[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1926900A1 - Method and device for monitoring a fuel metering system - Google Patents

Method and device for monitoring a fuel metering system

Info

Publication number
EP1926900A1
EP1926900A1 EP06793414A EP06793414A EP1926900A1 EP 1926900 A1 EP1926900 A1 EP 1926900A1 EP 06793414 A EP06793414 A EP 06793414A EP 06793414 A EP06793414 A EP 06793414A EP 1926900 A1 EP1926900 A1 EP 1926900A1
Authority
EP
European Patent Office
Prior art keywords
pressure
detected
error
fuel
function
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06793414A
Other languages
German (de)
French (fr)
Other versions
EP1926900B1 (en
Inventor
Hans Georg Bossemeyer
Michael Hackner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1926900A1 publication Critical patent/EP1926900A1/en
Application granted granted Critical
Publication of EP1926900B1 publication Critical patent/EP1926900B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • F02D41/3809Common rail control systems
    • F02D41/3836Controlling the fuel pressure
    • F02D41/3845Controlling the fuel pressure by controlling the flow into the common rail, e.g. the amount of fuel pumped
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/38Controlling fuel injection of the high pressure type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/02Fuel-injection apparatus having several injectors fed by a common pumping element, or having several pumping elements feeding a common injector; Fuel-injection apparatus having provisions for cutting-out pumps, pumping elements, or injectors; Fuel-injection apparatus having provisions for variably interconnecting pumping elements and injectors alternatively
    • F02M63/0225Fuel-injection apparatus having a common rail feeding several injectors ; Means for varying pressure in common rails; Pumps feeding common rails
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M65/00Testing fuel-injection apparatus, e.g. testing injection timing ; Cleaning of fuel-injection apparatus
    • F02M65/003Measuring variation of fuel pressure in high pressure line
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1401Introducing closed-loop corrections characterised by the control or regulation method
    • F02D2041/1413Controller structures or design
    • F02D2041/1423Identification of model or controller parameters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/22Safety or indicating devices for abnormal conditions
    • F02D2041/224Diagnosis of the fuel system
    • F02D2041/225Leakage detection

Definitions

  • the invention is based on a method and a device for monitoring a Kraftstoffzumesssystems according to the preamble of the main claims.
  • the pressure in the high pressure region is detected by means of a pressure sensor.
  • This pressure sensor is usually used to adjust or regulate the pressure in the high pressure range.
  • the pressure is evaluated so that the pressure curve is detected and compared with an expected pressure curve. In the event of a deviation between an expected pressure curve and the actual pressure curve, the device detects a leak.
  • FIG. 1 shows the essential elements of a fuel metering system
  • FIG. 2 shows the procedure according to the invention
  • FIG. 1 shows, by way of example, essential elements of a fuel metering system, in particular a diesel internal combustion engine.
  • the internal combustion engine is designated.
  • This fuel is supplied via a first injector 110 and a second injector 120.
  • the injectors 110 and 120 are connected via fuel lines with a rail 130 in connection.
  • At least one sensor 140 which emits a pressure variable p which characterizes the pressure in the high-pressure region, is arranged on the rail.
  • This print size is also referred to as rail pressure in the following.
  • other variables characterizing the rail pressure can be evaluated accordingly.
  • the rail 130 is acted upon by a high-pressure pump 150 with fuel. This
  • High-pressure pump is associated with an actuating element 160, with which the amount of fuel delivered by the high pressure pump 150 and thus the rail pressure can be controlled.
  • This control element 160 and the injectors 110 and 120 are acted upon by a control unit 170 with drive signals.
  • the control unit also processes the output signal p of the sensor 140.
  • the rail and the line between the high-pressure pump 150 and the injectors as high-pressure region and the area before the high-pressure pump is referred to as low-pressure region.
  • the procedure is applicable to any number of injectors. For clarity, only two injectors are shown. It can also be provided more adjusting elements.
  • a further adjusting element can be provided by means of which the rail pressure can be controlled.
  • Such an actuating element is designed, for example, as a solenoid valve which connects the high-pressure region to the low-pressure region.
  • the control unit evaluates the signals of further sensors or controls further control elements for controlling the internal combustion engine 100.
  • the approach is not limited to systems with a rail. It can also be used on systems with multiple rails or even on systems without a rail. Instead of the rail pressure then a size corresponding to the rail pressure is evaluated.
  • the high-pressure pump 150 conveys the fuel from the low-pressure region, which in particular comprises the tank, into a high-pressure region, which in particular includes the rail 130.
  • the amount of fuel delivered and thus the rail pressure can be adjusted by means of the first control element 160.
  • This is preferably done by a control, which is part of the control unit 170.
  • the control unit 170 detects the rail pressure p via the sensor 140 and compares it with a desired value and controls the actuating element 160 as a function of the deviation between the setpoint and the actual value. From the high pressure region of the fuel passes through the injectors 110 and 120 in the internal combustion engine.
  • the injectors essentially contain an actuator, which can be designed as a solenoid valve or as a piezoelectric actuator.
  • the control unit 170 acts on the - A -
  • Injectors 110 and 120 with such signals that the fuel is supplied at a predetermined time or to the predetermined angular position of the crankshaft of the internal combustion engine in a predetermined amount.
  • the pressure profile is evaluated and compared with different, in particular stored, pressure profiles. On the basis of this comparison, on the one hand the leakage is reliably detected and, on the other hand, the leakage of a specific component is assigned.
  • a first step 200 it is checked whether an operating state exists in which a check is possible. If this is not the case, the query 200 takes place after a waiting time has elapsed. If the query 200 recognizes that a check is possible, then
  • Step 210 deliberately causes conditions that are necessary for testing.
  • the high-pressure region is subjected to a test pressure.
  • step 220 the pressure curve over time or over the rotation of the crankshaft is then recorded. Subsequently, in step 230, the exponent of the pressure drop curve is determined.
  • Table can then be read based on the stored exponent of the corresponding error. In this case, usually a certain range of values of the exponent will be assigned to a type of error.
  • hyperbolic function other functions that describe the pressure drop over time or the angular position can also be used.
  • the course can be approximated with a straight line.
  • a size that characterizes the steepness of the pressure drop may be used.
  • arbitrary functions for describing the pressure profile and any variables characterizing this function can be used to identify the type of fault or the defective component.
  • exponential functions are also suitable.
  • FIG. 3 shows by way of example two curves of the rail pressure with and without pressure-dependent leakage gap widening over time. It can be seen from this figure that, when the pressure value is monitored at a specific point in time t 1, the pressure at different pressure curves has fallen to the same value. By means of an evaluation of the pressure at one or a few points in time is a

