[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1902164B1 - Spinning apparatus and process for producing fine threads by splicing for forming a nonwoven, and nonwoven obtainable thereby - Google Patents

Spinning apparatus and process for producing fine threads by splicing for forming a nonwoven, and nonwoven obtainable thereby Download PDF

Info

Publication number
EP1902164B1
EP1902164B1 EP06818294A EP06818294A EP1902164B1 EP 1902164 B1 EP1902164 B1 EP 1902164B1 EP 06818294 A EP06818294 A EP 06818294A EP 06818294 A EP06818294 A EP 06818294A EP 1902164 B1 EP1902164 B1 EP 1902164B1
Authority
EP
European Patent Office
Prior art keywords
spinning
gas
nozzle part
nozzles
threads
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06818294A
Other languages
German (de)
French (fr)
Other versions
EP1902164A1 (en
Inventor
Lüder GERKING
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1902164A1 publication Critical patent/EP1902164A1/en
Application granted granted Critical
Publication of EP1902164B1 publication Critical patent/EP1902164B1/en
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D4/00Spinnerette packs; Cleaning thereof
    • D01D4/02Spinnerettes
    • D01D4/025Melt-blowing or solution-blowing dies
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/12Stretch-spinning methods
    • D01D5/14Stretch-spinning methods with flowing liquid or gaseous stretching media, e.g. solution-blowing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/681Spun-bonded nonwoven fabric

Definitions

  • the invention relates to a spinning device for producing fine threads by splicing according to the preamble of the main claim.
  • Fine threads down to less than 1 micrometer ( ⁇ m) can be made by splicing a filamentary fluid stream as a melt, solution, or, generally, as liquids which are later solidified, as in US Pat DE 199 29 709 and DE 100 65 859 has been described.
  • the mechanism of the thread formation is fundamentally different than in all hitherto known spinning process, where the dope is withdrawn by winders from the spinnerets to threads or in the spunbonding process by accompanying air currents that exert a force on them and in particular execution in so-called meltblown process, where the air pulling the thread emerges close to the spinneret orifices heated to about textile fiber temperature.
  • the yarn speed reaches that of the winding or is under the pulling air or gas streams.
  • the nanoval process is performed in line nozzles in its industrial applications, with a series of spin holes located above a gap.
  • the gas generally air without special conditioning after its generation in blowers or compressors (the energy requirement is generally low compared to the meltblown process) flows on both sides of the row nozzle in steady acceleration to the narrowest cross-section of the gap, which then again usually expanded rapidly, but basically has the configuration of a Laval nozzle.
  • Single round nozzles were described as well, surrounded by a continuously decreasing annular gap.
  • the throughputs are therefore generally smaller in the production of very fine threads in the range of and below 1 micron. This results in the need for more spinnerets across the width for a particular overall throughput in the production of nonwovens by the nanoval process for finer filaments. In the production of yarns that applies accordingly.
  • the invention has for its object to provide a device for producing fine threads, the compact and structurally simple, with a good piecing should be possible.
  • the device for producing fine threads at least one spinning nozzle equipped spinning spinneret and an at least partially plate-shaped gas nozzle part having at least one gas supply space, said at least partially plate-shaped gas nozzle portion having a plurality of funnel-shaped depressions as acceleration nozzles, in which engage the spinnerets, such that combinations of spinnerets / acceleration nozzles, in particular Laval nozzles are formed with rotationally symmetrical gas flow channels
  • the device can be constructed compact with a variety of close-fitting combinations, the gas nozzle part and Spinndüsenteil be displaced relative to each other, so that between the gas nozzle part and spinnerets of Spinndüsenteils formed gas flow channels can take different flow cross sections, whereby the height of the spinning orifices to the narrowest cross section of the acceler H concernssdüsen, Laval nozzles in particular, is adjustable.
  • the piecing is facilitated and at several nozzles next to and behind one another in the first possible by the gas nozzle part relative to the spinneret part is retracted towards the latter, so as not to affect the coming yarn path.
  • the displaceability also facilitates the maintenance and cleaning of the spinnerets.
  • a particularly simple design is given when formed between the bottom of the spinning nozzle part from which project the spinnerets or spinning nipple, and the top of the plate-shaped portion of the gas nozzle portion of the gas space through which the gas, usually air, the accelerating nozzles is supplied.
  • An advantageous embodiment, but somewhat more expensive and especially in the supply of "cold" air is to form the gas nozzle part as a hollow body, which is penetrated by the depressions and the cavity between the depressions forms the gas space, wherein the hollow body directed to the spinneret part openings , preferably rotationally symmetrical around the depressions around, over which the air or the gas passes to the accelerating nozzles.
  • It can be arranged side by side a plurality of nozzle and gas nozzle parts, wherein also different textile materials can be spun out.
  • a further plate be arranged with openings to form a distribution space for another fluid.
  • This fluid may be water for coagulating dissolved pulps, coolant for freezing the molecular orientation achieved in the splice, means for heating, eg, water vapor, for a second draw, or the like.
  • the spinning device shown has a spinneret part 28 in which a plurality of melt channels 14 are provided, which are supplied via a filter 25 and a perforated plate 26 for cleaning supplied melt or solution with melt or solution.
  • the melt channels continue in spinnerets or spin nipples 23, wherein only three rows of nipples 23 are shown here. It may well be several consecutive spider nipples in the direction of travel arrow 50 provided.
  • the lower plate-shaped region of the spinneret part is accommodated in a gas nozzle part 27, which comprises a frame-like border 34 and a plate-like part 35, in the latter three staggered rows of Laval nozzles 36 corresponding to the rows of spin nipples 23 are provided.
  • the border 34 is provided with an upstand, wherein a seal 33 is arranged between this upstand and an opposite surface 32 of the lower region of the spinneret part 28.
  • the spinning and the gas nozzle parts 28, 27 are aligned with each other so that the tip of the spinning nipple 23 project into the Laval nozzles 36, wherein between the lower surface of the spinneret member 28 and the upper surface of the plate-shaped portion 35 of the gas nozzle part, a gas space 22 is formed, through which the spinning nipple 23 extend and which is connected to the gas or air feeds 20 provided in the border.
  • the spinning nipples 23 are preferably provided with a heater 24, advantageously with a band heater, as is known from injection molding tools in plastics engineering.
  • the device according to the invention has means for relative displacement of the spinning and gas nozzle part 28, 27, wherein in the present embodiment, a screw 29 fixed in one with the spinneret part connected nut lock 30 is guided and connected in an anchorage 31 in the frame 34 of the gas nozzle part 27 with this, the anchorage 31 can exert pressure or pulling action according to the direction of rotation of the screw 29, whereby the gas nozzle part is moved.
  • a screw 29 fixed in one with the spinneret part connected nut lock 30 is guided and connected in an anchorage 31 in the frame 34 of the gas nozzle part 27 with this, the anchorage 31 can exert pressure or pulling action according to the direction of rotation of the screw 29, whereby the gas nozzle part is moved.
  • other types of shifting means are possible.
  • the gas nozzle part 27 is raised, ie in the Fig. 1 shifted upward, whereby the seal 33 is relieved. If, after starting, the gas 21 is supplied via the supply 20, in addition to a displacement of the gas nozzle part 27 down a compressive force on the seal 33 by the pressure in the gas space 22 is amplified. There is thus a certain self-adjustment of the seal when starting the melt or solution and release of the Laval nozzle cross-section to the individual spinning nipples.
  • the gas supply 21 is turned off, the gas nozzle part 27 is raised until the plate member 35 abuts the wall of the Laval nozzles 35 on the spinning nipples 25.
  • the existing air in the region of the seal 33 and the surface 32 is blown out.
  • the nipples 25 protrude out of the laval nozzles and can be cleaned.
  • the device shown has a spinneret part 1 with a series of elevations or projections, preferably in the form of cones, which receive or form spinnerets 13.
  • the spinning nozzle part may be formed as a plate into which the spinnerets 13 (similar Fig. 1 ) are used.
  • the spinnerets have melt or dissolution channels 14 which terminate in a spinneret orifice 3.
  • a gas nozzle part 2 is provided, which is formed for example as a hollow body which is formed by two plates provided with funnel-shaped depressions.
  • a cavity 9 is formed, which is interrupted by the funnel-shaped depressions.
  • the cavity 9 serves as a gas space, which in turn is connected to a gas supply source.
  • Fig. 3 shown in section openings 4 accordingly Fig. 4 jointly apply to adjacent funnel-shaped depressions, ie in the embodiment, the funnel-shaped depressions are arranged close to each other.
  • the intermediate space between the spinnerets 13, which in Fig. 3 are shown as depressions with the formation of an air gap 12 is still an insulating mold 11 inserted, which extends to the spinning opening 3, so.dass the gas flow channel 5 between the surface molding 11 and surface of the recess in part 2 is formed around the space 9.
  • the respective gas flow channel 5 is formed so that it tapers in the direction of the respective spinning opening 3, which is surrounded rotationally symmetrically by the respective depression. It is thus realized in each case a Laval nozzle whose cross-section at the edge between the recess and outer surface of the in the Fig. 3 bottom plate suddenly expanded, but also gradually can happen.
  • the spinneret part 1 and the gas nozzle part 2 are relative to each other, respectively Fig. 3 seen, displaced in the vertical direction, which can be realized by sliding rods, not shown. Thereby, the height of the narrowest point 6 of the Laval nozzle with respect to the spinning opening 3 can be adjusted, whereby the piecing is facilitated.
  • slide bars can simultaneously absorb force arising at different expansions of the spinneret 1 and the gas nozzle part 2, whereby the positioning of both parts is maintained.
  • Fig. 4 are two rows of combinations of spinneret 13 and Laval nozzles, ending in the narrowest cross-section 6 shown, the spinnerets 13 are offset one row to those of the other rows. It is possible in particular for larger spinning beam widths that separate gas distribution channels are provided between adjacent rows in order to introduce the required quantities of gas to the Laval nozzles.
  • Fig. 3 the melt is brought in the part 1 and exits in the spinneret orifices 3, while the gas, hereinafter referred to as air, from the space 9 in the part 2 after exiting through the annular opening 4 to the spin orifice 3 rotationally symmetrical channel 5 between part 1 and 2 flows to the narrowest cross section 6 and previously detected at the spinning opening 3, the emerging thread 7, it accelerates, ie reduced in diameter and after the nanoval effect already in the Laval nozzle or shortly thereafter for brush-like bursting into a bundle of threads 8 brings.
  • the gas hereinafter referred to as air
  • the part 2 can be moved in the direction of the thread exit axis. As a result, it can be completely withdrawn during piecing to the molded part 11, a blow-out of spinning air through the openings 4 can initially be omitted or it is allowed to a small extent. Then the part 2 is lowered, the thread spun, warped and burst according to the known from the process air speed adjustment data from the applied pressure in the space 9 of Part 2, for the flowing dope from the openings 3 and in the for the Splicing required temperature of the dope.
  • the molded part 11 is designed such that it forms the inner wall of the rotationally symmetrical channel 5 for a steady acceleration of the air close to the spinneret orifice 3, but over an air gap 12 and the spinneret 13 against the air flow in the flow channel 5 thermally insulated.
  • the molded part 11 can also contain the heaters of the spinnerets instead of the spinneret part 1.
  • the two basic positions of the movable part 2 are in Fig. 3 indicated, dashed for piecing.
  • Fig. 4 shows a horizontal section BB (in Fig. 3 ) as a section through a multi-row nozzle device for two rows of nozzles to illustrate the air supply from the outside to the individual spinnerets 13 for feeding from the space 9 via the openings 4 in the channels 5, each of which ends at the smallest cross section 6.
  • this medium can be easily introduced as a third fluid flow between the spinning and laval nozzles and brought to the outflow.
  • This is in Fig. 1 illustrated by a plate 37, with openings 38 each below the spinning nipple 23 and the Laval nozzle-like openings 36 is provided. Similar to the supply of air into the space 22, the third fluid flow can be introduced into the space 41 formed between the plates 35 and 37 at 39 according to arrow 40. He steps from there over the upper edges of the openings 38 in the thread air flow.
  • the device is also fundamentally suitable for spinning out different textile materials in the individual spinnerets, for which purpose the melt or dope distribution must be set up accordingly, be it alternately transversely to the direction of travel or else different from row to row. It is thus possible to produce mixed nonwovens to achieve special effects such as the binding of binding threads in matrix threads, eg polypropylene as binder thread and polyester as the strength-giving matrix or by a part of more shrinking threads to after fleece storage by shrinkage of the entire thread structure higher volume and softness and other nonwoven properties by two or more different components.
  • Bi- or multicomponent filaments can also be produced easily by feeding two or more textile materials into the spinneret part and into the channels 14. Different throughputs, set by differently sized opening cross sections of the spinneret openings or controlled melt supply to these, can be another type of Mixed fleeces are produced.
  • the present device also has the advantage that it connects the melt-carrying spinneret parts 1 and 28 with the colder gas nozzle parts 2 and 27 against each other displaceable, but transversely to firmly.
  • Part 1 to 2 After heating of Part 1 with heaters not shown here, in principle, if no particularly heated air from Part 2 is supplied, Part 1 to 2 expand more so that each spin hole 3 and closest cross-section 6 deviations across the width and length, the The same applies to the parts 28 and 27.
  • the connection can be made by the slide rods, not shown, which prevent this deviation in terms of power, wherein they can be arranged in the plates of the spinneret part 1 and the gas nozzle part between the combinations spinneret / Laval nozzle. In order to prevent the different expansion but also aware of a warming of the air flow in the flow channel 5 can be made.
  • spinning beam of greater width into several nozzle fields, these in turn consisting of numerous individual spinneret / Laval nozzle combinations, so that individual of these packages (spin packs) can be replaced in case of blockages of the spinning openings or other disorders.
  • the parting lines are then mounted obliquely to the direction of rotation, wherein the spinneret openings as in Fig. 4 shown are each arranged on the gap of the previous.
  • the following example shows the use of the device in the splicing spinning process according to Nanoval and the yarn values obtained by way of example.
  • a polypropylene melt was distributed to nineteen in-line spinnerets 13 with melt inlet holes 14 and spinneret holes 0.3 mm in diameter.
  • the polymer flow rate was changed in areas as shown in Table 1, as well as the air pressure and thus the flowing air velocity in the area of the thread for the splicing shear stresses.
  • the temperature of the polypropylene melt could be heated in the spinneret 13 by about another 20 ° C shortly before it exits the spinning orifice via electrical heating elements.
  • the device according to the invention is primarily intended for the production of fine threads, can also coarser are spun with her, showing her versatility.
  • threads of polyester and polylactide were produced as shown in Tables 2 and 3.
  • the diameter of the spinneret orifices was 1.0 mm.
  • the device according to the invention can be used for thread-forming melts or solutions, but also generally for liquids, for example when it comes to applying thin layers such as paints, varnishes, coatings. It then serves to atomize the liquids into the finest possible droplets if possible uniform distribution on the area to be assigned. The conditions are easy to find in each case by the given geometric adjustment of the device.
  • the devices (according to Fig. 1, 2 or 3, 4 ) have the further advantage that a melt or solution can be distributed more easily uniformly to individual outflow openings - in this case nipples 23 - than when this happens from a film, as is usually the case with row nozzles.
  • the fleece produced has more uniform and usually not especially the webs, also called "lanes" strips of different weight in the direction of travel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Artificial Filaments (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

