[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1992891B1 - Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur - Google Patents

Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur Download PDF

Info

Publication number
EP1992891B1
EP1992891B1 EP08158983.0A EP08158983A EP1992891B1 EP 1992891 B1 EP1992891 B1 EP 1992891B1 EP 08158983 A EP08158983 A EP 08158983A EP 1992891 B1 EP1992891 B1 EP 1992891B1
Authority
EP
European Patent Office
Prior art keywords
plates
condenser
fluid
pass
condenser according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP08158983.0A
Other languages
German (de)
English (en)
Other versions
EP1992891A1 (fr
Inventor
Carlos Martins
Jérôme GENOIST
Jacques Hoffnung
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Valeo Systemes Thermiques SAS
Original Assignee
Valeo Systemes Thermiques SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=32104360&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1992891(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Valeo Systemes Thermiques SAS filed Critical Valeo Systemes Thermiques SAS
Publication of EP1992891A1 publication Critical patent/EP1992891A1/fr
Application granted granted Critical
Publication of EP1992891B1 publication Critical patent/EP1992891B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • F25B39/04Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D9/00Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D9/0031Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other
    • F28D9/0043Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another
    • F28D9/005Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits for one heat-exchange medium being formed by paired plates touching each other the plates having openings therein for circulation of at least one heat-exchange medium from one conduit to another the plates having openings therein for both heat-exchange media
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/043Condensers made by assembling plate-like or laminated elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0441Condensers with an integrated receiver containing a drier or a filter
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/044Condensers with an integrated receiver
    • F25B2339/0443Condensers with an integrated receiver the receiver being positioned horizontally
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2339/00Details of evaporators; Details of condensers
    • F25B2339/04Details of condensers
    • F25B2339/047Water-cooled condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D21/00Heat-exchange apparatus not covered by any of the groups F28D1/00 - F28D20/00
    • F28D2021/0019Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for
    • F28D2021/008Other heat exchangers for particular applications; Heat exchange systems not otherwise provided for for vehicles
    • F28D2021/0084Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines

Definitions

  • the invention relates to air conditioning circuits of motor vehicles.
  • Modern motor vehicles are frequently equipped with an air conditioning circuit of their cabin.
  • These circuits include in particular a condenser, in which an air conditioning fluid in the gaseous state is cooled so as to be condensed.
  • the invention relates as well to a condenser itself as to such exchangers.
  • condenser In order not to burden the rest of the text, only the term condenser will be used. However, it should be understood that it covers both a heat exchanger intended to allow the condensation of a fluid, a heat exchanger designed to allow a simple cooling of the fluid of an air conditioning circuit of a motor vehicle.
  • the currently known condensers generally consist of a bundle of tubes connected at each of their ends to manifolds.
  • the tubes are provided with heat exchange surfaces such as fins or corrugated inserts. They are cooled by heat exchange with atmospheric air and, for this purpose, they are placed at the front of the motor vehicle, usually in front of the radiator of the engine cooling circuit.
  • condensers consisting of a multiplicity of stacked common plates, assembled to define first flow channels for a refrigerating fluid that alternate with second flow channels for a cooling fluid.
  • a condenser of this type is described in the document WO 01/88454 .
  • such a condenser can be cooled by a liquid, in particular by the liquid of the engine cooling circuit. It is therefore more compact than an air-cooled condenser. It is not necessary to have it on the front of the vehicle. It can therefore be placed near the evaporator, which makes it possible to shorten the length of the pipes of the air conditioning circuit. But a condenser of this type also has drawbacks, in particular, it does not ensure a sufficient heat exchange.
  • the invention relates to a condenser, in particular for an air conditioning circuit of the passenger compartment of a motor vehicle, which overcomes these disadvantages.
  • This condenser must allow improved cooling of the air conditioning fluid of the air conditioning circuit by the water of the engine cooling circuit.
  • pass is meant a group or subgroup of plates between which the fluid follows a single direction in one and the same direction.
  • the inlet and outlet ports are located, in particular, at two opposite edges of said plates.
  • the condenser is constituted by a stack of common plates. An end plate is disposed at each end of the stack of the current plates.
  • the plates have communication passages to allow the passage of the refrigerant fluid and the cooling fluid from one flow channel to the other, annular conduits are provided alternately opposite the communication passages to prohibit the mixing of the fluids .
  • the current plates are provided with two communication passages for the passage of the cooling fluid and two communication passages for the passage of the cooling fluid.
  • each current plate has a total of four communication passages.
  • the plates are provided with raised peripheral edges, assembled in a sealed manner to delimit the first flow channels and the second flow channels.
  • the condenser comprises at least two passes on the cooling fluid.
  • the condenser comprises at least one inlet and a refrigeration fluid outlet and at least one pass on the refrigerating fluid communicating with said input, said input pass, and another pass communicating with said output, said output pass, the pass section decreasing since the pass entry to the exit pass.
  • the passes are carried out either by partition walls disposed in the manifolds of the tube exchangers, or by spacers arranged between the plates of stacked plate heat exchangers.
  • fluid flow passes can be made without adding additional parts. It suffices for this to remove certain communication passages provided in the current plates.
  • a communication passage of the refrigeration fluid respectively a communication passage of the cooling fluid, is removed in some common plates to determine passes for the circulation of the refrigerant fluid, respectively for the circulation of the cooling fluid.
  • the pass section decreases from the pass communicating with the inlet of the condenser, said input pass, to the pass communicating with the output of said condenser, said output pass .
  • the condenser according to the invention may comprise at least three passes, the number of channels allocated to the input pass on the number of channels allocated to the output channel being comprised, for example, between 2 and 5, the section of channels being scheduled constant from one channel to another.
  • the plates of the condenser are distributed in a first series to ensure cooling of the refrigeration fluid until its condensation, and in a second series for cooling the cooling fluid below its condensation temperature (subcooling).
  • the condenser of the invention comprises an integrated bottle between the first and the second series of plates.
  • flow-disrupting elements may be provided.
  • the turbulators are arranged between the plates.
  • the plates themselves comprise reliefs which constitute turbulators.
  • the hydraulic diameter of the circulation channels is between 0.1 mm and 3 mm. It may, in particular, be 0.1 to 0.5 mm for fluids intended to not change phase, except exceptional conditions, and 0.5 to 3 mm for fluids intended to be condensed. It will be, for example, from 1 to 2.6 mm for the cooling fluid, which may be water, especially that of the cooling circuit.
  • annular ducts are advantageously constituted by cups formed in the plates.
  • collectors are defined without having to provide any additional room.
  • the cooling fluid is constituted by the water of the cooling circuit of the engine of the motor vehicle.
  • the invention relates to an air conditioning circuit, in particular for the passenger compartment of a motor vehicle, comprising an evaporator, a compressor, a condenser, an expansion valve, in which a cooling fluid circulates, in which the condenser is in accordance with the present invention.
  • FIG. 1 a cross-sectional view of a condenser according to the present invention. It comprises a multiplicity of common plates 2 stacked one on the other and each provided with a peripheral rim 3. The peripheral edges are assembled in a sealed manner to delimit between the plates 2 of first flow channels for a refrigeration fluid F1 which alternate with second flow channels for a cooling fluid F2.
  • the stack of the common plates has an end plate 6 at each of its ends.
  • the common plates 2 are sandwiched between a lower reinforcement plate 8 and an upper reinforcement plate 10.
  • the refrigeration or air-conditioning fluid F1 enters the condenser through a pipe of entry (not shown on the Figure 5 ) and exits through an outlet pipe 14.
  • the cooling fluid F2 enters the condenser through an inlet pipe 20 and out through an outlet pipe (not shown).
  • the refrigerating fluid F1 enters the gaseous state. It circulates in the first channels by exchanging heat with the cooling fluid F2, which causes its condensation. The fluid F1 thus leaves the condenser in the liquid state.
  • the refrigeration or air-conditioning fluid is, for example, a fluid R134a or R744 (CO 2 ), while the fluid of cooling F2 is constituted by the water of the engine cooling circuit. It may also be an independent water loop.
  • the condenser shown on the Figure 2 has two circulation passes for the air conditioning or refrigeration fluid.
  • This fluid enters the tubing 12, as shown by the arrow F1, it enters an annular duct 24 acting as an inlet manifold and, from there, enters the first circulation channels provided between the plates 2 As shown schematically by the arrow 26.
  • the air-conditioning fluid arrives in an annular duct 28 and thence enters the first circulation channels provided between the plates 2 situated below. of the partition wall 30, as represented by the arrow 32.
  • the refrigeration fluid F1 and the cooling fluid F2 do not necessarily travel through the condenser with the same number of passes.
  • the condenser comprises three passes schematized by the arrows 40, 42 and 44 for the refrigerating fluid, and a single pass schematized by the arrow 48 for the cooling fluid F2.
  • the fluid F1 passes from the first pass to the second after having crossed the passage opening 50, then from the second pass 42 to the third pass 44 after having crossed the communication passage 52. It exits the exchanger through the tubing 14.
  • the cooling fluid F2 enters through the inlet pipe 20, travels the heat exchanger in a single pass 48 and leaves the condenser through the outlet pipe 22.
  • the condenser has two circulation passes for the refrigerant fluid and two passes also for the cooling fluid.
  • the refrigerating fluid F1 enters the condenser through the inlet pipe 12, traverses the plates along the first pass 54, crosses the communication passage 56 and passes through the second pass 58 before emerging through the outlet pipe 14.
  • the fluid cooling F2 enters the condenser through the inlet pipe 20, travels the first pass as shown by the arrow 60, crosses the communication passage 62 before going through the second pass 64. It then emerges from the exchanger through the tubing output 24.
  • FIG. 5 Diagrammatically shown on the Figure 5 an exploded perspective view illustrating the flow of fluids in a condenser according to the invention comprising two circulation passes for the air conditioning fluid F1 and two passes for the cooling fluid F2.
  • the fluid F1 enters the upper part of the exchanger through the inlet pipe 12 in the volume defined by the end plate 6 and the adjacent plate 2. Part of the fluid travels this space from left to right according to the Figure 5 , as shown schematically by the arrow 66.
  • the other part of the fluid enters an annular duct 68 disposed between the plates 2a and 2b, as shown schematically by the arrow 70. When leaving the annular duct, it enters the space between the plates 2b and 2c.
  • the fraction of the fluid that has passed through the space between the end plate 6 and the first current plate 2a emerges from this space through a tubular duct 72 disposed between the plates 2a and 2b.
  • the planar space between the plates 2b and 2c comprises only one communication passage 74 allowing the exit of the fluid F2.
  • This fluid passes through the annular passage 76 to reach between the plates 2d and 2e after undergoing a change of direction of circulation. It traverses indeed this space from right to left, whereas it circulated previously from left to right.
  • the cooling fluid F2 which enters the condenser through an inlet manifold (not shown) located at the lower part of the exchanger circulates from left to right in the planar spaces between two successive plates. It passes from a space between two plates to the next space, these spaces alternating with spaces for the fluid F1 by annular conduits similar to the ducts 70 or 76 mentioned above. Arrived in the space between the plates 2e and 2f, as shown schematically by the arrow 80, the fluid F2 enters the annular duct 82, as shown schematically by the arrow 84, and changes direction of circulation. In the upper part of the condenser, it circulates from right to left as it circulated from left to right in the lower part. A second flow pass is thus made for the fluid F2 as well.
  • the condenser of the invention comprises three different types of plates with regard to the number of communication passages.
  • the end plates like the plate 6, have only two communication passages, the first for the entry of one of the fluids, the second for the outlet of the other fluid.
  • Common plates such as plate 2f, have four communication passages. Two of these passages are dedicated to the first fluid F1, while the other two passages are dedicated to the fluid F2.
  • the plates located just before the end plate 6, like the plate 2a have three communication passages instead of four for the current plate.
  • the plate 2d which makes it possible to make the circulation passes of the two fluids, comprises only two communication passages. Indeed, in removing two of the four communication passages, partitions are made to change the flow direction of the fluid.
  • the plates 2c and 2e, adjacent to the plate 2d, have three communication passages, instead of four for the current plates. There are thus three types of plates.
  • the two end plates and the plate 2d have only two passages.
  • the plates adjacent to the end plates and the plate 2d have three passages, while the current plates of the condenser comprise four.
  • the condenser according to the invention may comprise at least three passes “a", "b” and "c".
  • the number of channels assigned to the input pass "a”, ie the pass communicating with the refrigerant inlet in the condenser, on the number of channels assigned to the exit pass "c" , that is to say the pass communicating with the refrigeration fluid outlet out of the condenser, is between 2 and 5, the section of the channels being constant from one pass to another.
  • Figures 6 and 7 respectively, a sectional view and a left view of a second embodiment of a condenser according to the present invention. It is distinguished by the fact that its plates are divided into a first series 94 and a second series 96 separated from each other by a frame 98 in which is housed a bottle 100.
  • the first series of plates 94 is relatively more important than the second series 96. It is preferably located at the top of the exchanger, while the second series is located at the bottom.
  • the plates of the first series constitute a cooling section of the refrigeration fluid and the plates of the second series constitute a subcooling section of this fluid.
  • the bottle 100 also called intermediate tank, ensures the filtration and dehydration of the refrigerant. It also makes it possible to compensate for these variations in volume and to ensure the separation of the liquid and gaseous phases. Its interposition between an upstream part and a downstream part 96 of the condenser makes it possible to circulate only fluid in the liquid state in the subcooling section.
  • the refrigeration fluid is thus cooled below its liquid-gas equilibrium temperature, which improves the performance of the condenser and makes them relatively independent of the amount of fluid contained in the air conditioning circuit.
  • the circulation of the refrigerating fluid, as well as the circulation of the cooling fluid, can be carried out in one or more passes in the cooling section 94, as well as in the subcooling section 16.
  • the refrigerating fluid F1 enters the cooling section 94 through the inlet pipe 12 located in the upper part of the condenser. It traverses the cooling section, in one or more passes, then passes into the bottle 100, in which it is filtered and dehydrated, then returns to the subcooling section 96 before leaving the exchanger through the outlet pipe 14 .
  • the cooling fluid F2 circulates against the current of the refrigeration fluid. It enters the lower part of the condenser, in the subcooling section 96, by the inlet tubing 20 (see Figure 7 ), it passes through the subcooling section 96 and then enters directly into the cooling section 94 before emerging from the condenser through the outlet pipe 22.
  • the frame 98 comprises two flanges 102 and a central portion 103 in which three cylindrical bores 104 are formed which constitute the bottle. One of these bores, the one on the right on the Figure 7 , receives a filter and desiccant salts.
  • the plates of the first series 94 and the second series 96 bear on the flanges 102 of the frame 98. It will also be noted that in this example, their concavities are opposite.
  • FIG. 8 and 9 respectively, a longitudinal sectional view of the condenser passing through the longitudinal axis of the portion of the bottle 100 comprising the filter and the desicative salts and a cross section of the same exchanger.
  • the corresponding cylindrical bore 104 is extended by a cylindrical portion 106 projecting out of the condenser.
  • This cylindrical portion receives a cap 108 having a hexagonal head 110 which closes the bottle.
  • the plug 108 is provided with a toric seal 112.
  • An elongated cylindrical cartridge 114 is housed inside the cylindrical bore 104. It contains the desiccant 116 which makes it possible to dehydrate and filter the refrigerating fluid F1. .
  • each plate comprises a flat-bottom half-bowl 122 crossed by a through hole 124.
  • the flat bottoms of the cups come into contact with one another.
  • annular ducts are produced which permit the circulation of the refrigeration fluid F1 and the fluid of cooling F2 from one passage channel to another without having to use additional pieces arranged between the plates.
  • one plate out of two could be flat, the bowl formed in the adjacent plate having a depth corresponding to the entire spacing between two successive plates.
  • turbulators also called disrupters
  • a turbulator element 132 It is constituted by a stamped sheet shaped so as to have rectilinear corrugations 134 arranged, for example, in the direction of the length of the plates.
  • the plates 2 have a generally flat bottom.
  • FIG. 11 another embodiment of a turbulator element 136. It comprises stampings 138 having the general shape of crenellations. These slots are divided into two series offset with respect to each other. Such a turbulator element 136 is disposed between plates 2 also having a generally flat bottom.
  • the turbulators 132 and 136 shown in the Figures 10 and 11 require to manufacture an additional piece and to insert it between the plates. It is possible to remove this additional piece by making the turbulators elements by reliefs from the plates themselves and obtained by a stamping operation.
  • the condenser comprises first plates 140 each having a bottom 142 having corrugations 144 defined by generatrices extending in a first direction D1 and second plates 146 arranged alternately with the first plates 140 and having each having a bottom 148 having undulations 150 defined by generatrices extending in a second direction D2 which is substantially perpendicular to the first direction D1.
  • the respective undulations of the plates make it possible to give the channels a particular three-dimensional structure which favors a turbulent flow of the fluid F1 and the fluid F2 and, consequently, a good heat exchange between them. This also eliminates turbulators inserted between the plates.
  • the exchanger comprises a first series of plates 154 and a second series of plates 156 respectively comprising corrugations 158 and 160 in the form of chevrons. These corrugations also define a three-dimensional structure of fluid flow channels that promotes turbulent flow and good heat exchange between them.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Air-Conditioning For Vehicles (AREA)