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Abstract

A device and a method for monitoring a fuel metering system are described, in which system fuel is fed from a low-pressure region into a high-pressure region. The pressure in the high-pressure region is sensed. A fault is detected on the basis of the pressure profile in the high-pressure region. The type of fault is detected on the basis of the shape of a pressure reduction curve. The profile of the pressure variable over time is approximated with a function such as a hyperbolic function. The type of fault is identified on the basis of the variable which characterizes the function.

Description

Beschreibungdescription
Titeltitle
Verfahren und Vorrichtung zur Überwachung eines KraftstoffzumesssystemsMethod and device for monitoring a fuel metering system
Die Erfindung geht aus von einem Verfahren und einer Vorrichtung zur Überwachung eines Kraftstoffzumesssystems nach der Gattung der Hauptansprüche.The invention is based on a method and a device for monitoring a Kraftstoffzumesssystems according to the preamble of the main claims.
Aus der DE 195 20 300 ist eine Einrichtung zur Erkennung einer Leckage in einem Kraftstoffversorgungssystem bei einer Brennkraftmaschine, insbesondere einer selbst- zündenden Brennkraftmaschine bekannt. Bei der dort beschriebenen Einrichtung wird derFrom DE 195 20 300 a device for detecting a leak in a fuel supply system in an internal combustion engine, in particular a self-igniting internal combustion engine is known. In the device described there is the
Kraftstoff von wenigstens einer Kraftstoffpumpe unter Druck aus einem Kraftstoffbehälter in einen so genannten Hochdruckbereich gefördert. Vom Hochdruckbereich gelangt der Kraftstoff über Einspritzventile, die üblicherweise als Injektoren bezeichnet sind, in die einzelnen Brennräume der Brennkraftmaschine. Üblicherweise wird der Druck im Hochdruckbereich mittels eines Drucksensors erfasst. Dieser Drucksensor wird üblicherweise dazu verwendet um den Druck im Hochdruckbereich einzustellen bzw. einzuregeln. Im Stand der Technik wird der Druck dahingehend ausgewertet, dass der Druckverlauf erfasst und mit einem erwarteten Druckverlauf verglichen wird. Bei einer Abweichung zwischen einem erwarteten Druckverlauf und dem tatsächlichen Druckverlauf er- kennt die Einrichtung eine Leckage.Fuel from at least one fuel pump under pressure from a fuel tank in a so-called high pressure area promoted. From the high pressure region of the fuel via injectors, which are commonly referred to as injectors, enters the individual combustion chambers of the internal combustion engine. Usually, the pressure in the high pressure region is detected by means of a pressure sensor. This pressure sensor is usually used to adjust or regulate the pressure in the high pressure range. In the prior art, the pressure is evaluated so that the pressure curve is detected and compared with an expected pressure curve. In the event of a deviation between an expected pressure curve and the actual pressure curve, the device detects a leak.
Nachteilig bei dieser Art der Fehlerüberwachung ist, dass lediglich erkannt wird, ob eine Leckage auftritt bzw. ob keine Leckage vorliegt.The disadvantage of this type of error monitoring is that it is only recognized whether a leak occurs or whether there is no leakage.
Erfindungsgemäß wurde erkannt, dass unterschiedliche Fehler unterschiedliche Druckverläufe zur Folge haben. Insbesondere wurde erkannt, dass sich die Leckagen durch die Art der Strömung unterscheiden. Dabei wird insbesondere zwischen laminaren und turbulenten Strömungen unterschieden. Ferner sind druckabhängige Leckaufweitungen oder Leckschrumpfungen möglich. D.h. abhängig vom Druck ändert sich die Querschnittsflä- che der Leckageöffnung. Dadurch ergibt sich die Möglichkeit, dass aus der Form der Druckabfallkurve auch die Leckageart erkannt wird. Durch die Zuordnung des gemessenen Druckverlaufs zu vorgegebenen Druckverläufen, die bei bestimmten Leckagen auftreten bzw. die bei einem Defekt verschiedener Komponenten auftreten, kann der Fehler sicher einer bestimmten Fehlerart und damit der defekten Komponente zugeordnet wer- den. D.h. ausgehend von dem Verlauf des Drucks kann die Art des Fehlers und damit die defekte Komponente sicher erkannt werden. Insbesondere erlaubt diese Vorgehensweise eine deutlich sicherere Leckageerkennung. Mit der herkömmlichen Vorgehensweise wird in jedem Fall bei einer Abweichung auch eine Leckage erkannt. Mit der neuen Erfindung werden bestimmte Druckverläufe, die nicht auf einer Leckage beruhen, im Stand der Technik aber als Leckage identifiziert würden, sicher als solche erkannt. Dadurch können unnötige Fehlerreaktionen, wie beispielsweise der Austausch von Komponenten, vermieden werden.According to the invention, it has been recognized that different errors result in different pressure profiles. In particular, it was recognized that the leakages differ by the type of flow. In particular, a distinction