[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1814660A1 - Use of titanium dioxide mixtures for producing catalysts - Google Patents

Use of titanium dioxide mixtures for producing catalysts

Info

Publication number
EP1814660A1
EP1814660A1 EP05815892A EP05815892A EP1814660A1 EP 1814660 A1 EP1814660 A1 EP 1814660A1 EP 05815892 A EP05815892 A EP 05815892A EP 05815892 A EP05815892 A EP 05815892A EP 1814660 A1 EP1814660 A1 EP 1814660A1
Authority
EP
European Patent Office
Prior art keywords
weight
catalyst
titanium dioxide
layer
anatase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05815892A
Other languages
German (de)
French (fr)
Inventor
Samuel Neto
Sebastian Storck
Jürgen ZÜHLKE
Frank Rosowski
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1814660A1 publication Critical patent/EP1814660A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0232Coating by pulverisation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/21Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen
    • C07C51/255Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting
    • C07C51/265Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation with molecular oxygen of compounds containing six-membered aromatic rings without ring-splitting having alkyl side chains which are oxidised to carboxyl groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • C07C51/31Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting
    • C07C51/313Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation of cyclic compounds with ring-splitting with molecular oxygen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts

Definitions

  • the present invention relates to the use of titanium dioxide mixtures of the anatase form with defined physical properties for the preparation of catalysts which are particularly suitable for phthalic anhydride synthesis. Furthermore, the invention relates to catalysts which contain titanium dioxide mixtures of the anatase form with defined physical properties.
  • Titanium dioxide in the anatase modification is the main constituent of the active composition of the phthalic anhydride catalysts and serves to support the catalytically active and selective vanadium pentoxide components.
  • DE-A 2 106 796 describes the preparation of supported catalysts for the oxidation of o-xylene to phthalic anhydride, wherein the titanium dioxide has a BET surface area of 15 to 100 m 2 / g, preferably 25 to 50 m 2 / g. Particularly suitable is a mixture of anatase of the BET surface area of 7 to 11 m 2 / g and titanium dioxide hydrate of BET surface area> 100 m 2 / g, wherein the components alone would not be suitable.
  • EP-A 522 871 describes a relationship between the BET surface area of the titanium dioxide and the catalyst activity.
  • the catalyst activity is when titanium dioxide having BET surface areas of below
  • BET surface areas are preferably from 15 to 40 m 2 / g.
  • the individual catalyst layers are structured so that in general the activity of the individual layers increases from the reactor inlet to the reactor outlet.
  • EP-A 985 648 describes the preparation of phthalic anhydride by catalytic gas phase oxidation of o-xylene and / or naphthalene with a catalyst system which is structured so that the porosity of the catalyst and thus the activity from the reactor inlet to the reactor outlet increases quasi-continuously.
  • the porosity is defined by the free volume between the coated moldings of the bed in the reaction tube.
  • the specific surface area of the active components changed by the variation of the specific surface of titanium dioxide, this was between 40 and 140 m 2 / g.
  • the BET surface area of the titanium dioxide should be between 10 and 60 m 2 / g. In the examples of EP-A1 063 222, the BET surface area is constant at 22 m 2 / g.
  • the decrease in the activity of the first catalyst layer with respect to the life of the catalyst has a negative effect.
  • sales decline in the range of the first highly selective layer.
  • the main reaction zone migrates deeper and deeper into the catalyst bed over the course of the catalyst life, i.
  • the o-xylene or Naphthalinfeed is increasingly implemented only in the subsequent less selective layers.
  • the result is reduced Phthalcicreanhydridausbeuten and an increased concentration of by-products or unreacted starting materials.
  • the salt bath temperature can be raised steadily. As the catalyst life increases, however, this measure also leads to a reduction in the phthalic anhydride yield.
  • the object was therefore to show catalysts with improved properties, in particular with respect to the yield. Above all, it is intended to show oxidation catalysts, in particular phthalic anhydride catalysts having improved activity, selectivity and yield.
  • the object further consisted of finding oxidation catalysts which, when used in an activity-structured multilayer catalyst system, combine the advantages thereof with those of a high service life and high selectivity in the first catalyst layers.
  • titanium dioxide (s) A in anatase modification which has a BET surface area greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 ⁇ mol / m 2
  • titanium dioxide (s) B in anatase modification which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ Ti 3+ from 0.6 to 7 ⁇ mol / m 2
  • titanium dioxide (s) A which has a BET surface area of 18 to 90 m 2 / g, in particular from 18 to 55 m 2 / g. Titanium dioxide A preferably has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 17 ⁇ mol / m 2 .
  • Titanium dioxide B 1 which has a BET surface area of 3 to 15 m 2 / g. Titanium dioxide B preferably has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 5 ⁇ mol / m 2 .
  • the BET surface area of the titanium dioxide mixture of A and B advantageously has a value of from 5 to 50 m 2 / g, in particular from 10 to 30 m 2 / g.
  • the mixture is advantageously carried out with a ratio of titanium dioxide (s) A to titanium oxides (B) of from 0.5: 1 to 6: 1, in particular from 1: 1 to 5: 1.
  • titanium dioxide mixture used according to the invention particularly preferably consists of one titanium dioxide each from group A and B.
  • the titanium dioxide mixture used according to the invention is suitable for the preparation of catalysts which are used in an activity-structured at least two-phase, preferably at least three-layered catalyst system in the uppermost or the upper, in particular in the upper, catalyst entrance to the reactor entrance.
  • An activity-structured catalyst system is understood as meaning a system of different catalyst layers, the activity of the catalysts changing from one layer to the next. In general, preference is given to catalyst systems whose activity increases virtually continuously from the reactor inlet to the reactor outlet. However, one or more intermediate or intermediate catalyst layers which have a higher activity than the subsequent layers can be used.
  • titanium dioxide mixture used according to the invention when using the titanium dioxide mixture used according to the invention in a multilayer catalyst system, it is advantageous in the uppermost layer with a ratio of titanium dioxide (e) A to titanium dioxide (s) B of 0.8: 1 to 3: 1, in particular 1 : 1 to 2.5: 1 used. Titanium dioxide mixtures or pure titanium dioxides of the anatase modification can be used in the further layers. When using titanium dioxide mixtures, the ratio of A to B in the next lower layer is advantageously 2: 1 to 5: 1.
  • the titanium dioxide mixture mentioned is particularly suitable for the preparation of oxidation catalysts for the synthesis of aldehydes, carboxylic acids and / or carboxylic acid anhydrides.
  • the titanium dioxide mixture mentioned is particularly suitable for the preparation of phthalic anhydride catalysts which are prepared in an activity-structured at least two-layer, preferably at least three-day catalyst system in the uppermost (in a two-layer catalyst system) or in the two uppermost or in the uppermost lysator für used (in a three- or multi-layer catalyst system) were ⁇ the.
  • the catalyst top layer according to the invention may contain one or more catalyst layers as a precursor to said titanium dioxide mixture.
  • benzaldehyde, benzoic acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, pyromellitic anhydride or nicotinic acid can advantageously be prepared using the catalyst according to the invention, which is described below.
  • a mixture of a gas comprising molecular oxygen, for example air, and the starting material to be oxidized is generally passed through tubes in which there is a charge of the catalyst according to the invention.
  • the oxidation is carried out using the catalyst according to the invention in an activity-structured catalyst system.
  • Suitable catalysts are oxidic supported catalysts.
  • coated catalysts in which the catalytically active composition has been applied to the carrier in the form of a dish have proven particularly useful.
  • the catalytically active constituent used is preferably vanadium pentoxide.
  • promoters are, for example, the alkali metal oxides, thallium (I) oxide, aluminum oxide, zirconium oxide, iron oxide, nickel oxide, cobalt baltoxid, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, antimony oxide, cerium oxide and phosphorus pentoxide.
  • promoters are, for example, the alkali metal oxides, thallium (I) oxide, aluminum oxide, zirconium oxide, iron oxide, nickel oxide, cobalt baltoxid, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, antimony oxide, cerium oxide and phosphorus pentoxide.
  • the alkali metal oxides act, for example, as promoters which reduce the activity and increase the selectivity.
  • organic binders preferably copolymers, advantageously in the form of an aqueous dispersion, of vinyl acetate / vinyl laurate, vinyl acetate / acrylate, styrene / acrylate, vinyl acetate / maleate, vinyl acetate / ethylene and hydroxyethyl cellulose can be added to the catalytically active composition, with binder amounts of from 3 to 20 % By weight, based on the solids content of the solution of the active ingredient components, were used (EP-A 744 214).
  • Organic binders are preferably used as described in DE-A 198 24 532.
  • coating temperatures above 15O 0 C is advantageous.
  • the surrounded angege ⁇ usable coating temperatures depending on ver ⁇ dietarytem binder comprises between 50 and 45O 0 C (DE-A 2106796).
  • the applied binders burn out after filling the catalyst and starting up the reactor within a short time.
  • the binder additive has the advantage that the active material adheres well to the carrier, so that transport and filling of the catalyst are facilitated.
  • the catalyst for the Phthalcicreanhydrisynthese has on porous and / or non-porous support material advantageously 5 to 15 wt .-% based on the total catalyst, active composition, said active composition 3 to 30 wt .-% V 2 O 5 , 0 to 4 Wt .-% Sb 2 O 3 , 0 to 1, 0 wt .-% P, 0 to 1, 5 wt .-% alkali (calc.
  • titanium dioxide (s) A in anatase modification which has a BET surface area of greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 ⁇ mol / m 2
  • titanium dioxide (e) B in anatase modification which has a BET surface area of less than or equal to 15 m 2 / g and a Wasserstoffauf ⁇ assumption for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 mol / m 2 .
  • the catalyst on carrier material has from 5 to 12% by weight, based on the total catalyst, of active composition, this active composition being from 3 to 20% by weight of V 2 O 5 , 0 to 4 Wt .-% Sb 2 O 3 , 0 to 0.5 wt .-% P, 0.1 to 1, 5 wt .-% alkali (calc.
  • titanium dioxide (e) A in Anatase modification which has a BET surface area of greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 ⁇ mol / m 2
  • titanium dioxide (e) B in anatase modification which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 ⁇ mol / m 2 .
  • multilayer catalyst systems are used in which the less active catalyst is placed in a fixed bed such that the reaction gas first with this catalyst and only then with the more active catalyst in the second layer comes into contact. If appropriate, pre-or intermediate-layer catalyst layers which have a higher activity than the subsequent catalyst layer can be used. Subsequently, the reaction gas comes into contact with the still more active catalyst layers.
  • the differently active catalysts can be thermostated to the same or different temperatures.
  • three- to five-day catalyst systems are used, in particular three- and four-layer catalyst systems.
  • catalyst systems whose catalyst activity increases quasi-continuously from layer to layer are preferred.
  • the catalysts for the synthesis of phthalic anhydride have the following composition:
  • an alkali (calculated as alkali metal), in particular cesium oxide, and the remainder to 100% by weight of a mixture of titanium dioxide (s) A in anatase modification which has a BET surface area greater than than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 ⁇ mol / m 2
  • titanium dioxide (e) B in anatase modification which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 ⁇ mol / m 2
  • an alkali (calculated as the alkali metal), in particular cesium oxide 0 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the remainder to 100 wt .-% titanium dioxide in anatase, given Where appropriate as in layer a)
  • Active composition 5 to 30% by weight of vanadium (calculated as V 2 O 5 ) 0 to 3 wt .-% antimony trioxide
  • an alkali (calculated as the alkali metal), in particular cesium oxide 0.05 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the balance to 100 wt .-% titanium dioxide, in particular in anatase modification, if appropriate as in layer a).
  • the catalysts have the following composition:
  • From 6 to 11% by weight of vanadium (calculated as V 2 O 5 ) from 0 to 3% by weight of antimony trioxide contains from 0.1 to 1% by weight of an alkali (calculated as alkali metal), in particular cesium oxide, and the remainder to 100 %
  • a mixture of titanium dioxide (s) A in anatase modification which has a BET surface area of greater than 15 m 2 / g and a hydrogen absorption for the reduction of Ti 4+ to Ti 3+ from 5 to 20 micromol / m 2 has auf ⁇
  • titanium dioxide (s) B in the anatase modification the m a BET surface area of less than or equal to 15 2 / g and an absorption of hydrogen for the reduction of Ti 4+ to Ti 3+ 0.6 to 7 has ⁇ mol / m 2
  • active composition based on the total catalyst, this active composition being:
  • an alkali (calculated as alkali metal), in particular cesium oxide 0 to 0.4% by weight of phosphorus pentoxide (calculated as P) and the remainder to 100% by weight of titanium dioxide in anatase modification Where appropriate as in layer a)
  • active composition based on the total catalyst, this active composition being:
  • an alkali (calculated as the alkali metal), in particular cesium oxide 0 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the remainder to 100 wt .-% titanium dioxide in anatase, given Where appropriate as in layer a) for the fourth layer (layer c, towards the reactor exit)): 8 to 12% by weight of active composition based on the total catalyst, this active compound being:
  • the catalyst layers a), b1), b2) and / or c) can also be arranged so that they each consist of two or more layers. These interlayers advantageously have intermediate catalyst compositions.
  • a quasi-continuous transition of the layers and a quasi-uniform increase in the activity can be effected by forming a zone with a mixing of the following catalysts in the transition from one layer to the next layer performs.
  • the catalysts are filled in layers to react in the tubes of a Rohrbündelre ⁇ actuator.
  • the reaction gas at salt bath temperatures of generally 300 to 45O 0 C, preferably 320 to 42O 0 C and more preferably 340 to 400 0 C, passed.
  • the different catalyst beds can also be thermostated to different temperatures.
  • the bed length of the first catalyst layer preferably accounts for more than 20 to 80% of the total catalyst fill level in the reactor.
  • the bed height of the first two, or the first three catalyst layers advantageously makes up more than 60 to 95% of the total Katalysator collliere. If appropriate, one or more catalyst layers, which preferably make up less than 20% of the total catalyst charge height, may be disposed upstream of the first catalyst layer mentioned.
  • Typical reactors have a filling height of 250 cm to 350 cm.
  • the Katalysator ⁇ layers can also be optionally distributed to several reactors.
  • the reaction gas (starting gas mixture) fed to the catalyst is generally accompanied by mixing a gas containing molecular oxygen, which may also contain suitable reaction moderators, such as nitrogen, and / or diluents, such as steam and / or carbon dioxide, besides oxygen the oxidized o-xylene or naphthalene produced.
  • the reaction gas generally contains 1 to 100 mol%, preferably 2 to 50 mol%, and particularly preferably 10 to 30 mol% of oxygen.
  • the reaction gas is mixed with 5 to 140 g / Nm 3 gas, preferential Example 60 to 120 g / Nm 3 and more preferably 80 to 120 g / Nm 3 o-xylene and / or naphthalene loaded.
  • the catalyst used is preferably an even more active catalyst in comparison to the catalyst of the last layer.
  • the catalysts of the invention have the advantage of improved performance. This improvement can be observed even at high loadings with o-xylene and / or naphthalene, eg at 100 g / Nm 3 .
  • the resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after one hour of calcination at 450 ° C., contained 7.1% by weight of vanadium (calculated as V 2 O 5 ), 1.8% by weight of anti-mon (calculated as Sb 2 O) 3 ), 0.36 wt% cesium (calculated as Cs).
  • the BET surface area of the TiO 2 mixture was 15.8 m 2 / g.
  • the resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the thus applied catalytically active material, ie the catalyst shell comprised one hour calcination at 45O 0 C 7.1 wt .-% of vanadium (calculated as V 2 O 5), 2.4 wt .-% antimony (calculated as Sb 2 O 3 ), 0.26 wt% cesium (calculated as Cs).
  • the BET surface area of the TiO 2 mixture was 16.4 m 2 / g.
  • organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50 wt .-% aqueous dispersion.
  • the resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the catalytically active material applied in this manner ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.1% by weight of vanadium (calculated as V 2 O 5 ), 2.4% by weight of antimony (calculated as Sb 2 O 3 ), 0.10% by weight of cesium (calculated as Cs).
  • the BET surface area of the TiO 2 mixture was 16.4 m 2 / g.
  • the resulting suspension was subsequently sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the catalytically active material applied in this manner ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 20.00% by weight of vanadium (calculated as V 2 O 5 ), 0.38% by weight of phosphorus (calculated as P).
  • the BET surface area of the TiO 2 mixture was 20.9 m 2 / g.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, OD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied Aktivmassen ⁇ shell was 8% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.36% by weight of Cs.
  • the BET surface area was 14.7 m 2 / g.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, OD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied Aktivmassen ⁇ shell was 9% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 8.6% by weight of V 2 O 5 , 2.6% by weight of Sb 2 O 3 , 0.10% by weight of Cs.
  • the BET surface area was 20.8 m 2 / g.
  • Undercoat (c) 24.6 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 ⁇ mol / m 2 ), 73.7 g anatase (BET-OF 30 m 2 / g, H 2 Uptake: 2.8 ⁇ mol / m 2 ), 25.0 g of V 2 O 5 , 1.7 g of NH 4 H 2 PO 4 were suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 62 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, AD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied active mass shell was 10% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 20.0% by weight of V 2 O 5 , 0.4% by weight of P.
  • the BET surface area was 24.2 m 2 / gA 2
  • the suspension was applied to 1200 g of steatite molded body (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, outside diameter (AD) ⁇ length (L) ⁇ inside diameter (ID)) by spraying.
  • the weight of the applied active composition shell was 8% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcining at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.33% by weight of Cs.
  • the BET surface area was 18.4 m 2 / g.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, AD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied active mass shell was 9% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner contained 11.5% by weight of V 2 O 5 , 0.4% by weight of P.
  • the BET surface area was 21. 3 m 2 / g ,
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, AD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied active mass shell was 9% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcining at 400 ° C. for 4 h, contained 20.0% by weight of V 2 O 5 , 0.4% by weight of P.
  • the BET surface area was 19.9 m 2 / g ,
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, OD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied Aktivmassen ⁇ shell was 8% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.36% by weight of Cs.
  • the BET surface area was 16.1 m 2 / g.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, AD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied active mass shell was 9% of the total weight of the finished catalyst.
  • the catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.10% by weight of Cs, 0.4 wt.% P.
  • the BET surface area was 17.3 m 2 / g.
  • the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, AD ⁇ L ⁇ ID) by spraying.
  • the weight of the applied active mass shell was 10% of the total weight of the finished catalyst.
  • the BET surface area was
  • the suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, (AD) ⁇ (L) ⁇ (ID)) and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the catalytically active mass applied in this way ie the catalyst shell, after one hour of calcination to 450 0 C contained 7.12 wt .-% vanadium (calculated as V 2 O 5 ), 2.37 wt .-% antimony (calculated as Sb 2 O 3 ), 0.36 wt Cesium (calculated as Cs), 27.20% by weight of titanium dioxide (TiO 2 -I) and 63.46% by weight of titanium dioxide (TiO 2 -2).
  • the catalytically active material applied in this manner ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.12% by weight of vanadium (calculated as V 2 O 5 ), 2.37% by weight of antimony (calculated as Sb 2 O 3 ), 0.26 wt.% Cesium (calculated as Cs), 22.60 wt.% Titanium dioxide (TiO 2 -I) and 67.79 wt.% Titanium dioxide (TiO 2 -2).
  • the suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 ⁇ 7 ⁇ 4 mm, (AD) ⁇ (L) ⁇ (ID)) and dried.
  • the weight of the applied shell was 8% of the total weight of the finished catalyst.
  • the catalytically active material applied in this manner ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.12% by weight of vanadium (calculated as V 2 O 5 ), 2.37% by weight of antimony (calculated as Sb 2 O 3 ), 0.10% by weight of cesium (calculated as Cs), 22.60% by weight of titanium dioxide (TiO 2 -I) and 67.79% by weight of titanium dioxide (TiO 2 -2).
  • the catalytically active material applied in this manner ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 20.0% by weight of vanadium (calculated as V 2 O 5 ), 0.38% by weight of phosphorus (calculated as P), 15.73% by weight of titanium dioxide (TiO 2 -I) and 62.90% by weight of titanium dioxide (TiO 2 -3).
  • 200 mg of the TiO 2 in the anatase modification were positioned as a powdery bed in the reactor.
  • a pretreatment was carried out to remove adsorbed water.
  • the sample was heated in helium at 20 K / min to 673 K and left for one hour at this temperature. After cooling to below 232 K and purging in helium, the experiment was carried out.
  • the sample was heated with a ramp of 15 K / min to a final temperature of 1373 K in H 2 / He stream (10% H 2 in He, flow: 30 Nml / min).
  • the hydrogen consumption was determined by gas chromatography (thermal conductivity detector) and then normalized to the amount / surface area of the sample.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Furan Compounds (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