A spinning apparatus for producing fine threads by splicing, which comprises a plurality of protruding spinneret jets disposed in a spinneret jet portion and having spinning orifices from which the spinning dopes exit as monofils and having a plurality of acceleration jets, in particular Laval jets, whose cross section reduces, only to widen downstream of the smallest cross section, which are assigned to the spinning orifices is proposed to be provided with means for feeding gas streams which surround the monofils and are accelerated by the acceleration jets. The acceleration jet, in an at least partially plate-shaped gas jet portion, is constructed as a funnel-shaped depression into which the spinneret jet reaches to form gas flow channels. Means for relative displacement of the gas jet part and of the spinneret jet part relative to one another are provided such that the flow cross section of the gas flow channels is alterable and/or the position of the smallest cross section of the acceleration jets is adjustable in relation to the spinning orifices.

Description

Die Erfindung betrifft eine Spinnvorrichtung zur Erzeugung feiner Fäden durch Spleißen nach dem Oberbegriff des Hauptanspruchs.The invention relates to a spinning device for producing fine threads by splicing according to the preamble of the main claim.

Feine Fäden bis in den Bereich unter 1 Mikrometer (µm) können durch Aufspleißen eines fadenbildenden Fluidstromes als Schmelze, Lösung oder allgemein als Flüssigkeiten, die später zum Erstarren gebracht werden, hergestellt werden wie es in DE 199 29 709 und DE 100 65 859 beschrieben worden ist. Der Mechanismus der Fadenbildung ist grundsätzlich ein anderer als in allen bisher bekannt gewordenen Spinnverfahren, wo die Spinnmasse durch Aufwickelvorrichtungen aus den Spinndüsen zu Fäden abgezogen wird oder bei den Spinnvliesverfahren durch begleitende Luftströme, die eine Kraft auf sie ausüben und in besonderer Ausführung in sog. Meltblown-Verfahren, wo die den Faden ziehende Luft dicht neben den Spinndüsenöffnungen auf etwa Spinnstofftemperatur erwärmt austritt. Die Fadengeschwindigkeit erreicht dabei die der Aufwicklung bzw. liegt unter der sie ziehenden Luft- oder Gasströme. Das gilt für das Mittel der Fadendurchmesser, einzelne 'Ausreißer' werden beim Meltblown-Verfahren entdeckt, wo sich auch feinere als der sich aus Durchsatz und maximal möglicher Abzugsgeschwindigkeit, der größten Luftgeschwindigkeit, Durchmesser einstellen können, aber noch nicht in gezielter Weise wie es bei dem genannten neuen Verfahren, auch als Nanoval-Verfahren bezeichnet, geschieht. Hier wird nach einem neuen Mechanismus, erst kürzlich aus den hydrodynamischen Grundgesetzen erklärt, siehe L. Gerking in Chemical Fibers International 54 (2004) S. 261-262 und 56 (2006), S. 57 - 59 folgender Effekt genutzt: Wird ein Schmelze- oder allgemein Fluidfaden oder -film durch Schubspannungen außen beaufschlagt, so kommt es in seinem Innern zu einem Druckaufbau, wenn die Geschwindigkeit an der Außenhaut des Fluidstrahls größer ist als die in seinem Innern und dieses um so stärker, je größer seine Beschleunigung nach dem Austritt aus der Spinnöffnung erzielt werden kann. Dies ist, so kann man sagen, die Umkehr der Strömung in Rohren oder Kanälen (Hagen-Poiseuille), wo die Druckenergie zur Überwindung der Reibung an den Kanalwänden verbraucht wird, während im Fall des neuen Spinnverfahrens Energie auf den Faden durch die von außen an ihn wirkenden Schubspannungen übertragen wird. Diesem versucht er sich durch Druckzunahme im Innern zu widersetzen. Kühlt nicht nur die Außenhaut durch die sie umgebende Gasströmung ab, so kann es zum Erstarren des Fadens kommen.Fine threads down to less than 1 micrometer (μm) can be made by splicing a filamentary fluid stream as a melt, solution, or, generally, as liquids which are later solidified, as in US Pat DE 199 29 709 and DE 100 65 859 has been described. The mechanism of the thread formation is fundamentally different than in all hitherto known spinning process, where the dope is withdrawn by winders from the spinnerets to threads or in the spunbonding process by accompanying air currents that exert a force on them and in particular execution in so-called meltblown process, where the air pulling the thread emerges close to the spinneret orifices heated to about textile fiber temperature. The yarn speed reaches that of the winding or is under the pulling air or gas streams. This applies to the mean of the thread diameter, individual 'outliers' are discovered in the meltblown process, where even finer than the throughput and maximum possible withdrawal speed, the largest air velocity, diameter can adjust, but not in a targeted manner as it the said new method, also referred to as Nanoval method happens. Here is a new mechanism, recently explained in the basic hydrodynamic laws, see Gerking in Chemical Fibers International 54 (2004) pp. 261-262 and 56 (2006), pp. 57-59 If a melt or generally fluid filament or film is acted upon externally by shear stresses, pressure builds up in its interior when the velocity on the outer surface of the fluid jet is greater than that in its interior and this more so. the greater its acceleration can be achieved after exiting the spinning orifice. This is, so to speak, the reversal of the flow in pipes or channels (Hagen-Poiseuille), where the pressure energy is used to overcome the friction on the channel walls, while in the case of the new spinning process energy is applied to the thread through the outside him acting shear stresses is transmitted. He tries to resist this by pressure increase inside. Cooling not only the outer skin by the surrounding gas flow, it can lead to the solidification of the thread.

Im Fall von Polymeren und polymeren Lösungen mit ihrer grundsätzlich geringen Wärmeleitfähigkeit bildet sich aber zunächst nur eine äußere Haut zunehmender Viskosität und im Inneren des Fadens können die hydrodynamischen Effekte wirken. Es kommt dann in schöner Regelmäßigkeit und Reproduzierbarkeit zu einem Aufplatzen vergleichbar mit dem Platzen eines Rohres an seiner Längsnaht mit in erstaunlicher Weise im Wesentlichen endlosen Fäden und bezogen auf den stochastischen Charakter des Aufspleißens geringer Streuungs-breite im Fadendurchmesser. Die Anzahl der einzelnen so erzeugten Fäden übertrifft bei der Herstellung besonders feiner Fäden im Bereich um und unter 1 µm bis zu mehreren Hundert aus einem Flüssigkeitsstrahl.In the case of polymers and polymeric solutions with their In principle, only low thermal conductivity forms an outer skin of increasing viscosity and inside the thread, the hydrodynamic effects can act. It comes then in beautiful regularity and reproducibility to a bursting comparable to the bursting of a pipe at its longitudinal seam with in an astonishingly substantially endless threads and based on the stochastic character of the splicing low dispersion width in the thread diameter. The number of individual threads thus produced exceeds in the production of very fine threads in the range of and below 1 micron up to several hundred from a liquid jet.

Das Nanoval-Verfahren wird in Zeilendüsen in seinen industriellen Anwendungen ausgeführt, wobei sich eine Reihe von Spinnbohrungen oberhalb eines Spalts befindet. Das Gas, im Allgemeinen Luft ohne besondere Konditionierung nach ihrer Erzeugung in Gebläsen oder Verdichtern (der Energiebedarf ist grundsätzlich gering verglichen mit den Meltblown-Verfahren) strömt zu beiden Seiten der Zeilendüse in stetiger Beschleunigung auf den engsten Querschnitt des Spalts zu, der sich dann wieder meistens rasch erweitert, grundsätzlich aber die Konfiguration einer Lavaldüse hat. Auch einzelne runde Düsen wurden beschrieben umgeben von einem sich stetig auf den engsten Querschnitt hin verringernden Ringspalt.The nanoval process is performed in line nozzles in its industrial applications, with a series of spin holes located above a gap. The gas, generally air without special conditioning after its generation in blowers or compressors (the energy requirement is generally low compared to the meltblown process) flows on both sides of the row nozzle in steady acceleration to the narrowest cross-section of the gap, which then again usually expanded rapidly, but basically has the configuration of a Laval nozzle. Single round nozzles were described as well, surrounded by a continuously decreasing annular gap.