is made between laminar and turbulent flows. Furthermore, pressure-dependent leak widening or leakage shrinkage are possible. This means that the cross-sectional area of the leakage opening changes depending on the pressure. This gives rise to the possibility that out of the form of Pressure drop curve and the leakage type is detected. By assigning the measured pressure profile to predetermined pressure curves, which occur with certain leakages or which occur in the event of a defect of various components, the error can be reliably assigned to a specific type of fault and thus to the defective component. That is, based on the course of the pressure, the type of error and thus the defective component can be reliably detected. In particular, this approach allows a much safer leakage detection. With the conventional procedure, a leakage is detected in any case in case of a deviation. With the new invention, certain pressure gradients that are not based on leakage, but identified in the prior art as leakage, certainly recognized as such. As a result, unnecessary error reactions, such as the replacement of components, can be avoided.
Besonders vorteilhaft ist es, wenn der Verlauf der Druckgröße über der Zeit mit einer Funktion approximiert wird. Diese Approximation des Druckverlaufs liefert wenigstens eine oder mehrere die Funktion charakterisierende Größen. Das heißt es werden die charakteristischen Größen ermittelt, die den Druckverlauf am besten approximieren. Ausgehend diesen charakterisierenden Größe wird die Art des Fehlers und oder die defekte Komponente erkannt.It is particularly advantageous if the course of the pressure variable over time is approximated by a function. This approximation of the pressure curve yields at least one or more variables characterizing the function. This means that the characteristic quantities which best approximate the pressure curve are determined. Based on this characterizing size, the type of fault and / or the defective component is detected.
Zeichnungdrawing
In Figur 1 sind die wesentlichen Elemente eines Kraftstoffzumesssystems alsFIG. 1 shows the essential elements of a fuel metering system
Blockdiagramm dargestellt. In Figur 2 ist die erfindungsgemäße Vorgehensweise undBlock diagram shown. FIG. 2 shows the procedure according to the invention and FIG
In Figur 3 verschiedene Druckverläufe über der Zeit aufgetragen.In Figure 3, different pressure curves over time applied.
Beschreibung des AusführungsbeispielsDescription of the embodiment
In der Figur 1 sind beispielhaft wesentliche Elemente eines Kraftstoffzumesssystems, insbesondere einer Dieselbrennkraftmaschine, dargestellt. Mit 100 ist die Brennkraftmaschine bezeichnet. Dieser werden über einen ersten Injektor 110 und einen zweiten Injektor 120 Kraftstoff zugeführt. Die Injektoren 110 und 120 stehen über Kraftstoffleitungen mit einem Rail 130 in Verbindung. An dem Rail ist wenigstens ein Sensor 140 angeord- net, der eine Druckgröße p abgibt, die den Druck im Hochdruckbereich charakterisiert. Diese Druckgröße wird im folgenden auch als Raildruck bezeichnet. Anstelle des Ausgangssignals des Sensors 140 können auch andere Größen, die den Raildruck charakterisieren, entsprechend ausgewertet werden.FIG. 1 shows, by way of example, essential elements of a fuel metering system, in particular a diesel internal combustion engine. With 100, the internal combustion engine is designated. This fuel is supplied via a first injector 110 and a second injector 120. The injectors 110 and 120 are connected via fuel lines with a rail 130 in connection. At least one sensor 140, which emits a pressure variable p which characterizes the pressure in the high-pressure region, is arranged on the rail. This print size is also referred to as rail pressure in the following. Instead of the output signal of the sensor 140, other variables characterizing the rail pressure can be evaluated accordingly.
Das Rail 130 wird von einer Hochdruckpumpe 150 mit Kraftstoff beaufschlagt. DieserThe rail 130 is acted upon by a high-pressure pump 150 with fuel. This
Hochdruckpumpe ist ein Stellelement 160 zugeordnet, mit dem die Menge des von der Hochdruckpumpe 150 geförderten Kraftstoffes und damit der Raildruck gesteuert werden kann. Dieses Stellelement 160 sowie die Injektoren 110 und 120 werden von einer Steuereinheit 170 mit Ansteuersignalen beaufschlagt. Die Steuereinheit verarbeitet auch das Ausgangssignal p des Sensors 140. Üblicherweise wird das Rail sowie die Leitung zwischen Hochdruckpumpe 150 und den Injektoren als Hochdruckbereich und der Bereich vor der Hochdruckpumpe als Niederdruckbereich bezeichnet.High-pressure pump is associated with an actuating element 160, with which the amount of fuel delivered by the high pressure pump 150 and thus the rail pressure can be controlled. This control element 160 and the injectors 110 and 120 are acted upon by a control unit 170 with drive signals. The control unit also processes the output signal p of the sensor 140. Usually, the rail and the line between the high-pressure pump 150 and the injectors as high-pressure region and the area before the high-pressure pump is referred to as low-pressure region.