The invention relates to the use of titanium dioxide mixtures of the anatase form having defined physical properties for producing catalysts, which are particularly suitable for phthalic anhydride syntheses. The invention also relates to catalysts which contain titanium dioxide of the anatase form having defined physical properties.

Description

Verwendung von Titandioxidgemischen zur Herstellung von KatalysatorenUse of titanium dioxide mixtures for the preparation of catalysts
Beschreibungdescription
Die vorliegende Erfindung betrifft die Verwendung von Titandioxidgemischen der Ana- tasform mit definierten physikalischen Eigenschaften zur Herstellung von Katalysato¬ ren, die insbesondere zur Phthalsäureanhydridsynthese geeignet sind. Weiterhin be¬ trifft die Erfindung Katalysatoren, die Titandioxidgemische der Anatasform mit definier¬ ten physikalischen Eigenschaften enthalten.The present invention relates to the use of titanium dioxide mixtures of the anatase form with defined physical properties for the preparation of catalysts which are particularly suitable for phthalic anhydride synthesis. Furthermore, the invention relates to catalysts which contain titanium dioxide mixtures of the anatase form with defined physical properties.
Katalysatoren zur Herstellung von Phthalsäureanhydrid, die aus Vanadiumpentoxid und Titandioxid bestehen, sind seit langem bekannt. Titandioxid in der Anatasmodifika- tion ist dabei der Hauptbestandteil der Aktivmasse der Phthalsäureanhydridkatalysato- ren und dient zur Trägerung der katalytisch aktiven und selektiven Vanadiumpentoxid Komponenten.Catalysts for the production of phthalic anhydride, which consist of vanadium pentoxide and titanium dioxide, have long been known. Titanium dioxide in the anatase modification is the main constituent of the active composition of the phthalic anhydride catalysts and serves to support the catalytically active and selective vanadium pentoxide components.
DE-A 2 106 796 beschreibt die Herstellung von Trägerkatalysatoren zur Oxidation von o-Xylol zu Phthalsäureanhydrid, wobei das Titandioxid eine BET-Oberfläche von 15 bis 100 m2/g, vorzugsweise 25 bis 50 m2/g aufweist. Besonders geeignet ist eine Mischung aus Anatas der BET-Oberfläche von 7 bis 11 m2/g und Titandioxid-Hydrat der BET- Oberfläche > 100 m2/g, wobei die Komponenten alleine nicht geeignet wären.DE-A 2 106 796 describes the preparation of supported catalysts for the oxidation of o-xylene to phthalic anhydride, wherein the titanium dioxide has a BET surface area of 15 to 100 m 2 / g, preferably 25 to 50 m 2 / g. Particularly suitable is a mixture of anatase of the BET surface area of 7 to 11 m 2 / g and titanium dioxide hydrate of BET surface area> 100 m 2 / g, wherein the components alone would not be suitable.
In der EP-A 522 871 wird ein Zusammenhang zwischen der BET-Oberfläche des Ti¬ tandioxids und der Katalysatoraktivität beschrieben. Gemäß dieser Schrift ist die Kata- lysatoraktivität bei einem Einsatz von Titandioxid mit BET-Oberflächen von unterEP-A 522 871 describes a relationship between the BET surface area of the titanium dioxide and the catalyst activity. According to this document, the catalyst activity is when titanium dioxide having BET surface areas of below
10 m2/g gering. Bei einem Einsatz von Titandioxid mit einer BET-Oberfläche größer als 60 m2/g ist die Lebensdauer des Katalysators reduziert und die Phthalsäureanhydrid- ausbeute sinkt stark ab. Bevorzugt sind BET-Oberflächen von 15 bis 40 m2/g.10 m 2 / g low. When using titanium dioxide with a BET surface area greater than 60 m 2 / g, the life of the catalyst is reduced and the Phthalsäureanhydrid- yield drops sharply. BET surface areas are preferably from 15 to 40 m 2 / g.
Zur Verbesserung der Phthalsäureanhydridausbeute und des Startverhaltens der Kata¬ lysatoren ist man in den letzten Jahren dazu übergegangen, aktivitätsstrukturierte Ka¬ talysatoren einzusetzen. Die einzelnen Katalysatorschichten werden so strukturiert, dass im Allgemeinen die Aktivität der einzelnen Schichten vom Reaktoreingang zum Reaktorausgang hin zunimmt.In order to improve the phthalic anhydride yield and the starting behavior of the catalysts, it has been the case in recent years to use activity-structured catalysts. The individual catalyst layers are structured so that in general the activity of the individual layers increases from the reactor inlet to the reactor outlet.
Beispielsweise beschreibt EP-A 985 648 die Herstellung von Phthalsäureanhydrid durch katalytische Gasphasenoxidation von o-Xylol und/oder Naphthalin mit einem Katalysatorsystem, welches so strukturiert ist, dass die Porosität des Katalysators und damit die Aktivität vom Reaktoreingang zum Reaktorausgang hin quasi kontinuierlich ansteigt. Die Porosität wird durch das freie Volumen zwischen den beschichteten Formkörpem der Schüttung im Reaktionsrohr definiert. In den Beispielen wurde die spezifische Oberfläche der aktiven Komponenten durch die Variation der spezifischen Oberfläche des Titandioxids verändert, diese lag zwischen 40 und 140 m2/g.For example, EP-A 985 648 describes the preparation of phthalic anhydride by catalytic gas phase oxidation of o-xylene and / or naphthalene with a catalyst system which is structured so that the porosity of the catalyst and thus the activity from the reactor inlet to the reactor outlet increases quasi-continuously. The porosity is defined by the free volume between the coated moldings of the bed in the reaction tube. In the examples, the specific surface area of the active components changed by the variation of the specific surface of titanium dioxide, this was between 40 and 140 m 2 / g.
Nach dem in der EP-A1 063 222 zusammengefassten Stand der Technik kann die Ak- tivitätssteigerung auf sehr verschiedenen Wegen erfolgen:According to the prior art summarized in EP-A1 063 222, the increase in activity can take place in very different ways:
(1) durch stetigen Anstieg des Phosphorgehalts,(1) by a steady increase in the phosphorus content,
(2) durch stetigen Anstieg des Aktivmassengehalts,(2) by a steady increase in the active mass content,
(3) durch stetige Abnahme des Alkaligehalts, (4) durch stetige Abnahme des Leerraumes zwischen den einzelnen Katalysatoren(3) by a steady decrease in the alkali content, (4) by a steady decrease in the void space between the individual catalysts
(5) durch stetige Abnahme des Gehalts an Inertstoffen oder(5) by a steady decrease in the content of inert substances or
(6) durch stetige Zunahme der Temperatur(6) by steady increase in temperature
von der Oberschicht (Reaktoreingang) zur Unterschicht (Reaktorausgang). Die BET-Oberfläche des Titandioxids sollte dabei zwischen 10 und 60 m2/g liegen. In den Beispielen der EP-A1 063 222 liegt die BET-Oberfläche konstant bei 22 m2/g.from the upper layer (reactor inlet) to the lower layer (reactor outlet). The BET surface area of the titanium dioxide should be between 10 and 60 m 2 / g. In the examples of EP-A1 063 222, the BET surface area is constant at 22 m 2 / g.
Bei mehrlagigen Katalysatorsystemen wirkt sich die Abnahme der Aktivität der ersten Katalysatorschicht im Bezug auf die Lebensdauer des Katalysators negativ aus. Mit zunehmender Alterung geht der Umsatz im Bereich der ersten hochselektiven Schicht zurück. Die Hauptreaktionszone wandert im Laufe der Katalysatorlebenszeit immer tiefer in das Katalysatorbett, d.h. der o-Xylol- oder Naphthalinfeed wird immer häufiger erst in den nachfolgenden weniger selektiven Schichten umgesetzt. Die Folge sind verringerte Phthalsäureanhydridausbeuten und eine erhöhte Konzentration an Neben- produkten oder nicht umgesetzten Edukten. Um das Wandern der Hauptreaktionszone in die nachfolgenden Schichten zu vermeiden, kann die Salzbadtemperatur stetig an¬ gehoben werden. Mit zunehmender Lebensdauer der Katalysatoren führt allerdings auch diese Maßnahme zur Verringerung der Phthalsäureanhydridausbeute.In multilayer catalyst systems, the decrease in the activity of the first catalyst layer with respect to the life of the catalyst has a negative effect. With aging, sales decline in the range of the first highly selective layer. The main reaction zone migrates deeper and deeper into the catalyst bed over the course of the catalyst life, i. The o-xylene or Naphthalinfeed is increasingly implemented only in the subsequent less selective layers. The result is reduced Phthalsäureanhydridausbeuten and an increased concentration of by-products or unreacted starting materials. In order to avoid the migration of the main reaction zone into the subsequent layers, the salt bath temperature can be raised steadily. As the catalyst life increases, however, this measure also leads to a reduction in the phthalic anhydride yield.
Die Aufgabe bestand demnach darin, Katalysatoren mit verbesserten Eigenschaften, insbesondere in Bezug auf die Ausbeute, aufzuzeigen. Vor allem sollen Oxidationska- talysatoren aufgezeigt werden, insbesondere Phthalsäureanhydridkatalysatoren mit verbesserter Aktivität, Selektivität und Ausbeute. Die Aufgabe bestand weiterhin darin, Oxidationskatalysatoren zu finden, die im Einsatz in einem aktivitätsstrukturierten mehrlagigen Katalysatorsystem die Vorteile hiervon mit denen einer hohen Lebens¬ dauer und hohen Selektivität in den ersten Katalysatorschichten verknüpfen.The object was therefore to show catalysts with improved properties, in particular with respect to the yield. Above all, it is intended to show oxidation catalysts, in particular phthalic anhydride catalysts having improved activity, selectivity and yield. The object further consisted of finding oxidation catalysts which, when used in an activity-structured multilayer catalyst system, combine the advantages thereof with those of a high service life and high selectivity in the first catalyst layers.
Es wurde überraschend gefunden, dass Titandioxid(e) A in Anatasmodifikation, das eine BET-Oberfläche von größer als 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 aufweist, im Gemisch mit einem oder mehreren weiteren Titandioxid(en) B in Anatasmodifikation, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweist, besonders für die Herstellung von Katalysatoren geeignet ist.It has surprisingly been found that titanium dioxide (s) A in anatase modification, which has a BET surface area greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 μmol / m 2 , in admixture with one or more further titanium dioxide (s) B in anatase modification, which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ Ti 3+ from 0.6 to 7 μmol / m 2 , is particularly suitable for the preparation of catalysts.
Vorteilhaft ist die Verwendung von Titandioxid(en) A, das eine BET-Oberfläche von 18 bis 90 m2/g, insbesondere von 18 bis 55 m2/g, aufweist. Bevorzugt weist Titandioxid A eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 17 μmol/m2 auf.Advantageous is the use of titanium dioxide (s) A, which has a BET surface area of 18 to 90 m 2 / g, in particular from 18 to 55 m 2 / g. Titanium dioxide A preferably has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 17 μmol / m 2 .
Vorteilhaft ist die Verwendung von Titandioxid(en) B1 das eine BET-Oberfläche von 3 bis 15 m2/g aufweist. Bevorzugt weist Titandioxid B eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 5 μmol/m2 auf.Advantageous is the use of titanium dioxide (s) B 1 which has a BET surface area of 3 to 15 m 2 / g. Titanium dioxide B preferably has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 5 μmol / m 2 .
Die BET-Oberfläche des Titandioxidgemisches aus A und B weist vorteilhaft einen Wert von 5 bis 50 m2/g, insbesondere von 10 bis 30 m2/g, auf.The BET surface area of the titanium dioxide mixture of A and B advantageously has a value of from 5 to 50 m 2 / g, in particular from 10 to 30 m 2 / g.
Die Mischung erfolgt vorteilhaft mit einem Verhältnis von Titandioxid(en) A zu Titandi¬ oxiden (B) von 0,5:1 bis 6:1, insbesondere von 1:1 bis 5:1.The mixture is advantageously carried out with a ratio of titanium dioxide (s) A to titanium oxides (B) of from 0.5: 1 to 6: 1, in particular from 1: 1 to 5: 1.
Vorteilhaft werden nicht mehr als drei Titandioxide A und nicht mehr als drei Titandioxi¬ de B miteinandergemischt. Besonders bevorzugt besteht das erfindungsgemäß, einge- setzte Titandioxidgemisch aus je einem Titandioxid aus der Gruppe A und B.Advantageously, no more than three titanium dioxides A and not more than three titanium dioxides B are mixed together. The titanium dioxide mixture used according to the invention particularly preferably consists of one titanium dioxide each from group A and B.
Insbesondere eignet sich das erfindungsgemäß eingesetzte Titandioxidgemisch zur Herstellung von Katalysatoren, die in einem aktivitätsstrukturierten mindestens zweila- gigen, bevorzugt mindestens dreilagigen Katalysatorsystem in der obersten, bzw. den oberen, insbesondere in der obersten, zum Reaktoreingang hin gelegenen, Katalysa¬ torschichten verwendet werden.In particular, the titanium dioxide mixture used according to the invention is suitable for the preparation of catalysts which are used in an activity-structured at least two-phase, preferably at least three-layered catalyst system in the uppermost or the upper, in particular in the upper, catalyst entrance to the reactor entrance.
Unter einem aktivitätsstrukturierten Katalysatorsystem wird ein System aus unter¬ schiedlichen Katalysatorschichten verstanden, wobei sich die Aktivität der Katalysato- ren von einer Schicht zur nächsten Schicht ändert. Im Allgemeinen sind Katalysator¬ systeme bevorzugt, deren Aktivität vom Reaktoreingang zum Reaktorausgang quasi kontinuierlich ansteigt. Allerdings können ein oder mehrere vor- oder zwischengelager¬ te Katalysatorschichten, die eine höhere Aktivität als die nachfolgenden Schichten auf¬ weisen, verwendet werden.An activity-structured catalyst system is understood as meaning a system of different catalyst layers, the activity of the catalysts changing from one layer to the next. In general, preference is given to catalyst systems whose activity increases virtually continuously from the reactor inlet to the reactor outlet. However, one or more intermediate or intermediate catalyst layers which have a higher activity than the subsequent layers can be used.
