[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1805565B1 - Wristwatch regulating member and mechanical movement comprising one such regulating member - Google Patents

Wristwatch regulating member and mechanical movement comprising one such regulating member Download PDF

Info

Publication number
EP1805565B1
EP1805565B1 EP05801381A EP05801381A EP1805565B1 EP 1805565 B1 EP1805565 B1 EP 1805565B1 EP 05801381 A EP05801381 A EP 05801381A EP 05801381 A EP05801381 A EP 05801381A EP 1805565 B1 EP1805565 B1 EP 1805565B1
Authority
EP
European Patent Office
Prior art keywords
balance
regulating member
magnets
fixed
mobile
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05801381A
Other languages
German (de)
French (fr)
Other versions
EP1805565A2 (en
Inventor
Thomas Houlon
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LVMH Swiss Manufactures SA
Original Assignee
TAG Heuer SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TAG Heuer SA filed Critical TAG Heuer SA
Priority to EP10176455A priority Critical patent/EP2282240B1/en
Publication of EP1805565A2 publication Critical patent/EP1805565A2/en
Application granted granted Critical
Publication of EP1805565B1 publication Critical patent/EP1805565B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C3/00Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means
    • G04C3/04Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance
    • G04C3/06Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance
    • G04C3/065Electromechanical clocks or watches independent of other time-pieces and in which the movement is maintained by electric means wherein movement is regulated by a balance using electromagnetic coupling between electric power source and balance the balance controlling gear-train by means of static switches, e.g. transistor circuits
    • G04C3/066Constructional details, e.g. disposition of coils
    • GPHYSICS
    • G04HOROLOGY
    • G04BMECHANICALLY-DRIVEN CLOCKS OR WATCHES; MECHANICAL PARTS OF CLOCKS OR WATCHES IN GENERAL; TIME PIECES USING THE POSITION OF THE SUN, MOON OR STARS
    • G04B17/00Mechanisms for stabilising frequency
    • G04B17/20Compensation of mechanisms for stabilising frequency
    • GPHYSICS
    • G04HOROLOGY
    • G04CELECTROMECHANICAL CLOCKS OR WATCHES
    • G04C5/00Electric or magnetic means for converting oscillatory to rotary motion in time-pieces, i.e. electric or magnetic escapements
    • G04C5/005Magnetic or electromagnetic means

Definitions

  • the present invention relates to a regulating organ for a wristwatch, and a mechanical movement for a wristwatch provided with such a movement.
  • the usual mechanical watches comprise an energy accumulator constituted by a barrel, a kinematic chain, or a train, driving needles, a regulating organ determining the running of the watch, and an escapement for transmitting the oscillations of the regulating organ. at the wheel.
  • the present invention relates in particular to the regulating organ.
  • the conventional regulating members most often comprise a rocker mounted on a rotating axis and a return member exerting a torque on the balance to bring it back to an equilibrium position.
  • the escapement, or drive member maintains oscillations of the balance around the equilibrium position.
  • the return member generally comprises a spiral spring, often called spiral, mounted coaxially with the balance.
  • the hairspring transmits a restoring torque to the balance wheel through the ferrule; the rest position of the spiral spring determines the return position of the balance.
  • the deformation of material at each oscillation of the spiral spring causes a loss of energy, and therefore a reduction in the running time of the watch.
  • the precision of the watch depends to a large extent on the properties of the material used for the spiral spring, as well as the machining accuracy of the end curves. Despite significant progress in metallurgy, the reproducibility of these properties is difficult to guarantee.
  • the spiral springs tend to getting tired over time, so that the restoring force decreases with the aging of the watch, resulting in a variation in accuracy.
  • the oscillations of the balance in one direction tend to unroll the spiral spring while the rotations in the opposite direction have the effect of contracting it.
  • the deformation of the spring is therefore exerted differently depending on the direction of rotation of the balance, which influences the return force and therefore the accuracy and reproducibility.
  • the peg and the ferrule to fix the hairspring to the cock (or balance bridge), respectively to the pendulum, are other sources of disturbance and unbalance that unbalance the pendulum.
  • the hairspring exerts a torsion torque on the balance at the point of attachment of the ferrule, which negatively influences the accuracy obtained.
  • the hairspring In a vertical position, the hairspring also tends to deform under its own weight, which causes a shift in its center of gravity and a disturbance of the period.
  • the balance is also subject to gravitational attraction as well as acceleration caused by the movements of the wearer. Since the spring force of the spiral spring is small, these external disturbances have an important influence on the accuracy of the gait, and complex correction mechanisms, for example vortices or even three-axis vortices, are sometimes used to compensate for them.