Bei der darstellten Ausführungsform sind lediglich zwei Injektoren dargestellt. Die Vor- gehensweise ist auf eine beliebige Anzahl von Injektoren anwendbar. Aus Übersichtlichkeitsgründen sind lediglich zwei Injektoren dargestellt. Es können auch weitere Stellelemente vorgesehen sein. So kann insbesondere ein weiteres Stellelement vorgesehen sein, mittels dem der Raildruck steuerbar ist. Ein solches Stellelement ist beispielsweise als Magnetventil ausgebildet, das den Hochdruckbereich mit dem Niederdruckbereich ver- bindet. Des weiteren wertet die Steuereinheit die Signale weiterer Sensoren aus bzw. steuert noch weitere Stellelemente zur Steuerung der Brennkraftmaschine 100 an. Ferner ist die Vorgehensweise nicht auf Systeme mit einem Rail beschränkt. Sie kann auch bei Systemen mit mehreren Rails oder auch bei Systemen ohne Rail eingesetzt werden. Anstelle des Raildrucks ist dann eine dem Raildruck entsprechende Größe auszuwerten.In the illustrated embodiment, only two injectors are shown. The procedure is applicable to any number of injectors. For clarity, only two injectors are shown. It can also be provided more adjusting elements. Thus, in particular, a further adjusting element can be provided by means of which the rail pressure can be controlled. Such an actuating element is designed, for example, as a solenoid valve which connects the high-pressure region to the low-pressure region. Furthermore, the control unit evaluates the signals of further sensors or controls further control elements for controlling the internal combustion engine 100. Furthermore, the approach is not limited to systems with a rail. It can also be used on systems with multiple rails or even on systems without a rail. Instead of the rail pressure then a size corresponding to the rail pressure is evaluated.
Die Hochdruckpumpe 150 fördert den Kraftstoff von dem Niederdruckbereich, der insbesondere den Tank umfasst, in einen Hochdruckbereich, der insbesondere das Rail 130 beinhaltet. Die Menge an gefördertem Kraftstoff und damit der Raildruck kann mittels des ersten Stellelements 160 eingestellt werden. Vorzugsweise erfolgt dies durch eine Rege- hing, die Teil der Steuereinheit 170 ist. Hierzu erfasst die Steuereinheit 170 über den Sensor 140 den Raildruck p und vergleicht diesen mit einem Sollwert und steuert abhängig von der Abweichung zwischen Soll- und Istwert das Stellelement 160 an. Von dem Hochdruckbereich gelangt der Kraftstoff über die Injektoren 110 bzw. 120 in die Brennkraftmaschine. Die Injektoren beinhalten im wesentlichen einen Aktor, der als Magnet- ventil oder als Piezoaktor ausgebildet sein kann. Die Steuereinheit 170 beaufschlagt die - A -The high-pressure pump 150 conveys the fuel from the low-pressure region, which in particular comprises the tank, into a high-pressure region, which in particular includes the rail 130. The amount of fuel delivered and thus the rail pressure can be adjusted by means of the first control element 160. This is preferably done by a control, which is part of the control unit 170. For this purpose, the control unit 170 detects the rail pressure p via the sensor 140 and compares it with a desired value and controls the actuating element 160 as a function of the deviation between the setpoint and the actual value. From the high pressure region of the fuel passes through the injectors 110 and 120 in the internal combustion engine. The injectors essentially contain an actuator, which can be designed as a solenoid valve or as a piezoelectric actuator. The control unit 170 acts on the - A -
Injektoren 110 bzw. 120 mit solchen Signalen, dass der Kraftstoff zum vorgegebenen Zeitpunkt bzw. zur vorgegebenen Winkelstellung der Kurbelwelle der Brennkraftmaschine in vorgegebener Menge zugeführt wird.Injectors 110 and 120 with such signals that the fuel is supplied at a predetermined time or to the predetermined angular position of the crankshaft of the internal combustion engine in a predetermined amount.
Bei einem solchen System können eine Vielzahl von Fehlern auftreten. So kann der Fall eintreten, dass im Hochdruckbereich eine Leckage auftritt, d.h. dass Kraftstoff vom Hochdruckbereich in den Niederdruckbereich bzw. in die Umgebung gelangt. Ferner kann der Fall eintreten, dass durch die Injektoren eine erhöhte Kraftstoffmenge in die Brennkraftmaschine gelangt. Solche Fehler müssen sicher erkannt werden. Üblicherweise werden diese Fehler erkannt und dem Fahrer signalisiert bzw. in der Steuereinheit abgelegt und im Rahmen der Wartung ausgelesen. Tritt nun ein solcher Fehler auf, muss im Rahmen der Wartung der Fehler aufwändig gesucht werden. Erfmdungsgemäß wurde nun erkannt, dass anhand des Druckverlaufs der Fehler einer bestimmten Komponente des Systems zugeordnet werden kann. Insbesondere wurde erkannt, dass bei Leckagen unter- schiedlicher