Bei der Verwendung des erfindungsgemäß eingesetzten Titandioxidgemisches in ei¬ nem mehrlagigen Katalysatorsystem wird dieses in der obersten Schicht vorteilhaft mit einem Verhältnis von Titandioxid(e) A zu Titandioxid(en) B von 0,8:1 bis 3:1, insbeson¬ dere 1:1 bis 2,5:1 eingesetzt. In den weiteren Schichten können Titandioxidgemische oder reine Titandioxide der Anatasmodifikation eingesetzt werden. Bei Verwendung von Titandioxidgemischen liegt das Verhältnis von A zu B in der nächst unteren Schicht bei vorteilhaft 2:1 bis 5:1. Besonders geeignet ist das genannte Titandioxidgemisch zur Herstellung von Oxidati- onskatalysatoren für die Synthese von Aldehyden, Carbonsäuren und/oder Carbonsäu¬ reanhydriden. Bei diesen katalytischen Gasphasenoxidationen von aromatischen oder heteroaromatischen Kohlenwasserstoffen wie Benzol, o-, m- oder p-Xylol, Naphthalin, Toluol, Durol (1 ,2,4,5-Tetramethylbenzol) oder ß-Picolin (3-Methylpyridin) werden je nach Ausgangsmaterial beispielsweise Benzaldehyd, Benzoesäure, Maleinsäurean¬ hydrid, Phthalsäureanhydrid, Isophthalsäure, Terepthalsäure, Pyromellithsäurean- hydrid oder Nicotinsäure gewonnen.When using the titanium dioxide mixture used according to the invention in a multilayer catalyst system, it is advantageous in the uppermost layer with a ratio of titanium dioxide (e) A to titanium dioxide (s) B of 0.8: 1 to 3: 1, in particular 1 : 1 to 2.5: 1 used. Titanium dioxide mixtures or pure titanium dioxides of the anatase modification can be used in the further layers. When using titanium dioxide mixtures, the ratio of A to B in the next lower layer is advantageously 2: 1 to 5: 1. The titanium dioxide mixture mentioned is particularly suitable for the preparation of oxidation catalysts for the synthesis of aldehydes, carboxylic acids and / or carboxylic acid anhydrides. In these catalytic gas phase oxidations of aromatic or heteroaromatic hydrocarbons such as benzene, o-, m- or p-xylene, naphthalene, toluene, Durol (1, 2,4,5-tetramethylbenzene) or ß-picoline (3-methylpyridine) are depending on Starting material, for example, benzaldehyde, benzoic acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, pyromellitic anhydride or nicotinic acid obtained.
Besonders geeignet ist das genannte Titandioxidgemisch zur Herstellung von Phthal- säureanhydrid-Katalysatoren, die in einem aktivitätsstrukturierten mindestens zweilagi- gen, bevorzugt mindestens dreitägigen Katalysatorsystem in der obersten (bei einem zweilagigen Katalysatorsystem), bzw. in den zwei obersten oder in der obersten Kata- lysatorschicht (bei einem drei- oder mehrlagigen Katalysatorsystem) verwendet wer¬ den. Gegebenenfalls können der erfindungsgemäßen Katalysatoroberschicht enthal¬ tend das genannte Titandioxidgemisch eine oder mehrere Katalysatorschichten vorge¬ lagert sein.The titanium dioxide mixture mentioned is particularly suitable for the preparation of phthalic anhydride catalysts which are prepared in an activity-structured at least two-layer, preferably at least three-day catalyst system in the uppermost (in a two-layer catalyst system) or in the two uppermost or in the uppermost lysatorschicht used (in a three- or multi-layer catalyst system) wer¬ the. If appropriate, the catalyst top layer according to the invention may contain one or more catalyst layers as a precursor to said titanium dioxide mixture.
Weiterhin wurde gefunden, dass sich unter Verwendung des erfindungsgemäßen Kata¬ lysators, der nachfolgend beschrieben wird, vorteilhaft Benzaldehyd, Benzoesäure, Maleinsäureanhydrid, Phthalsäureanhydrid, Isophthalsäure, Terepthalsäure, Pyromel- lithsäureanhydrid oder Nicotinsäure herstellen lässt. Dazu wird im Allgemeinen ein Gemisch aus einem molekularen Sauerstoff enthaltenden Gas, beispielsweise Luft und das zu oxidierende Ausgangsmaterial durch Rohre geleitet, in denen sich eine Schüt¬ tung des erfindungsgemäßen Katalysators befindet. Besonders vorteilhaft wird die Oxi- dation unter Verwendung des erfindungsgemäßen Katalysators in einem aktivitäts¬ strukturierten Katalysatorsystem durchgeführt.Furthermore, it has been found that benzaldehyde, benzoic acid, maleic anhydride, phthalic anhydride, isophthalic acid, terephthalic acid, pyromellitic anhydride or nicotinic acid can advantageously be prepared using the catalyst according to the invention, which is described below. For this purpose, a mixture of a gas comprising molecular oxygen, for example air, and the starting material to be oxidized is generally passed through tubes in which there is a charge of the catalyst according to the invention. Particularly advantageously, the oxidation is carried out using the catalyst according to the invention in an activity-structured catalyst system.
Als Katalysatoren sind oxidische Trägerkatalysatoren geeignet. Zur Herstellung von Phthalsäureanhydrid durch Gasphasenoxidation von o-Xylol oder Naphthalin oder Ge¬ mischen davon verwendet man üblicherweise kugelförmige, ringförmige oder schalen¬ förmige Träger aus einem Silikat, Siliciumcarbid, Porzellan, Aluminiumoxid, Magnesi¬ umoxid, Zinndioxid, Rutil, Aluminiumsilikat, Magnesiumsilicat (Steatit), Zirkoniumsilicat oder Cersilicat oder Mischungen davon. Besonders bewährt haben sich sogenannte Schalenkatalysatoren, bei denen die katalytisch aktive Masse schalenförmig auf den Träger aufgebracht ist. Als katalytisch aktiver Bestandteil dient vorzugsweise Vanadi- umpentoxid. Weiter können in der katalytisch aktiven Masse in geringen Mengen eine Vielzahl anderer oxydischer Verbindungen enthalten sein, die als Promotoren die Akti- vität und Selektivität des Katalysators beeinflussen, beispielsweise indem sie seine Aktivität absenken oder erhöhen. Derartige Promotoren sind beispielsweise die Alkali¬ metalloxide, Thallium(l)oxid, Aluminiumoxid, Zirkoniumoxid, Eisenoxid, Nickeloxid, Co- baltoxid, Manganoxid, Zinnoxid, Silberoxid, Kupferoxid, Chromoxid, Molybdänoxid, Wolframoxid, Iridiumoxid, Tantaloxid, Nioboxid, Arsenoxid, Antimonoxid, Ceroxid und Phosphorpentoxid. Die Alkalimetalloxide wirken beispielsweise als die Aktivität vermin¬ dernde und die Selektivität erhöhende Promotoren. Weiterhin können der katalytisch aktiven Masse organische Binder, bevorzugt Copolymere, vorteilhaft in Form einer wässrigen Dispersion, von Vinylacetat/Vinyllaurat, Vinylacetat/Acrylat, Styrol/Acrylat, Vinylacetat/Maleat, Vinylacetat/Ethylen sowie Hydroxyethylcellulose zugesetzt werden, wobei Bindermengen von 3 bis 20 Gew.-%, bezogen auf den Feststoffgehalt der Lö¬ sung der Aktivmassenbestandteile, eingesetzt wurden (EP-A 744 214). Bevorzugt wer- den organische Binder wie in der DE-A 198 24 532 beschrieben verwendet. Wird die katalytisch aktive Masse ohne organische Bindemittel auf den Träger aufgetragen, so sind Beschichtungstemperaturen über 15O0C von Vorteil. Bei Zusatz der oben angege¬ benen Bindemittel liegen die brauchbaren Beschichtungstemperaturen je nach ver¬ wendetem Bindemittel zwischen 50 und 45O0C (DE-A 2106796). Die aufgetragenen Bindemittel brennen nach dem Einfüllen des Katalysators und Inbetriebnahme des Re¬ aktors innerhalb kurzer Zeit aus. Der Binderzusatz hat den Vorteil, dass die Aktivmasse gut auf dem Träger haftet, so dass Transport und Einfüllen des Katalysators erleichtert werden.Suitable catalysts are oxidic supported catalysts. For the production of phthalic anhydride by gas phase oxidation of o-xylene or naphthalene or mixtures thereof are usually used spherical, annular or schalen¬ shaped carrier of a silicate, silicon carbide, porcelain, alumina, magnesia, tin dioxide, rutile, aluminum silicate, magnesium silicate ( Steatite), zirconium silicate or cersilicate or mixtures thereof. So-called coated catalysts in which the catalytically active composition has been applied to the carrier in the form of a dish have proven particularly useful. The catalytically active constituent used is preferably vanadium pentoxide. Furthermore, a small number of other oxidic compounds which, as promoters, influence the activity and selectivity of the catalyst, for example by lowering or increasing its activity, can be present in the catalytically active composition in small amounts. Such promoters are, for example, the alkali metal oxides, thallium (I) oxide, aluminum oxide, zirconium oxide, iron oxide, nickel oxide, cobalt baltoxid, manganese oxide, tin oxide, silver oxide, copper oxide, chromium oxide, molybdenum oxide, tungsten oxide, iridium oxide, tantalum oxide, niobium oxide, arsenic oxide, antimony oxide, cerium oxide and phosphorus pentoxide. The alkali metal oxides act, for example, as promoters which reduce the activity and increase the selectivity. Furthermore, organic binders, preferably copolymers, advantageously in the form of an aqueous dispersion, of vinyl acetate / vinyl laurate, vinyl acetate / acrylate, styrene / acrylate, vinyl acetate / maleate, vinyl acetate / ethylene and hydroxyethyl cellulose can be added to the catalytically active composition, with binder amounts of from 3 to 20 % By weight, based on the solids content of the solution of the active ingredient components, were used (EP-A 744 214). Organic binders are preferably used as described in DE-A 198 24 532. Is the catalytically active composition applied to the substrate without organic binders, coating temperatures above 15O 0 C is advantageous. In addition to the above binder, the surrounded angege¬ usable coating temperatures depending on ver¬ wendetem binder comprises between 50 and 45O 0 C (DE-A 2106796). The applied binders burn out after filling the catalyst and starting up the reactor within a short time. The binder additive has the advantage that the active material adheres well to the carrier, so that transport and filling of the catalyst are facilitated.
Der Katalysator für die Phthalsäureanhydridsynthese weist auf porösem und/oder nicht-porösem Trägermaterial vorteilhaft 5 bis 15 Gew.-% bezogen auf den gesamten Katalysator, Aktivmasse auf, wobei diese Aktivmasse 3 bis 30 Gew.-% V2O5, 0 bis 4 Gew.-% Sb2O3, 0 bis 1 ,0 Gew.-% P, 0 bis 1 ,5 Gew.-% Alkali (ber. als Alkalimetall) und als Rest ein Gemisch aus Titandioxid(e) A in Anatasmodifikation, das eine BET- Oberfläche von größer als 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 aufweist, und Titandioxid(e) B in Anatasmodifika¬ tion, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffauf¬ nahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweist.The catalyst for the Phthalsäureanhydrisynthese has on porous and / or non-porous support material advantageously 5 to 15 wt .-% based on the total catalyst, active composition, said active composition 3 to 30 wt .-% V 2 O 5 , 0 to 4 Wt .-% Sb 2 O 3 , 0 to 1, 0 wt .-% P, 0 to 1, 5 wt .-% alkali (calc. As the alkali metal) and the balance a mixture of titanium dioxide (s) A in anatase modification, which has a BET surface area of greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 μmol / m 2 , and titanium dioxide (e) B in anatase modification, which has a BET surface area of less than or equal to 15 m 2 / g and a Wasserstoffauf¬ assumption for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 mol / m 2 .
In einer bevorzugten Ausführungsform weist in der ersten, obersten Schicht der Kata¬ lysator auf Trägermaterial 5 bis 12 Gew.-% bezogen auf den gesamten Katalysator Aktivmasse auf, wobei diese Aktivmasse 3 bis 20 Gew.-% V2O5, 0 bis 4 Gew.-% Sb2O3, 0 bis 0,5 Gew.-% P, 0,1 bis 1 ,5 Gew.-% Alkali (ber. als Alkalimetall) und als Rest ein Gemisch aus Titandioxid(e) A in Anatasmodifikation, das eine BET-Oberfläche von größer als 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 aufweist, und Titandioxid(e) B in Anatasmodifikation, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweist.In a preferred embodiment, in the first, uppermost layer, the catalyst on carrier material has from 5 to 12% by weight, based on the total catalyst, of active composition, this active composition being from 3 to 20% by weight of V 2 O 5 , 0 to 4 Wt .-% Sb 2 O 3 , 0 to 0.5 wt .-% P, 0.1 to 1, 5 wt .-% alkali (calc. As the alkali metal) and the balance a mixture of titanium dioxide (e) A in Anatase modification which has a BET surface area of greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 μmol / m 2 , and titanium dioxide (e) B in anatase modification, which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 μmol / m 2 .
Im Allgemeinen werden mehrlagige Katalysatorsysteme verwendet, in dem der weniger aktive Katalysator so im Festbett angeordnet wird, dass das Reaktionsgas zuerst mit diesem Katalysator und erst im Anschluss daran mit dem aktiveren Katalysator in der zweiten Schicht in Kontakt kommt. Gegebenenfalls können vor- oder zwischengelager¬ te Katalysatorschichten, die eine höhere Aktivität als die anschließende Katalysator¬ schicht aufweisen, verwendet werden. Anschließend kommt das Reaktionsgas mit den noch aktiveren Katalysatorschichten in Kontakt. Die unterschiedlich aktiven Katalysato- ren können auf die gleiche oder auf unterschiedliche Temperaturen thermostatisiert werden.In general, multilayer catalyst systems are used in which the less active catalyst is placed in a fixed bed such that the reaction gas first with this catalyst and only then with the more active catalyst in the second layer comes into contact. If appropriate, pre-or intermediate-layer catalyst layers which have a higher activity than the subsequent catalyst layer can be used. Subsequently, the reaction gas comes into contact with the still more active catalyst layers. The differently active catalysts can be thermostated to the same or different temperatures.
Bevorzugt werden drei- bis fünftägige Katalysatorsysteme verwendet, insbesondere drei- und vierlagige Katalysatorsysteme. Besonders bevorzugt sind Katalysatorsyste- me, deren Katalysatoraktivität von Schicht zu Schicht quasi kontinuierlich ansteigt.Preferably, three- to five-day catalyst systems are used, in particular three- and four-layer catalyst systems. Particular preference is given to catalyst systems whose catalyst activity increases quasi-continuously from layer to layer.
In einer bevorzugten Ausführungsform eines mindestens dreilagigen Katalysatorsys¬ tems weisen die Katalysatoren für die Phthalsäureanhydridsynthese folgende Zusam¬ mensetzung auf:In a preferred embodiment of an at least three-layer catalyst system, the catalysts for the synthesis of phthalic anhydride have the following composition:
für die erste, oberste Schicht (Schicht a), zum Reaktoreingang hin gelegen):for the first, uppermost layer (layer a), located towards the reactor entrance):
7 bis 10 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei diese7 to 10 wt .-% of active material based on the total catalyst, this
Aktivmasse:Active material:
6 bis 11 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% Antimontrioxid6 to 11% by weight vanadium (calculated as V 2 O 5 ) 0 to 3% by weight antimony trioxide