Es hat sich gezeigt, dass die allseitig von einer rotationssymmetrischen Gasströmung auf den Faden einwirkenden Schubkräfte zu einem geringeren mittleren Durchmesser der sich durch das Aufspleißen ergebenden, im Wesentlichen endlosen Fäden führen, was auf die gleichmäßigere Beaufschlagung des Fadens zurückgeführt wird, einerlei ob die Luft noch zusätzlich erwärmt wird oder nicht. Auch die Abkühlung, die im Wechselspiel den Aufplatzeffekt mit den hydrodynamischen Kräften bewirkt, ist gleichmäßiger um den Faden verteilt als dies bei der nur seitlichen Beaufschlagung in Zeilendüsen mit linearer Lavaldüsenkonfiguration geschieht und es wird weniger Luft verbraucht. Bei den Zeilendüsen wird in den Zwischenräumen von Faden zu Faden ein Teil der Luft schlechter genutzt.It has been shown that the thrust forces acting on all sides by a rotationally symmetrical gas flow lead to a smaller average diameter of the substantially endless threads resulting from the splicing, which is attributed to the more uniform loading of the thread whether or not the air is heated additionally. The cooling, which causes the Aufplatzeffekt with the hydrodynamic forces in the interplay is more evenly distributed around the thread than happens in the only lateral admission in line nozzles with linear Laval nozzle configuration and it is less air consumed. In the row nozzles, part of the air is used less well in the spaces between thread to thread.

Eine weitere Einflussgröße für die Erzeugung feiner und immer feinerer Fäden wie sie sonst beispielsweise nur durch Elektrospinnverfahren, allerdings in sehr geringen Durchsätzen und großem Raum- und Sicherheitsaufwand wegen der benötigten Hochspannung, erzeugt werden können, ist der Durchsatz pro Spinndüsenöffnung, einerlei ob mit runden oder schlitzförmigen Öffnungen für den Spinnstoff. Die Gasgeschwindigkeit kann im engsten Querschnitt der Lavaldüse Schallgeschwindigkeit erreichen, dahinter in der Er-weiterung durchaus auch noch in den Überschall gehen, was dann bei dieser von Fäden beladenen Strömung meistens rasch zu Unterschall durch Verdichtungsstöße führt. Es kann aber nur eine bestimmte Formänderungsarbeit durch die Schubspannungskräfte bei gegebener Lauffläche der noch verformbaren Fadenmasse geleistet werden. Die Durchsätze sind demzufolge grundsätzlich kleiner bei der Erzeugung sehr feiner Fäden im Bereich um und unter 1 µm. Das führt dazu, dass man für einen bestimmten Gesamtdurchsatz bei der Herstellung von Vliesen nach dem Nanoval-Verfahren für feinere Fäden mehr Spinndüsen über die Breite braucht. Bei der Erzeugung von Garnen gilt das entsprechend.Another influencing factor for the production of fine and ever finer threads, which can otherwise be produced for example only by electrospinning, but in very low throughputs and large space and security costs because of the required high voltage, is the throughput per spinneret opening, whether with round or slit-shaped openings for the textile material. The gas velocity can reach the speed of sound in the narrowest cross-section of the Laval nozzle, and behind it, in the extension, it is quite possible to go into the supersonic, which then, in the case of this flow laden with filaments, usually quickly leads to subsonic effects due to compaction shocks. But it can only be done a certain deformation work by the shear stress forces at a given tread of the still deformable yarn mass. The throughputs are therefore generally smaller in the production of very fine threads in the range of and below 1 micron. This results in the need for more spinnerets across the width for a particular overall throughput in the production of nonwovens by the nanoval process for finer filaments. In the production of yarns that applies accordingly.

Der Erfindung liegt die Aufgabe zugrunde eine Vorrichtung zur Erzeugung feiner Fäden zu schaffen, die kompakt und konstruktiv einfach ist, wobei ein gutes Anspinnen ermöglicht werden soll.The invention has for its object to provide a device for producing fine threads, the compact and structurally simple, with a good piecing should be possible.

Diese Aufgabe wird erfindungsgemäß durch die kennzeichnenden Merkmale des Hauptanspruchs in Verbindung mit den Merkmalen des Oberbegriffs gelöst.This object is achieved by the characterizing features of the main claim in conjunction with the features of the preamble.

Durch die in den Unteransprüchen dargestellten Merkmale sind vorteilhafte Weiterbildungen und Verbesserungen möglich.The features illustrated in the dependent claims advantageous refinements and improvements are possible.

Dadurch, dass die Vorrichtung zur Erzeugung feiner Fäden mindestens ein Spinndüsen ausgerüstetes Spinn-Spinndüsenteil und ein zumindest teilweise plattenförmiges Gasdüsenteil mit mindestens einem Gaszufuhrraum aufweist, wobei das zumindest teilweise plattenförmige das Gasdüsenteil eine Mehrzahl von trichterförmigen Einsenkungen als Beschleunigungsdüsen aufweist, in die die Spinndüsen eingreifen, derart, dass Kombinationen von Spinndüsen/Beschleunigungsdüsen, insbesondere Lavaldüsen mit rotationssymmetrischen Gasströmungskanälen gebildet werden, kann die Vorrichtung kompakt mit einer Vielzahl von dicht nebeneinander liegenden Kombinationen aufgebaut werden, wobei Gasdüsenteil und Spinndüsenteil relativ zueinander verschiebbar sind, so dass die zwischen Gasdüsenteil und Spinndüsen des Spinndüsenteils gebildeten Gasströmungskanäle unterschiedliche Strömungsquerschnitte einnehmen können, wodurch die Höhe der Spinnöffnungen zu dem engsten Querschnitt der Beschleunigungsdüsen, insbesondere Lavaldüsen, einstellbar ist. Dadurch wird das Anspinnen erleichtert und bei mehreren Düsen neben- und hintereinander überhaupt erst ermöglicht, indem das Gasdüsenteil gegenüber dem Spinndüsenteil zu letzterem hin zurückgezogen wird, um den kommenden Fadenlauf nicht zu beeinträchtigen. Durch die Verschiebbarkeit wird gleichfalls die Wartung und Reinigung der Spinndüsen erleichtert.Characterized in that the device for producing fine threads at least one spinning nozzle equipped spinning spinneret and an at least partially plate-shaped gas nozzle part having at least one gas supply space, said at least partially plate-shaped gas nozzle portion having a plurality of funnel-shaped depressions as acceleration nozzles, in which engage the spinnerets, such that combinations of spinnerets / acceleration nozzles, in particular Laval nozzles are formed with rotationally symmetrical gas flow channels, the device can be constructed compact with a variety of close-fitting combinations, the gas nozzle part and Spinndüsenteil be displaced relative to each other, so that between the gas nozzle part and spinnerets of Spinndüsenteils formed gas flow channels can take different flow cross sections, whereby the height of the spinning orifices to the narrowest cross section of the acceler Higungsdüsen, Laval nozzles in particular, is adjustable. As a result, the piecing is facilitated and at several nozzles next to and behind one another in the first possible by the gas nozzle part relative to the spinneret part is retracted towards the latter, so as not to affect the coming yarn path. The displaceability also facilitates the maintenance and cleaning of the spinnerets.

Eine besonders einfache Bauart wird dann gegeben, wenn zwischen der Unterseite des Spinndüsenteils, aus dem die Spinndüsen bzw. Spinnnippel herausragen, und Oberseite des plattenförmigen Bereichs des Gasdüsenteils der Gasraum gebildet wird, über den das Gas, meistens Luft, den Beschleunigungsdüsen zugeführt wird.A particularly simple design is given when formed between the bottom of the spinning nozzle part from which project the spinnerets or spinning nipple, and the top of the plate-shaped portion of the gas nozzle portion of the gas space through which the gas, usually air, the accelerating nozzles is supplied.

Besonders vorteilhaft ist, eine selbsteinstellende Dichtung zwischen Spinndüsenteil und Gasdüsenteil vorzusehen, die bei Einbringen des Gasdüsenteils vorzusehen, die bei Einbringung des Gases beim Spinnen durch den dann entstehenden Druck zusammengedrückt wird.It is particularly advantageous to provide a self-adjusting seal between spinneret and gas nozzle part to provide when introducing the gas nozzle part, which is compressed upon introduction of the gas during spinning by the then resulting pressure.

Eine vorteilhafte Ausführung, allerdings etwas aufwendiger und insbesondere bei der Zuführung von "kalter" Luft liegt darin, das Gasdüsenteil als Hohlkörper auszubilden, der von den Einsenkungen durchgriffen wird und dessen Hohlraum zwischen den Einsenkungen den Gasraum bildet, wobei der Hohlkörper zu dem Spinndüsenteil gerichtete Öffnungen, vorzugsweise rotationssymmetrisch um die Einsenkungen herum, aufweist, über die die Luft bzw. das Gas zu den Beschleunigungsdüsen gelangt.An advantageous embodiment, but somewhat more expensive and especially in the supply of "cold" air is to form the gas nozzle part as a hollow body, which is penetrated by the depressions and the cavity between the depressions forms the gas space, wherein the hollow body directed to the spinneret part openings , preferably rotationally symmetrical around the depressions around, over which the air or the gas passes to the accelerating nozzles.

Es kann eine Mehrzahl von Düsen- und Gasdüsenteilen nebeneinander angeordnet werden, wobei auch unterschiedliche Spinnstoffe ausgesponnen werden können.It can be arranged side by side a plurality of nozzle and gas nozzle parts, wherein also different textile materials can be spun out.

In vorteilhafter Weise kann unterhalb des plattenförmigen Bereichs des Gasdüsenteils eine weitere Platte mit Öffnungen unter Bildung eines Verteilerraums für ein weiteres Fluid angeordnet sein. Dieses Fluid kann Wasser zum Koagulieren von gelösten Faserstoffen, Kühlmittel zum Einfrieren der bei der Spleißung erzielten molekularen Orientierung, Mittel zum Aufheizen, z.B. Wasserdampf, zu einer zweiten Verstreckung oder dergleichen sein.Advantageously, below the plate-shaped region of the gas nozzle part, a further plate be arranged with openings to form a distribution space for another fluid. This fluid may be water for coagulating dissolved pulps, coolant for freezing the molecular orientation achieved in the splice, means for heating, eg, water vapor, for a second draw, or the like.

Die Erfindung ist in der Zeichnung dargestellt und wird in der nachfolgenden Beschreibung näher erläutert. Es zeigen:

Fig. 1
einen Längsschnitt durch ein erstes Aus- führungsbeispiel der erfindungsgemäßen Spinnvorrichtung entsprechend den Schnitt- linien D-D nach Fig. 2,
Fig. 2
einen Schnitt der erfindungsgemäßen Vor- richtung entsprechend den Schnittlinien C- C aus Fig. 1,
Fig. 3
einen Schnitt durch einen Teil der erfin- dungsgemäßen Vorrichtung nach einem zwei- ten Ausführungsbeispiel entsprechend der Schnittlinie A-A in Fig. 4, und
Fig. 4
einen Schnitt durch die Vorrichtung ent- sprechend der Schnittlinie B-B in Fig. 3.
The invention is illustrated in the drawing and will be explained in more detail in the following description. Show it:
Fig. 1
a longitudinal section through a first exemplary embodiment of the spinning device according to the invention according to the cutting lines DD after Fig. 2 .
Fig. 2
a section of the device according to the invention according to the section lines C-C Fig. 1 .
Fig. 3
a section through a part of the inventive device according to a second embodiment according to the section line AA in Fig. 4 , and
Fig. 4
a section through the device corresponding to the section line BB in Fig. 3 ,

Die in Fig. 1 und 2 dargestellte Spinnvorrichtung weist ein Spinndüsenteil 28 auf, in dem mehrere Schmelzekanäle 14 vorgesehen sind, die über einen Filter 25 und einer Lochplatte 26 zur Reinigung von zugeführter Schmelze oder Lösung mit Schmelze oder Lösung versorgt werden. Die Schmelzekanäle setzen sich in Spinndüsen bzw. Spinnnippeln 23 fort, wobei hier nur drei Reihen von Spinnnippeln 23 gezeigt sind. Es können durchaus mehrere Spinnnippel in Fahrtrichtung gemäß Pfeil 50 hintereinander vorgesehen sein.In the Fig. 1 and 2 The spinning device shown has a spinneret part 28 in which a plurality of melt channels 14 are provided, which are supplied via a filter 25 and a perforated plate 26 for cleaning supplied melt or solution with melt or solution. The melt channels continue in spinnerets or spin nipples 23, wherein only three rows of nipples 23 are shown here. It may well be several consecutive spider nipples in the direction of travel arrow 50 provided.