Description

  • L'invention concerne les circuits de climatisation des véhicules automobiles.
  • Les véhicules automobiles modernes sont fréquemment équipés d'un circuit de climatisation de leur habitacle. Ces circuits comprennent notamment un condenseur, dans lequel un fluide de climatisation à l'état gazeux est refroidi de manière à être condensé.
  • Dans ce domaine il est également connu d'utiliser des fluides de climatisation, tels que le CO2, avec lesquels le circuit peut fonctionner sans qu'ils ne changent de phase. Le circuit est alors muni d'un échangeur thermique permettant d'abaisser leur température, sans toutefois aller jusqu'à les condenser.
  • L'invention porte aussi bien sur un condenseur proprement dit que sur de tels échangeurs. Afin de ne pas alourdir la suite du texte, seul le terme condenseur sera utilisé. Toutefois, il faudra comprendre que celui-ci couvre aussi bien un échangeur thermique destiné à permettre la condensation d'un fluide, qu'un échangeur thermique destiné à permettre un simple refroidissement du fluide d'un circuit de climatisation d'un véhicule automobile.
  • Les condenseurs actuellement connus sont constitués généralement d'un faisceau de tubes raccordés à chacune de leurs extrémités à des boîtes collectrices. Les tubes sont munis de surfaces d'échange de chaleur telles que des ailettes ou des intercalaires ondulés. Ils sont refroidis par échange de chaleur avec l'air atmosphérique et, à cet effet, ils sont placés à l'avant du véhicule automobile, généralement devant le radiateur du circuit de refroidissement du moteur.
  • Ces condenseurs connus présentent plusieurs inconvénients. Ils ne permettent pas de réaliser un échange de chaleur sur l'eau du circuit de refroidissement du moteur. Leur surface frontale, et par conséquent leur encombrement, sont importants. En outre, ils doivent être nécessairement placés en face avant du véhicule automobile afin de pouvoir être refroidis de manière efficace.
  • Il est également connu de réaliser des condenseurs constitués d'une multiplicité de plaques courantes empilées, assemblées pour délimiter de premiers canaux d'écoulement pour un fluide de réfrigération qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement. Un condenseur de ce type est décrit dans le document WO 01/88454 .
  • Grâce à ces caractéristiques, un tel condenseur peut être refroidi par un liquide, en particulier par le liquide du circuit de refroidissement du moteur. Il est donc plus compact qu'un condenseur refroidi à l'air. Il n'est pas nécessaire de le disposer en face avant du véhicule. On peut donc le placer près de l'évaporateur, ce qui permet de raccourcir la longueur des canalisations du circuit de climatisation. Mais un condenseur de ce type présente aussi des inconvénients, en particulier, il ne permet pas d'assurer un échange thermique suffisant.
  • L'invention a pour objet un condenseur, notamment pour un circuit de climatisation de l'habitacle d'un véhicule automobile, qui remédie à ces inconvénients. Ce condenseur doit permettre un refroidissement amélioré du fluide de climatisation du circuit de climatisation par l'eau du circuit de refroidissement du moteur.
  • A cet effet, elle propose un condenseur du type défini ci-dessus qui comporte au moins deux passes sur le fluide de réfrigération.
  • Par «passe», il faut entendre un groupe ou sous-groupe de plaques entre lesquelles le fluide suit une seule et même direction dans un seul et même sens. Pour les plaques d'une même passe les orifices d'entrée et de sortie sont situés, notamment, au niveau de deux bords opposés desdites plaques. En passant d'une passe à l'autre, le sens de circulation du fluide s'inverse. On peut ainsi allonger le trajet du fluide dans l'échangeur. Grâce à ces caractéristiques, le condenseur conforme à l'invention présente des performances améliorées.
  • Le condenseur est constitué par un empilement de plaques courantes. Une plaque d'extrémité est disposée à chacune des extrémités de l'empilement des plaques courantes.
  • Les plaques comportent des passages de communication pour permettre le passage du fluide de réfrigération et du fluide de refroidissement d'un canal d'écoulement à l'autre, des conduits annulaires sont prévus alternativement en regard des passages de communication pour interdire le mélange des fluides.
  • De préférence, les plaques courantes sont munies de deux passages de communication destinés au passage du fluide de climatisation et de deux passages de communication destinés au passage du fluide de refroidissement. Ainsi, chaque plaque courante comporte au total quatre passages de communication.
  • Dans une réalisation particulière, les plaques sont munies de bords périphériques relevés, assemblés de manière étanche pour délimiter les premiers canaux d'écoulement et les seconds canaux d'écoulement.
  • Dans une autre réalisation particulière, le condenseur comporte au moins deux passes sur le fluide de refroidissement.
  • Avantageusement, le condenseur comporte au moins une entrée et une sortie de fluide de réfrigération et au moins une passe sur le fluide de réfrigération communiquant avec ladite entrée, dite passe d'entrée, et une autre passe communiquant avec ladite sortie, dite passe de sortie, la section des passes diminuant depuis la passe d'entrée vers la passe de sortie.
  • Dans les échangeurs de type connu, les passes sont réalisées soit par des cloisons de séparation disposées dans les boîtes collectrices des échangeurs à tubes, soit par des entretoises disposées entre les plaques des échangeurs à plaques empilées. Au contraire, dans le condenseur de l'invention, on peut réaliser des passes de circulation des fluides sans ajout de pièces supplémentaires. Il suffit pour cela de supprimer certains passages de communication prévus dans les plaques courantes. A cet effet, un passage de communication du fluide de réfrigération, respectivement un passage de communication du fluide de refroidissement, est supprimé dans certaines plaques courantes pour déterminer des passes pour la circulation du fluide de réfrigération, respectivement pour la circulation du fluide de refroidissement.
  • Comme déjà indiqué, dans un mode de réalisation de l'invention, la section des passes diminue depuis la passe communiquant avec l'entrée du condenseur, dite passe d'entrée, vers la passe communiquant avec la sortie dudit condenseur, dite passe de sortie.
  • Le condenseur conforme à l'invention pourra comporter au moins trois passes, le nombre de canaux affectés à la passe d'entrée sur le nombre de canaux affectés à la passe de sortie étant compris, par exemple, entre 2 et 5, la section des canaux étant prévue constante d'un canal à l'autre.
  • Avantageusement, les plaques du condenseur sont réparties en une première série pour assurer le refroidissement du fluide de réfrigération jusqu'à sa condensation, et en une seconde série pour assurer le refroidissement du fluide de réfrigération en dessous de sa température de condensation (sous-refroidissement).
  • Avantageusement encore, le condenseur de l'invention comporte une bouteille intégrée entre la première et la seconde série de plaques.
  • Afin d'améliorer l'échange de chaleur entre les fluides, des éléments qui perturbent l'écoulement, appelés éléments turbulateurs, peuvent être prévus. Dans une variante, les éléments turbulateurs sont disposés entre les plaques. Dans une autre variante, les plaques elles-mêmes comportent des reliefs qui constituent des éléments turbulateurs.
  • De préférence, le diamètre hydraulique des canaux de circulation est compris entre 0,1 mm et 3 mm. Il pourra, notamment, être de 0,1 à 0,5 mm pour des fluides destinés à ne pas changer de phase, sauf conditions exceptionnelles, et de 0,5 à 3 mm pour des fluides destinés à être condensés. Il sera, par exemple, de 1 à 2,6 mm pour le fluide de refroidissement, qui pourra être de l'eau, notamment celle du circuit de refroidissement.
  • Enfin, les conduits annulaires sont avantageusement constitués par des cuvettes formées dans les plaques. On définit ainsi des collecteurs sans avoir à prévoir aucune pièce supplémentaire.
  • De préférence, le fluide de refroidissement est constitué par l'eau du circuit de refroidissement du moteur du véhicule automobile.
  • Par ailleurs, l'invention concerne un circuit de climatisation, notamment pour l'habitacle d'un véhicule automobile, comprenant un évaporateur, un compresseur, un condenseur, une valve de détente, dans lequel circule un fluide de réfrigération, dans lequel le condenseur est conforme à la présente invention.
  • D'autres caractéristiques et avantages de l'invention apparaîtront encore à la lecture de la description qui suit d'exemples de réalisation donnés à titre illustratif en référence aux figures annexées. Sur ces figures :
    • la Figure 1 est une vue en coupe d'un condenseur conforme à l'invention ;