0,1 bis 1 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid enthält und als Rest zu 100 Gew.-% ein Gemisch aus Titandioxid(e) A in Anatas- modifikation, das eine BET-Oberfläche von größer als 15 m2/g und eine Wasser¬ stoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 aufweist, und Titandioxid(e) B in Anatasmodifikation, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweist0.1 to 1% by weight of an alkali (calculated as alkali metal), in particular cesium oxide, and the remainder to 100% by weight of a mixture of titanium dioxide (s) A in anatase modification which has a BET surface area greater than than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 μmol / m 2 , and titanium dioxide (e) B in anatase modification, which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 μmol / m 2
für die zweite, mittlere Schicht (Schicht b)): 7 bis 12 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei diesefor the second, middle layer (layer b)): 7 to 12 wt .-% of active material based on the total catalyst, said
Aktivmasse:Active material:
5 bis 13 Gew.-% Vanadium (berechnet als V2O5)5 to 13% by weight of vanadium (calculated as V 2 O 5 )
0 bis 3 Gew.-% Antimontrioxid0 to 3 wt .-% antimony trioxide
0 bis 0,4 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid 0 bis 0,4 Gew.-% Phosphorpentoxid (berechnet als P) enthält und als Rest zu 100 Gew.-% Titandioxid in Anatasmodifikation, gegebe¬ nenfalls wie in Schicht a)0 to 0.4 wt .-% of an alkali (calculated as the alkali metal), in particular cesium oxide 0 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the remainder to 100 wt .-% titanium dioxide in anatase, given Where appropriate as in layer a)
für die dritte, unterste Schicht (Schicht c), zum Reaktorausgang hin gelegen): 8 bis 12 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei diesefor the third, lowest layer (layer c), located towards the reactor outlet): 8 to 12 wt .-% of active material based on the total catalyst, said
Aktivmasse: 5 bis 30 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% AntimontrioxidActive composition: 5 to 30% by weight of vanadium (calculated as V 2 O 5 ) 0 to 3 wt .-% antimony trioxide
0 bis 0,3 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid 0,05 bis 0,4 Gew.-% Phosphorpentoxid (berechnet als P) enthält und als Rest zu 100 Gew.-% Titandioxid, insbesondere in Anatasmodifika- tion, gegebenenfalls wie in Schicht a).0 to 0.3 wt .-% of an alkali (calculated as the alkali metal), in particular cesium oxide 0.05 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the balance to 100 wt .-% titanium dioxide, in particular in anatase modification, if appropriate as in layer a).
In einer bevorzugten Ausführungsform eines mindestens vierlagigen Katalysatorsys¬ tems weisen die Katalysatoren folgende Zusammensetzung auf:In a preferred embodiment of an at least four-layer catalyst system, the catalysts have the following composition:
- für die erste Schicht (Schicht a), zum Reaktoreingang hin gelegen):- for the first layer (layer a), located towards the reactor entrance):
7 bis 10 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei die¬ se Aktivmasse:7 to 10 wt .-% active composition based on the total catalyst, die¬ se active composition:
6 bis 11 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% Antimontrioxid 0,1 bis 1 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid enthält und als Rest zu 100 Gew.-% ein Gemisch aus Titandioxid(e) A in Ana- tasmodifikation, das eine BET-Oberfläche von größer als 15 m2/g und eine Was¬ serstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 auf¬ weist, und Titandioxid (e) B in Anatasmodifikation, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweistFrom 6 to 11% by weight of vanadium (calculated as V 2 O 5 ) from 0 to 3% by weight of antimony trioxide contains from 0.1 to 1% by weight of an alkali (calculated as alkali metal), in particular cesium oxide, and the remainder to 100 % By weight of a mixture of titanium dioxide (s) A in anatase modification, which has a BET surface area of greater than 15 m 2 / g and a hydrogen absorption for the reduction of Ti 4+ to Ti 3+ from 5 to 20 micromol / m 2 has auf¬, and titanium dioxide (s) B in the anatase modification, the m a BET surface area of less than or equal to 15 2 / g and an absorption of hydrogen for the reduction of Ti 4+ to Ti 3+ 0.6 to 7 has μmol / m 2
für die zweite Schicht (Schicht b1 )):for the second layer (layer b1)):
7 bis 12 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei die- se Aktivmasse:7 to 12% by weight of active composition based on the total catalyst, this active composition being:
4 bis 15 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% Antimontrioxid4 to 15 wt% vanadium (calculated as V 2 O 5 ) 0 to 3 wt% antimony trioxide
0,1 bis 1 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid 0 bis 0,4 Gew.-% Phosphorpentoxid (berechnet als P) enthält und als Rest zu 100 Gew.-% Titandioxid in Anatasmodifikation, gegebe¬ nenfalls wie in Schicht a)0.1 to 1% by weight of an alkali (calculated as alkali metal), in particular cesium oxide 0 to 0.4% by weight of phosphorus pentoxide (calculated as P) and the remainder to 100% by weight of titanium dioxide in anatase modification Where appropriate as in layer a)
für die dritte Schicht (Schicht b2)):for the third layer (layer b2)):
7 bis 12 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei die- se Aktivmasse:7 to 12% by weight of active composition based on the total catalyst, this active composition being:
5 bis 15 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% Antimontrioxid5 to 15 wt% vanadium (calculated as V 2 O 5 ) 0 to 3 wt% antimony trioxide
0 bis 0,4 Gew.-% eines Alkali (ber. als Alkalimetall), insbesondere Cäsiumoxid 0 bis 0,4 Gew.-% Phosphorpentoxid (berechnet als P) enthält und als Rest zu 100 Gew.-% Titandioxid in Anatasmodifikation, gegebe¬ nenfalls wie in Schicht a) für die vierte Schicht (Schicht c, zum Reaktorausgang hin gelegen)): 8 bis 12 Gew.-% Aktivmasse bezogen auf den gesamten Katalysator, wobei die¬ se Aktivmasse:0 to 0.4 wt .-% of an alkali (calculated as the alkali metal), in particular cesium oxide 0 to 0.4 wt .-% phosphorus pentoxide (calculated as P) and the remainder to 100 wt .-% titanium dioxide in anatase, given Where appropriate as in layer a) for the fourth layer (layer c, towards the reactor exit)): 8 to 12% by weight of active composition based on the total catalyst, this active compound being:
5 bis 30 Gew.-% Vanadium (berechnet als V2O5) 0 bis 3 Gew.-% Antimontrioxid5 to 30 wt% vanadium (calculated as V 2 O 5 ) 0 to 3 wt% antimony trioxide
0,05 bis 0,4 Gew.-% Phosphorpentoxid (berechnet als P) enthält und als Rest zu 100 Gew.-% Titandioxid in Anatasmodifikation, gegebe¬ nenfalls wie in Schicht a).From 0.05 to 0.4% by weight of phosphorus pentoxide (calculated as P) and the remainder to 100% by weight of titanium dioxide in anatase modification, if appropriate as in layer a).
Allgemein können die Katalysatorschichten a), b1), b2) und/oder c) auch so angeord¬ net sein, dass sie jeweils aus zwei oder mehreren Schichten bestehen. Diese Zwi¬ schenschichten haben vorteilhaft intermediate Katalysatorzusammensetzungen.In general, the catalyst layers a), b1), b2) and / or c) can also be arranged so that they each consist of two or more layers. These interlayers advantageously have intermediate catalyst compositions.
Anstelle von gegeneinander abgegrenzter Schichten der verschiedenen Katalysatoren kann auch ein quasi-kontinuierlicher Übergang der Schichten und ein quasi¬ gleichmäßiger Anstieg der Aktivität dadurch bewirkt werden, dass man beim Übergang von einer Schicht zur nächsten Schicht eine Zone mit einer Vermischung der aufeinan¬ der folgenden Katalysatoren vornimmt.Instead of layers of the different catalysts which are delimited against one another, a quasi-continuous transition of the layers and a quasi-uniform increase in the activity can be effected by forming a zone with a mixing of the following catalysts in the transition from one layer to the next layer performs.
Die Katalysatoren werden zur Reaktion schichtweise in die Rohre eines Rohrbündelre¬ aktors gefüllt. Über die so angeordnete Katalysatorschüttung wird das Reaktionsgas bei Salzbadtemperaturen von im Allgemeinen 300 bis 45O0C, vorzugsweise 320 bis 42O0C und besonders bevorzugt 340 bis 4000C, geleitet. Die unterschiedlichen Kataly- satorschüttungen können allerdings auch auf unterschiedliche Temperaturen ther- mostatisiert werden.The catalysts are filled in layers to react in the tubes of a Rohrbündelre¬ actuator. About the so-arranged catalyst bed, the reaction gas at salt bath temperatures of generally 300 to 45O 0 C, preferably 320 to 42O 0 C and more preferably 340 to 400 0 C, passed. However, the different catalyst beds can also be thermostated to different temperatures.
Die Schüttungslänge der ersten Katalysatorschicht macht vorzugsweise mehr als 20 bis 80 % der gesamten Katalysatorfüllhöhe im Reaktor aus. Die Schüttungshöhe der ersten beiden, bzw. der ersten drei Katalysatorschichten macht vorteilhaft mehr als 60 bis 95 % der gesamten Katalysatorfüllhöhe aus. Gegebenenfalls können eine oder mehrere Katalysatorschichten, die bevorzugt weniger als 20 % der gesamten Katalysa¬ torfüllhöhe ausmachen, der genannten ersten Katalysatorschicht vorgelagert sein. Ty¬ pische Reaktoren weisen eine Füllhöhe von 250 cm bis 350 cm auf. Die Katalysator¬ schichten können auch gegebenenfalls auf mehrere Reaktoren verteilt werden.The bed length of the first catalyst layer preferably accounts for more than 20 to 80% of the total catalyst fill level in the reactor. The bed height of the first two, or the first three catalyst layers advantageously makes up more than 60 to 95% of the total Katalysatorfüllhöhe. If appropriate, one or more catalyst layers, which preferably make up less than 20% of the total catalyst charge height, may be disposed upstream of the first catalyst layer mentioned. Typical reactors have a filling height of 250 cm to 350 cm. The Katalysator¬ layers can also be optionally distributed to several reactors.
Das dem Katalysator zugeführte Reaktionsgas (Ausgangsgasgemisch) wird im Allge¬ meinen durch Vermischen eines molekularen Sauerstoff enthaltenden Gases, das au¬ ßer Sauerstoff noch geeignete Reaktionsmoderatoren, wie Stickstoff, und/oder Ver¬ dünnungsmittel, wie Dampf und/oder Kohlendioxid enthalten kann, mit dem zu oxidie- renden o-Xylol oder Naphthalin erzeugt. Das Reaktionsgas enthält im Allgemeinen 1 bis 100 mol%, vorzugsweise 2 bis 50 mol% und besonders bevorzugt 10 bis 30 mol% Sauerstoff. Im Allgemeinen wird das Reaktionsgas mit 5 bis 140 g/Nm3 Gas, Vorzugs- weise 60 bis 120 g/Nm3 und besonders bevorzugt 80 bis 120 g/Nm3 o-Xylol und/oder Naphthalin beladen.The reaction gas (starting gas mixture) fed to the catalyst is generally accompanied by mixing a gas containing molecular oxygen, which may also contain suitable reaction moderators, such as nitrogen, and / or diluents, such as steam and / or carbon dioxide, besides oxygen the oxidized o-xylene or naphthalene produced. The reaction gas generally contains 1 to 100 mol%, preferably 2 to 50 mol%, and particularly preferably 10 to 30 mol% of oxygen. In general, the reaction gas is mixed with 5 to 140 g / Nm 3 gas, preferential Example 60 to 120 g / Nm 3 and more preferably 80 to 120 g / Nm 3 o-xylene and / or naphthalene loaded.
Gewünschtenfalls kann man für die Phthalsäureanhydridherstellung noch einen nach- geschalteten Finishing-Reaktor vorsehen, wie er beispielsweise in der DE-A 198 07 018 oder DE-A 20 05 969 beschrieben ist. Als Katalysator verwendet man dabei im Vergleich zum Katalysator der letzten Schicht vorzugsweise einen noch aktiveren Kata¬ lysator.If desired, it is also possible to provide a downstream finishing reactor for producing phthalic anhydride, as described, for example, in DE-A 198 07 018 or DE-A 20 05 969. In this case, the catalyst used is preferably an even more active catalyst in comparison to the catalyst of the last layer.
Die erfindungsgemäßen Katalysatoren haben den Vorteil verbesserter Performance. Diese Verbesserung ist auch noch bei hoher Beladungen mit o-Xylol und/oder Naph¬ thalin, z.B. bei 100 g/Nm3, festzustellen. The catalysts of the invention have the advantage of improved performance. This improvement can be observed even at high loadings with o-xylene and / or naphthalene, eg at 100 g / Nm 3 .
BeispieleExamples
A. Herstellung der KatalysatorenA. Preparation of the catalysts
A.1 Herstellen des erfindungsgemäßen Katalysatorsystems 1 (4-Schichtenkatalysatorsystem)A.1 Preparation of Inventive Catalyst System 1 (4-Layer Catalyst System)
Oberschicht (a) 29,3 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 69,8 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 7,7 μmol/m2), 7,8 g V2O5, 1 ,9 g Sb2O3, 0,49 g Cs2CO3 wurden in 550 ml entionisiertem Wasser suspendiert und 18 h gerührt. Dieser Suspension wurden 50 g organischer Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässerigen Dispersion zugegeben. Die erhal- tene Suspension wurde anschließend auf 1200 g Steatit (Magnesiumsilikat) in Form von Ringen mit einem äußere Durchmesser von 7 mm, einer Länge von 7 mm und einer Wandstärke von 1 ,5 mm aufgesprüht und getrocknet. Das Gewicht der aufgetra¬ genen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach einer Stunde Kalzination bei 4500C 7,1 Gew.-% Vanadium (berechnet als V2O5), 1 ,8 Gew.-% Anti¬ mon (berechnet als Sb2O3), 0,36 Gew.-% Cäsium (berechnet als Cs). Die BET- Oberfläche der TiO2 Mischung betrug 15,8 m2/g.Upper layer (a) 29.3 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 69.8 g anatase (BET-OF 20 m 2 / g, H 2 Uptake: 7.7 μmol / m 2 ), 7.8 g of V 2 O 5 , 1.9 g of Sb 2 O 3 , 0.49 g of Cs 2 CO 3 were suspended in 550 ml of deionized water and stirred for 18 hours. To this suspension was added 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% by weight aqueous dispersion. The resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after one hour of calcination at 450 ° C., contained 7.1% by weight of vanadium (calculated as V 2 O 5 ), 1.8% by weight of anti-mon (calculated as Sb 2 O) 3 ), 0.36 wt% cesium (calculated as Cs). The BET surface area of the TiO 2 mixture was 15.8 m 2 / g.