  • the thickness of the spiral is added to that of the balance, so that the total thickness of the regulating member is relatively large.
  • Regulating organs for a wristwatch using a vibrating tuning fork have been devised, which make it possible to solve a certain number of the problems mentioned. These regulating members, however, also act by deformation and elastic vibration of material in the branches of the tuning fork, so that the accuracy also depends on the metallurgy and machining precision. These solutions have not been widely adopted.
  • An object of the present invention is therefore to provide a regulating organ for a different wristwatch and which avoids the disadvantages of the prior art.
  • Another object is to provide a regulating member that can be used with a mechanical watch, devoid of power source.
  • Another object of the invention is to provide a regulating device with a pendulum for a mechanical watch which is devoid of a cock, stud, ferrule and other means for fixing the return member to the balance wheel and to the axis of the balance wheel .
  • This arrangement has the advantage of allowing the complete removal of the spiral spring in mechanical watches, and of most of the problems associated with it.
  • This arrangement also has the advantage of offering greater precision, as well as less influence to disturbances caused by gravitation or by external accelerations.
  • the return member tends to return the balance to at least one stable equilibrium position
  • the drive member for example an exhaust, tends to remove it.
  • Oscillating members employing magnetic fields are described in particular US4'266'291 , US3'921'386 , US3'714'773 , US3'665'699 , US3'161'012 , de2424212 , and GB1444627 .
  • Cessept documents however relate to electric watches, in which a magnetic field is generated by means of an electromagnet. These solutions are therefore not suitable for mechanical watches devoid of power source.
  • the document US 3937001 discloses a watch having a mechanical power source and a regulating member having a balance provided with permanent magnets.
  • the frequency of the pendulum is controlled electrically by means of an electromagnet powered by a control circuit.
  • the document is also known GB 1389 293 which shows ( figures 10 and 11 ) a permanent magnet fixed on the plate and cooperating with a permanent magnet shown on the balance.
  • the permanent magnet fixed on the plate does not exert the function of return member.
  • the magnetic field generated by the fixed part of the return member is fixed and constant, that is to say that it is not a current and that it does not vary in the time.
  • the magnetic field generated by the mobile magnet (s) is rotating; that is to say that the balance has an axis of rotation and that the mobile magnet or magnets, integral with the balance on which they are directly fixed, oscillate along a path circular around said axis of rotation.
  • all of the kinematic energy of the mobile magnets is transmitted to the balance.
  • the movements of rotation of the balance can be transmitted by means of a conventional exhaust to the rest of the watch.
  • the movement of the balance is thus constituted by oscillations around the axis of rotation of the balance, the amplitude of the oscillations being less than 360 °, for example less than 180 °, or even less than 120 °. It is thus possible to obtain a high frequency of oscillation, favorable to the precision and the resolution of the regulating organ; in addition, it is easier to obtain a relationship without discontinuities between the restoring force and the angular position of the balance when it oscillates in a limited range.
  • the invention is however not limited to particular oscillation amplitudes; oscillation amplitudes between 180 and 300 °, or even amplitudes close to 360 °, may also be employed, for example by employing a single fixed magnet and a single movable magnet. These oscillations of greater amplitude have the advantage of minimizing the impact of the disturbance introduced by the exhaust at each cycle.
  • At least one movable magnet oscillates in a circular path between two fixed permanent magnets arranged on a circular arc and spaced angularly by less than 180 °.
  • a large magnetic interaction is created whose intensity varies according to a continuous function along the oscillation trajectory.
  • the balance is excited by mechanical elements to oscillate isochronously around the equilibrium position.
  • the balance can thus be associated with a conventional escapement for a mechanical watch.
  • the energy required for the excitation of the balance can be transmitted from the exhaust through permanent magnets
  • the magnetic balance of the invention can be used in a purely mechanical watch, without coils, electromagnets and power supply.
  • the mobile magnet or magnets are fixed relative to the balance, which facilitates the construction.
  • the pendulum and the magnets oscillate according to the same alternating circular movement.
  • the fixed magnets preferably act to repel the moving magnets mounted on the balance.
  • the position of equilibrium is determined by repulsion forces, and is reached when the mobile magnets are equidistant between two fixed magnets, and the repulsive force of the two fixed magnets acting on each moving magnet is compensated.
  • the magnetic field generated by the fixed magnets is minimal at the equilibrium position, so that the amount of energy required to move the balance from this equilibrium position and to maintain an oscillation is reduced.