    • la Figure 2 est une vue en coupe d'un condenseur conforme à l'invention, comportant deux passes sur le fluide de réfrigération ;
    • la Figure 3 est une vue schématique en perspective d'un condenseur conforme à l'invention, comportant trois passes sur le fluide de réfrigération et une passe sur le liquide de refroidissement ;
    • la Figure 4 est une vue schématique en perspective d'un condenseur conforme à l'invention, comportant deux passes sur le fluide de réfrigération et deux passes sur le liquide de refroidissement ;
    • la Figure 5 est une vue éclatée en perspective d'un échangeur à deux passes sur le fluide de réfrigération et à deux passes sur le fluide de refroidissement qui illustre la circulation de ces deux fluides ;
    • la Figure 6 est une vue extérieure en perspective d'un condenseur conforme à l'invention, comportant une bouteille intégrée ;
    • la Figure 7 est une vue de gauche du condenseur représenté sur la Figure 6 ;
    • la Figure 8 est une vue en coupe transversale du condenseur représenté sur les Figures 6 et 7 ;
    • la Figure 9 est une vue en coupe par un plan passant par l'axe longitudinal de la bouteille du condenseur des Figures 6 à 8 ;
    • la Figure 10 représente un premier mode de réalisation d'un élément turbulateur inséré entre les plaques ;
    • la Figure 11 représente une autre forme de réalisation d'un élément turbulateur inséré entre les plaques ;
    • la Figure 12 représente des turbulateurs rectilignes ondulés issus de reliefs formés dans les plaques ;
    • la Figure 13 représente des turbulateurs en chevrons issus de reliefs formés dans les plaques ; et
    • la Figure 14 représente un condenseur à trois passes conforme à l'invention.
  • On a représenté sur la Figure 1 une vue en coupe transversale d'un condenseur conforme à la présente invention. Il comprend une multiplicité de plaques courantes 2 empilées les unes sur les autres et munies chacune d'un rebord périphérique 3. Les bords périphériques sont assemblés de manière étanche pour délimiter entre les plaques 2 de premiers canaux d'écoulement pour un fluide de réfrigération F1 qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement F2. L'empilement des plaques courantes comporte une plaque d'extrémité 6 à chacune de ses extrémités.
  • Afin de renforcer la tenue du condenseur à la pression, les plaques courantes 2 sont prises en sandwich entre une plaque de renforcement inférieure 8 et une plaque de renforcement supérieure 10. Le fluide de réfrigération ou de climatisation F1 pénètre dans le condenseur par une tubulure d'entrée (non représentée sur la Figure 5) et en ressort par une tubulure de sortie 14. Le fluide de refroidissement F2 pénètre dans le condenseur par une tubulure d'entrée 20 et en ressort par une tubulure de sortie (non représentée). Le fluide de réfrigération F1 pénètre à l'état gazeux. Il circule dans les premiers canaux en échangeant de la chaleur avec le fluide de refroidissement F2, ce qui provoque sa condensation. Le fluide F1 quitte donc le condenseur à l'état liquide.
  • Le fluide de réfrigération ou de climatisation est, par exemple, un fluide R134a ou R744 (CO2), tandis que le fluide de refroidissement F2 est constitué par l'eau du circuit de refroidissement du moteur. Il pourra également s'agir d'une boucle d'eau indépendante.
  • Le condenseur représenté sur la Figure 2 comporte deux passes de circulation pour le fluide de climatisation ou réfrigération. Ce fluide pénètre dans la tubulure 12, comme schématisé par la flèche F1, il pénètre dans un conduit annulaire 24 jouant le rôle d'une boîte collectrice d'entrée et, de là, pénètre dans les premiers canaux de circulation prévus entre les plaques 2, comme schématisé par la flèche 26. Après avoir parcouru toute la surface d'échange de chaleur, le fluide de climatisation parvient dans un conduit annulaire 28 et, de là, pénètre dans les premiers canaux de circulation prévus entre les plaques 2 situées en dessous de la cloison de séparation 30, comme représenté par la flèche 32. Il traverse une seconde fois l'échangeur, de droite à gauche, selon une deuxième passe, pour parvenir dans la partie inférieure 34 du conduit annulaire jouant le rôle d'une boîte collectrice de sortie, comme schématisé par la flèche 36, et quitte le condenseur par la tubulure de sortie 14, comme schématisé par la flèche 38.
  • Comme on peut le remarquer sur la Figure 3 qui représente une vue en perspective d'un condenseur conforme à l'invention, le fluide de réfrigération F1 et le fluide de refroidissement F2 ne parcourent pas nécessairement le condenseur avec un même nombre de passes. Dans l'exemple représenté, le condenseur comporte trois passes schématisées par les flèches 40, 42 et 44 pour le fluide de réfrigération, et une passe unique schématisée par la flèche 48 pour le fluide de refroidissement F2. Le fluide F1 passe de la première passe à la seconde après avoir franchi l'orifice de passage 50, puis de la deuxième passe 42 à la troisième passe 44 après avoir franchi le passage de communication 52. Il ressort de l'échangeur par la tubulure de sortie 14. Le fluide de refroidissement F2 pénètre par la tubulure d'entrée 20, parcourt l'échangeur en une seule passe 48 et ressort du condenseur par la tubulure de sortie 22.
  • Sur la Figure 4, le condenseur comporte deux passes de circulation pour le fluide de réfrigération et deux passes également pour le fluide de refroidissement. Le fluide de réfrigération F1 pénètre dans le condenseur par la tubulure d'entrée 12, parcourt les plaques selon la première passe 54, franchit le passage de communication 56 et parcourt la deuxième passe 58 avant de ressortir par la tubulure de sortie 14. Le fluide de refroidissement F2 pénètre dans le condenseur par la tubulure d'entrée 20, parcourt la première passe comme schématisé par la flèche 60, franchit le passage de communication 62 avant de parcourir la deuxième passe 64. Il ressort ensuite de l'échangeur par la tubulure de sortie 24.
  • On a représenté schématiquement sur la Figure 5 une vue en perspective éclatée qui illustre la circulation des fluides dans un condenseur conforme à l'invention comportant deux passes de circulation pour le fluide F1 de climatisation et deux passes pour le fluide F2 de refroidissement. Le fluide F1 pénètre à la partie supérieure de l'échangeur par la tubulure d'entrée 12 dans le volume délimité par la plaque d'extrémité 6 et la plaque 2 adjacente. Une partie du fluide parcourt cet espace de gauche à droite selon la Figure 5, comme schématisé par la flèche 66. L'autre partie du fluide pénètre dans un conduit annulaire 68 disposé entre les plaques 2a et 2b, comme schématisé par la flèche 70. En sortant du conduit annulaire, il pénètre dans l'espace compris entre les plaques 2b et 2c. La fraction du fluide qui a traversé l'espace compris entre la plaque d'extrémité 6 et la première plaque courante 2a ressort de cet espace par un conduit tubulaire 72 disposé entre les plaques 2a et 2b.
  • L'espace plan compris entre les plaques 2b et 2c ne comporte qu'un seul passage de communication 74 permettant la sortie du fluide F2. Ce fluide traverse le passage annulaire 76 pour parvenir entre les plaques 2d et 2e après avoir subi un changement de sens de circulation. Il parcourt en effet cet espace de droite à gauche, alors qu'il circulait précédemment de gauche à droite.
  • De la même manière, le fluide de refroidissement F2 qui pénètre dans le condenseur par une tubulure d'entrée (non représentée) située à la partie inférieure de l'échangeur circule de gauche à droite dans les espaces plans compris entre deux plaques successives. Il passe d'un espace compris entre deux plaques à l'espace suivant, ces espaces alternant avec des espaces prévus pour le fluide F1 par des conduits annulaires similaires aux conduits 70 ou 76 mentionnés précédemment. Parvenu dans l'espace compris entre les plaques 2e et 2f, comme schématisé par la flèche 80, le fluide F2 pénètre dans le conduit annulaire 82, comme schématisé par la flèche 84, et change de sens de circulation. Dans la partie supérieure du condenseur, il circule de droite à gauche alors qu'il circulait de gauche à droite dans la partie inférieure. On réalise ainsi une deuxième passe de circulation pour le fluide F2 également.