Obere Mittelschicht (b1) 24,6 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 74,5 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 7,7 μmol/m2), 7,8 g V2O5, 2,6 g Sb2O3, 0,35 g Cs2CO3 wurden in 550 ml entionisiertem Wasser suspendiert und 18 h gerührt. Dieser Suspension wurden 50 g organischer Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässerigen Dispersion zugegeben. Die erhal- tene Suspension wurde anschließend auf 1200 g Steatit (Magnesiumsilikat) in Form von Ringen mit einem äußere Durchmesser von 7 mm, einer Länge von 7 mm und einer Wandstärke von 1 ,5 mm aufgesprüht und getrocknet. Das Gewicht der aufgetra¬ genen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 45O0C 7,1 Gew.-% Vanadium (berechnet als V2O5), 2,4 Gew.-% Antimon (berechnet als Sb2O3), 0,26 Gew.-% Cäsium (berechnet als Cs). Die BET-Oberfläche der TiO2 Mischung betrug 16,4 m2/g.Upper middle layer (b1) 24.6 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 74.5 g anatase (BET-OF 20 m 2 / g, H 2 uptake: 7.7 μmol / m 2 ), 7.8 g of V 2 O 5 , 2.6 g of Sb 2 O 3 , 0.35 g of Cs 2 CO 3 were suspended in 550 ml of deionized water and stirred for 18 h , To this suspension was added 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% by weight aqueous dispersion. The resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The thus applied catalytically active material, ie the catalyst shell, comprised one hour calcination at 45O 0 C 7.1 wt .-% of vanadium (calculated as V 2 O 5), 2.4 wt .-% antimony (calculated as Sb 2 O 3 ), 0.26 wt% cesium (calculated as Cs). The BET surface area of the TiO 2 mixture was 16.4 m 2 / g.
Untere Mittelschicht (b2) 24,8 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 74,5 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 7,7 μmol/m2), 7,8 g V2O5, 2,6 g Sb2O3, 0,13 g Cs2CO3 wurden in 550 ml entionisiertem Wasser suspendiert und 18 h gerührt. Dieser Suspension wurden 50 g organischer Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässerigen Dispersion zugegeben. Die erhal¬ tene Suspension wurde anschließend auf 1200 g Steatit (Magnesiumsilikat) in Form von Ringen mit einem äußere Durchmesser von 7 mm, einer Länge von 7 mm und einer Wandstärke von 1 ,5 mm aufgesprüht und getrocknet. Das Gewicht der aufgetra¬ genen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 450°C 7,1 Gew.-% Vanadium (berechnet als V2O5), 2,4 Gew.-% Antimon (berechnet als Sb2O3), 0,10 Gew.-% Cäsium (berechnet als Cs). Die BET-Oberfläche der TiO2 Mischung betrug 16,4 m2/g.Lower middle layer (b2) 24.8 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 74.5 g anatase (BET-OF 20 m 2 / g, H 2 uptake: 7.7 μmol / m 2 ), 7.8 g of V 2 O 5 , 2.6 g of Sb 2 O 3 , 0.13 g of Cs 2 CO 3 were suspended in 550 ml of deionized water and stirred for 18 hours , This suspension were added 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50 wt .-% aqueous dispersion. The resulting suspension was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active material applied in this manner, ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.1% by weight of vanadium (calculated as V 2 O 5 ), 2.4% by weight of antimony (calculated as Sb 2 O 3 ), 0.10% by weight of cesium (calculated as Cs). The BET surface area of the TiO 2 mixture was 16.4 m 2 / g.
Unterschicht (c)Lower class (c)
17.2 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 69,1 g Anatas (BET-OF 27 m2/g, H2-Aufnahme: 16,1 μmol/m2), 21,9 g V2O5, 1 ,5 g NH4H2PO4 wurden in 550 ml entionisiertem Wasser suspendiert und 18 h gerührt. Dieser Suspension wurden 55 g organischer Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässerigen Dispersion zugegeben. Die erhaltene Suspen¬ sion wurde anschließend auf 1200 g Steatit (Magnesiumsilikat) in Form von Ringen mit einem äußere Durchmesser von 7 mm, einer Länge von 7 mm und einer Wandstärke von 1 ,5 mm aufgesprüht und getrocknet. Das Gewicht der aufgetragenen Schale be¬ trug 8 % des Gesamtgewichtes des fertigen Katalysators.17.2 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 69.1 g anatase (BET-OF 27 m 2 / g, H 2 uptake: 16.1 μmol / m 2 ), 21.9 g of V 2 O 5 , 1.5 g of NH 4 H 2 PO 4 were suspended in 550 ml of deionized water and stirred for 18 h. To this suspension was added 55 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% by weight aqueous dispersion. The resulting suspension was subsequently sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings with an outer diameter of 7 mm, a length of 7 mm and a wall thickness of 1.5 mm and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst.
Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 4500C 20,00 Gew.-% Vanadium (berechnet als V2O5), 0,38 Gew.-% Phosphor (berechnet als P). Die BET-Oberfläche der TiO2 Mi- schung betrug 20,9 m2/g.The catalytically active material applied in this manner, ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 20.00% by weight of vanadium (calculated as V 2 O 5 ), 0.38% by weight of phosphorus (calculated as P). The BET surface area of the TiO 2 mixture was 20.9 m 2 / g.
A.2 Herstellen des erfindungsgemäßen Katalysatorsystems 2 (3-Schichtenkatalysatorsystem)A.2 Preparation of the Inventive Catalyst System 2 (3-Layer Catalyst System)
Oberschicht (a)Upper class (a)
34.3 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 63,6 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 7,7 μmol/m2), 7,74 g V2O5, 2,58 g Sb2O3, 0,48 g Cs2CO3 wur¬ den in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 50 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Sus¬ pension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassen¬ schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 7,1 Gew.-% V2O5, 2,4 Gew.-% Sb2O3, 0,36 Gew.-% Cs. Die BET- Oberfläche betrug 14,7 m2/g. Mittelschicht (b)34.3 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 63.6 g anatase (BET-OF 20 m 2 / g, H 2 uptake: 7.7 μmol / m 2 ), 7.74 g of V 2 O 5 , 2.58 g of Sb 2 O 3 , 0.48 g of Cs 2 CO 3 were suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 50 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, OD × L × ID) by spraying. The weight of the applied Aktivmassen¬ shell was 8% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after calcination at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.36% by weight of Cs. The BET surface area was 14.7 m 2 / g. Middle class (b)
24,6 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 54,9 g Anatas (BET-OF 27 m2/g, H2-Aufnahme: 16,1 μmol/m2), 7,74 g V2O5, 2,37 g Sb2O3, 0,10 g Cs2CO3 wur¬ den in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 55 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Sus¬ pension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassen¬ schale betrug 9 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 8,6 Gew.-% V2O5, 2,6 Gew.-% Sb2O3, 0,10 Gew.-% Cs. Die BET- Oberfläche betrug 20,8 m2/g.24.6 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 54.9 g anatase (BET-OF 27 m 2 / g, H 2 uptake: 16 , 1 μmol / m 2 ), 7.74 g of V 2 O 5 , 2.37 g of Sb 2 O 3 , 0.10 g of Cs 2 CO 3 wer¬ suspended in 650 ml of deionized water and stirred for 15 hours. 55 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate were subsequently added to this suspension. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, OD × L × ID) by spraying. The weight of the applied Aktivmassen¬ shell was 9% of the total weight of the finished catalyst. The catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 8.6% by weight of V 2 O 5 , 2.6% by weight of Sb 2 O 3 , 0.10% by weight of Cs. The BET surface area was 20.8 m 2 / g.
Unterschicht (c) 24,6 g Anatas (BET-OF 7 m2/g, H2-Aufnahme: 4,9 μmol/m2), 73,7 g Anatas (BET-OF 30 m2/g, H2-Aufnahme: 2,8 μmol/m2), 25,0 g V2O5, 1 ,7 g NH4H2PO4 wurden in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 62 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Suspension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassenschale betrug 10 % des Gesamtgewichtes des fertigen Katalysators.Undercoat (c) 24.6 g anatase (BET-OF 7 m 2 / g, H 2 uptake: 4.9 μmol / m 2 ), 73.7 g anatase (BET-OF 30 m 2 / g, H 2 Uptake: 2.8 μmol / m 2 ), 25.0 g of V 2 O 5 , 1.7 g of NH 4 H 2 PO 4 were suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 62 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, AD × L × ID) by spraying. The weight of the applied active mass shell was 10% of the total weight of the finished catalyst.
Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 20,0 Gew.-% V2O5, 0,4 Gew.-% P. Die BET-Oberfläche betrug 24,2 m2/g.A.2The catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 20.0% by weight of V 2 O 5 , 0.4% by weight of P. The BET surface area was 24.2 m 2 / gA 2
A.3 Herstellen des Vergleich-Katalysatorsystems 3 (3-Schichtenkatalysatorsystem)A.3 Preparation of Comparative Catalyst System 3 (3-Layer Catalyst System)
Oberschicht (a)Upper class (a)
46,0 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 51 ,9 g Anatas (BET-OF 27 m2/g, H2-Aufnahme: 16,1 μmol/m2), 7,74 g V2O5, 2,58 g Sb2O3, 0,44 g Cs2CO3 wur¬ den in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 50 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Sus¬ pension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4mm, Außendurchmesser (AD) x Länge (L) x Innendurchmesser (ID)) durch Aufsprü¬ hen. Das Gewicht der aufgetragenen Aktivmassenschale betrug 8 % des Gesamtge¬ wichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 400°C für 4h 7,1 Gew.-% V2O5, 2,4 Gew.-% Sb2O3, 0,33 Gew.-% Cs. Die BET- Oberfläche betrug 18,4 m2/g. Mittelschicht (b)46.0 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 51, 9 g anatase (BET-OF 27 m 2 / g, H 2 uptake: 16 , 1 μmol / m 2 ), 7.74 g of V 2 O 5 , 2.58 g of Sb 2 O 3 , 0.44 g of Cs 2 CO 3 wer¬ suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 50 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded body (magnesium silicate) in the form of rings (7 × 7 × 4 mm, outside diameter (AD) × length (L) × inside diameter (ID)) by spraying. The weight of the applied active composition shell was 8% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after calcining at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.33% by weight of Cs. The BET surface area was 18.4 m 2 / g. Middle class (b)
21.5 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 86,1 g Anatas (BET-OF 27 m2/g, H2-Aufnahme: 16,1 μmol/m2), 14,2 g V2O5, 1 ,7 g NH4H2PO4 wurden in 550 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 55 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Suspension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassenschale betrug 9 % des Gesamtgewichtes des fertigen Katalysators.21.5 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 86.1 g anatase (BET-OF 27 m 2 / g, H 2 uptake: 16.1 μmol / m 2 ), 14.2 g of V 2 O 5 , 1.7 g of NH 4 H 2 PO 4 were suspended in 550 ml of deionized water and stirred for 15 hours. 55 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate were subsequently added to this suspension. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, AD × L × ID) by spraying. The weight of the applied active mass shell was 9% of the total weight of the finished catalyst.
Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 11 ,5 Gew.-% V2O5, 0,4 Gew.-% P. Die BET-Oberfläche betrug 21 ,3 m2/g.The catalytically active composition applied in this manner, after calcination at 400 ° C. for 4 hours, contained 11.5% by weight of V 2 O 5 , 0.4% by weight of P. The BET surface area was 21. 3 m 2 / g ,
Unterschicht (c)Lower class (c)
24.6 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 73,7 g Anatas (BET-OF 30 m2/g, H2-Aufnahme: 2,8 μmol/m2), 25,0 g V2O5, 1 ,7 g NH4H2PO4 wurden in 550 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 62 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Suspension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassenschale betrug 9 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 20,0 Gew.-% V2O5, 0,4 Gew.-% P. Die BET-Oberfläche betrug 19,9 m2/g.24.6 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 73.7 g anatase (BET-OF 30 m 2 / g, H 2 uptake: 2.8 μmol / m 2 ), 25.0 g of V 2 O 5 , 1.7 g of NH 4 H 2 PO 4 were suspended in 550 ml of deionized water and stirred for 15 hours. To this suspension was then added 62 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, AD × L × ID) by spraying. The weight of the applied active mass shell was 9% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after calcining at 400 ° C. for 4 h, contained 20.0% by weight of V 2 O 5 , 0.4% by weight of P. The BET surface area was 19.9 m 2 / g ,
A.4 Herstellen des Vergleich-Katalysatorsystems 4 (3-Schichtenkatalysatorsystem)A.4 Preparation of Comparative Catalyst System 4 (3-Layer Catalyst System)
Oberschicht (a)Upper class (a)
34,3 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 63,6 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 1,5 μmol/m2), 7,74 g V2O5, 2,58 g Sb2O3, 0,48 g Cs2CO3 wur¬ den in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 50 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Sus¬ pension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassen¬ schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 7,1 Gew.-% V2O5, 2,4 Gew.-% Sb2O3, 0,36 Gew.-% Cs. Die BET- Oberfläche betrug 16,1 m2/g. Mittelschicht (b)34.3 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 63.6 g anatase (BET-OF 20 m 2 / g, H 2 uptake: 1 , 5 μmol / m 2 ), 7.74 g of V 2 O 5 , 2.58 g of Sb 2 O 3 , 0.48 g of Cs 2 CO 3 were suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 50 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, OD × L × ID) by spraying. The weight of the applied Aktivmassen¬ shell was 8% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after calcination at 400 ° C. for 4 hours, contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.36% by weight of Cs. The BET surface area was 16.1 m 2 / g. Middle class (b)
34,3 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 102,9 g Anatas (BET-OF 20 m2/g, H2-Aufnahme: 1,5 μmol/m2), 11 ,O g V2O5, 3,7 g Sb2O3, 2,3 g NH4H2PO4 und 0,19 g Cs2CO3 wurden in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 52 g einer wässerigen Dispersi¬ on (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Suspension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetra- genen Aktivmassenschale betrug 9 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 7,1 Gew.-% V2O5, 2,4 Gew.-% Sb2O3, 0,10 Gew.-% Cs, 0,4 Gew.-% P. Die BET-Oberfläche betrug 17,3 m2/g.34.3 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 102.9 g anatase (BET-OF 20 m 2 / g, H 2 uptake: 1 , 5 μmol / m 2 ), 11, O g of V 2 O 5 , 3.7 g of Sb 2 O 3 , 2.3 g of NH 4 H 2 PO 4 and 0.19 g of Cs 2 CO 3 were deionized in 650 ml Suspended water and stirred for 15 hours. 52 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate were subsequently added to this suspension. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, AD × L × ID) by spraying. The weight of the applied active mass shell was 9% of the total weight of the finished catalyst. The catalytically active composition applied in this manner after calcination at 400 ° C. for 4 hours contained 7.1% by weight of V 2 O 5 , 2.4% by weight of Sb 2 O 3 , 0.10% by weight of Cs, 0.4 wt.% P. The BET surface area was 17.3 m 2 / g.