Komponenten unterschiedliche Druckverläufe auftreten.In such a system, a variety of errors may occur. Thus, the case may occur that leakage occurs in the high pressure region, i. that fuel from the high pressure area in the low pressure area or in the environment passes. Furthermore, the case may occur that an increased amount of fuel enters the internal combustion engine through the injectors. Such errors must be reliably detected. Usually, these errors are detected and signaled to the driver or stored in the control unit and read out as part of the maintenance. If such an error occurs, the error must be carefully searched during maintenance. According to the invention, it has now been recognized that the error can be assigned to a specific component of the system on the basis of the pressure profile. In particular, it was recognized that different pressure gradients occur with leaks of different components.
Erfmdungsgemäß ist nun vorgesehen, dass der Druckverlauf ausgewertet wird und mit verschiedenen insbesondere abgespeicherten Druckverläufen verglichen wird. Anhand dieses Vergleichs wird zum einen die Leckage sicher erkannt und zum anderen die Le- ckage einer bestimmten Komponente zugeordnet.According to the invention, it is now provided that the pressure profile is evaluated and compared with different, in particular stored, pressure profiles. On the basis of this comparison, on the one hand the leakage is reliably detected and, on the other hand, the leakage of a specific component is assigned.
In Figur 2 ist die erfmdungsgemäße Vorgehensweise detailliert als Flussdiagramm dargestellt. In einem ersten Schritt 200 wird überprüft, ob ein Betriebszustand vorliegt, in dem eine Prüfung möglich ist. Ist dies nicht der Fall, so erfolgt nach Ablauf einer Wartezeit die Abfrage 200. Erkennt die Abfrage 200, dass eine Prüfung möglich ist, so werden inIn Figure 2, the erfmdungsgemäße procedure is shown in detail as a flow chart. In a first step 200, it is checked whether an operating state exists in which a check is possible. If this is not the case, the query 200 takes place after a waiting time has elapsed. If the query 200 recognizes that a check is possible, then
Schritt 210 gezielt Bedingungen herbeigeführt, die zur Prüfung notwendig sind. So wird unter anderem in Schritt 210 der Hochdruckbereich mit einem Prüfdruck beaufschlagt. Des Weiteren wird durch Ansteuerung der Stellelemente zur Regelung des Raildrucks, insbesondere des Stellelements 160 und durch Ansteuerung der Injektoren 110 und 120 gewährleistet, dass kein weiterer Kraftstoff in das Rail gefördert oder dem Rail entnommen wird. Sind weitere Steller vorgesehen, müssen diese ebenfalls in entsprechender Weise angesteuert werden. Im Schritt 220 wird dann der Druckverlauf über der Zeit bzw. über der Umdrehung der Kurbelwelle aufgezeichnet. Anschließend wird in Schritt 230 der Exponent der Druckabfallkurve ermittelt. Erfmdungsgemäß wurde erkannt, dass bei einer Leckage die druckabhängigen Leckagedurchflüsse und Druckänderungsraten Po- tenzfünktionen des Druckes folgen. Entsprechend folgt bei einer Leckage der Druckabfall über der Zeit oder über der Winkelstellung der Kurbelwelle näherungsweise einer so genannten Hyperbelfunktion mit Exponent. Im Spezialfall laminarer Strömung ohne druckabhängige Leckspaltaufweitung oder -Schrumpfung folgt der Druckabfall über der Zeit näherungsweise einer Exponentialfunktion.Step 210 deliberately causes conditions that are necessary for testing. Thus, inter alia, in step 210, the high-pressure region is subjected to a test pressure. Furthermore, it is ensured by controlling the adjusting elements for regulating the rail pressure, in particular of the actuating element 160 and by controlling the injectors 110 and 120, that no further fuel is conveyed into the rail or removed from the rail. If additional actuators are provided, these must also be controlled accordingly. In step 220, the pressure curve over time or over the rotation of the crankshaft is then recorded. Subsequently, in step 230, the exponent of the pressure drop curve is determined. According to the invention, it was recognized that, in the event of a leakage, the pressure-dependent leakage flow rates and pressure change rates P tenzfünktionen the pressure to follow. Correspondingly, in the event of a leakage, the pressure drop over time or over the angular position of the crankshaft approximately follows a so-called hyperbolic function with exponent. In the special case of laminar flow without pressure-dependent leakage gap widening or shrinking, the pressure drop over time approximately follows an exponential function.