  • On remarque ainsi que le condenseur de l'invention comporte trois types différents de plaques en ce qui concerne le nombre de passages de communication. Les plaques d'extrémité, comme la plaque 6, comportent seulement deux passages de communication, le premier pour l'entrée de l'un des fluides, le second pour la sortie de l'autre fluide. Les plaques courantes, comme la plaque 2f, comportent quatre passages de communication. Deux de ces passages sont dédiés au premier fluide F1, tandis que les deux autres passages sont dédiés au fluide F2. Les plaques situées juste avant la plaque d'extrémité 6, comme la plaque 2a, comportent trois passages de communication au lieu de quatre pour la plaque courante. La plaque 2d, qui permet de réaliser les passes de circulation des deux fluides, comporte seulement deux passages de communication. En effet, en supprimant deux des quatre passages de communication, on réalise des cloisons de séparation qui permettent de changer le sens de circulation du fluide. Les plaques 2c et 2e, adjacentes à la plaque 2d, comportent trois passages de communication, au lieu de quatre pour les plaques courantes. Il y a ainsi trois types de plaques. Les deux plaques d'extrémité et la plaque 2d comportent deux passages seulement. Les plaques adjacentes aux plaques d'extrémité et à la plaque 2d comportent trois passages, tandis que les plaques courantes du condenseur en comportent quatre.
  • A la Figure 14, on constate que le condenseur conforme à l'invention pourra comporter au moins trois passes «a», «b» et «c». Le nombre de canaux affectés à la passe d'entrée «a», c'est-à-dire la passe communiquant avec l'entrée du fluide réfrigération dans le condenseur, sur le nombre de canaux affectés à la passe de sortie «c», c'est-à-dire la passe communiquant avec la sortie du fluide réfrigération hors du condenseur, est compris entre 2 et 5, la section des canaux étant constante d'une passe à l'autre.
  • Dans le cas d'un condenseur à trois passes on pourra avoir, à titre d'exemple illustratif, de 15 à 20 canaux dans la passe d'entrée «a», de 8 à 10 canaux dans la passe intermédiaire «b» et de 4 à 7 canaux dans la passe de sortie «c». Dans l'exemple de la Figure 14, les nombres de ces canaux sont respectivement N1 = 17 pour la passe «a», N2 = 10 pour la passe «b» et N3 = 6 pour la passe «c», d'où un rapport N1/N3 = 17/6 = 2,83.
  • On a représenté sur les Figures 6 et 7, respectivement, une vue en coupe et une vue de gauche d'un second mode de réalisation d'un condenseur conforme à la présente invention. Il se distingue par le fait que ses plaques sont réparties en une première série 94 et une seconde série 96 séparées l'une de l'autre par un bâti 98 dans lequel est logée une bouteille 100. La première série de plaques 94 est relativement plus importante que la seconde série 96. Elle est de préférence située à la partie supérieure de l'échangeur, tandis que la seconde série est située à la partie inférieure.
  • Les plaques de la première série constituent une section de refroidissement du fluide de réfrigération et les plaques de la seconde série constituent une section de sous-refroidissement de ce fluide. La bouteille 100, également appelée réservoir intermédiaire, permet d'assurer la filtration et la déshydratation du fluide de réfrigération. Elle permet également de compenser ces variations de volume et d'assurer la séparation des phases liquides et gazeuses. Son interposition entre une partie amont et une partie aval 96 du condenseur permet de ne faire circuler que du fluide à l'état liquide dans la section de sous-refroidissement. Le fluide de réfrigération est ainsi refroidi au-dessous de sa température d'équilibre liquide-gaz, ce qui améliore les performances du condenseur et les rend relativement indépendantes de la quantité de fluide contenue dans le circuit de climatisation.
  • La circulation du fluide de réfrigération, ainsi que la circulation du fluide de refroidissement, peuvent être réalisées en une ou plusieurs passes dans la section de refroidissement 94, ainsi que dans la section de sous-refroidissement 16. Le fluide de réfrigération F1 pénètre dans la section de refroidissement 94 par la tubulure d'entrée 12 située en partie supérieure du condenseur. Il parcourt la section de refroidissement, en une ou plusieurs passes, puis passe dans la bouteille 100, dans laquelle il est filtré et déshydraté, puis retourne dans la section de sous-refroidissement 96 avant de quitter l'échangeur par la tubulure de sortie 14.
  • Le fluide de refroidissement F2 circule à contre-courant du fluide de réfrigération. Il pénètre à la partie inférieure du condenseur, dans la section de sous-refroidissement 96, par la tubulure d'entrée 20 (voir Figure 7), il traverse la section de sous-refroidissement 96 puis pénètre directement dans la section de refroidissement 94 avant de ressortir du condenseur par la tubulure de sortie 22. Comme on peut le voir plus particulièrement sur la Figure 7, le bâti 98 comporte deux semelles 102 et une partie centrale 103 dans laquelle sont formés trois alésages cylindriques 104 qui constituent la bouteille. L'un de ces alésages, celui de droite sur la Figure 7, reçoit un filtre et des sels dessicatifs. Les plaques de la première série 94 et de la seconde série 96 viennent en appui sur les semelles 102 du bâti 98. On remarquera par ailleurs que, dans cet exemple, leurs concavités sont opposées.
  • On a représenté sur les Figures 8 et 9, respectivement, une vue en coupe longitudinale du condenseur passant par l'axe longitudinal de la partie de la bouteille 100 comportant le filtre et les sels dessicatifs et une coupe transversale de ce même échangeur. L'alésage cylindrique 104 correspondant se prolonge par une partie cylindrique 106 faisant saillie hors du condenseur. Cette partie cylindrique reçoit un bouchon 108 comportant une tête hexagonale 110 qui permet d'obturer la bouteille. Le bouchon 108 est muni d'un joint d'étanchéité torique 112. Une cartouche cylindrique allongée 114 est logée à l'intérieur de l'alésage cylindrique 104. Elle contient le dessiccant 116 qui permet de déshydrater et de filtrer le fluide de réfrigération F1.
  • La Figure 9 permet d'apprécier la forme particulière des plaques 2 du condenseur. Chaque plaque comporte une demi-cuvette à fond plat 122 traversée par un orifice de passage 124. Lorsque les plaques de l'échangeur sont empilées, les fonds plats des cuvettes viennent au contact l'un de l'autre. Durant l'opération de brasage de l'échangeur, ils sont assemblés entre eux de manière étanche. On réalise ainsi avantageusement des conduits annulaires permettant la circulation du fluide de réfrigération F1 et du fluide de refroidissement F2 d'un canal de passage à l'autre sans avoir à utiliser de pièces supplémentaires disposées entre les plaques. Bien entendu, en variante de réalisation, une plaque sur deux pourrait être plane, la cuvette formée dans la plaque adjacente ayant une profondeur correspondant à la totalité de l'écartement entre deux plaques successives.
  • En outre, conformément à l'invention, des éléments turbulateurs (encore appelés perturbateurs) destinés à améliorer l'échange de chaleur peuvent être disposés entre les plaques. On a représenté sur la Figure 10 une première variante de réalisation d'un élément turbulateur 132. Il est constitué par une tôle emboutie conformée de manière à présenter des ondulations rectilignes 134 disposées, par exemple, dans le sens de la longueur des plaques. Dans ce cas, les plaques 2 présentent un fond généralement plan.
  • On a représenté sur la Figure 11 une autre forme de réalisation d'un élément turbulateur 136. Il comporte des emboutis 138 présentant la forme générale de créneaux. Ces créneaux sont répartis en deux séries décalées l'une par rapport à l'autre. Un tel élément turbulateur 136 est disposé entre des plaques 2 présentant également un fond généralement plan.
  • Les éléments turbulateurs 132 et 136 représentés sur les Figures 10 et 11 nécessitent de fabriquer une pièce supplémentaire et de l'intercaler entre les plaques. Il est possible de supprimer cette pièce supplémentaire en réalisant les éléments turbulateurs par des reliefs venus des plaques elles-mêmes et obtenus par une opération d'emboutissage.
  • Ainsi, sur la Figure 12, le condenseur comprend de premières plaques 140 présentant chacune un fond 142 ayant des ondulations 144 définies par des génératrices s'étendant dans une première direction D1 et de secondes plaques 146 disposées en alternance avec les premières plaques 140 et présentant chacune un fond 148 ayant des ondulations 150 définies par des génératrices s'étendant dans une seconde direction D2 qui est sensiblement perpendiculaire à la première direction D1. Les ondulations respectives des plaques permettent de donner aux canaux une structure tridimensionnelle particulière qui favorise un écoulement turbulent du fluide F1 et du fluide F2 et, par conséquent, un bon échange thermique entre eux. Ceci permet également de supprimer des éléments turbulateurs insérés entre les plaques.
  • On a représenté sur la Figure 13 une variante de réalisation des éléments turbulateurs de la Figure 12. L'échangeur comprend une première série de plaques 154 et une seconde série de plaques 156 comportant respectivement des ondulations 158 et 160 en forme de chevrons. Ces ondulations définissent également une structure tridimensionnelle des canaux d'écoulement des fluides qui favorise un écoulement turbulent et un bon échange thermique entre eux.