Unterschicht (c)Lower class (c)
28.7 g Anatas (BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 86,2 g Anatas (BET-OF 30 m2/g, H2-Aufnahme: 2,8 μmol/m2), 29,2 g V2O5, 2,0 g NH4H2PO4 wurden in 650 ml entionisiertem Wasser suspendiert und 15 Stunden lang gerührt. Dieser Suspension wurden anschließend 60 g einer wässerigen Dispersion (50 Gew.-%) aus Vinylacetat und Vinyllaurat zugegeben. Anschließend erfolgte das Aufbringen der Suspension auf 1200 g Steatitformkörper (Magnesiumsilikat) in Form von Ringen (7 x 7 x 4 mm, AD x L x ID) durch Aufsprühen. Das Gewicht der aufgetragenen Aktivmassenschale betrug 10 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse enthielt nach Kalzination bei 4000C für 4h 20,0 Gew.-% V2O5, 0,4 Gew.-% P. Die BET-Oberfläche betrug28.7 g anatase (BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 86.2 g anatase (BET-OF 30 m 2 / g, H 2 uptake: 2.8 μmol / m 2 ), 29.2 g of V 2 O 5 , 2.0 g of NH 4 H 2 PO 4 were suspended in 650 ml of deionized water and stirred for 15 hours. To this suspension was then added 60 g of an aqueous dispersion (50% by weight) of vinyl acetate and vinyl laurate. Subsequently, the suspension was applied to 1200 g of steatite molded article (magnesium silicate) in the form of rings (7 × 7 × 4 mm, AD × L × ID) by spraying. The weight of the applied active mass shell was 10% of the total weight of the finished catalyst. The catalytically active composition applied in this manner, after calcination at 400 ° C. for 4 hours, contained 20.0% by weight of V 2 O 5 , 0.4% by weight of P. The BET surface area was
24.8 m2/g.24.8 m 2 / g.
A.5 Herstellen des Vergleich-Katalysatorsystems 5 gemäß WO 2004/103944 (Kata¬ lysator 2) (4-Schichtenkatalysatorsystem)A.5 Preparation of the comparison catalyst system 5 according to WO 2004/103944 (catalyst 2) (4-layer catalyst system)
Oberschicht (a)Upper class (a)
29,27 g Anatas (TiO2-I , BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 69,80 g Anatas29.27 g anatase (TiO 2 -I, BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 69.80 g anatase
(TiO2-2, BET-OF 20 m2/g, H2-Aufnahme: 1 ,5 μmol/m2), 7,83 g Vanadiumpentoxid, 2,61 g Antimonoxid, 0,49 g Cäsiumcarbonat wurden in 650 ml entionisiertem Wasser sus¬ pendiert und 18 Stunden gerührt, um eine homogene Verteilung zu erzielen. Dieser Suspension wurden 50 g organische Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässrigen Dispersion, zuge¬ geben. Die erhaltene Suspension wurde anschließend auf 1200 g Steatit (Magnesium- silikat) in Form von Ringen (7 x 7 x 4 mm, (AD) x (L) x (ID)) aufgesprüht und getrock¬ net. Das Gewicht der aufgetragenen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 4500C 7,12 Gew.-% Vanadium (berechnet als V2O5), 2,37 Gew.-% Antimon (berechnet als Sb2O3), 0,36 Gew.-% Cäsium (berechnet als Cs), 27,20 Gew.-% Titandioxid (TiO2-I ) und 63,46 Gew.-% Titandioxid (TiO2-2).(TiO 2 -2, BET-OF 20 m 2 / g, H 2 uptake: 1, 5 .mu.mol / m 2 ), 7.83 g of vanadium pentoxide, 2.61 g of antimony oxide, 0.49 g of cesium carbonate were in 650 ml suspended deionized water and stirred for 18 hours to achieve a homogeneous distribution. 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% strength by weight aqueous dispersion were added to this suspension. The suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 × 7 × 4 mm, (AD) × (L) × (ID)) and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active mass applied in this way, ie the catalyst shell, after one hour of calcination to 450 0 C contained 7.12 wt .-% vanadium (calculated as V 2 O 5 ), 2.37 wt .-% antimony (calculated as Sb 2 O 3 ), 0.36 wt Cesium (calculated as Cs), 27.20% by weight of titanium dioxide (TiO 2 -I) and 63.46% by weight of titanium dioxide (TiO 2 -2).
Mittelschicht (b1 )Middle class (b1)
24,61 g Anatas (TiO2-I , BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 74,46 g Anatas (TiO2-2, BET-OF 20 m2/g, H2-Aufnahme: 1 ,5 μmol/m2), 7,82 g Vanadiumpentoxid, 2,60 g Antimonoxid, 0,35 g Cäsiumcarbonat wurden in 650 ml entionisiertem Wasser sus- pendiert und 18 Stunden gerührt, um eine homogene Verteilung zu erzielen. Dieser Suspension wurden 50 g organische Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässrigen Dispersion, zuge¬ geben. Die erhaltene Suspension wurde anschließend auf 1200 g Steatit (Magnesium¬ silikat) in Form von Ringen (7 x 7 x 4 mm, (AD) x (L) x (ID)) aufgesprüht und getrock- net. Das Gewicht der aufgetragenen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 4500C 7,12 Gew.-% Vanadium (berechnet als V2O5), 2,37 Gew.-% Antimon (berechnet als Sb2O3), 0,26 Gew.-% Cäsium (berechnet als Cs), 22,60 Gew.-% Titandioxid (TiO2-I) und 67,79 Gew.-% Titandioxid (TiO2-2).24.61 g anatase (TiO 2 -I, BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 74.46 g anatase (TiO 2 -2, BET-OF 20 m 2 / g, H 2 uptake: 1.5 μmol / m 2 ), 7.82 g of vanadium pentoxide, 2.60 g of antimony oxide, 0.35 g of cesium carbonate were suspended in 650 ml of deionized water and stirred for 18 hours to give to achieve a homogeneous distribution. 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% strength by weight aqueous dispersion were added to this suspension. The suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 × 7 × 4 mm, (AD) × (L) × (ID)) and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active material applied in this manner, ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.12% by weight of vanadium (calculated as V 2 O 5 ), 2.37% by weight of antimony (calculated as Sb 2 O 3 ), 0.26 wt.% Cesium (calculated as Cs), 22.60 wt.% Titanium dioxide (TiO 2 -I) and 67.79 wt.% Titanium dioxide (TiO 2 -2).
Mittelschicht (b2)Middle class (b2)
24,82 g Anatas (TiO2-I , BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 74,46 g Anatas24.82 g anatase (TiO 2 -I, BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 74.46 g anatase
(TiO2-2, BET-OF 20 m2/g, H2-Aufnahme: 1 ,5 μmol/m2), 7,82 g Vanadiumpentoxid, 2,60 g Antimonoxid, 0,135 g Cäsiumcarbonat wurden in 650 ml entionisiertem Wasser sus¬ pendiert und 18 Stunden gerührt, um eine homogene Verteilung zu erzielen. Dieser Suspension wurden 50 g organische Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässrigen Dispersion, zuge¬ geben. Die erhaltene Suspension wurde anschließend auf 1200 g Steatit (Magnesium- silikat) in Form von Ringen (7 x 7 x 4 mm, (AD) x (L) x (ID)) aufgesprüht und getrock¬ net. Das Gewicht der aufgetragenen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 4500C 7,12 Gew.-% Vanadium (berechnet als V2O5), 2,37 Gew.-% Antimon (berechnet als Sb2O3), 0,10 Gew.-% Cäsium (berechnet als Cs), 22,60 Gew.-% Titandioxid (TiO2-I) und 67,79 Gew.-% Titandioxid (TiO2-2).(TiO 2 -2, BET-OF 20 m 2 / g, H 2 uptake: 1.5 μmol / m 2 ), 7.82 g vanadium pentoxide, 2.60 g antimony oxide, 0.135 g cesium carbonate were dissolved in 650 ml deionized water Sus¬ suspended and stirred for 18 hours to achieve a homogeneous distribution. 50 g of organic binder consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50% strength by weight aqueous dispersion were added to this suspension. The suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 × 7 × 4 mm, (AD) × (L) × (ID)) and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active material applied in this manner, ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 7.12% by weight of vanadium (calculated as V 2 O 5 ), 2.37% by weight of antimony (calculated as Sb 2 O 3 ), 0.10% by weight of cesium (calculated as Cs), 22.60% by weight of titanium dioxide (TiO 2 -I) and 67.79% by weight of titanium dioxide (TiO 2 -2).
Unterschicht (c)Lower class (c)
17,23 g Anatas (TiO2-I , BET-OF 9 m2/g, H2-Aufnahme: 0,4 μmol/m2), 69,09 g Anatas (TiO2-3, BET-OF 27 m2/g, H2-Aufnahme: 2,8 μmol/m2), 21 ,97 g Vanadiumpentoxid, 1 ,55 g Ammoniumdihydrogenphosphat wurden in 650 ml entionisiertem Wasser sus¬ pendiert und 18 Stunden gerührt, um eine homogene Verteilung zu erzielen. Dieser Suspension wurden 50 g organische Binder, bestehend aus einem Copolymer aus Vinylacetat und Vinyllaurat in Form einer 50 Gew.-%igen wässrigen Dispersion, zuge¬ geben. Die erhaltene Suspension wurde anschließend auf 1200 g Steatit (Magnesium¬ silikat) in Form von Ringen (7 x 7 x 4 mm, (AD) x (L) x (ID)) aufgesprüht und getrock- net. Das Gewicht der aufgetragenen Schale betrug 8 % des Gesamtgewichtes des fertigen Katalysators. Die auf diese Weise aufgebrachte katalytisch aktive Masse, also die Katalysatorschale, enthielt nach einer Stunde Kalzination auf 4500C 20,0 Gew.-% Vanadium (berechnet als V2O5), 0,38 Gew.-% Phosphor (berechnet als P), 15,73 Gew.-% Titandioxid (TiO2-I) und 62,90 Gew.-% Titandioxid (TiO2-3).17.23 g anatase (TiO 2 -I, BET-OF 9 m 2 / g, H 2 uptake: 0.4 μmol / m 2 ), 69.09 g anatase (TiO 2 -3, BET-OF 27 m 2 / g, H 2 uptake: 2.8 μmol / m 2 ), 21, 97 g of vanadium pentoxide, 1, 55 g of ammonium dihydrogen phosphate were suspended in 650 ml of deionized water and stirred for 18 hours in order to achieve a homogeneous distribution. This Suspension, 50 g of organic binder, consisting of a copolymer of vinyl acetate and vinyl laurate in the form of a 50 wt .-% aqueous dispersion zuge¬ give. The suspension obtained was then sprayed onto 1200 g of steatite (magnesium silicate) in the form of rings (7 × 7 × 4 mm, (AD) × (L) × (ID)) and dried. The weight of the applied shell was 8% of the total weight of the finished catalyst. The catalytically active material applied in this manner, ie the catalyst shell, contained, after one hour of calcination at 450 ° C., 20.0% by weight of vanadium (calculated as V 2 O 5 ), 0.38% by weight of phosphorus (calculated as P), 15.73% by weight of titanium dioxide (TiO 2 -I) and 62.90% by weight of titanium dioxide (TiO 2 -3).
B Messung des Wasserstoffverbrauchs bei der Reduktion von Ti4+ zu Ti3+ B Measurement of hydrogen consumption in the reduction of Ti 4+ to Ti 3+
200 mg des TiO2 in der Anatas-Modifikation wurden als pulverförrnige Schüttung in dem Reaktor positioniert. Zunächst wurde eine Vorbehandlung durchgeführt, um ad¬ sorbiertes Wasser zu entfernen. Dazu wurde die Probe in Helium mit 20 K/min auf 673 K aufgeheizt und eine Stunde bei dieser Temperatur belassen. Nach Abkühlen auf unter 232 K und Spülen in Helium wurde das Experiment durchgeführt. Die Probe wur¬ de dazu mit einer Rampe von 15 K/min auf eine Endtemperatur von 1373 K im H2/He Strom aufgeheizt (10 % H2 in He, Fluss: 30 Nml/min). Der Wasserstoffverbrauch wurde mittels Gaschromatographie (Wärmeleitfähigkeitsdetektor) ermittelt und anschließend auf die eingesetzte Menge / Oberfläche der Probe normiert.200 mg of the TiO 2 in the anatase modification were positioned as a powdery bed in the reactor. First, a pretreatment was carried out to remove adsorbed water. For this purpose, the sample was heated in helium at 20 K / min to 673 K and left for one hour at this temperature. After cooling to below 232 K and purging in helium, the experiment was carried out. The sample was heated with a ramp of 15 K / min to a final temperature of 1373 K in H 2 / He stream (10% H 2 in He, flow: 30 Nml / min). The hydrogen consumption was determined by gas chromatography (thermal conductivity detector) and then normalized to the amount / surface area of the sample.
C Oxidation von o-Xylol zu PhthalsäureanhydridC Oxidation of o-xylene to phthalic anhydride
C.1 3-SchichtenkatalysatorC.1 3-layer catalyst
Von unten nach oben wurden jeweils 0,70 m des Katalysators der Unterschicht (c),From bottom to top, 0.70 m each of the catalyst of the lower layer (c),
0,60 m des Katalysators der Mittelschicht (b) und 1,50 m des Katalysators der Ober- schicht (a) in ein 3,85 m langes Eisenrohr mit einer lichten Weite von 25 mm eingefüllt. Das Eisenrohr war zur Temperaturregelung von einer Salzschmelze umgeben, eine 2 mm Thermohülse mit eingebautem Zugelement diente der Katalysatortemperaturmes¬ sung. Durch das Rohr wurden stündlich von oben nach unten 4 Nm3-Luft mit Beladun¬ gen an 98,5 Gew.-%igem o-Xylol von 0 bis 100 g/Nm3 geleitet. Dabei wurden bei 60 - 100 g o-Xylol/Nm3 die in Tabelle 2 zusammengefassten Ergebnisse erhalten ("PSA- Aubeute" bedeutet das erhaltene PSA in Gewichtprozent, bezogen auf 100%iges o-Xylol).0.60 m of the catalyst of the middle layer (b) and 1.50 m of the catalyst of the upper layer (a) are introduced into a 3.85 m long iron tube with a clear width of 25 mm. The iron tube was surrounded by a salt melt for temperature control, a 2 mm thermal sleeve with built-in tension element was used for the catalyst temperature measurement. 4 Nm 3 of air with loadings of 98.5% by weight of o-xylene from 0 to 100 g / Nm 3 were passed through the tube hourly from top to bottom. At 60-100 g of o-xylene / Nm 3, the results summarized in Table 2 were obtained ("PSA yield" means the PSA obtained in percent by weight, based on 100% strength o-xylene).
C.2 4-Schichtenkatalysator Von unten nach oben wurden jeweils 0,70 m des Katalysators der Unterschicht (c), 0,70 m des Katalysators der Mittelschicht 2 (b2), 0,50 m des Katalysators der Mittel¬ schicht 1 (b1) und 1 ,30 m des Katalysators der Oberschicht (a) in ein 3,85 m langes Eisenrohr mit einer lichten Weite von 25 mm eingefüllt. Im übrigen erfolgte die Ver¬ suchsdurchführung wie in C.1 angegeben. Die Versuchsergebnisse nach der Aktivierung sind in Tabelle 1 zusammengestellt.C.2 4-Layer Catalyst From bottom to top, 0.70 m of the catalyst of the lower layer (c), 0.70 m of the catalyst of the middle layer 2 (b2), 0.50 m of the catalyst of the middle layer 1 (b1 ) and 1, 30 m of the catalyst of the upper layer (a) in a 3.85 m long Iron tube filled with a clear width of 25 mm. Otherwise, the experiment was carried out as indicated in C.1. The test results after activation are summarized in Table 1.
Folgende Abkürzungen wurden verwendet:The following abbreviations were used:
HST Hot Spot-TemperaturHST hot spot temperature
OS OberschichtOS upper class
SBT Salzbadtemperatur PHD PhthalidSBT salt bath temperature PHD phthalide
PSA Phthalsäureanhydrid PSA phthalic anhydride
Tabelle 1 : Ergebnisse der katalytischen Tests der 4-SchichtenkatalysatorenTable 1: Results of the catalytic tests of the 4-layer catalysts
Tabelle 2: Ergebnisse der katalytischen Tests der 3-Schichtenkatalysatoren Table 2: Results of the catalytic tests of the 3-layer catalysts

