de fluide à tourbillons comportant une conduite profilée. |
US5808209A (en) | 1994-03-23 | 1998-09-15 | Schlumberger Industries, S.A. | Vortex fluid meter including a profiled pipe |
DE4441874A1 (de) | 1994-11-24 | 1996-05-30 | Bosch Gmbh Robert | Vorrichtung zur Messung der Masse eines strömenden Mediums |
US5533549A (en) * | 1995-01-26 | 1996-07-09 | Hydronic Components, Inc. | Ball valve with integrated removable flow venturi, flow balancing means, and pipe union means |
US5596969A (en) | 1995-10-02 | 1997-01-28 | Cummins Engine Company, Inc. | Flow conditioning gas mass sensor |
WO1997048971A1 (fr) * | 1996-06-21 | 1997-12-24 | Hughes Technology Group L.L.C. | Debimetre massique |
EP0841545B1 (fr) | 1996-11-08 | 1999-04-28 | Endress + Hauser Flowtec AG | Capteur de débit à tourbillon |
DE19729563A1 (de) | 1997-07-10 | 1999-01-14 | Volkswagen Ag | Fluidisches Verteilerventil |
DE19742295A1 (de) | 1997-09-25 | 1999-04-01 | Ruhrgas Ag | Verfahren sowie Vorrichtung zur Vergleichmäßigung einer Rohrströmung |
WO1999056091A1 (fr) * | 1998-04-23 | 1999-11-04 | Bg Intellectual Property Limited | Procede de mesure d'une fraction de masse gazeuse |
JP3385307B2 (ja) * | 1998-05-11 | 2003-03-10 | 三菱電機株式会社 | 流量センサ |
GB9821159D0 (en) | 1998-09-29 | 1998-11-25 | Scient Generics Ltd | Metering device |
DE19845898A1 (de) | 1998-10-06 | 2000-04-27 | Voith Sulzer Papiertech Patent | Drallbrecher |
JP3475853B2 (ja) * | 1998-12-21 | 2003-12-10 | 三菱電機株式会社 | 流量測定装置 |
US6095196A (en) | 1999-05-18 | 2000-08-01 | Fisher Controls International, Inc. | Tortuous path fluid pressure reduction device |
GB0017840D0 (en) * | 2000-07-21 | 2000-09-06 | Bg Intellectual Pty Ltd | A meter for the measurement of multiphase fluids and wet glass |
JP3706300B2 (ja) * | 2000-10-13 | 2005-10-12 | 三菱電機株式会社 | 流量測定装置 |
US20020178837A1 (en) * | 2001-06-01 | 2002-12-05 | Brandt Robert O. | Apparatus and method for measuring fluid flow |
US6910673B2 (en) | 2002-01-28 | 2005-06-28 | Valve Teck, Inc. | Valve with calibrated flow orifice insert |
US6868741B2 (en) * | 2003-03-05 | 2005-03-22 | Veris, Inc. | Device and method enabling fluid characteristic measurement utilizing fluid acceleration |
US6920784B2 (en) | 2003-06-18 | 2005-07-26 | Visteon Global Technologies, Inc. | Flow conditioning device |
DE10327934B3 (de) * | 2003-06-20 | 2005-02-24 | Dräger Medical AG & Co. KGaA | Messvorrichtung zur Messung des Durchflusses und/oder von Stoffeigenschaften eines Gasstroms |
US7082840B2 (en) | 2003-11-03 | 2006-08-01 | Rosemount Inc. | Flanged vortex flowmeter with unitary tapered expanders |
US6886413B1 (en) * | 2004-05-10 | 2005-05-03 | Chien-Tang Chang | Flow rate sensor |
EP2044392B1 (fr) * | 2006-07-21 | 2019-05-08 | Endress + Hauser Flowtec AG | Système de mesure pour un milieu s'écoulant dans un conduit de traitement |
-
2007
- 2007-07-19 EP EP07787726.4A patent/EP2044392B1/fr active Active
- 2007-07-19 EP EP07787725.6A patent/EP2044391B1/fr active Active
- 2007-07-19 RU RU2009106090/28A patent/RU2414686C2/ru active
- 2007-07-19 WO PCT/EP2007/057467 patent/WO2008009719A2/fr active Application Filing
- 2007-07-19 US US11/826,993 patent/US7600436B2/en active Active
- 2007-07-19 RU RU2009106087/28A patent/RU2419769C2/ru active
- 2007-07-19 WO PCT/EP2007/057468 patent/WO2008009720A2/fr active Application Filing
- 2007-07-19 US US11/826,992 patent/US7603914B2/en active Active
-
2009
- 2009-09-23 US US12/585,717 patent/US7946186B2/en active Active
- 2009-09-23 US US12/585,719 patent/US7926361B2/en active Active
- 2009-09-24 US US12/585,772 patent/US7878073B2/en active Active
- 2009-09-24 US US12/585,782 patent/US8079271B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3686946A (en) * | 1970-06-22 | 1972-08-29 | Gen Signal Corp | Flow metering devices of the pressure differential producing type |
Also Published As
Publication number | Publication date |
---|---|
US7600436B2 (en) | 2009-10-13 |
RU2009106090A (ru) | 2010-08-27 |
US20100037704A1 (en) | 2010-02-18 |
WO2008009720A2 (fr) | 2008-01-24 |
WO2008009720A3 (fr) | 2008-03-20 |
US20080072686A1 (en) | 2008-03-27 |
US20100043566A1 (en) | 2010-02-25 |
US20080072688A1 (en) | 2008-03-27 |
US7878073B2 (en) | 2011-02-01 |
RU2419769C2 (ru) | 2011-05-27 |
US20100011878A1 (en) | 2010-01-21 |
RU2414686C2 (ru) | 2011-03-20 |
EP2044391B1 (fr) | 2019-05-01 |
US7926361B2 (en) | 2011-04-19 |
WO2008009719A3 (fr) | 2008-03-20 |
EP2044391A2 (fr) | 2009-04-08 |
US20100011879A1 (en) | 2010-01-21 |
US8079271B2 (en) | 2011-12-20 |
US7603914B2 (en) | 2009-10-20 |
RU2009106087A (ru) | 2010-08-27 |
WO2008009719A2 (fr) | 2008-01-24 |
US7946186B2 (en) | 2011-05-24 |
EP2044392A2 (fr) | 2009-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2044392B1 (fr) | Système de mesure pour un milieu s'écoulant dans un conduit de traitement | |