Claims (14)

  1. Condenseur, notamment pour un circuit de climatisation de véhicule automobile comprenant une multiplicité de plaques courantes empilées (2) assemblées pour délimiter de premiers canaux d'écoulement pour un fluide de réfrigération (F1) qui alternent avec de seconds canaux d'écoulement pour un fluide de refroidissement (F2), caractérisé en ce que les plaques (2) sont réparties en une première série (94) pour assurer le refroidissement du fluide de réfrigération jusqu'à sa condensation et en une seconde série (96) pour assurer le refroidissement du fluide de réfrigération en dessous de sa température de condensation.
  2. Condenseur selon la revendication 1, caractérisé en ce qu'il comporte une bouteille (100) intégrée entre la première et la seconde série de plaques (94, 96).
  3. Condenseur selon la revendication 1 ou 2, caractérisé en ce qu'il comporte au moins deux passes sur le fluide de réfrigération.
  4. Condenseur selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques comportent des passages de communication (124) pour permettre le passage du fluide de réfrigération (F1) et du fluide de refroidissement (F2) d'un canal d'écoulement à l'autre, des conduits annulaires (68, 122) sont prévus alternativement en regard des passages de communication pour interdire le mélange des fluides.
  5. Condenseur selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques courantes sont munies de deux passages de communication destinés au passage du fluide de réfrigération (F1) et de deux passages de communication destinés au passage du fluide de refroidissement (F2).
  6. Condenseur selon l'une quelconque des revendications précédentes, caractérisé en ce que les plaques empilées (2) sont munies de bords périphériques relevés (3), assemblés de manière étanche.
  7. Condenseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins une entrée et une sortie de fluide de réfrigération et au moins une passe (a) sur le fluide de réfrigération communiquant avec ladite entrée, dite passe d'entrée, et une autre passe (c) communiquant avec ladite sortie, dite passe de sortie, la section des passes diminuant depuis la passe d'entrée vers la passe de sortie.
  8. Condenseur selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un passage de communication du fluide de réfrigération, respectivement un passage de communication du fluide de refroidissement, est supprimé dans certaines plaques courantes pour déterminer des passes pour la circulation du fluide de réfrigération, respectivement pour la circulation du fluide de refroidissement.
  9. Condenseur selon l'une des revendications 1 à 8, caractérisé en ce que des éléments turbulateurs (132, 136) sont disposés entre les plaques (2).
  10. Condenseur selon l'une des revendications 1 à 8, caractérisé en ce que les plaques comportent des reliefs (144, 150, 158, 160) qui constituent des éléments turbulateurs.
  11. Condenseur selon l'une des revendications 1 à 10, caractérisé en ce que le diamètre hydraulique des canaux d'écoulement des fluides (F1 et F2) est compris entre 0,1 mm et 3 mm.
  12. Condenseur selon l'une des revendications 3 à 11, caractérisé en ce que les conduits annulaires sont constitués par des cuvettes (122) formées dans les plaques (2).
  13. Condenseur selon l'une des revendications 1 à 12, caractérisé en ce que le fluide de refroidissement (F2) est constitué par l'eau du circuit de refroidissement du moteur du véhicule automobile.
  14. Circuit de climatisation, notamment pour l'habitacle d'un véhicule automobile, comprenant un évaporateur, un compresseur, un condenseur, dans lequel circule un fluide de réfrigération, caractérisé en ce que le condenseur est conforme à l'une des revendications 1 à 13.
EP08158983.0A 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur Revoked EP1992891B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0213671A FR2846733B1 (fr) 2002-10-31 2002-10-31 Condenseur, notamment pour un circuit de cimatisation de vehicule automobile, et circuit comprenant ce condenseur
EP03810494A EP1592930B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur
PCT/FR2003/003055 WO2004042293A1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
EP03810494A Division EP1592930B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur

Publications (2)

Publication Number Publication Date
EP1992891A1 EP1992891A1 (fr) 2008-11-19
EP1992891B1 true EP1992891B1 (fr) 2017-06-21

Family

ID=32104360

Family Applications (2)

Application Number Title Priority Date Filing Date
EP08158983.0A Revoked EP1992891B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
EP03810494A Revoked EP1592930B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP03810494A Revoked EP1592930B1 (fr) 2002-10-31 2003-10-31 Condenseur, notamment pour un circuit de climatisation de vehicule automobile, et circuit comprenant ce condenseur

Country Status (5)

Country Link
US (2) US7469554B2 (fr)
EP (2) EP1992891B1 (fr)
AU (1) AU2003301834A1 (fr)
FR (1) FR2846733B1 (fr)
WO (1) WO2004042293A1 (fr)