Dies bedeutet, es werden verschiedene Druckwerte zu verschiedenen Zeitpunkten oder Winkelstellungen der Kurbel- oder Nockenwelle erfasst. Anschließend wird die Potenzfunktion der Druckänderungsrate über dem Druck ermittelt, mit dem die Potenzfunktion den Messwerten am nächsten kommt. Dabei sind beliebige Approximationsverfahren ein- setzbar, insbesondere die Anpassung einer Hyperbel- oder Exponentialfunktion an den Druckverlauf über der Zeit.This means that different pressure values are recorded at different times or angular positions of the crankshaft or camshaft. Subsequently, the power function of the pressure change rate is determined above the pressure with which the power function comes closest to the measured values. In this case, arbitrary approximation methods can be used, in particular the adaptation of a hyperbolic or exponential function to the pressure curve over time.
Erfmdungsgemäß wurde erkannt, dass unterschiedliche Strömungen, insbesondere Strö- mungen mit und ohne druckabhängiger Leckspaltaufweitung, unterschiedliche Exponenten aufweisen. Es gibt unterschiedliche Fehler, die Leckageströmungen mit und ohne druckabhängiger Leckspaltaufweitung entsprechen. Dies bedeutet, anhand des Exponenten kann die Fehlerart erkannt und damit einer bestimmten Komponente oder einer geringen Anzahl von Komponenten zugeordnet werden. Diese Zuordnung erfolgt in der Ab- frage 240. In dieser wird beispielsweise abhängig von dem Wert des Exponenten ein erster Fehler 250 oder ein zweiter Fehler 260 erkannt. Vorzugsweise erfolgt dies dadurch, dass in einem Kennfeld oder in einer Kennlinie bzw. in einer Tabelle die Werte des Exponenten für verschiedene Fehler und/oder für den fehlerfreien Zustand abgelegt sind. Die Abfrage 240 überprüft dann, welchem dieser abgelegten Werte der gemessene Expo- nent am nächsten kommt und ordnet dem Exponenten einen abgelegten Wert zu. Aus derAccording to the invention, it has been recognized that different flows, in particular flows with and without pressure-dependent leakage gap widening, have different exponents. There are various errors that correspond to leakage flows with and without pressure-dependent leakage gap widening. This means that the type of error can be detected on the basis of the exponent and thus assigned to a specific component or a small number of components. This assignment takes place in query 240. In this example, depending on the value of the exponent, a first error 250 or a second error 260 is detected. This is preferably done by storing the values of the exponent for different errors and / or for the error-free state in a characteristic field or in a characteristic curve or in a table. The query 240 then checks which of these stored values the measured exponent comes closest to and assigns a stored value to the exponent. From the
Tabelle kann dann ausgehend von dem abgelegten Exponenten der entsprechende Fehler ausgelesen werden. Dabei wird üblicherweise ein bestimmter Wertebereich des Exponenten einer Fehlerart zugeordnet sein.Table can then be read based on the stored exponent of the corresponding error. In this case, usually a certain range of values of the exponent will be assigned to a type of error.
Alternativ zur Hyperbelfunktion können auch andere Funktionen, die den Druckabfall über der Zeit oder die Winkelstellung beschreiben, verwendet werden. Insbesondere kann der Verlauf mit einer Geraden angenähert werden. In diesem Fall kann beispielsweise eine Größe, die die Steilheit des Druckabfalls charakterisiert, verwendet werden. Erfindungsgemäß können beliebige Funktionen zur Beschreibung des Druckverlaufs und beliebige diese Funktion charakterisierende Größen zur Identifizierung der Fehlerart bzw. der defekten Komponente verwendet werden. Insbesondere sind auch Exponentialfunktionen geeignet.As an alternative to the hyperbolic function, other functions that describe the pressure drop over time or the angular position can also be used. In particular, the course can be approximated with a straight line. In this case, for example, a size that characterizes the steepness of the pressure drop may be used. According to the invention, arbitrary functions for describing the pressure profile and any variables characterizing this function can be used to identify the type of fault or the defective component. In particular, exponential functions are also suitable.
In der Figur 3 sind beispielhaft zwei Kurvenverläufe des Raildrucks mit und ohne druckabhängige Leckspaltaufweitung über der Zeit aufgetragen. Anhand dieser Figur ist zu erkennen, dass bei einer Überwachung des Druckwerts zu einem bestimmten Zeitpunkt tl der Druck bei unterschiedlichen Druckverläufen auf den gleichen Wert abgefallen ist. Mittels einer Auswertung des Druckes an einem oder an wenigen Zeitpunkten ist eineFIG. 3 shows by way of example two curves of the rail pressure with and without pressure-dependent leakage gap widening over time. It can be seen from this figure that, when the pressure value is monitored at a specific point in time t 1, the pressure at different pressure curves has fallen to the same value. By means of an evaluation of the pressure at one or a few points in time is a
Zuordnung des Fehlers zu einer Komponente oder einer Fehlerart nicht immer möglich. Assignment of the error to a component or a type of error is not always possible.