Claims

Patentansprüche claims
1. Verwendung von einem oder mehreren Titandioxid(en) A in Anatasmodifikation, das eine BET-Oberfläche von größer als 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 5 bis 20 μmol/m2 aufweist, im Gemisch mit einem oder mehreren weiteren Titandioxid(en) B in Anatasmodifikation, das eine BET-Oberfläche von kleiner gleich 15 m2/g und eine Wasserstoffaufnahme für die Reduktion von Ti4+ zu Ti3+ von 0,6 bis 7 μmol/m2 aufweist, zur Herstellung von Katalysatoren.1. Use of one or more titanium dioxide (s) A in anatase modification, which has a BET surface area greater than 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 20 μmol / m 2 in admixture with one or more further titanium dioxide (s) B in anatase modification, which has a BET surface area of less than or equal to 15 m 2 / g and a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 7 has μmol / m 2 , for the preparation of catalysts.
2. Verwendung nach Anspruch 1 , wobei A eine BET-Oberfläche von 18 bis 90 m2/g aufweist.2. Use according to claim 1, wherein A has a BET surface area of 18 to 90 m 2 / g.
3. Verwendung nach Anspruch 1 , wobei A eine Wasserstoffaufnahme für die Re- duktion von Ti4+ zu Ti3+ von 5 bis 17 μmol/m2 aufweist.3. Use according to claim 1, wherein A has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 5 to 17 μmol / m 2 .
4. Verwendung nach Anspruch 1 , wobei B eine BET-Oberfläche von 3 bis 15 m2/g aufweist.4. Use according to claim 1, wherein B has a BET surface area of 3 to 15 m 2 / g.
5. Verwendung nach Anspruch 1 , wobei B eine Wasserstoffaufnahme für die Re¬ duktion von Ti4+ zu Ti3+ von 0,6 bis 5 μmol/m2 aufweist.5. Use according to claim 1, wherein B has a hydrogen uptake for the reduction of Ti 4+ to Ti 3+ from 0.6 to 5 μmol / m 2 .
6. Verwendung nach Anspruch 1 , wobei Titandioxid(e) A und Titandioxid(e) B in einem Verhältnis von 0,5:1 bis 6:1 eingesetzt werden.6. Use according to claim 1, wherein titanium dioxide (s) A and titanium dioxide (s) B are used in a ratio of 0.5: 1 to 6: 1.
7. Verwendung von Titandioxidgemischen nach den Ansprüchen 1 bis 6 zur Her¬ stellung von Oxidationskatalysatoren für die Synthese von Aldehyden, Carbon¬ säuren und/oder Carbonsäureanhydriden.7. Use of titanium dioxide mixtures according to claims 1 to 6 for the preparation of oxidation catalysts for the synthesis of aldehydes, carboxylic acids and / or carboxylic acid anhydrides.
8. Verwendung von Titandioxidgemischen nach den Ansprüchen 1 bis 6 zur Her¬ stellung von Oxidationskatalysatoren für die Synthese von Phthalsäureanhydrid.8. Use of titanium dioxide mixtures according to claims 1 to 6 for the preparation of production of oxidation catalysts for the synthesis of phthalic anhydride.
9. Verwendung von Titandioxidgemischen nach den Ansprüchen 1 bis 6 zur Her¬ stellung von Katalysatoren, die sich in der Oberschicht eines aktivitätsstrukturier- ten Katalysatorsystems befinden.9. Use of titanium dioxide mixtures according to claims 1 to 6 for the production of catalysts, which are located in the upper layer of an activity-structured catalyst system.
10. Katalysator zur Herstellung von Phthalsäureanhydrid, der auf Trägermaterial 5 bis 15 Gew.-% bezogen auf den gesamten Katalysator, Aktivmasse aufweist, wobei die Aktivmasse 3 bis 30 Gew.-% V2O5, 0 bis 4 Gew.-% Sb2O3, 0 bis 1 ,0 Gew.-% P, 0 bis 1 ,5 Gew.-% Alkali (ber. als Alkalimetall) und als Rest Titan¬ dioxidgemische gemäß den Ansprüchen 1 bis 6 enthält. 10. Catalyst for the preparation of phthalic anhydride, the support material having 5 to 15 wt .-% based on the total catalyst, active composition, wherein the active composition 3 to 30 wt .-% V 2 O 5 , 0 to 4 wt .-% Sb 2 O 3 , 0 to 1, 0 wt .-% P, 0 to 1, 5 wt .-% alkali (calc. As the alkali metal) and the balance Titanium dioxide mixtures according to claims 1 to 6.
11. Katalysatorsystem, das mindestens zwei übereinander angeordnete Katalysator¬ schichten aufweist, wobei ein Katalysator nach Anspruch 10 in der Oberschicht verwendet wird.11. Catalyst system which has at least two catalyst layers arranged one above the other, wherein a catalyst according to claim 10 is used in the upper layer.
12. Katalysatorsystem nach Anspruch 11, das mindestens drei übereinander ange¬ ordnete Schichten aufweist, wobei12. Catalyst system according to claim 11, which has at least three layers arranged one above the other, wherein
a) der zum Reaktoreingang hin gelegene Katalysator der Oberschicht auf Trä¬ germaterial 7 bis 10 Gew.-%, bezogen auf den gesamten Katalysator, Ak- tivmasse aufweist, wobei die Aktivmasse 6 bis 11 Gew.-% V2O5, 0 bis 3a) the catalyst of the upper layer on the carrier inlet towards the reactor inlet comprises 7 to 10% by weight, based on the total catalyst, of active compound, the active composition having from 6 to 11% by weight of V 2 O 5 , 0 to 3
Gew.-% Sb2O3, 0,1 bis 1 Gew.-% Alkali (ber. als Alkalimetall) und als Rest Titandioxidgemische gemäß den Ansprüchen 1 bis 6 enthält,% By weight of Sb 2 O 3 , 0.1 to 1% by weight of alkali (calculated as alkali metal) and the balance of titanium dioxide mixtures according to claims 1 to 6,
b) der nächst untere Katalysator auf Trägermaterial 7 bis 12 Gew.-%, bezo- gen auf den gesamten Katalysator, Aktivmasse aufweist, wobei die Aktiv¬ masse 5 bis 13 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0 bis 0,4 Gew.-% P, 0 bis 0,4 Gew.-% Alkali (ber. als Alkalimetall) und als Rest Titandioxid in Anatasform, gegebenenfalls wie in Schicht a), enthält,b) the next lower catalyst on support material has from 7 to 12% by weight, based on the total catalyst, of the active composition, the active compound comprising from 5 to 13% by weight of V 2 O 5 , 0 to 3% by weight. % Sb 2 O 3 , 0 to 0.4% by weight P, 0 to 0.4% by weight alkali (calc. As alkali metal) and the remainder titanium dioxide in anatase form, if appropriate as in layer a),
c) der nächst untere, zum Reaktorausgang hin gelegene Katalysator auf Trä¬ germaterial 8 bis 12 Gew.-%, bezogen auf den gesamten Katalysator, Ak¬ tivmasse aufweist, wobei die Aktivmasse 5 bis 30 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0,05 bis 0,4 Gew.-% P, 0 bis 0,3 Gew.-% Alkali (ber. als Alkalimetall) und als Rest Titandioxid in Anatasform, gegebenenfalls wie in Schicht a), enthält.c) the next lower, to the reactor outlet catalyst located on Trä¬ germaterial 8 to 12 wt .-%, based on the total catalyst, Ak¬ tive mass, wherein the active material 5 to 30 wt .-% V 2 O 5 , 0 to 3% by weight of Sb 2 O 3 , 0.05 to 0.4% by weight of P, 0 to 0.3% by weight of alkali (calculated as the alkali metal) and the remainder being anatase titanium dioxide, if appropriate as in Layer a) contains.
13. Katalysatorsystem nach Anspruch 11 , das mindestens vier übereinander ange¬ ordnete Schichten aufweist, wobei13. Catalyst system according to claim 11, which has at least four layers arranged one above another, wherein
a) der zum Reaktoreingang hin gelegene Katalysator der Oberschicht auf Trä¬ germaterial 7 bis 10 Gew.-%, bezogen auf den gesamten Katalysator, Ak¬ tivmasse aufweist, wobei die Aktivmasse 6 bis 11 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0,1 bis 1 Gew.-% Alkali (ber. als Alkalimetall) und als Rest Titandioxidgemische gemäß den Ansprüchen 1 bis 6 enthält,a) the catalyst of the upper layer on the carrier inlet toward the reactor inlet comprises 7 to 10% by weight, based on the total catalyst, of active compound, the active material having from 6 to 11% by weight of V 2 O 5 , 0 to 3 wt .-% Sb 2 O 3 , 0.1 to 1 wt .-% alkali (calc. As the alkali metal) and the remainder containing titanium dioxide mixtures according to claims 1 to 6,
b1 ) der nächst untere Katalysator auf Trägermaterial 7 bis 12 Gew.-%, bezo¬ gen auf den gesamten Katalysator, Aktivmasse aufweist, wobei die Aktiv¬ masse 4 bis 15 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0,1 bis 1 Gew.-% Alkali (ber. als Alkalimetall), 0 bis 0,4 Gew.-% P und als Rest Titandioxid in Anatasform, gegebenenfalls wie in Schicht a), enthält, b2) der nächst untere Katalysator auf Trägermaterial 7 bis 12 Gew.-%, bezo¬ gen auf den gesamten Katalysator, Aktivmasse aufweist, wobei die Aktiv¬ masse 5 bis 15 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0 bis 0,4 Gew.-% Alkali (ber. als Alkalimetall), 0 bis 0,4 Gew.-% P und als Rest Titandioxid in Anatasform, gegebenenfalls wie in Schicht a), enthält,b1) the next lower catalyst on support material has from 7 to 12% by weight, based on the total catalyst, of the active composition, the active composition comprising 4 to 15% by weight of V 2 O 5 , 0 to 3% by weight. % Sb 2 O 3 , 0.1 to 1% by weight of alkali (calculated as alkali metal), 0 to 0.4% by weight of P and the remainder being anatase titanium dioxide, if appropriate as in layer a), b2) the next lower catalyst on support material has from 7 to 12% by weight, based on the total catalyst, of the active composition, the active compound comprising 5 to 15% by weight of V 2 O 5 , 0 to 3% by weight. % Sb 2 O 3 , 0 to 0.4% by weight of alkali (calculated as alkali metal), 0 to 0.4% by weight of P and the remainder being titanium dioxide in anatase form, if appropriate as in layer a),
c) der nächst untere, zum Reaktorausgang hin gelegene Katalysator auf Trä¬ germaterial 8 bis 12 Gew.-%, bezogen auf den gesamten Katalysator, Ak¬ tivmasse aufweist, wobei die Aktivmasse 5 bis 30 Gew.-% V2O5, 0 bis 3 Gew.-% Sb2O3, 0,05 bis 0,4 Gew.-% P und als Rest Titandioxid in Anatas¬ form, gegebenenfalls wie in Schicht a), enthält.c) the next lower, to the reactor outlet catalyst located on Trä¬ germaterial 8 to 12 wt .-%, based on the total catalyst, Ak¬ tive mass, wherein the active material 5 to 30 wt .-% V 2 O 5 , 0 to 3 wt .-% Sb 2 O 3 , 0.05 to 0.4 wt .-% P and the remainder titanium dioxide in Anatas¬ form, optionally as in layer a) contains.
14. Verfahren zur Herstellung von Phthalsäureanhydrid durch Gasphasenoxidation von XyIoI, Naphthalin oder Gemischen davon in einem Rohrbündelreaktor, da- durch gekennzeichnet, dass XyIoI, Naphthalin oder Gemische davon und ein mo¬ lekularen Sauerstoff enthaltendes Gas über einen Katalysator nach Anspruch 10 oder ein Katalysatorsystem nach den Ansprüchen 11 bis 13 geleitet werden. 14. A process for the preparation of phthalic anhydride by gas phase oxidation of xylene, naphthalene or mixtures thereof in a tube bundle reactor, characterized in that xylene, naphthalene or mixtures thereof and a molecular oxygen-containing gas via a catalyst according to claim 10 or a catalyst system according to be passed to claims 11 to 13.
EP05815892A 2004-11-18 2005-11-16 Use of titanium dioxide mixtures for producing catalysts Withdrawn EP1814660A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004055807 2004-11-18
PCT/EP2005/012283 WO2006053732A1 (en) 2004-11-18 2005-11-16 Use of titanium dioxide mixtures for producing catalysts