Der untere plattenförmige Bereich des Spinndüsenteils ist in einem Gasdüsenteil 27 aufgenommen, das eine rahmenartige Umrandung 34 sowie ein plattenartiges Teil 35 umfasst, wobei in letzterem drei jeweils versetzte Reihen von Lavaldüsen 36 entsprechend den Reihen von Spinnnippeln 23 vorgesehen sind. Die Umrandung 34 ist mit einer Aufkantung versehen, wobei zwischen dieser Aufkantung und einer ihr gegenüberliegenden Fläche 32 des unteren Bereichs des Spinndüsenteils 28 eine Dichtung 33 angeordnet ist.The lower plate-shaped region of the spinneret part is accommodated in a gas nozzle part 27, which comprises a frame-like border 34 and a plate-like part 35, in the latter three staggered rows of Laval nozzles 36 corresponding to the rows of spin nipples 23 are provided. The border 34 is provided with an upstand, wherein a seal 33 is arranged between this upstand and an opposite surface 32 of the lower region of the spinneret part 28.

Das Spinn- und das Gasdüsenteil 28, 27 sind so zueinander ausgerichtet, dass die Spitze der Spinnnippel 23 in die Lavaldüsen 36 hineinragen, wobei zwischen der unteren Fläche des Spinndüsenteils 28 und der oberen Fläche des plattenförmigen Bereichs 35 des Gasdüsenteils ein Gasraum 22 gebildet wird, durch den die Spinnippel 23 hindurchgreifen und der mit in der Umrandung vorgesehenen Gas- bzw. Luftzuführungen 20 verbunden ist.The spinning and the gas nozzle parts 28, 27 are aligned with each other so that the tip of the spinning nipple 23 project into the Laval nozzles 36, wherein between the lower surface of the spinneret member 28 and the upper surface of the plate-shaped portion 35 of the gas nozzle part, a gas space 22 is formed, through which the spinning nipple 23 extend and which is connected to the gas or air feeds 20 provided in the border.

Insbesondere wenn die zugeführte Luft kalt ist, sind die Spinnnippel 23 vorzugsweise mit einer Heizung 24, vorteilhaft mit einer Bandheizung versehen, wie sie von Spritzgusswerkzeugen im Kunststoffmaschinenbau bekannt ist.In particular, when the supplied air is cold, the spinning nipples 23 are preferably provided with a heater 24, advantageously with a band heater, as is known from injection molding tools in plastics engineering.

Die erfindungsgemäße Vorrichtung weist Mittel zur relativen Verschiebung des Spinn- und Gasdüsenteils 28, 27 auf, wobei im vorliegenden Ausführungsbeispiel eine Schraube 29 in einem mit dem Spinndüsenteil fest verbundenes Mutterschloss 30 geführt ist und in einer Verankerung 31 im Rahmen 34 des Gasdüsenteils 27 mit diesem verbunden ist, wobei die Verankerung 31 nach Drehrichtung der Schraube 29 Druck- oder Zugwirkung ausüben kann, wodurch das Gasdüsenteil verschoben wird. Selbstverständlich sind andere Arten von Verschiebemittel möglich.The device according to the invention has means for relative displacement of the spinning and gas nozzle part 28, 27, wherein in the present embodiment, a screw 29 fixed in one with the spinneret part connected nut lock 30 is guided and connected in an anchorage 31 in the frame 34 of the gas nozzle part 27 with this, the anchorage 31 can exert pressure or pulling action according to the direction of rotation of the screw 29, whereby the gas nozzle part is moved. Of course, other types of shifting means are possible.

Für das Anspinnen wird das Gasdüsenteil 27 angehoben, d.h. in der Fig. 1 nach oben verschoben, wodurch die Dichtung 33 entlastet wird. Wenn nach dem Anfahren das Gas 21 über die Zuführung 20 zugeführt wird, wird zusätzlich zu einer Verschiebung des Gasdüsenteils 27 nach unten eine Druckkraft auf die Dichtung 33 durch den Druck im Gasraum 22 verstärkt. Es besteht somit eine gewisse Selbsteinstellung der Abdichtung beim Anfahren der Schmelze oder Lösung und Freigabe des Lavaldüsenquerschnitts zu den einzelnen Spinnnippeln.For piecing, the gas nozzle part 27 is raised, ie in the Fig. 1 shifted upward, whereby the seal 33 is relieved. If, after starting, the gas 21 is supplied via the supply 20, in addition to a displacement of the gas nozzle part 27 down a compressive force on the seal 33 by the pressure in the gas space 22 is amplified. There is thus a certain self-adjustment of the seal when starting the melt or solution and release of the Laval nozzle cross-section to the individual spinning nipples.

Für eine Reinigung der Spinnnippel 25 wird die Gaszufuhr 21 abgestellt, das Gasdüsenteil 27 angehoben bis der Plattenteil 35 mit der Wandung der Lavaldüsen 35 an den Spinnnippeln 25 anstößt. Dabei wird die vorhandene Luft im Bereich der Dichtung 33 und der Fläche 32 ausgeblasen. Die Nippel 25. ragen aus den Lavaldüsen heraus und können gereinigt werden.For cleaning the spinning nipple 25, the gas supply 21 is turned off, the gas nozzle part 27 is raised until the plate member 35 abuts the wall of the Laval nozzles 35 on the spinning nipples 25. The existing air in the region of the seal 33 and the surface 32 is blown out. The nipples 25 protrude out of the laval nozzles and can be cleaned.

Die in Fig. 3 dargestellte Vorrichtung weist ein Spinndüsenteil 1 mit einer Reihe von Erhebungen oder Vorsprüngen, vorzugsweise in Kegelform, auf, die Spinndüsen 13 aufnehmen bzw. bilden. Beispielsweise kann das Spinndüsenteil als Platte ausgebildet sein, in die die Spinndüsen 13 (ähnlich Fig. 1) eingesetzt sind. Die Spinndüsen weisen Schmelze- oder Lösungskanäle 14 auf, die in einer Spinndüsenöffnung 3 enden. Weiterhin ist ein Gasdüsenteil 2 vorgesehen, das beispielsweise als Hohlkörper ausgebildet ist, der durch zwei mit trichterförmigen Einsenkungen versehenen Platten gebildet ist.In the Fig. 3 The device shown has a spinneret part 1 with a series of elevations or projections, preferably in the form of cones, which receive or form spinnerets 13. For example, the spinning nozzle part may be formed as a plate into which the spinnerets 13 (similar Fig. 1 ) are used. The spinnerets have melt or dissolution channels 14 which terminate in a spinneret orifice 3. Furthermore, a gas nozzle part 2 is provided, which is formed for example as a hollow body which is formed by two plates provided with funnel-shaped depressions.

Zwischen den Platten wird ein Hohlraum 9 gebildet, der durch die trichterförmigen Einsenkungen unterbrochen wird. Der Hohlraum 9 dient als Gasraum, der wiederum an eine Gasversorgungsquelle angeschlossen ist. Um jede trichterförmige Einsenkung herum ist eine ringförmige Öffnung 4 eingearbeitet, wobei die in Fig. 3 im Schnitt dargestellten Öffnungen 4 entsprechend Fig. 4 gemeinsam für benachbarte trichterförmige Einsenkungen gelten, d.h. im Ausführungsbeispiel sind die trichterförmigen Einsenkungen dicht nebeneinander angeordnet.Between the plates, a cavity 9 is formed, which is interrupted by the funnel-shaped depressions. The cavity 9 serves as a gas space, which in turn is connected to a gas supply source. Around each funnel-shaped depression around an annular opening 4 is incorporated, wherein the in Fig. 3 shown in section openings 4 accordingly Fig. 4 jointly apply to adjacent funnel-shaped depressions, ie in the embodiment, the funnel-shaped depressions are arranged close to each other.

Die kegelförmigen, die Spinndüsen 13 bildenden Erhebungen greifen in die Einsenkungen des Gasdüsenteils 2 derart ein, dass rotationssymmetrische Gasströmungskanäle 5 entstehen. Im dargestellten Ausführungsbeispiel ist jeweils in den Zwischenraum zwischen den Spinndüsen 13, die in Fig. 3 als Vertiefungen dargestellt sind, unter Bildung eines Luftspaltes 12 noch ein isolierendes Formteil 11 eingesetzt, das sich bis zur Spinnöffnung 3 erstreckt, so.dass der Gasströmungskanal 5 zwischen Oberfläche Formteil 11 und Oberfläche der Einsenkung im Teil 2 um den Raum 9 gebildet wird. Dabei ist der jeweilige Gasströmungskanal 5 so ausgebildet, dass er sich in Richtung der jeweiligen Spinnöffnung 3, die von der jeweiligen Einsenkung rotationssymmetrisch umgriffen wird, verjüngt. Es wird somit jeweils eine Laval-Düse realisiert, deren Querschnitt sich an der Kante zwischen Einsenkung und Außenfläche der in der Fig. 3 unteren Platte schlagartig erweitert, was aber auch allmählich geschehen kann.The conical, the spinnerets 13 forming elevations engage in the depressions of the gas nozzle part 2 such that rotationally symmetrical gas flow channels 5 arise. In the illustrated embodiment, in each case in the intermediate space between the spinnerets 13, which in Fig. 3 are shown as depressions, with the formation of an air gap 12 is still an insulating mold 11 inserted, which extends to the spinning opening 3, so.dass the gas flow channel 5 between the surface molding 11 and surface of the recess in part 2 is formed around the space 9. In this case, the respective gas flow channel 5 is formed so that it tapers in the direction of the respective spinning opening 3, which is surrounded rotationally symmetrically by the respective depression. It is thus realized in each case a Laval nozzle whose cross-section at the edge between the recess and outer surface of the in the Fig. 3 bottom plate suddenly expanded, but also gradually can happen.

Das Spinndüsenteil 1 und das Gasdüsenteil 2 sind relativ zueinander, entsprechend Fig. 3 gesehen, in senkrechter Richtung verschiebbar, was durch nicht dargestellte Gleitstäbe realisiert werden kann. Dadurch kann die Höhe der engsten Stelle 6 der Lavaldüse in Bezug auf die Spinnöffnung 3 eingestellt werden, wodurch auch das Anspinnen erleichtert wird.The spinneret part 1 and the gas nozzle part 2 are relative to each other, respectively Fig. 3 seen, displaced in the vertical direction, which can be realized by sliding rods, not shown. Thereby, the height of the narrowest point 6 of the Laval nozzle with respect to the spinning opening 3 can be adjusted, whereby the piecing is facilitated.

Diese Gleitstäbe können gleichzeitig bei unterschiedlichen Ausdehnungen des Spinndüsen- 1 und des Gasdüsenteils 2 entstehende Kraft aufnehmen, wodurch die Positionierung beider Teile zueinander beibehalten wird.These slide bars can simultaneously absorb force arising at different expansions of the spinneret 1 and the gas nozzle part 2, whereby the positioning of both parts is maintained.

In Fig. 4 sind zwei Reihen von Kombinationen aus Spinndüsen 13 und Lavaldüsen, endend im engsten Querschnitt 6 dargestellt, wobei die Spinndüsen 13 einer Reihe zu denen der anderen Reihen versetzt sind. Es ist insbesondere bei größeren Spinnbalkenbreiten möglich, dass zwischen benachbarten Reihen noch gesonderte Gasverteilungskanäle vorgesehen sind, um die benötigen Gasmengen an die Lavaldüsen heranzuführen.In Fig. 4 are two rows of combinations of spinneret 13 and Laval nozzles, ending in the narrowest cross-section 6 shown, the spinnerets 13 are offset one row to those of the other rows. It is possible in particular for larger spinning beam widths that separate gas distribution channels are provided between adjacent rows in order to introduce the required quantities of gas to the Laval nozzles.

Im Folgenden wird auf die Funktionsweise eingegangen.In the following the functionality is discussed.