Families Citing this family (89)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1562010A3 (fr) * 2004-01-30 2007-06-13 Behr GmbH & Co. KG Echangeur de chaleur
ITPN20050090A1 (it) * 2005-12-13 2007-06-14 Domnick Hunter Hiross Spa Essiccatore di gas compressi umidi
SE529769E (sv) * 2006-04-04 2014-04-22 Alfa Laval Corp Ab Plattvärmeväxlare vilken innefattar åtminstone en förstärkningsplatta vilken är anordnad utanför en av de yttre värmeväxlarplattorna
FR2923899B1 (fr) * 2007-11-20 2017-05-05 Valeo Systemes Thermiques Branche Thermique Moteur Condenseur pour circuit de climatisation avec bouteille integree
FR2924490A1 (fr) 2007-11-29 2009-06-05 Valeo Systemes Thermiques Condenseur pour circuit de climatisation avec partie de sous-refroidissement
FR2931542A1 (fr) * 2008-05-22 2009-11-27 Valeo Systemes Thermiques Echangeur de chaleur a plaques, notamment pour vehicules automobiles
US8448460B2 (en) * 2008-06-23 2013-05-28 GM Global Technology Operations LLC Vehicular combination chiller bypass system and method
WO2010060657A1 (fr) * 2008-11-26 2010-06-03 Valeo Systemes Thermiques Condenseur pour circuit de climatisation avec echangeur interne integre
FR2943774B1 (fr) * 2009-03-24 2013-12-20 Valeo Systemes Thermiques Condenseur a deux blocs d'echange de chaleur pour circuit de climatisation
FR2947041B1 (fr) * 2009-06-23 2011-05-27 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
FR2947045B1 (fr) * 2009-06-23 2013-11-29 Valeo Systemes Thermiques Bloc d'echangeur de chaleur, en particulier pour condenseur de climatisation
US8011191B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system having a variable speed compressor
FR2950682B1 (fr) 2009-09-30 2012-06-01 Valeo Systemes Thermiques Condenseur pour vehicule automobile a integration amelioree
US8011201B2 (en) * 2009-09-30 2011-09-06 Thermo Fisher Scientific (Asheville) Llc Refrigeration system mounted within a deck
FR2952172A1 (fr) * 2009-11-03 2011-05-06 Peugeot Citroen Automobiles Sa Condenseur de circuit de refrigeration a encombrement vertical reduit
DE102010026507A1 (de) 2010-07-07 2012-01-12 Behr Gmbh & Co. Kg Kältemittelkondensatormodul
FR2965336B1 (fr) 2010-09-28 2012-09-14 Valeo Systemes Thermiques Ensemble d'un echangeur de chaleur biphasique et d'une bouteille
DE102010043398A1 (de) 2010-11-04 2012-05-10 Behr Gmbh & Co. Kg Kraftfahrzeugklimaanlage
KR20120061534A (ko) * 2010-12-03 2012-06-13 현대자동차주식회사 수냉식 응축기
JP5960955B2 (ja) * 2010-12-03 2016-08-02 現代自動車株式会社Hyundai Motor Company 車両用コンデンサ
DE102011008429A1 (de) * 2011-01-12 2012-07-12 Behr Gmbh & Co. Kg Vorrichtung zur Wärmeübertragung für ein Fahrzeug
EP2673585B1 (fr) * 2011-02-08 2018-11-28 Carrier Corporation Échangeur de chaleur à plaques brazé pour dissipation thermique refroidie à l'eau dans un circuit de réfrigération
DE102011005177A1 (de) 2011-03-07 2012-09-13 Behr Gmbh & Co. Kg Kondensator
DE102011007701A1 (de) 2011-04-19 2012-10-25 Behr Gmbh & Co. Kg Kältemittelkondensatorbaugruppe
DE102011007784A1 (de) 2011-04-20 2012-10-25 Behr Gmbh & Co. Kg Kondensator
ITTO20110366A1 (it) * 2011-04-27 2012-10-28 Denso Thermal Systems Spa Gruppo integrato condensatore-accumulatore-sottoraffreddatore per veicoli
US20120291478A1 (en) 2011-05-20 2012-11-22 Kia Motors Corporation Condenser for vehicle and air conditioning system for vehicle
DE102011078136A1 (de) * 2011-06-27 2012-12-27 Behr Gmbh & Co. Kg Kältemittelkondensatormodul
KR101326841B1 (ko) * 2011-12-07 2013-11-11 현대자동차주식회사 차량용 컨덴서
KR101316859B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
KR101316858B1 (ko) * 2011-12-08 2013-10-10 현대자동차주식회사 차량용 컨덴서
CN102635984B (zh) * 2012-04-26 2016-04-06 海尔集团公司 室外机冷凝器及空调器
DE102012217090A1 (de) 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
DE102012217087A1 (de) 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
DE102012220594A1 (de) 2012-09-21 2014-03-27 Behr Gmbh & Co. Kg Kondensator
KR101416358B1 (ko) * 2012-10-05 2014-07-08 현대자동차 주식회사 차량용 열교환기
KR101461872B1 (ko) * 2012-10-16 2014-11-13 현대자동차 주식회사 차량용 응축기
KR101461871B1 (ko) * 2012-10-19 2014-11-13 현대자동차 주식회사 차량용 응축기
DE102012023125B3 (de) * 2012-11-27 2013-11-28 Modine Manufacturing Co. Herstellungsverfahren gelöteter Plattenwärmetauscher, sowie danach hergestellte Plattenwärmetauscher
DE102012224353A1 (de) * 2012-12-21 2014-06-26 Behr Gmbh & Co. Kg Wärmeübertrager
FR3000183B1 (fr) * 2012-12-21 2018-09-14 Valeo Systemes Thermiques Condenseur avec reserve de fluide frigorigene pour circuit de climatisation
ES2729602T3 (es) 2013-01-28 2019-11-05 Carrier Corp Unidad de intercambio de calor con varios bancos de tubos con un conjunto de colector
FR3001796A1 (fr) * 2013-02-07 2014-08-08 Delphi Automotive Systems Lux Agencement d’un condenseur et d’un sous-refroidisseur de climatisation
DE102013002545A1 (de) * 2013-02-14 2014-08-14 Modine Manufacturing Co. Kondensator mit einem Stapel aus Wärmetauscherplatten
US10962307B2 (en) * 2013-02-27 2021-03-30 Denso Corporation Stacked heat exchanger
JP6094261B2 (ja) * 2013-02-27 2017-03-15 株式会社デンソー 積層型熱交換器
JP6160385B2 (ja) * 2013-09-17 2017-07-12 株式会社デンソー 積層型熱交換器
WO2014158529A1 (fr) * 2013-03-14 2014-10-02 Kci Licensing, Inc. Récipient destiné à la collecte de fluide et piège à humidité intégré
EP2784413A1 (fr) * 2013-03-28 2014-10-01 VALEO AUTOSYSTEMY Sp. Z. o.o. Échangeur de chaleur, en particulier condenseur
DE102013209157A1 (de) * 2013-05-16 2014-12-04 Behr Gmbh & Co. Kg Kondensator
EP2843324B1 (fr) * 2013-08-27 2020-12-23 Johnson Controls Denmark ApS Èchangeur de chaleur calandre-plaque et utilisation d'un échangeur calandre-plaque
ES2877092T3 (es) * 2013-11-25 2021-11-16 Carrier Corp Intercambiador de calor de microcanal de doble trabajo
DE102013225321A1 (de) 2013-12-09 2015-06-11 MAHLE Behr GmbH & Co. KG Stapelscheibe für einen Wärmeübertrager und Wärmeübertrager
DE102014204936A1 (de) 2014-03-17 2015-10-01 Mahle International Gmbh Heizkühlmodul
DE102014004322B4 (de) * 2014-03-25 2020-08-27 Modine Manufacturing Company Wärmerückgewinnungssystem und Plattenwärmetauscher
US10317112B2 (en) * 2014-04-04 2019-06-11 Johnson Controls Technology Company Heat pump system with multiple operating modes
US10107490B2 (en) 2014-06-30 2018-10-23 Lam Research Corporation Configurable liquid precursor vaporizer
US10449832B2 (en) * 2014-07-24 2019-10-22 Hanon Systems Vehicle air conditioner system
US11199365B2 (en) * 2014-11-03 2021-12-14 Hamilton Sundstrand Corporation Heat exchanger
US9982341B2 (en) * 2015-01-30 2018-05-29 Lam Research Corporation Modular vaporizer
DE102016001607A1 (de) 2015-05-01 2016-11-03 Modine Manufacturing Company Flüssigkeit-zu-Kältemittel-Wärmetauscher und Verfahren zum betrieb desselben
USD763715S1 (en) * 2015-05-14 2016-08-16 Timothy Raehsler Flow timer for gas grill
WO2016198907A1 (fr) * 2015-06-09 2016-12-15 Carrier Corporation Filtre-sécheur intégré dans un échangeur de chaleur à plaques
US10662527B2 (en) 2016-06-01 2020-05-26 Asm Ip Holding B.V. Manifolds for uniform vapor deposition
FR3059400A1 (fr) * 2016-11-25 2018-06-01 Valeo Systemes Thermiques Echangeur de chaleur entre un fluide refrigerant et un liquide caloporteur
DK179183B1 (en) * 2017-03-01 2018-01-15 Danfoss As Dividing plate between Heat plates
WO2018162062A1 (fr) * 2017-03-09 2018-09-13 Abb Schweiz Ag Élément périphérique, rotor et machine électrique
JP2019002350A (ja) * 2017-06-15 2019-01-10 カルソニックカンセイ株式会社 冷却システム
US10935288B2 (en) * 2017-08-28 2021-03-02 Hanon Systems Condenser
DE202018104653U1 (de) 2017-09-06 2018-09-05 Erbslöh Aluminium Gmbh Kondensator, insbesondere für ein Kraftfahrzeug
CN107687781B (zh) * 2017-09-21 2023-08-08 江苏宝得换热设备股份有限公司 一种多层充分热交换的储水式换热器
DE102018200808A1 (de) 2018-01-18 2019-07-18 Mahle International Gmbh Stapelscheibenwärmetauscher
IT201800004061A1 (it) * 2018-03-29 2019-09-29 Denso Thermal Systems Spa Sistema di climatizzazione per autobus.
EP3572754B1 (fr) * 2018-05-24 2020-12-16 Valeo Autosystemy SP. Z.O.O. Échangeur de chaleur
DE102018129988A1 (de) * 2018-07-09 2020-01-09 Hanon Systems Kompaktwärmeübertragereinheit und Klimaanlagenmodul, insbesondere für Elektrofahrzeuge
DE112019003749T5 (de) * 2018-07-24 2021-04-08 Hanon Systems Kondensator vom wassergekühlten typ
US11492701B2 (en) 2019-03-19 2022-11-08 Asm Ip Holding B.V. Reactor manifolds
DE102019210022A1 (de) * 2019-07-08 2021-01-14 Mahle International Gmbh Wärmeübertragermodul und Verfahren zum Herstellen des Wärmeübertragermoduls
JP7400234B2 (ja) * 2019-07-16 2023-12-19 株式会社デンソー 熱交換器
WO2021040274A1 (fr) * 2019-08-27 2021-03-04 한온시스템 주식회사 Condenseur du type à refroidissement par eau
KR20210048408A (ko) 2019-10-22 2021-05-03 에이에스엠 아이피 홀딩 비.브이. 반도체 증착 반응기 매니폴드
FR3102552B1 (fr) * 2019-10-29 2022-07-29 Valeo Systemes Thermiques Dispositif d’échange d’énergie calorifique comportant deux échangeurs de chaleur à plaques
DK180416B1 (en) * 2019-11-04 2021-04-22 Danfoss As Plate-and-shell heat exchanger and a channel blocking plate for a plate-and-shell heat exchanger
KR102166920B1 (ko) * 2019-12-18 2020-10-16 에스트라오토모티브시스템 주식회사 차량용 열교환기
DE102020202323A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator
DE102020202326A1 (de) 2020-02-24 2021-08-26 Mahle International Gmbh Kältemittelkondensator
FR3124588B1 (fr) * 2021-06-29 2023-11-24 Valeo Systemes Thermiques Echangeur thermique pour véhicule automobile
US12083855B2 (en) * 2021-12-07 2024-09-10 Mahle International Gmbh Plate IHX as mounting plate for refrigerant module
DE102023210867A1 (de) * 2023-01-23 2024-07-25 Hanon Systems Kühler mit zwei weitgehend parallelen Platten

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5129449A (en) 1990-12-26 1992-07-14 Sundstrand Corporation High performance heat exchanger
EP0583851A2 (fr) 1985-10-02 1994-02-23 Modine Manufacturing Company Echangeur de chaleur
DE4238853A1 (de) 1992-11-18 1994-05-19 Behr Gmbh & Co Kondensator für eine Klimaanlage eines Fahrzeuges
FR2758876A1 (fr) 1997-01-27 1998-07-31 Valeo Thermique Moteur Sa Condenseur muni d'un reservoir de fluide refrigerant pour circuit de climatisation
DE19830329A1 (de) 1997-07-10 1999-01-14 Denso Corp Kühl- bzw. Kältemittelkondensator mit Überkühlungsbereich
JP2000258082A (ja) 1999-03-09 2000-09-22 Sanyo Electric Co Ltd 水・冷媒熱交換器
JP2000356483A (ja) 1999-06-16 2000-12-26 Nhk Spring Co Ltd 熱交換器
EP1065454A1 (fr) 1999-07-02 2001-01-03 Modine Manufacturing Company condenseur à refroidissement par air
DE29624264U1 (de) 1995-11-22 2001-08-16 Volkswagen Ag, 38440 Wolfsburg Trockneranordnung am Kältemittel-Kondensator einer Fahrzeug-Klimaanlage
DE10018478A1 (de) 2000-04-14 2001-10-18 Behr Gmbh & Co Kondensator für eine Klimaanlage, insbesondere für eine Klimaanlage eines Kraftfahrzeuges
EP1147930A1 (fr) 2000-03-24 2001-10-24 Modine Manufacturing Company Condenseur pour la climatisation de véhicule automobile
FR2808869A1 (fr) 2000-05-09 2001-11-16 Sanden Corp Condenseur de type a sous-refroidissement
WO2001088454A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Condenseur et echangeur thermique de vehicule automobile
WO2001087656A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Ensemble combine compresseur et condensateur pour vehicule automobile