EP2227677B1 (fr) | Système de mesure pour un fluide s'écoulant dans une conduite de processus | |
DE102006034296A1 (de) | Meßsystem für ein in einer Prozeßleitung strömendes Medium | |
EP0046965B1 (fr) | Procédé et appareil pour la détermination dynamique du débit massique independant de la densité | |
DE69711846T2 (de) | Bypass-durchflussmesser | |
DE102004053142B4 (de) | Flanschwirbeldurchflußmesser mit unitären zulaufenden Erweiterungsstücken | |
EP2742325B1 (fr) | Capteur de mesure et/ou de monitorage d'un paramètre d'un medium coulant dans une conduite et système de mesure comprenant un tel capteur | |
WO2016034417A1 (fr) | Module de détection destiné à un capteur, capteur et système de mesure formé dudit capteur | |
DE102016104423A1 (de) | Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem | |
EP3194900B1 (fr) | Procédé de fabrication d'un débitmètre à induction magnétique de section transversale réduite | |
DE10240189A1 (de) | Verfahren zum Ermitteln eines Massendurchflusses eines in einer Rohrleitung strömenden Fluids | |
EP2871449A1 (fr) | Débitmètre à ultra sons | |
DE102015116147A1 (de) | Sensorbaugruppe für einen Sensor, Sensor sowie damit gebildetes Meßsystem | |
DE102006047815A1 (de) | Meßsystem für ein in einer Prozeßleitung strömendes Medium | |
WO2019129480A1 (fr) | Tuyau pour un transducteur, transducteur comprenant un tuyau de ce type et système de mesure ainsi formé | |
DE19648784C2 (de) | Ultraschall-Durchflußmesser | |
EP3748309A1 (fr) | Débitmètre à ultrasons, utilisation d'un débitmètre à ultrasons dans un organe d'arrêt et organe d'arrêt | |
EP3894798A1 (fr) | Système de mesure pour mesurer un paramètre d'écoulement d'un fluide qui s'écoule dans une conduite tubulaire | |
EP3514505A1 (fr) | Débitmètre | |
DE2702816C3 (de) | Gerät zum Messen des Durchflusses eines Fluids durch eine Leitung | |
EP0842400A1 (fr) | Debitmetre a ultrasons | |
DE10314024B4 (de) | Vorrichtung und Verfahren zum Bestimmen eines Fluidstroms | |
EP4367483A1 (fr) | Système de mesure de paramètre d'écoulement d'une substance de mesure fluide circulant dans une canalisation | |
DE102008059510B4 (de) | Infusor und Durchflußmeßgerät | |
DE202018105414U1 (de) | Strömungsmessung mit Ultraschall |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20090118 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK RS |
|
DAX | Request for extension of the european patent (deleted) | ||
17Q | First examination report despatched |
Effective date: 20150721 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: EXAMINATION IS IN PROGRESS |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R079 Ref document number: 502007016675 Country of ref document: DE Free format text: PREVIOUS MAIN CLASS: G01F0001000000 Ipc: G01F0001320000 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
RIC1 | Information provided on ipc code assigned before grant |
Ipc: G01F 15/18 20060101ALI20181122BHEP Ipc: G01F 15/00 20060101ALI20181122BHEP Ipc: G01F 1/86 20060101ALI20181122BHEP Ipc: G01F 1/32 20060101AFI20181122BHEP Ipc: G01F 1/88 20060101ALI20181122BHEP |
|
INTG | Intention to grant announced |
Effective date: 20181214 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC MT NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1130875 Country of ref document: AT Kind code of ref document: T Effective date: 20190515 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502007016675 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190809 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190808 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502007016675 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
26N | No opposition filed |
Effective date: 20200211 |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20190731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190719 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190731 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190719 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 1130875 Country of ref document: AT Kind code of ref document: T Effective date: 20190719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20190719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20070719 Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20190508 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20210728 Year of fee payment: 15 Ref country code: IT Payment date: 20210727 Year of fee payment: 15 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20210722 Year of fee payment: 15 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20220719 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20220719 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240719 Year of fee payment: 18 |