In Fig. 3 wird die Schmelze in dem Teil 1 herangeführt und tritt in den Spinndüsenöffnungen 3 aus, während das Gas, im Folgenden als Luft bezeichnet, aus dem Raum 9 im Teil 2 nach dem Austritt über die ringförmige Öffnung 4 dem zur Spinndüsenöffnung 3 rotationssymmetrischen Kanal 5 zwischen Teil 1 und 2 auf den engsten Querschnitt 6 zuströmt und zuvor an der Spinnöffnung 3 den austretenden Faden 7 erfasst, ihn beschleunigt, d.h. im Durchmesser verringert und nach dem Nanoval-Effekt bereits in der Lavaldüse oder kurz danach zum pinselartigen Aufplatzen in ein Fadenbündel 8 bringt.In Fig. 3 the melt is brought in the part 1 and exits in the spinneret orifices 3, while the gas, hereinafter referred to as air, from the space 9 in the part 2 after exiting through the annular opening 4 to the spin orifice 3 rotationally symmetrical channel 5 between part 1 and 2 flows to the narrowest cross section 6 and previously detected at the spinning opening 3, the emerging thread 7, it accelerates, ie reduced in diameter and after the nanoval effect already in the Laval nozzle or shortly thereafter for brush-like bursting into a bundle of threads 8 brings.

Während das Anspinnen bei einer Zeilendüse einfach durch Zusammenschieben von zwei die Lavaldüsen bildenden Kanalhälften geschieht, ist dies bei Düsenkombinationen in mehreren Reihen nicht möglich. Das Teil 2 kann aber in Richtung der Fadenaustrittsachse verschoben werden. Dadurch kann es beim Anspinnen zu dem Formteil 11 hin ganz zurückgezogen werden, eine Ausblasung von Spinnluft über die Öffnungen 4 kann zunächst unterbleiben oder sie wird in geringem Maße zugelassen. Sodann wird das Teil 2 herabgesenkt, der Faden angesponnen, verzogen und zum Platzen gebracht nach den aus dem Verfahren bekannten Einstelldaten für die Luftgeschwindigkeit aus dem angewendeten Druck im Raum 9 des Teils 2, für die strömende Spinnmasse aus den Öffnungen 3 und bei der für das Spleißen erforderlichen Temperatur der Spinnmasse. Diese wird vorteilhafterweise erst kurz vor Austritt aus den Spinnöffnungen 3 zusätzlich erwärmt, angedeutet durch Heizungen 10, auf deren Einbringung und Halterung der Übersichtlichkeit der Zeichnung halber verzichtet wurde. Damit die strömende Luft bei geringeren Temperaturen als der Spinnmassentemperatur diese nicht unzulässig abkühlt, ist das Formteil 11 so gestaltet, dass es zum einen die innere Wand des rotationssymmetrischen Kanals 5 für eine stetige Beschleunigung der Luft bis dicht an die Spinndüsenöffnung 3 hin formt, aber über einen Luftspalt 12 auch die Spinndüse 13 gegen die Luftströmung im Strömungskanal 5 wärmeisoliert. Das Formteil 11 kann aber auch anstelle des Spinndüsenteils 1 die Heizungen der Spinndüsen enthalten.While the piecing in a line nozzle is done simply by pushing together two halves of the channel forming the Laval nozzles, this is not possible with nozzle combinations in several rows. The part 2 can be moved in the direction of the thread exit axis. As a result, it can be completely withdrawn during piecing to the molded part 11, a blow-out of spinning air through the openings 4 can initially be omitted or it is allowed to a small extent. Then the part 2 is lowered, the thread spun, warped and burst according to the known from the process air speed adjustment data from the applied pressure in the space 9 of Part 2, for the flowing dope from the openings 3 and in the for the Splicing required temperature of the dope. This is advantageously only shortly before exiting from the spinning holes 3 additionally heated, indicated by heaters 10, was dispensed with their introduction and support the clarity of the drawing. So that the flowing air at temperatures lower than the spinning mass temperature does not unduly cool it, the molded part 11 is designed such that it forms the inner wall of the rotationally symmetrical channel 5 for a steady acceleration of the air close to the spinneret orifice 3, but over an air gap 12 and the spinneret 13 against the air flow in the flow channel 5 thermally insulated. However, the molded part 11 can also contain the heaters of the spinnerets instead of the spinneret part 1.

Die zwei grundsätzlichen Stellungen des beweglichen Teils 2 sind in Fig. 3 angedeutet, gestrichelt für den Anspinnvorgang.The two basic positions of the movable part 2 are in Fig. 3 indicated, dashed for piecing.

Fig. 4 zeigt einen Horizontalschnitt B-B (in Fig. 3) als Ausschnitt durch eine mehrreihige Düsenvorrichtung für zwei Reihen von Düsen zur Veranschaulichung der Luftzufuhr von außen an die einzelnen Spinndüsen 13 zur Speisung aus dem Raum 9 über die Öffnungen 4 in die Kanäle 5, welche jeweils am kleinsten Querschnitt 6 enden. Fig. 4 shows a horizontal section BB (in Fig. 3 ) as a section through a multi-row nozzle device for two rows of nozzles to illustrate the air supply from the outside to the individual spinnerets 13 for feeding from the space 9 via the openings 4 in the channels 5, each of which ends at the smallest cross section 6.

Es können bei größerem Luftbedarf, so bei größeren Vlies- und damit Spinnbalkenbreiten, Hauptverteilerkanäle zwischen den Düsenöffnungen angebracht werden, wobei nur die Reihen der Einzeldüsen in Vlieslaufrichtung etwas auseinander rücken, denn die erfindungsgemäße Spinndüsenvorrichtung hat als Spinnbalken gleichzeitig den Vorteil, dass er in Vlieslaufrichtung gesehen mehrere Spinnbalken hintereinander bildet. Jede hat ihre gewissen Ungleichmäßigkeiten, auch von Loch zu Loch wie in dem hier gezeigten Fall mit Spinndüse und Lavaldüse über die Vliesbreite hin. Zwischen den einzelnen Reihen kann ein statistischer Ausgleich zu größerer Vliesgleichmäßigkeit stattfinden, weil die Fäden der folgenden Reihen vermehrt die Dünnstellen der vorhergehenden belegen.It can be installed with larger air requirements, so with larger fleece and thus spider bar widths, main distribution channels between the nozzle openings, with only the rows of individual nozzles in fleece running slightly apart, because the spinnerette device according to the invention has the same advantage as a spinning beam, that he seen in web travel direction forms several spinning beams in a row. Each has its own unevenness, even from hole to hole as in the case shown here with spinneret and Laval nozzle across the fleece width. Between the individual rows a statistical compensation for greater fleece uniformity can take place, because the threads of the following rows increasingly occupy the thin areas of the preceding ones.

Wird zur Abkühlung oder Warmhaltung, beim Spinnen von Lösungen auch zur Koagulation der Fäden weiterhin Gas bzw. Luft oder ein flüssiges Medium zu ihrer Begleitung gewünscht, so kann dieses Medium als dritter Fluidstrom leicht zwischen den Spinn- und Lavaldüsen eingeleitet und zur Ausströmung gebracht werden. Dies ist in Fig. 1 veranschaulicht durch eine Platte 37, die mit Öffnungen 38 jeweils unterhalb der Spinnnippel 23 und den lavaldüsenartigen Öffnungen 36 versehen ist. Ähnlich wie bei der Luftzufuhr in den Raum 22 kann bei 39 gemäß Pfeil 40 der dritte Fluidstrom in den zwischen den.Platten 35 und 37 gebildeten Raum 41 eingeführt werden. Er tritt von dort über die oberen Kanten der Öffnungen 38 in den Fadenluftstrom. Dies kann beispielsweise zur Einleitung der Koagulation von Zellstoff aus Lyocelllösungsfäden geschehen, wie in der DE 100 65 859 näher beschrieben. Die Größe der Öffnungen 38 und ihre Lage zu den Spinnnippeln 23 können leicht auf die Hauptströmung des Fadens mit dem umgebenden Gas aufeinander abgestimmt werden. Alle drei Fluide strömen dabei (in der Zeichnung) nach unten.If gas or air or a liquid medium for accompanying it is also desired for cooling or keeping warm, for spinning solutions and for coagulating the threads, this medium can be easily introduced as a third fluid flow between the spinning and laval nozzles and brought to the outflow. This is in Fig. 1 illustrated by a plate 37, with openings 38 each below the spinning nipple 23 and the Laval nozzle-like openings 36 is provided. Similar to the supply of air into the space 22, the third fluid flow can be introduced into the space 41 formed between the plates 35 and 37 at 39 according to arrow 40. He steps from there over the upper edges of the openings 38 in the thread air flow. This can be done, for example, to initiate the coagulation of pulp from Lyocelllösungsfäden, as in the DE 100 65 859 described in more detail. The size of the openings 38 and their location to the spin nipples 23 can be easily matched to the main flow of the thread with the surrounding gas. All three fluids flow down (in the drawing).

Die Vorrichtung ist auch grundsätzlich geeignet, unterschiedliche Spinnstoffe in den einzelnen Spinndüsen auszuspinnen, wozu die Schmelze- oder Spinnlösungsverteilung entsprechend eingerichtet werden muss, sei es alternierend quer zur Fahrtrichtung oder auch unterschiedlich von Reihe zu Reihe. Es gelingt damit, Mischvliese herzustellen zur Erzielung besonderer Effekte wie das Einspinnen von Bindefäden in Matrixfäden, z.B. Polypropylen als Bindefaden und Polyester als die Festigkeit gebende Matrix oder durch einen Teil stärker schrumpfender Fäden, um nach der Vliesablage durch Schrumpfen des gesamten Fadenverbandes höhere Volumen und Weichheit zu erzeugen sowie andere Vlieseigenschaften durch zwei oder mehrere unterschiedliche Komponenten. Auch Bi- oder Mehrkomponentenfäden sind durch Zufuhr von zwei oder mehreren Spinnstoffen in das Spinndüsenteil und in die Kanäle 14 unschwer herzustellen. Unterschiedliche Durchsätze, eingestellt durch unterschiedlich große Öffnungsquerschnitte der Spinndüsenöffnungen oder gesteuerte Schmelzezufuhr an diese, kann eine andere Art von Mischvliesen erzeugt werden.The device is also fundamentally suitable for spinning out different textile materials in the individual spinnerets, for which purpose the melt or dope distribution must be set up accordingly, be it alternately transversely to the direction of travel or else different from row to row. It is thus possible to produce mixed nonwovens to achieve special effects such as the binding of binding threads in matrix threads, eg polypropylene as binder thread and polyester as the strength-giving matrix or by a part of more shrinking threads to after fleece storage by shrinkage of the entire thread structure higher volume and softness and other nonwoven properties by two or more different components. Bi- or multicomponent filaments can also be produced easily by feeding two or more textile materials into the spinneret part and into the channels 14. Different throughputs, set by differently sized opening cross sections of the spinneret openings or controlled melt supply to these, can be another type of Mixed fleeces are produced.

Die vorliegende Vorrichtung hat außerdem den Vorteil, dass sie die schmelzeführenden Spinndüsenteile 1 bzw. 28 mit den kälteren Gasdüsenteilen 2 bzw. 27 zwar gegeneinander verschiebbar, aber quer dazu fest verbindet. Nach Aufheizen von Teil 1 mit hier nicht gezeigten Heizungen wird sich grundsätzlich, wenn keine besonders erwärmte Luft aus Teil 2 zugeführt wird, Teil 1 gegenüber 2 mehr ausdehnen, so dass jeweils Spinnbohrung 3 und engster Querschnitt 6 Abweichungen über die Breite und Länge zeigen, das Gleiche gilt für die Teile 28 und 27. Die Verbindung kann durch die nicht gezeigten Gleitstäbe geschehen, die diese Abweichung kräftemäßig verhindern, wobei sie in den Platten des Spinndüsenteils 1 und des Gasdüsenteils zwischen den Kombinationen Spinndüse/Lavaldüse angeordnet sein können. Zur Verhinderung der unterschiedlichen Ausdehnung kann aber auch bewusst eine Erwärmung der Luftströmung in Strömungskanal 5 vorgenommen werden.The present device also has the advantage that it connects the melt-carrying spinneret parts 1 and 28 with the colder gas nozzle parts 2 and 27 against each other displaceable, but transversely to firmly. After heating of Part 1 with heaters not shown here, in principle, if no particularly heated air from Part 2 is supplied, Part 1 to 2 expand more so that each spin hole 3 and closest cross-section 6 deviations across the width and length, the The same applies to the parts 28 and 27. The connection can be made by the slide rods, not shown, which prevent this deviation in terms of power, wherein they can be arranged in the plates of the spinneret part 1 and the gas nozzle part between the combinations spinneret / Laval nozzle. In order to prevent the different expansion but also aware of a warming of the air flow in the flow channel 5 can be made.