  • the magnetic interaction between the fixed and movable magnets increases as the balance moves away from the equilibrium position, so that the return force increases proportionally with the angular distance of the balance relative to its rest position.
  • the stability of the equilibrium point can however be controlled by additional magnets acting by attraction. Likewise, the balance can be moved away from positions of undesired equilibrium
  • the invention does not exclude variants in which the equilibrium position is determined by attraction forces, and is reached when the moving magnets are at a minimum distance from corresponding magnets, or equidistant between two fixed magnets, attraction offset each other.
  • this variant has the disadvantage of requiring a greater excitation to oscillate the balance around a position of equilibrium corresponding to a maximum of the magnetic attraction.
  • the magnetized parts are constituted by magnetized portions of the balance itself.
  • the pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery.
  • the moving magnets are directly mounted on or connected to the anchor of the exhaust.
  • the anchor then constitutes a pendulum, that is to say an oscillating element isochronically in a magnetic field.
  • pendulum designates an oscillating piece under the effect of an excitation around a position of equilibrium.
  • the substantially isochronic oscillations determine the progress of the watch.
  • the balance can be constituted by a wheel with any number of spokes, a disc, a rod, an anchor, etc.
  • the figure 1b schematically illustrates a regulating member 1 comprising a rocker 3 oscillating about an axis 300 perpendicular to the plate of the movement.
  • the balance 3 comprises an annular serge and has two radial spokes (or arms) 302 about the axis 300. Screws 301 can easily move the moment of inertia of the balance.
  • the pendulum constitutes a mass of inertia; its mass, as well as its radius, are preferably important within the limits imposed by the will of miniaturization of the movement. The large restoring force that the claimed solution allows allows the use of particularly important weights of inertia.
  • Bimetallic rockers that deform to compensate for temperature variations are also possible in the context of the invention. Other means can be implemented to compensate for the variation of the intensity of the magnetic field related to the temperature.
  • the balance 3 is connected to or provided with mobile permanent magnets 30 driven in rotation with the balance.
  • the illustrated example comprises two discrete permanent bipolar magnets which are arranged asymmetrically with respect to the axis 300, at 180 ° to one another. Each magnet has a positive pole and a negative pole equidistant from the axis 300.
  • the magnets 30 can be held mechanically or by sticking on the balance 3.
  • the magnetized parts could also be constituted by magnified parts of the balance itself, or by a magnetic track on the balance.
  • the pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery.
  • the pendulum could for example be magnetized homogeneously or gradually by means of a recording head, that is to say a coil generating a magnetic field of controlled intensity in a gap.
  • the regulating member further comprises two fixed permanent magnets 40, mounted on a bridge or on the stage of the movement by any suitable means.
  • the two magnets are arranged in the plane of the balance 3, symmetrically and at 180 ° with respect to the axis 300.
  • the fixed magnets 40 could also be arranged in another plane, parallel to the plane of the balance 3.
  • the magnets 40 each comprise a positive pole and a negative pole whose arrangement, symmetrical with respect to the axis 300, is, however, reversed with respect to the arrangement of the poles on the moving magnets 30.
  • the stationary magnets 40 and mobiles 30 repel with each other. a maximum magnetic interaction force when they are close.
  • the equilibrium position is reached by turning the balance by 90 °, so as to push each movable magnet 30 equidistant from two fixed magnets40; the magnetic field generated by the permanent magnets 40 is minimal in this arrangement, so that the force or moment necessary to leave this equilibrium position is also reduced.
  • the magnets 30 and 40 are preferably chosen so that the magnetic repulsion force, even in the equilibrium position illustrated, is much greater than the gravitational force exerted on the balance 3.
  • Permanent magnets composed of metal oxides , rare earth compounds or platinum-cobalt alloys will preferably be used to obtain large residual fields.
  • the position of the fixed magnets, or even the position of the movable magnets, may in all variants be adjusted, for example by means of screws, in order to adjust the oscillation frequency of the balance.
  • Oscillations of the balance thus depend little on the inclination of the balance.
  • the rotating mass of the balance 3 (including the screws 301) and moving magnets 30 is furthermore preferably distributed as evenly as possible around the axis 300, so as to improve the balance of the balance.
  • additional mechanical stops can be provided on the balance 3 and / or on a bridge in order to limit the amplitude of the possible rotations of the balance, and thus prevent the balance from moving position of balance to another following a shock, for example.
  • Similar abutment elements may also be employed with the other embodiments discussed below.
  • the additional stops may for example comprise elastic means for damping shocks at the end of the race.