Publications (1)

Publication Number Publication Date
EP1814660A1 true EP1814660A1 (en) 2007-08-08

Family

ID=35734926

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05815892A Withdrawn EP1814660A1 (en) 2004-11-18 2005-11-16 Use of titanium dioxide mixtures for producing catalysts

Country Status (10)

Country Link
US (1) US7851398B2 (en)
EP (1) EP1814660A1 (en)
JP (1) JP5174462B2 (en)
KR (1) KR101308197B1 (en)
CN (1) CN101060927B (en)
BR (1) BRPI0517850A (en)
MX (1) MX2007005850A (en)
RU (1) RU2007122282A (en)
TW (1) TWI378823B (en)
WO (1) WO2006053732A1 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10334132A1 (en) 2003-07-25 2005-04-07 Basf Ag Silver, vanadium and a promoter metal-containing multimetal and its use
DE102004026472A1 (en) * 2004-05-29 2005-12-22 Süd-Chemie AG Multi-layer catalyst for the production of phthalic anhydride
WO2005115615A1 (en) * 2004-05-29 2005-12-08 Süd-Chemie AG Catalyst and method for producing phthalic anhydride
DE102005009473A1 (en) * 2005-03-02 2006-09-07 Süd-Chemie AG Multi-layer catalyst for the production of phthalic anhydride
JP5058826B2 (en) * 2005-03-02 2012-10-24 ジュート−ヒェミー アクチェンゲゼルシャフト Process for producing multilayer catalyst for producing phthalic anhydride
BRPI0520292A2 (en) * 2005-05-22 2009-04-28 Sued Chemie Ag Multi-layer Catalyst for Phthalic Acid Anhydride Production
EP2012918A1 (en) * 2006-04-12 2009-01-14 Basf Se Catalyst system for preparing carboxylic acids and/or carboxylic anhydrides
DE102008011011A1 (en) * 2008-02-01 2009-08-06 Breimair, Josef, Dr. Catalyst for the catalytic gas-phase oxidation of aromatic hydrocarbons to aldehydes, carboxylic acids and / or carboxylic anhydrides, in particular to phthalic anhydride
US20110230668A1 (en) * 2010-03-19 2011-09-22 Basf Se Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide
TW201138955A (en) * 2010-03-19 2011-11-16 Basf Se Catalyst for gas phase oxidations based on low-sulfur and low-calcium titanium dioxide
WO2012001620A1 (en) * 2010-06-30 2012-01-05 Basf Se Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride
US8652988B2 (en) 2011-04-27 2014-02-18 Celanese International Corporation Catalyst for producing acrylic acids and acrylates
US8642498B2 (en) * 2011-05-11 2014-02-04 Celanese International Corporation Catalysts for producing acrylic acids and acrylates
US8883672B2 (en) * 2011-09-16 2014-11-11 Eastman Chemical Company Process for preparing modified V-Ti-P catalysts for synthesis of 2,3-unsaturated carboxylic acids
CN104159670A (en) * 2012-03-13 2014-11-19 国际人造丝公司 Catalyst for producing acrylic acids and acrylates comprising vanadium, titanium and tungsten
DE102013000648A1 (en) * 2013-01-16 2014-07-17 Clariant International Ltd. Providing reactor system for preparing phthalic anhydride, involves performing gas phase oxidation of aromatic hydrocarbons at catalyst, and providing a tube bundle reactor with a number of tubes having diameter, tube length and tube wall
EP3013784B1 (en) 2013-06-26 2018-12-26 Basf Se Process for starting up a gas phase oxidation reactor

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2005969A1 (en) 1970-02-10 1971-08-26 Badische Anilin & Soda Fabrik AG, 6700 Ludwigshafen Dicarboxylic acids/and acid anhydridespreparation by isothe - process
DE2106796C3 (en) 1971-02-12 1981-09-24 Wacker-Chemie GmbH, 8000 München Process for the production of fixed bed catalysts with a coating of vanadium pentoxide and titanium dioxide
DE2925682A1 (en) * 1979-06-26 1981-01-29 Basf Ag VANADINE PENTOXIDE, TITANIUM DIOXIDE, PHOSPHORUS, RUBIDIUM AND / OR CAESIUM AND Possibly. ZIRCONDIOXIDE CONTAINING CARRIER CATALYST
DE3114492A1 (en) * 1981-04-10 1982-10-28 Degussa Ag, 6000 Frankfurt DENTAL CARE
JPS63253080A (en) * 1987-04-10 1988-10-20 Nippon Steel Chem Co Ltd Production of phthalic anhydride
FR2678807A1 (en) * 1991-07-09 1993-01-15 Rhone Poulenc Chimie HOMOGENEOUS, STABLE AND VERSABLE AQUEOUS MIXTURES AND USE OF SAID MIXTURES FOR PREPARING DISPERSIONS OF WATER-INSOLUBLE SUBSTANCES.
US5235071A (en) * 1991-07-10 1993-08-10 Nippon Shokubai Co., Ltd. Catalyst for producing phthalic anhydride and process by using the same
ES2084240T3 (en) * 1991-10-25 1996-05-01 Nippon Catalytic Chem Ind METHOD FOR THE PRODUCTION OF PHTHALIC ANHYDRIDE THROUGH THE STEAM PHASE OXIDATION OF A MIXTURE OF ORTOXYLENE AND NAFTALENE.
DE19519172A1 (en) * 1995-05-24 1996-11-28 Consortium Elektrochem Ind Supported catalyst for gas phase oxidation reactors
TW415939B (en) * 1996-10-23 2000-12-21 Nippon Steel Chemical Co Gas-phase oxidization process and process for the preparation of phthalic anhydride
SE9700655L (en) * 1997-02-25 1998-05-11 Neste Oy Process for the preparation of phthalic anhydride
DE19707943C2 (en) * 1997-02-27 1999-07-08 Basf Ag Process for the preparation of phthalic anhydride and catalyst therefor
DE19823262A1 (en) * 1998-05-26 1999-12-02 Basf Ag Process for the preparation of phthalic anhydride
DE19824532A1 (en) 1998-06-03 1999-12-09 Basf Ag Process for the preparation of coated catalysts for the catalytic gas phase oxidation of aromatic hydrocarbons and catalysts thus obtainable
DE19839001A1 (en) * 1998-08-27 2000-03-02 Basf Ag Shell catalysts for the catalytic gas phase oxidation of aromatic hydrocarbons
CN1280979A (en) * 1999-06-24 2001-01-24 株式会社日本触媒 Method for producing phthalic anhydride
JP4180316B2 (en) * 2002-07-05 2008-11-12 日揮触媒化成株式会社 Tubular titanium oxide particles and method for producing tubular titanium oxide particles
DE10323461A1 (en) * 2003-05-23 2004-12-09 Basf Ag Preparation of aldehydes, carboxylic acids and / or carboxylic anhydrides by means of vanadium oxide, titanium dioxide and antimony oxide-containing catalysts
DE10323818A1 (en) * 2003-05-23 2004-12-09 Basf Ag Catalyst systems for the production of phthalic anhydride
DE10323817A1 (en) * 2003-05-23 2004-12-09 Basf Ag Process for the preparation of phthalic anhydride
DE10335346A1 (en) * 2003-08-01 2005-02-24 Basf Ag Catalyst for gas-phase oxidations

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006053732A1 *

Also Published As

Publication number Publication date
WO2006053732A1 (en) 2006-05-26
CN101060927B (en) 2011-05-11
KR20070086369A (en) 2007-08-27
RU2007122282A (en) 2008-12-27
US20080064594A1 (en) 2008-03-13
JP5174462B2 (en) 2013-04-03
MX2007005850A (en) 2007-06-15
CN101060927A (en) 2007-10-24
JP2008520418A (en) 2008-06-19
KR101308197B1 (en) 2013-09-13
TW200626232A (en) 2006-08-01
US7851398B2 (en) 2010-12-14
TWI378823B (en) 2012-12-11
BRPI0517850A (en) 2008-10-21

Similar Documents

Publication Publication Date Title
EP1628763B1 (en) Three-layered or four-layered catalyst systems for producing phthalic anhydride
EP1636161B1 (en) Production of aldehydes, carboxylic acids, and/or carboxylic acid anhydrides by means of catalysts containing vanadium oxide, titanium dioxide, and antimony oxide
EP1814660A1 (en) Use of titanium dioxide mixtures for producing catalysts
EP1636162B1 (en) Method for producing phthalic anhydride
EP2501472A1 (en) Multilayer catalyst for producing carboxylic acids and/or carboxylic acid anhydrides with vanadium antimonate in at least one catalyst layer, and method for producing phthalic acid anhydride with a low hot-spot temperature
EP2024085A1 (en) Catalyst system for the manufacture of carboxylic acids and/or carboxylic acid anhydrides
EP2012918A1 (en) Catalyst system for preparing carboxylic acids and/or carboxylic anhydrides
WO2007147733A1 (en) Catalyst system and method for producing carboxylic acids and/or carboxylic acid anhydrides
EP3013783A2 (en) Process for preparing phthalic anhydride
WO2005030388A1 (en) Method for the production of a catalyst for gas-phase oxidations by the coating of support materials in a fluid bed apparatus
EP1670741B1 (en) Process for the preparation of a gas phase oxidation catalyst with defined vanadium oxide particle size distribution
WO2005115615A1 (en) Catalyst and method for producing phthalic anhydride
DE102004014918A1 (en) Catalyst with a silver vanadium oxide phase and a promoter phase
WO2005115616A1 (en) Multi-layer catalyst for producing phthalic anhydride
EP1654061B1 (en) Catalyst for gas phase oxidations
WO2015121483A1 (en) Catalyst system for oxidizing o-xylol and/or naphthalene into phthalic anhydride
EP3013784B1 (en) Process for starting up a gas phase oxidation reactor
EP2547444B1 (en) Catalyst for gas-phase oxidations on the basis of sulfur- and calcium-poor titanium dioxide
WO2012001620A1 (en) Multilayer catalyst for preparing phthalic anhydride and process for preparing phthalic anhydride
WO2014013397A2 (en) Catalyst for preparing carboxylic acids and/or carboxylic anhydrides
EP1563905A1 (en) Process for preparing a catalyst for use in oxidation reactions in the gas phase by coating carrier material in a fluidised bed apparatus

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070618

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20110304

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20160607