Eine Führung des Teils 1, das zunächst zurückgesetzt gegenüber der Spinnbohrungsöffnung 3 ist und später in Laufrichtung des Fadens 7 verschoben zur Erzeugung des Spleißeffektes ist, hat durch im Werkzeugbau bekannte Führungen oder Gleitstäbe zu geschehen. Die Einbringung der Luft, ebenfalls hier nicht gezeichnet, geschieht von außen von vorn, hinten oder seitlich am Spinnbalken, wobei eine Dichtung zwischen Spinndüsenteil 1 und Gasdüsenteil 2 vorhanden sein muss oder weil wenige Millimeter Führungslänge zwischen 1 und 2 ausreichen, auch über Wellbälge um den Spinnbalken herum und einer äußeren Verteilungskammer können die in Fig. 4 gezeigten Kammern 9 gespeist werden.A guide of the part 1, which is initially set back relative to the spinning bore opening 3 and later displaced in the direction of the thread 7 to produce the splicing effect, has to be done by known in tool making guides or slide rods. The introduction of the air, also not drawn here, happens from the outside from the front, back or side of the spinning beam, with a seal between spinneret 1 and gas nozzle part 2 must be present or because a few millimeters of guide length between 1 and 2 sufficient, also Wellbälge to the Spinning bars around and an outer distribution chamber can be found in Fig. 4 shown chambers 9 are fed.

Es ist nun auch auf einfache Weise möglich, Spinnbalken größerer Breite in mehrere Düsenfelder aufzuteilen, diese wiederum bestehend aus zahlreichen einzelnen Spinndüse-/Lavaldüsekombinationen, so dass einzelne dieser Pakete (Spinnpacks) ausgewechselt werden können bei Verstopfungen der Spinnöffnungen oder anderen Störungen. Die Trennfugen sind dann schräg zur Laufrichtung angebracht, wobei die Spinndüsenöffnungen wie in Fig. 4 gezeigt jeweils auf die Lücke der vorigen angeordnet sind.It is now also possible in a simple manner to divide spinning beam of greater width into several nozzle fields, these in turn consisting of numerous individual spinneret / Laval nozzle combinations, so that individual of these packages (spin packs) can be replaced in case of blockages of the spinning openings or other disorders. The parting lines are then mounted obliquely to the direction of rotation, wherein the spinneret openings as in Fig. 4 shown are each arranged on the gap of the previous.

Das folgende Beispiel zeigt den Einsatz der Vorrichtung im Spleißspinnverfahren nach Nanoval und den beispielhaft erzielten Fadenwerten. Eine Polypropylen-Schmelze wurde auf neunzehn in einer Reihe angeordneten Spinndüsen 13 mit Zulaufbohrungen für die Schmelze 14 und Spinndüsenöffnungen mit einem Durchmesser von 0,3 mm verteilt. In Fadenlaufrichtung danach befand sich zu jeder dieser Öffnungen eine Lavaldüse mit engstem Querschnitt von 3 mm Durchmesser, welche nach dem Anspinnen auf die Spinnöffnung zurückgeführt wurde. Der Polymerdurchsatz wurde in Bereichen wie sie Tabelle 1 wiedergibt geändert, ebenso der Luftdruck und damit die strömende Luftgeschwindigkeit im Bereich der auf den Faden für die zum Spleißen führenden Schubspannungen. Die Temperatur der Polypropylenschmelze konnte in den Spinndüsen 13 um etwa weitere 20 °C kurz vor ihrem Austritt aus der Spinnöffnung über elektrische Heizelemente erwärmt werden.The following example shows the use of the device in the splicing spinning process according to Nanoval and the yarn values obtained by way of example. A polypropylene melt was distributed to nineteen in-line spinnerets 13 with melt inlet holes 14 and spinneret holes 0.3 mm in diameter. In the thread running direction thereafter, there was a Laval nozzle with the narrowest cross section of 3 mm diameter, which was returned to the spinning opening after piecing to each of these openings. The polymer flow rate was changed in areas as shown in Table 1, as well as the air pressure and thus the flowing air velocity in the area of the thread for the splicing shear stresses. The temperature of the polypropylene melt could be heated in the spinneret 13 by about another 20 ° C shortly before it exits the spinning orifice via electrical heating elements.

Für ein Vorrichtung nach den Fign. 1, 2 ergeben sich mit denselben Verfahrensdaten keine wesentlich anderen Ergebnisse. Tabelle 1 Fadenergebnisse Polypropylen (PP) MFI 28 Schmelzindex bei 230 °C und 2,16 kg Schmelze Luft Fadenergebnis m0 Ts ΔPk TL d50 CV dmin dmax g/min ° C mbar ° C µm % µm µm 1,5 330 403 43 3,9 38 1,72 8,2 330 600 47 2,2 23 1,22 3,6 330 800 56 2,2 45 0,87 4,4 334 400 230 1,5 47 0,87 3,5 335 600 230 2,0 40 0,67 3,8 336 0,78 800 233 1,5 40 3,1 3,0 344 400 230 2,4 33 0,61 3,9 344 600 230 2,1 33 1,12 3,4 344 800 230 1,5 47 0,44 3,4 352 400 46 2,1 48 0,77 4,9 352 600 46 1,2 42 0,31 2,2 352 800 46 1,3 31 0,48 2,3 351 600 180 1,2 33 0,63 2,3 351 600 220 1,0 40 0,44 1,8 351 600 220 1,1 27 0,49 1,8
mo Polymerdurchsatz pro Spinnbohrung
Ts Schmelzetemperatur
ΔPk Luftdruck vor Beschleunigung in der Lavaldüse
TL Lufttemperatur ebendort
d50 mittl. Fadendurchmesser aus 20 Einzelmessungen am Mikroskopbildschirm
CV statist. Streuung/d50 100 % Variationskoeffizient der erzeugten Fadendurchmesser
dmin kleinster jeweils gemessener Fadendurchmesser
For a device according to the FIGS. 1, 2 result in the same process data not significantly different results. <b> Table 1 Thread Results Polypropylene (PP) MFI 28 Melt Index at 230 ° C and 2.16 kg </ b> melt air thread result m 0 T s ΔP k T L d 50 CV d min d max g / min ° C mbar ° C microns % microns microns 1.5 330 403 43 3.9 38 1.72 8.2 330 600 47 2.2 23 1.22 3.6 330 800 56 2.2 45 0.87 4.4 334 400 230 1.5 47 0.87 3.5 335 600 230 2.0 40 0.67 3.8 336 0.78 800 233 1.5 40 3.1 3.0 344 400 230 2.4 33 0.61 3.9 344 600 230 2.1 33 1.12 3.4 344 800 230 1.5 47 0.44 3.4 352 400 46 2.1 48 0.77 4.9 352 600 46 1.2 42 0.31 2.2 352 800 46 1.3 31 0.48 2.3 351 600 180 1.2 33 0.63 2.3 351 600 220 1.0 40 0.44 1.8 351 600 220 1.1 27 0.49 1.8
m o polymer throughput per spin hole
T s melt temperature
ΔP k Air pressure before acceleration in the Laval nozzle
T L air temperature at the same location
d 50 avg. Thread diameter from 20 individual measurements on the microscope screen
CV statist. Scattering / d 50 100% coefficient of variation the generated thread diameter
d min smallest each measured thread diameter

Auffallend ist, dass nicht unbedingt nur bei höheren Luftdrücken, also höheren Luftgeschwindigkeiten, höheren Lufttemperaturen und geringeren Durchsätzen die feinen Fäden bis herunter bis zu etwa 0,5 µm = 500 Nanometer (nm) erzeugt werden konnten, sondern dies auch bei größeren Durchsätzen von 3 g/min und Loch gelang, wozu die Temperatur der Schmelze allerdings vor ihrem Austritt erhöht wurde von 335 auf 352 °C, die Lufttemperatur zunächst bei dem höheren Durchsatz von 3,0 g/min noch im Bereich der durch die Kompression erzeugten blieb und die Erhöhung bei sonst gleich bleibenden Werten auf 180 °C keinen messbaren Einfluss in Richtung höherer Feinheit ergab. Erst eine auf 220 °C erhöhte Lufttemperatur ergab dann den Wert von d50 = 1 µm mit im Mikroskop gemessenen minimalen Durchmessern von 0,44. Eine Fadenmessung wie hier mit dem Mikroskop kann allerdings keine hohe Genauigkeit mehr beanspruchen, da man bereits im Bereich der Lichtwellenlängen liegt. Auf jeden Fall sind eindeutige Abhängigkeiten da, die zunächst vom Standpunkt des konventionellen Spinnens überraschen. Vergegenwärtigt man sich jedoch, dass hier Fäden durch Aufplatzen, einer Fragmentierung also, erzeugt werden, so sind andere Gesetzmäßigkeiten als die der reinen Längsverziehung wie oben beschrieben am Werke, die dazu führen, dass man einzelne Parameter wie beispielsweise die Schmelzetemperatur zur Gasgeschwindigkeit verändern kann mit gleichem Einfluss auf die sich ergebenden mittleren Fadendurchmesser und sogar ihre Streuung.It is striking that not only at higher air pressures, ie higher air velocities, higher air temperatures and lower throughputs, the fine filaments could be produced down to about 0.5 μm = 500 nanometers (nm), but also at larger throughputs of 3 g / min and hole was achieved by raising the temperature of the melt from 335 to 352 ° C prior to its discharge, however, the air temperature initially remained at the higher throughput of 3.0 g / min in the area produced by the compression and the Increase with otherwise constant values to 180 ° C no measurable influence towards higher fineness resulted. Only an air temperature increased to 220 ° C then gave the value of d 50 = 1 micron with measured in the microscope minimum diameters of 0.44. However, a thread measurement as here with the microscope can no longer claim high accuracy, since one is already in the range of light wavelengths. In any case, there are clear dependencies that are initially surprising from the standpoint of conventional spinning. However, if one realizes that threads are produced by bursting, that is fragmentation, then other laws than those of pure longitudinal distortion as described above are at work, which lead to the fact that one can change individual parameters such as the melt temperature to the gas velocity same influence on the resulting average thread diameter and even their dispersion.

Obwohl die erfindungsgemäße Vorrichtung vornehmlich der Erzeugung feiner Fäden dienen soll, können auch gröbere mit ihr ersponnen werden, wodurch sie ihre Vielseitigkeit zeigt. So wurden Fäden aus Polyester und Polylactid erzeugt wie in den Tabellen 2 und 3 wiedergegeben. Der Durchmesser der Spinndüsenöffnungen, betrug 1,0 mm. Tabelle 2 Fadenergebnisse Polyester (PET) i.v. = 0,64 intrinsische Viskosität (Textiltyp) mo Ts ΔPk TL d50 CV dmin dmax g/min °C Mbar °C µm % µm µm 5,2 288 550 108 10,1 47 4,1 20,0 332 1000 271 4,2 43 1,5 9,9 10,0 299 500 270 15,3 23 7,4 19,8 271 1000 106 19,0 35 8,0 26,9 15,0 325 500 167 23,2 25 9,8 36,6 330 1000 165 11,3 65 4,2 33,2 Although the device according to the invention is primarily intended for the production of fine threads, can also coarser are spun with her, showing her versatility. Thus, threads of polyester and polylactide were produced as shown in Tables 2 and 3. The diameter of the spinneret orifices was 1.0 mm. <b> Table 2 Thread Results Polyester (PET) iv = 0.64 Intrinsic Viscosity (Textile Type) </ b> m o T s ΔP k T L d 50 CV d min d max g / min ° C mbar ° C microns % microns microns 5.2 288 550 108 10.1 47 4.1 20.0 332 1000 271 4.2 43 1.5 9.9 10.0 299 500 270 15.3 23 7.4 19.8 271 1000 106 19.0 35 8.0 26.9 15.0 325 500 167 23.2 25 9.8 36.6 330 1000 165 11.3 65 4.2 33.2

Beim Spinnen von Polyesterfäden erwies es sich von Vorteil, die Fäden nach ihrem Aufplatzen durch einen gut 1 Meter tiefer liegenden Injektorkanal abzuziehen wie in L. Gerking, Änderung der Filamenteigenschaften vom Polymer her und in der Spinnlinie, Chemiefasern/Textilindustrie 43/95 (1993) auf den Seiten 874/875 beschrieben. Durch nochmaliges Aufheizen dazwischen wie in DE 19 65 054 Spalte 4, Zeilen 44 bis 57 beschrieben, konnte mit beiden Maßnahmen die Zugfestigkeit der Fäden erhöht, vor allem aber der Schrumpf deutlich verringert werden.When spinning polyester threads it proved to be an advantage to pull the threads after their bursting through an injector channel a good 1 meter deeper as in L. Gerking, change of the filament properties of the polymer and in the Spinning line, manmade fibers / textile industry 43/95 (1993) on pages 874/875 described. By heating up again in between as in DE 19 65 054 Column 4, lines 44 to 57, could be increased with both measures, the tensile strength of the threads, but especially the shrinkage can be significantly reduced.