Claims

Ansprüche claims
1. Verfahren zur Überwachung eines Kraftstoffzumesssystems, bei dem Kraftstoff von einem Niederdruckbereich in einen Hochdruckbereich gefördert wird, wobei eine den Druck im Hochdruckbereich charakterisierende Druckgröße erfasst und ausgehend von dem Verlauf der Druckgröße ein Fehler erkannt wird, dadurch gekennzeichnet, dass ausgehend von dem Verlauf der Druckgröße die Art des Fehlers erkannt wird.1. A method for monitoring a fuel metering system in which fuel is conveyed from a low-pressure region into a high-pressure region, wherein a pressure variable characterizing the pressure in the high-pressure region is detected and an error is detected on the basis of the pressure variable, characterized in that starting from the course of the Print size the nature of the error is detected.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass der Verlauf der Druck- große über der Zeit mit einer Funktion approximiert, eine die Funktion charakterisierende Größe ermittelt und ausgehend von der die Funktion charakterisierenden Größe die Art des Fehlers erkannt wird.2. The method according to claim 1, characterized in that the course of the large pressure over time approximated by a function, a function characterizing the size determined and based on the function characterizing size the nature of the error is detected.
3. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von der Steil- heit des Druckgröße die Art des Fehlers erkannt wird.3. The method according to claim 1, characterized in that starting from the slope of the print size, the type of error is detected.
4. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Druckgröße mit einer Hyperbelfunktion approximiert wird und ausgehend von dem Exponent der Hyperbelfunktion die Art des Fehlers erkannt wird.4. The method according to claim 2, characterized in that the print size is approximated with a hyperbolic function and, based on the exponent of the hyperbolic function, the type of error is detected.
5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass ausgehend von dem Verlauf der Druckgröße die defekte Komponente erkannt wird.5. The method according to claim 1, characterized in that starting from the course of the print size, the defective component is detected.
6. Vorrichtung zur Überwachung eines Kraftstoffzumesssystems, bei dem Kraftstoff von einem Niederdruckbereich in einen Hochdruckbereich gefördert wird, mit Mitteln, die eine den Druck im Hochdruckbereich charakterisierende Druckgröße erfassen und ausgehend von dem Verlauf der Druckgröße ein Fehler erkennen, dadurch gekennzeichnet, dass Mittel vorgesehen sind, die ausgehend von dem Verlauf der Druckgröße die Art des Fehlers erkennen. 6. An apparatus for monitoring a Kraftstoffzumesssystems, is conveyed in the fuel from a low pressure region in a high pressure region, with means which detect the pressure in the high pressure region characterizing pressure variable and recognize from the course of the pressure variable an error, characterized in that means are provided that detect the nature of the error based on the progression of the print size.
EP06793414.1A 2005-09-15 2006-09-11 Method and device for monitoring a fuel metering system Not-in-force EP1926900B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005043971A DE102005043971A1 (en) 2005-09-15 2005-09-15 Method and device for monitoring a fuel metering system
PCT/EP2006/066234 WO2007031492A1 (en) 2005-09-15 2006-09-11 Method and device for monitoring a fuel metering system

Publications (2)

Publication Number Publication Date
EP1926900A1 true EP1926900A1 (en) 2008-06-04
EP1926900B1 EP1926900B1 (en) 2016-06-29

Family

ID=37487575

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06793414.1A Not-in-force EP1926900B1 (en) 2005-09-15 2006-09-11 Method and device for monitoring a fuel metering system

Country Status (7)

Country Link
US (1) US8191411B2 (en)
EP (1) EP1926900B1 (en)
JP (1) JP4646261B2 (en)
KR (1) KR101046825B1 (en)
CN (1) CN101263291B (en)
DE (1) DE102005043971A1 (en)
WO (1) WO2007031492A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITTO20070128A1 (en) * 2007-02-23 2008-08-24 Derossi Massimo S R L MULTIPURPOSE DIAGNOSIS APPARATUS FOR A GASOLINE OR DIESEL DIRECT INJECTION ENGINE, PREFERABLY WITH COMMON COLLECTOR TECHNOLOGY (COMMON RAIL).
DE102009002619A1 (en) 2009-04-24 2010-10-28 Robert Bosch Gmbh Method for monitoring air accumulator of injection system in motor vehicle, involves detecting pressure of air accumulator, and comparing pressure with modelized value on basis of physical dimension
CN101598073A (en) * 2009-07-10 2009-12-09 奇瑞汽车股份有限公司 A kind of collection of pressure signal of oil rail and monitoring method
EP2333290B1 (en) * 2009-12-14 2013-05-15 Volvo Car Corporation Method and system to detect a leak in a vehicle fuel tank
DE102010013602B4 (en) 2010-03-31 2015-09-17 Continental Automotive Gmbh A method for detecting a malfunction of an electronically controlled fuel injection system of an internal combustion engine
DE102012208465A1 (en) 2012-05-21 2013-11-21 Robert Bosch Gmbh Fuel injection system for internal combustion engine, has high-pressure-resistant shut-off valve arranged in high pressure system, and shut-off valve assigned high-pressure fixed throttle device to adjust flow rate and flow pattern of fuel
US20140238352A1 (en) * 2013-02-22 2014-08-28 Caterpillar, Inc. Fault Diagnostic Strategy For Common Rail Fuel System
US9657653B2 (en) 2014-06-09 2017-05-23 Caterpillar Inc. Gas pressure high and low detection
DE102017200482B4 (en) 2017-01-13 2022-08-18 Bayerische Motoren Werke Aktiengesellschaft METHOD AND DEVICE FOR DETECTING AND CHARACTERIZING FUEL LEAKAGE AND VEHICLE
DE102021201907A1 (en) 2021-03-01 2022-09-01 Robert Bosch Gesellschaft mit beschränkter Haftung Method for detecting a leak in a high-pressure area of a fuel supply system
GB2624886A (en) * 2022-11-29 2024-06-05 Delphi Tech Ip Ltd Test platform leakage monitoring in bleed down measurement