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE350706A (fr)
US4274482A (en) * 1978-08-21 1981-06-23 Nihon Radiator Co., Ltd. Laminated evaporator
US4592414A (en) * 1985-03-06 1986-06-03 Mccord Heat Transfer Corporation Heat exchanger core construction utilizing a plate member adaptable for producing either a single or double pass flow arrangement
EP0292245A1 (fr) * 1987-05-21 1988-11-23 Heatric Pty. Limited Echangeur de chaleur à plaques plates
SE502254C2 (sv) * 1990-12-17 1995-09-25 Alfa Laval Thermal Ab Plattvärmeväxlare och förfarande för framställning av en plattvärmeväxlare
JP3243924B2 (ja) * 1994-04-01 2002-01-07 株式会社デンソー 冷媒凝縮器
DE69507070T2 (de) * 1994-04-12 1999-06-10 Showa Aluminum Corp., Sakai, Osaka Doppelwärmetauscher in Stapelbauweise
DE4431413C2 (de) * 1994-08-24 2002-10-10 Rehberg Michael Plattenwärmetauscher für flüssige und gasförmige Medien
SE504799C2 (sv) * 1995-08-23 1997-04-28 Swep International Ab Trekrets-värmeväxlare
US5901573A (en) * 1995-11-02 1999-05-11 Calsonic Corporation Condenser structure with liquid tank
AT405571B (de) * 1996-02-15 1999-09-27 Ktm Kuehler Gmbh Plattenwärmetauscher, insbesondere ölkühler
JP3814917B2 (ja) * 1997-02-26 2006-08-30 株式会社デンソー 積層型蒸発器
US5752560A (en) * 1997-03-21 1998-05-19 Cherng; Bing Jye Electric sunshield for automobiles
JP3899444B2 (ja) * 1997-03-25 2007-03-28 三菱電機株式会社 冷却装置
JPH10332227A (ja) * 1997-05-29 1998-12-15 Showa Alum Corp 受液器付き凝縮器
KR100264815B1 (ko) * 1997-06-16 2000-09-01 신영주 다단기액분리형응축기
JPH11287574A (ja) * 1998-03-31 1999-10-19 Hisaka Works Ltd ブレージングプレート式熱交換器
JP3936088B2 (ja) * 1998-12-08 2007-06-27 大阪瓦斯株式会社 三流体用プレート式熱交換器、及び、その製造方法
CA2260890A1 (fr) * 1999-02-05 2000-08-05 Long Manufacturing Ltd. Echangeurs de chaleur fermes
JP2000266492A (ja) * 1999-03-12 2000-09-29 Sanden Corp 積層型熱交換器
FR2795165B1 (fr) * 1999-06-21 2001-09-07 Valeo Thermique Moteur Sa Echangeur de chaleur a plaques, en particulier refroidisseur d'huile pour vehicule automobile
US6357516B1 (en) * 2000-02-02 2002-03-19 York International Corporation Plate heat exchanger assembly with enhanced heat transfer characteristics
US20030010483A1 (en) * 2001-07-13 2003-01-16 Yasuo Ikezaki Plate type heat exchanger
JP2003139460A (ja) * 2001-11-01 2003-05-14 Abi:Kk 変動磁場発生装置、冷凍装置および均一な変動磁場の発生方法
US6948559B2 (en) * 2003-02-19 2005-09-27 Modine Manufacturing Company Three-fluid evaporative heat exchanger

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0583851A2 (fr) 1985-10-02 1994-02-23 Modine Manufacturing Company Echangeur de chaleur
US5129449A (en) 1990-12-26 1992-07-14 Sundstrand Corporation High performance heat exchanger
DE4238853A1 (de) 1992-11-18 1994-05-19 Behr Gmbh & Co Kondensator für eine Klimaanlage eines Fahrzeuges
DE29624264U1 (de) 1995-11-22 2001-08-16 Volkswagen Ag, 38440 Wolfsburg Trockneranordnung am Kältemittel-Kondensator einer Fahrzeug-Klimaanlage
FR2758876A1 (fr) 1997-01-27 1998-07-31 Valeo Thermique Moteur Sa Condenseur muni d'un reservoir de fluide refrigerant pour circuit de climatisation
DE19830329A1 (de) 1997-07-10 1999-01-14 Denso Corp Kühl- bzw. Kältemittelkondensator mit Überkühlungsbereich
JP2000258082A (ja) 1999-03-09 2000-09-22 Sanyo Electric Co Ltd 水・冷媒熱交換器
JP2000356483A (ja) 1999-06-16 2000-12-26 Nhk Spring Co Ltd 熱交換器
EP1065454A1 (fr) 1999-07-02 2001-01-03 Modine Manufacturing Company condenseur à refroidissement par air
EP1147930A1 (fr) 2000-03-24 2001-10-24 Modine Manufacturing Company Condenseur pour la climatisation de véhicule automobile
DE10018478A1 (de) 2000-04-14 2001-10-18 Behr Gmbh & Co Kondensator für eine Klimaanlage, insbesondere für eine Klimaanlage eines Kraftfahrzeuges
FR2808869A1 (fr) 2000-05-09 2001-11-16 Sanden Corp Condenseur de type a sous-refroidissement
WO2001088454A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Condenseur et echangeur thermique de vehicule automobile
WO2001087656A1 (fr) 2000-05-19 2001-11-22 Llanelli Radiators Limited Ensemble combine compresseur et condensateur pour vehicule automobile

Also Published As

Publication number Publication date
AU2003301834A1 (en) 2004-06-07
US8122736B2 (en) 2012-02-28
US7469554B2 (en) 2008-12-30
US20060053833A1 (en) 2006-03-16
FR2846733A1 (fr) 2004-05-07
EP1592930A1 (fr) 2005-11-09
WO2004042293A1 (fr) 2004-05-21
US20090071189A1 (en) 2009-03-19
EP1592930B1 (fr) 2013-02-13
FR2846733B1 (fr) 2006-09-15
EP1992891A1 (fr) 2008-11-19

Similar Documents

Publication Publication Date Title
EP1992891B1 (fr) Condenseur, notamment pour un circuit de climatisation de véhicule automobile, et circuit comprenant ce condenseur
FR2846736A1 (fr) Module d'echange de chaleur a plaques empilees, notamment pour un vehicule automobile
EP1762808A1 (fr) Elément de circuit à tubes plats, et échangeur de chaleur muni de tels éléments de circuit
WO2013001019A1 (fr) Echangeur de chaleur, boitier et circuit de climatisation comprenant un tel echangeur
EP2638350B1 (fr) Echangeur de chaleur fluide/fluide.
EP1770346B1 (fr) Echangeur de chaleur à tubes plats alternés
EP2105693A1 (fr) Echangeur de chaleur à puissance frigorifique élevée
WO2016173935A1 (fr) Echangeur de chaleur a plaques empilees
WO2005031237A2 (fr) Element de circuit pour échangeur de chaleur , et échangeur de chaleur ainsi obtenu
WO2012055790A1 (fr) Echangeur de chaleur avec alimentation en fluide latérale.
EP3394551A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3001795A1 (fr) Agencement d’echangeurs thermiques a plaques
EP1265045B1 (fr) Evaporateur de puissance frigorifique élevée pour boucle de climatisation de véhicule
EP2392877B1 (fr) Système unitaire comprenant un condenseur, un échangeur de chaleur interne et une bouteille
EP3394555A1 (fr) Échangeur thermique, notamment pour vehicule automobile
EP1546627B1 (fr) Echangeur de chaleur a plaques, en particulier pour vehicles automobiles
EP4396515A1 (fr) Échangeur de chaleur pour boucle de fluide réfrigérant
EP2072936B1 (fr) Echangeur de chaleur unitaire pour un circuit de climatisation
WO2020239533A1 (fr) Bouteille pour condenseur a eau de vehicule automobile
FR2923901A1 (fr) Dispositif d'echange de chaleur a stockage de frigories
WO2019115885A1 (fr) Échangeur thermique, notamment évaporateur, muni d'un dispositif de raccordement pour l'introduction et l'extraction d'un fluide caloporteur
WO2017109349A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR2929387A1 (fr) Echangeur de chaleur a resistance a la pression amelioree
WO2017109348A1 (fr) Échangeur thermique, notamment pour véhicule automobile
FR3045806A1 (fr) Echangeur thermique, notamment pour vehicule automobile

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AC Divisional application: reference to earlier application

Ref document number: 1592930

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

17P Request for examination filed

Effective date: 20090415

17Q First examination report despatched

Effective date: 20090515

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20170105

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AC Divisional application: reference to earlier application

Ref document number: 1592930

Country of ref document: EP

Kind code of ref document: P

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 903328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170715

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60350351

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170922

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 903328

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170921

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: DE

Ref legal event code: R026

Ref document number: 60350351

Country of ref document: DE

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: MAHLE INTERNATIONAL GMBH

Effective date: 20180316

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171031

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180420

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20031031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170621

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170621

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20200918

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20201009

Year of fee payment: 18

Ref country code: FR

Payment date: 20201030

Year of fee payment: 18

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60350351

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220503

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

RDAF Communication despatched that patent is revoked

Free format text: ORIGINAL CODE: EPIDOSNREV1

REG Reference to a national code

Ref country code: DE

Ref legal event code: R103

Ref document number: 60350351

Country of ref document: DE

Ref country code: DE

Ref legal event code: R064

Ref document number: 60350351

Country of ref document: DE

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20230811