Das aus natürlichen Rohstoffen hergestellte Polymer Polylactid zeigte im Spleißspinnen zu gröberen Fäden hin die in Tabelle 3 wiedergegebenen Werte. Tabelle 3 Fadenergebnisse Polylactid (PLA) MF (melt flow index) 22 bei 210°C und 2,16 kg mo Ts ΔPk TL d50 CV dmin dmax g/min °C mbar °C µm % µm µm 5,2 253 352 35 26,6 19 13,5 33,9 254 352 35 14,4 37 4,4 27,7 254 780 44 16,4 56 5,0 48,3 7,6 284 507 52 6,5 43 2,0 11,1 9,0 255 807 56 14,2 46 5,0 28,7 254 831 60 40,5 (1) 18 26,8 50,1 245 348 60 14,4 75 3,9 44,3 9,7 277 889 64 9,9 59 3,7 29,3 10,1 253 915 90 24,1 (2) 45 5,4 42,8 13,3 285 185 47 7,8 40 1,22 15,0 The polymer polylactide prepared from natural raw materials showed the values reproduced in Table 3 in splice spinning to coarser threads. <b> Table 3 Thread Results Polylactide (PLA) MF (melt flow index) 22 at 210 ° C and 2.16 kg </ b> m o T s ΔP k T L d 50 CV d min d max g / min ° C mbar ° C microns % microns microns 5.2 253 352 35 26.6 19 13.5 33.9 254 352 35 14.4 37 4.4 27.7 254 780 44 16.4 56 5.0 48.3 7.6 284 507 52 6.5 43 2.0 11.1 9.0 255 807 56 14.2 46 5.0 28.7 254 831 60 40.5 (1) 18 26.8 50.1 245 348 60 14.4 75 3.9 44.3 9.7 277 889 64 9.9 59 3.7 29.3 10.1 253 915 90 24.1 (2) 45 5.4 42.8 13.3 285 185 47 7.8 40 1.22 15.0

In Tabelle 3 fällt der mit (1) gekennzeichnete Wert aus den sonst erkennbaren Abhängigkeiten heraus, auch als größter Wert. Bei dieser Einstellung wurden die aerodynamischen Verhältnisse durch Änderung der Lavaldüsengeometrie geändert, ebenfalls beim mit (2) gekennzeichneten Wert. Bei (1) trat gar keine Spleißung des Schmelzefadens auf, bei (2) hin und wieder.In Table 3, the value marked with (1) falls out of the otherwise recognizable dependencies, also as the largest value. In this setting, the aerodynamic conditions were changed by changing the Lavaldüsengeometrie, also at the value marked with (2). In (1) no splicing of the melt filament occurred at (2) now and then.

Die erfindungsgemäße Vorrichtung kann für fadenbildende Schmelzen oder Lösungen eingesetzt werden, aber auch allgemein für Flüssigkeiten, wenn es z.B. darum geht, dünne Schichten wie Farben, Lacke, Avivagen aufzutragen. Sie dient dann der Zerstäubung der Flüssigkeiten in möglichst feine Tröpfchen bei möglichst gleichmäßiger Verteilung auf der zu beauftragenden Fläche. Die Bedingungen sind jeweils durch die gegebenen geometrischen Verstellmöglichkeiten der Vorrichtung leicht zu finden.The device according to the invention can be used for thread-forming melts or solutions, but also generally for liquids, for example when it comes to applying thin layers such as paints, varnishes, coatings. It then serves to atomize the liquids into the finest possible droplets if possible uniform distribution on the area to be assigned. The conditions are easy to find in each case by the given geometric adjustment of the device.

Die Vorrichtungen (nach Fig. 1, 2 oder 3, 4) haben weiterhin den Vorteil, dass sich eine Schmelze oder Lösung leichter gleichmäßig auf einzelne Ausflussöffnungen - hier Spinnnippel 23 - verteilen lässt, als wenn dies aus einem Film wie üblicherweise bei Zeilendüsen geschieht. Das erzeugte Vlies weist gleichmäßiger und meist insbesondere nicht die Bahnen, auch als "Gassen" bezeichneten Streifen unterschiedlichen Gewichts in Fahrtrichtung auf.The devices (according to Fig. 1, 2 or 3, 4 ) have the further advantage that a melt or solution can be distributed more easily uniformly to individual outflow openings - in this case nipples 23 - than when this happens from a film, as is usually the case with row nozzles. The fleece produced has more uniform and usually not especially the webs, also called "lanes" strips of different weight in the direction of travel.

Claims (18)

  1. Spinning device for producing fine threads by splitting, having a plurality of protruding spinning nozzles (13, 23) with spinning openings which are disposed in a spinning nozzle part (1, 28) and from which the spinning materials emerge as monofilaments and having a plurality of acceleration nozzles (36), in particular Laval nozzles, which are assigned to the spinning openings and the cross-section of which is reduced and widens after the smallest cross-section, means being provided for supplying gas flows, which surround the monofilaments and are accelerated through the acceleration nozzles, characterised in that
    the acceleration nozzle is configured in an at least partially plate-shaped gas nozzle part (2, 27) as a funnel-shaped depression into which the spinning nozzle engages forming gas flow channels and in that means for relative displacement of the gas nozzle part (2, 27) and of the spinning nozzle part (1, 28) relative to each other are provided such that the flow cross-section of the gas flow channels can be changed and/or the position of the smallest cross-section of the acceleration nozzles can be adjusted relative to the spinning openings.
  2. Spinning device according to claim 1, characterised in that the means for relative displacement comprise guides and/or sliding rods.
  3. Spinning device according to claim 1 or claim 2, characterised in that the means for relative displacement is configured as adjustment screw device (29, 30, 31) which is disposed between gas nozzle part (2, 27) and spinning nozzle part (1, 28).
  4. Spinning device according to one of the claims 1 to 3, characterised in that a gas chamber with at least one gas supply is provided between spinning nozzle part (1, 28) and gas nozzle part (2, 27), said gas chamber being in communication with the gas flow channels and into which the spinning nozzles (13, 23) protrude.
  5. Spinning device according to one of the claims 1 to 4, characterised in that the gas nozzle part (27) is provided with a frame-like edging (34), the region of the spinning nozzle part (28) which has the protruding spinning nozzles (23) being inserted between the edging.
  6. Spinning device according to one of the claims 1 to 5, characterised in that a self-adjusting seal is provided between spinning nozzle part (28) and gas nozzle part (27).
  7. Spinning device according to one of the claims 1 to 4, characterised in that the gas nozzle part (2) is configured as a hollow body which is engaged by the funnel-shaped depressions, the space within the hollow body (5) forming a gas chamber and openings (4) directed towards the spinning part (1) being provided, which connects the gas chamber to the gas flow channels.
  8. Spinning device according to claim 7, characterised in that formed parts are respectively inserted between the spinning nozzle of the spinning part maintaining air gaps relative to the gas nozzle part for heat insulation, which gaps extend essentially up to the spinning openings, the gas flow channels (5) being formed between the formed parts (11) and the gas nozzle part (2).
  9. Spinning device according to one of claims 7 or 8, characterised in that the openings (4) are disposed annularly around the funnel-shaped depressions.
  10. Spinning device according to one of the claims 1 to 9, characterised in that the gas chamber is sealed externally.
  11. Spinning device according to one of the claims 1 to 10, characterised in that the gas nozzle part (2, 27) and the spinning nozzle part (1, 28) have a plurality of funnel-shaped depressions and spinning nozzles which are disposed in rows adjacent to each other, the spinning nozzles (13, 23) and acceleration nozzles of the one row being disposed offset relative to the other row.
  12. Spinning device according to one of the claims 1 to 11, characterised in that the combination of gas nozzle- and spinning nozzle part comprises a plurality of gas- and nozzle part segments which are exchangeable, respectively.
  13. Spinning device according to one of the claims 1 to 12, characterised in that several gas- and spinning nozzles are arranged with spacing adjacent to each other.
  14. Spinning device according to one of the claims 1 to 13, characterised in that a distribution device (37, 38) for an additional fluid is provided on the gas nozzle part at a spacing from the exit of the acceleration nozzles, which fluid impinges upon the threads which have split from the monofilament.
  15. Method for producing a spunlaid nonwoven of fine threads from melts or solutions by splitting a plurality of monofilaments which are spun by spinning nozzles (13, 23) disposed in a spinning nozzle part (1, 28) and protruding therefrom, wherein the melt or solution is uniformly distributed over the spinning nozzles and the monofilaments respectively are accelerated until splitting by a rotation-symmetrical gas flow produced by rotation-symmetrical acceleration nozzles (36, 5) and
    wherein the spinning nozzles are disposed in a plurality of successive rows in the nonwoven running direction such that a statistical compensation is effected by covering the sparse positions of the nonwoven produced by the threads of the preceding rows by means of the threads of the following rows.
  16. Method for producing a spunlaid nonwoven of fine threads according to claim 15 using a spinning device according to claim 14, characterised in that an additional fluid is introduced into the space between the gas nozzle part (27) and the plate (37) with openings (38) which is arranged with a spacing to the gas nozzle part, respectively below the spinning nipples of the spinning nozzles (23) and the rotation-symmetrical laval nozzle-like openings (36), the additional fluid penetrating the thread gas flow via the edges of the openings (38) of the plate (37) and meeting the threads splitted from the monofilaments.
  17. Method according to claim 16, characterised in that water for coagulating for the production of threads from a lyocell solution or a coolant for freezing the molecular orientation obtained while splitting or a heating medium for realizing a second drawing of the threads is introduced into the space.
  18. Spunlaid nonwovens produced by a spinning method according to one of claims 15 to 17.
EP06818294A 2006-03-08 2006-10-23 Spinning apparatus and process for producing fine threads by splicing for forming a nonwoven, and nonwoven obtainable thereby Not-in-force EP1902164B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102006012052A DE102006012052A1 (en) 2006-03-08 2006-03-08 Spinning device for producing fine threads by splicing
PCT/EP2006/010320 WO2007101459A1 (en) 2006-03-08 2006-10-23 Spinning apparatus for producing fine threads by splicing

Publications (2)

Publication Number Publication Date
EP1902164A1 EP1902164A1 (en) 2008-03-26
EP1902164B1 true EP1902164B1 (en) 2010-08-25

Family

ID=37907719

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06818294A Not-in-force EP1902164B1 (en) 2006-03-08 2006-10-23 Spinning apparatus and process for producing fine threads by splicing for forming a nonwoven, and nonwoven obtainable thereby

Country Status (10)