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5765822A (en) * 1980-10-09 1982-04-21 Hitachi Constr Mach Co Ltd Control of driving system containing internal combustion engine and hydraulic pump
DE4141588A1 (en) * 1991-12-17 1993-06-24 Bosch Gmbh Robert Vehicular speed regulator signalling approach to desired speed - improves stability of regulation by negative weighting in accordance with temporal variation of engine revolution count
DE4443652B4 (en) * 1994-12-08 2012-01-19 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE19520300A1 (en) * 1995-06-02 1996-12-05 Bosch Gmbh Robert Device for detecting a leak in a fuel supply system
JP3339326B2 (en) * 1996-09-20 2002-10-28 トヨタ自動車株式会社 Fuel supply device
JP3796912B2 (en) * 1997-02-21 2006-07-12 トヨタ自動車株式会社 Fuel injection device for internal combustion engine
JP3704887B2 (en) * 1997-05-21 2005-10-12 トヨタ自動車株式会社 Fault diagnosis device for internal combustion engine
DE19727794C1 (en) 1997-06-30 1999-01-28 Siemens Ag Method of checking fuel line, esp. of common rail fuel injection systems for IC engines
JP3435627B2 (en) 1997-12-19 2003-08-11 日産自動車株式会社 High pressure fuel circuit inspection method for internal combustion engine
DE19833086B4 (en) * 1998-07-23 2013-08-01 Robert Bosch Gmbh Maximum value method and device for detecting a leak in a fuel supply system of an internal combustion engine
DE19838222A1 (en) * 1998-08-22 2000-02-24 Daimler Chrysler Ag Method for evaluating an ion current signal of a self-igniting internal combustion engine
JP2000303886A (en) * 1999-04-20 2000-10-31 Denso Corp Abnormality detecting device for high-pressure fuel system
IT1319633B1 (en) 2000-01-18 2003-10-20 Fiat Ricerche METHOD OF ASSESSMENT OF THE FUNCTIONALITY OF A COMMON MANIFOLD INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE.
IT1321068B1 (en) * 2000-11-14 2003-12-30 Fiat Ricerche METHOD OF DIAGNOSIS OF LOSSES IN A COMMON MANIFOLD INJECTION SYSTEM OF AN INTERNAL COMBUSTION ENGINE.
JP2002221069A (en) * 2001-01-26 2002-08-09 Hitachi Ltd Control device of internal combustion engine equipped with fuel supplying device
DE10212508A1 (en) * 2002-03-21 2003-10-02 Bosch Gmbh Robert Method and device for controlling the fuel metering in an internal combustion engine
JP3994790B2 (en) * 2002-05-13 2007-10-24 トヨタ自動車株式会社 Abnormal point detection device for internal combustion engine
US6712045B1 (en) * 2002-08-08 2004-03-30 Detroit Diesel Corporation Engine control for a common rail fuel system using fuel spill determination
JP4361889B2 (en) * 2005-04-11 2009-11-11 株式会社デンソー Leak inspection device and fuel vapor processing device
US8074627B2 (en) * 2010-07-14 2011-12-13 Ford Global Technologies, Llc Automotive fuel system leak testing

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2007031492A1 *

Also Published As

Publication number Publication date
JP2009508054A (en) 2009-02-26
DE102005043971A1 (en) 2007-03-22
US20090199627A1 (en) 2009-08-13
CN101263291A (en) 2008-09-10
KR20080055832A (en) 2008-06-19
KR101046825B1 (en) 2011-07-06
CN101263291B (en) 2012-04-25
EP1926900B1 (en) 2016-06-29
JP4646261B2 (en) 2011-03-09
WO2007031492A1 (en) 2007-03-22
US8191411B2 (en) 2012-06-05

Similar Documents

Publication Publication Date Title
EP1926900B1 (en) Method and device for monitoring a fuel metering system
EP1711704B1 (en) Method for monitoring the operability of a fuel injection system
EP0795077B1 (en) Process and device for monitoring a fuel metering system
EP0811116B1 (en) Process and device for monitoring a fuel metering system of an internal combustion engine
DE102010013602B4 (en) A method for detecting a malfunction of an electronically controlled fuel injection system of an internal combustion engine
DE19604552B4 (en) Method and device for controlling an internal combustion engine
WO2002006655A1 (en) Method and device for controlling an internal combustion engine
WO2004057172A1 (en) Device and method for identifying defects in a fuel injection system
WO2015022058A1 (en) Method for the injector-specific diagnosis of a fuel injection device and internal combustion engine having a fuel injection device
DE19937962A1 (en) IC engine common-rail fuel injection system control method monitors valve inserted between high pressure and low pressure regions for indicating fault
WO2001083971A1 (en) Method and device for monitoring a fuel metering system of an internal combustion engine
DE19833086B4 (en) Maximum value method and device for detecting a leak in a fuel supply system of an internal combustion engine
DE19620038B4 (en) Method and device for monitoring a fuel metering system
EP2496814A1 (en) Method and device for monitoring a high-pressure fuel system
EP0764777B1 (en) Method and apparatus for controlling an internal combustion engine
DE102006046840A1 (en) Process for monitoring a fuel injection system recognizes an error when a first value and/or a second value deviate from an expected value
DE19726183A1 (en) Method and device for monitoring a fuel metering system
EP3234328B1 (en) Method and apparatus for diagnosing a fuel supply system
DE19632339A1 (en) Method and device for monitoring a flow limiter of a fuel metering system of an internal combustion engine
EP3631398A1 (en) Method for monitoring a cylinder pressure sensor
DE102010027676B4 (en) Method for detecting serious fault patterns of an electronically controlled fuel injection system of an internal combustion engine by evaluating the pressure behavior

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20100512

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160401

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502006015024

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20160921

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160922

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20161025

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006015024

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170330

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20171128

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170911

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170911

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170911

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171002

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006015024

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190402