Country Link
US (1) US20090221206A1 (en)
EP (1) EP1902164B1 (en)
JP (1) JP2009529102A (en)
CN (2) CN102162141B (en)
AT (1) ATE478983T1 (en)
BR (1) BRPI0621444A2 (en)
CA (1) CA2644977C (en)
DE (2) DE102006012052A1 (en)
RU (1) RU2396378C2 (en)
WO (1) WO2007101459A1 (en)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8029260B2 (en) * 2008-04-11 2011-10-04 Reifenhauser Gmbh & Co. Kg Maschinenfabrik Apparatus for extruding cellulose fibers
KR101060224B1 (en) * 2009-06-12 2011-08-29 주식회사 아모그린텍 Spray nozzle for electrospinning and electrospinning apparatus using the same
BR112012002957A2 (en) 2009-08-14 2016-04-12 Procter & Gamble spinning die assembly and method for forming fibers using said assembly.
DE102010019910A1 (en) 2010-05-04 2011-11-10 Lüder Gerking Spinneret for spinning threads, spinner for spinning threads and method for spinning threads
DE102010021636A1 (en) * 2010-05-26 2011-12-01 Bayer Innovation Gmbh nozzle plate
JP5535389B1 (en) * 2012-10-22 2014-07-02 株式会社リメディオ Dry spinning apparatus, nonwoven fabric manufacturing apparatus, and spinning method
CN103668484A (en) * 2013-12-19 2014-03-26 吴江明敏制衣有限公司松陵分公司 Scattering fiber spinneret plate
CN103882535B (en) * 2014-04-11 2017-05-17 天津工业大学 Solution jetting spinning die head
US10633774B2 (en) 2014-05-07 2020-04-28 Biax-Fiberfilm Corporation Hybrid non-woven web and an apparatus and method for forming said web
US9309612B2 (en) * 2014-05-07 2016-04-12 Biax-Fiberfilm Process for forming a non-woven web
WO2015195648A2 (en) * 2014-06-16 2015-12-23 North Carolina State University Multi-die melt blowing system for forming co-mingled structures and method thereof
CN104264237B (en) * 2014-10-27 2016-06-08 无锡纳润特科技有限公司 The melt-blown header structure of chemical industry resin
RU2614087C1 (en) * 2015-11-18 2017-03-22 Федеральное государственное автономное образовательное учреждение высшего образования "Национальный исследовательский Томский государственный университет" (ТГУ, НИ ТГУ) Device for fibrous materials production from molten thermoplastics
SI3199671T1 (en) * 2016-01-27 2020-07-31 Reifenhaeuser Gmbh & Co. Kg Maschinenfabrik Device for manufacturing non-woven material
FI3692188T3 (en) * 2017-10-06 2023-12-05 Chemiefaser Lenzing Ag Device for the extrusion of filaments and manufacture of meltspun nonwovens
US10449719B2 (en) * 2017-12-01 2019-10-22 Bulent Besim System for feeding filament to a nozzle in an additive manufacturing machine
KR102344856B1 (en) * 2018-03-29 2021-12-28 코오롱인더스트리 주식회사 Spinning pack for manufacturing yarn having high strength, apparatus comprising the same and method for manufacturing the yarn
CN108385173B (en) * 2018-04-24 2020-08-11 东华大学 Electrostatic spinning nozzle with separated control of liquid level curvature and electric field and spinning method thereof
GB2579100A (en) * 2018-11-23 2020-06-10 Teknoweb Mat S R L Spinneret block with readily exchangable nozzles for use in the manufacturing of meltblown fibers
CN109695099A (en) * 2019-02-28 2019-04-30 欣龙控股(集团)股份有限公司 A kind of novel spinning spunlace non-woven material and its production method
CN110284206B (en) * 2019-05-21 2024-07-16 内蒙古红阳高温隔热材料科技有限公司 Steam device for filament throwing machine, ceramic fiber steam filament throwing machine and filament making system
CN113737291B (en) * 2020-05-29 2023-12-19 欧瑞康纺织有限及两合公司 Melt spinning apparatus
JP2022059401A (en) * 2020-10-01 2022-04-13 株式会社東芝 Electrospinning device
CN112481822B (en) * 2020-10-30 2024-09-03 张家港骏马无纺布有限公司 Non-woven fabric melt-blown forming method
CN113502549B (en) * 2021-05-28 2022-10-28 中国石油化工股份有限公司 Melt-blown spinning assembly
CN116695266B (en) * 2023-08-09 2023-11-17 江苏新视界先进功能纤维创新中心有限公司 Air draft system, device comprising same and application

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE1504378B1 (en) * 1965-11-25 1971-08-26 Hans Hench METHOD AND DEVICE FOR MANUFACTURING AND COOLING RODS MADE OF THERMOPLASTIC PLASTICS
US3970417A (en) * 1974-04-24 1976-07-20 Beloit Corporation Twin triple chambered gas distribution system for melt blown microfiber production
DE2630055B2 (en) * 1976-07-03 1978-04-27 Bayer Ag, 5090 Leverkusen Process for gassing the nozzle openings when extruding plastic
JPS5750290Y2 (en) * 1977-12-05 1982-11-04
KR0125769B1 (en) * 1987-11-20 1997-12-29 . Meltblowing apparatus
DE3810596A1 (en) * 1988-03-29 1989-10-12 Bayer Ag FINE FIBERS FROM POLYPHENYL SULFIDE
JPH02115570U (en) * 1989-02-28 1990-09-17
DE59002398D1 (en) * 1990-05-09 1993-09-23 Fischer Karl Ind Gmbh DEVICE FOR PRODUCING FINE THREADS.
AU3665993A (en) * 1992-02-13 1993-09-03 Accurate Products Company Meltblowing die having presettable air-gap and set-back
JPH07216709A (en) * 1993-12-09 1995-08-15 Mitsui Petrochem Ind Ltd Method for spinning and die
JPH07216624A (en) * 1994-02-04 1995-08-15 Mitsui Petrochem Ind Ltd Die for melt blowing
US5476616A (en) * 1994-12-12 1995-12-19 Schwarz; Eckhard C. A. Apparatus and process for uniformly melt-blowing a fiberforming thermoplastic polymer in a spinnerette assembly of multiple rows of spinning orifices
EP0724029B1 (en) * 1995-01-28 2001-09-05 Lüder Dr.-Ing. Gerking Yarns from melts using cold gas jets
ES2181877T3 (en) * 1995-06-07 2003-03-01 Conoco Inc SPINNING CARBON FIBERS FROM SOLVED BREAS.
US5679042A (en) * 1996-04-25 1997-10-21 Kimberly-Clark Worldwide, Inc. Nonwoven fabric having a pore size gradient and method of making same
CN1081684C (en) * 1996-08-23 2002-03-27 韦尔豪泽公司 Lyocell fibers and process for their preparation
JP3335949B2 (en) * 1999-05-27 2002-10-21 有限会社末富エンジニアリング Melt blown nonwoven spinning die
DE19929709C2 (en) * 1999-06-24 2001-07-12 Lueder Gerking Process for the production of essentially endless fine threads and use of the device for carrying out the process
US6491507B1 (en) * 2000-10-31 2002-12-10 Nordson Corporation Apparatus for meltblowing multi-component liquid filaments
DE10065859B4 (en) * 2000-12-22 2006-08-24 Gerking, Lüder, Dr.-Ing. Method and apparatus for producing substantially endless fine threads
DE10127471A1 (en) * 2001-06-07 2002-12-12 Fleissner Gerold Fixed nonwoven, at least partially of micro-fine continuous fusible polymer filaments, has longitudinally split melt spun filaments laid across the material width and bonded by water jets
US6824733B2 (en) * 2002-06-20 2004-11-30 3M Innovative Properties Company Meltblowing apparatus employing planetary gear metering pump
EP1467005A1 (en) * 2003-04-12 2004-10-13 Saurer GmbH &amp; Co. KG Process and device for melt spinning and cooling a bundle of filaments

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
L. GERKING & M. STOBIK, MAN-MADE FIBER YEAR BOOK, 2008, pages 80 - 81, XP001516709 *

Also Published As

Publication number Publication date
RU2008135761A (en) 2010-04-20
CN102162141B (en) 2013-09-18
CN102162141A (en) 2011-08-24
ATE478983T1 (en) 2010-09-15
DE102006012052A1 (en) 2007-09-13
DE502006007739D1 (en) 2010-10-07
CA2644977C (en) 2013-05-14
US20090221206A1 (en) 2009-09-03
CN101460666A (en) 2009-06-17
RU2396378C2 (en) 2010-08-10
BRPI0621444A2 (en) 2012-10-09
WO2007101459A1 (en) 2007-09-13
CN101460666B (en) 2011-05-18
CA2644977A1 (en) 2007-09-13
JP2009529102A (en) 2009-08-13
EP1902164A1 (en) 2008-03-26

Similar Documents

Publication Publication Date Title
EP1902164B1 (en) Spinning apparatus and process for producing fine threads by splicing for forming a nonwoven, and nonwoven obtainable thereby
DE69425537T2 (en) Melt blowing nozzle
EP3692188B1 (en) Device for the extrusion of filaments and manufacture of meltspun nonwovens
EP1192301B1 (en) Method and device for the production of an essentially continuous fine thread
DE19882909B4 (en) Injection nozzle for producing fibers and method for producing fibers through an injection nozzle
DE69109584T2 (en) Air system for a meltblown spinning nozzle.
DE69637297T2 (en) METHOD AND DEVICE FOR THE MOLECULE PRODUCTION
DE69512804T2 (en) Fast spinning of multi-component fibers with highly perforated spinnerets and cooling at high speed
DE4040242A1 (en) METHOD AND DEVICE FOR PRODUCING FINE FIBERS FROM THERMOPLASTIC POLYMERS
EP2016210B1 (en) Device for melt spinning of a linear filament bundle
EP1710329B1 (en) Process and apparatus for meltspinning and cooling filaments
EP1463850B1 (en) Spinning method having turbulent cooling by blowing
DE112005002619T5 (en) Meltblown nonwoven fabrics, including nanofibers, and apparatus and method of forming such meltblown nonwoven fabrics
DE112005003176B4 (en) Apparatus for forming meltblown material
WO2011138056A1 (en) Spinneret for spinning threads, spinning device for spinning threads and method for spinning threads
WO2009112082A1 (en) Device for melt spinning multi-component fibers
WO2006037371A1 (en) Meltblown method for melt spinning fine non-woven fibres and device for carrying out said method
EP2663673B1 (en) Spinneret bundle
EP0455897B1 (en) Apparatus for the preparation of very fine fibres
DE19716394C1 (en) Cooling control unit, for thermoplastic filament bundle from spinneret(s)
EP2832902A1 (en) Optimisation of a spinning nozzle for spinning filaments from a spinning material
EP0724029A1 (en) Yarns from melts using cold gas jets
DE69713791T2 (en) CONE NOSE FOR A SMALL SPINNING HEAD FOR FLASH SPINNING
DE68913711T2 (en) Process for the production of composite fleece and device for meltblown spinning thereof.
DE102007019353B4 (en) Meltblowing device and method for supplying process air in a meltblowing device

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20080204

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RAX Requested extension states of the european patent have changed

Extension state: BA

Extension state: HR

Extension state: MK

Extension state: RS

Extension state: AL

17Q First examination report despatched

Effective date: 20090403

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SPINNING APPARATUS AND PROCESS FOR PRODUCING FINE THREADS BY SPLICING FOR FORMING A NONWOVEN, AND NONWOVEN OBTAINABLE THEREBY

DAX Request for extension of the european patent (deleted)
GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006007739

Country of ref document: DE

Date of ref document: 20101007

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101227

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101225

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101125

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101126

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

BERE Be: lapsed

Owner name: GERKING, LUDER

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

26N No opposition filed

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502006007739

Country of ref document: DE

Effective date: 20110526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101023

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100825

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20151028

Year of fee payment: 10

Ref country code: GB

Payment date: 20151021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151023

Year of fee payment: 10

Ref country code: SE

Payment date: 20151021

Year of fee payment: 10

Ref country code: AT

Payment date: 20151022

Year of fee payment: 10

Ref country code: NL

Payment date: 20151021

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161028

Year of fee payment: 11

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20161101

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 478983

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161023

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20161023

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161101

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161024

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161023

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006007739

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501