  • the balance 3 is swinging around the equilibrium position of the figure 1b by means of a drive member constituted in this example by an escapement 2, here a conventional Swiss anchor escapement.
  • the escapement can also be specially adapted to take into account the low oscillation amplitude of the balance.
  • the movements of the anchor, limited by the stops 201 are transmitted to the balance 3 through the fork 202 and the pin 31.
  • the pulses given to the balance 30 are preferably by attraction or repulsion between magnetized parts on the balance and on the exhaust. Uncontacted training is possible.
  • the amplitude and the frequency of the oscillations around the equilibrium position are determined by the force and disposition of the magnets, and by the amplitude of the torque transmitted by the drive member. It is also noted that the rocker 30 oscillates without material deformations, so that the oscillation frequency does not depend on the metallurgical characteristics or the aging of elastic parts.
  • the large restoring force that the use of powerful magnets makes it possible to obtain high oscillation frequencies, higher than the usual frequencies in the usual mechanical watches, and thus to increase the accuracy and / or the resolution of the movement.
  • a choice of appropriate magnets and geometry thus makes it possible to display indications of time or duration with a resolution of the order of one tenth or even one hundredth of a second.
  • the regulating organ of the figure 1b is shown in partial section on the figure 2 , the exhaust 2 has been removed from the figure to improve readability.
  • the rocker 3 pivots about an axis 300 perpendicular to the upper bridge 41 and the lower bridge 42.
  • the bridges 41 and 42 preferably form a magnetic shielding both to protect the balance 3 of the fields external magnets, and to protect the other components of the watch from the magnetic fields generated in particular by the magnets 30 and 40.
  • a shielding may also, in a variant not shown, be obtained by means of elements distinct from the bridges, for example by means of the platinum, dial, box, or dedicated items. Shielding on all sides can also be adopted.
  • the kinematic chain between the regulating member and the needles comprises at least one element made of synthetic material, for example a belt driven by a pulley.
  • the axis 300 of the balance 3 is maintained in the bridges 41, 42 by means of two bearings 410 and 420, for example conventional bearing blocks, incabloc bearings or in the preferred example illustrated magnetic bearings
  • the upper ends 3001 and lower 3002 of the axis 300 are magnetized or provided with magnets.
  • the bearings 410 respectively 420 each comprise a housing 4100 respectively 4200 whose depth and diameter are slightly greater than the corresponding dimensions of the axis 300.
  • the walls of the housings are magnetized with a polarization identical to that of the corresponding ends of the axis 300, so as to push this axis which is thus levitated between the bearings 410 and 420.
  • the axis 300 can rotate without friction. This arrangement also makes it possible to eliminate the wear of the bearings 410, 420 and the axis 300.
  • the balance 3 of the invention can thus oscillate without any contact with other elements, being recalled to its equilibrium position by means of magnets 30,40, maintained by magnetic palms410, 420 and / or driven by a magnetic escapement. It is thus possible to reduce the friction and wear caused by the movements of the balance. These different measures can however be implemented independently of each other.
  • the figure 1a illustrates a variant of regulating organ similar to the variant of the figure 1b , but in which the realization of the escapement allows oscillation of the balance of greater amplitude, for example oscillations up to 180 °, see more by modifying the disposition of the magnets
  • the exhaust is preferably an exhaust Swiss anchor that allows significant oscillations of the pendulum without generating excessive oscillations of the anchor.
  • the balance 3 is further equipped with screws for correcting any unbalance, or other sources of disturbances of walking.
  • the figure 3 illustrates in a simplified manner a second variant regulating member according to the invention (without the exhaust 2), wherein the fixed permanent magnets 40 and the moving permanent magnets 30 are each constituted by two magnets contiguous in opposition.
  • the resulting magnetized piece thus has two ends provided with identical polarities.
  • the figure 4 illustrates in a simplified manner a third variant of the regulating member according to the invention, in which the fixed permanent magnets40 each consist of two magnetsaccolisen opposition.
  • the resulting magnetized piece thus comprises two ends provided with identical polarities.
  • the two movable magnets 30 on the balance 3 each consist however of a bipolar magnet, the assembly comprising a horizontal axis of symmetry.
  • the figure 5 illustrates in a simplified manner a fourth variant of the invention, corresponding to the figure 1 but in which additional fixed permanent magnets 47 are arranged facing moving magnets 30 at the equilibrium position.
  • the fixed additional magnets 47 and the moving magnets 30 attract each other to the equilibrium position.
  • the equilibrium position is thus determined both by the repulsion of magnets 30 and 40, and by the attraction of magnets 30 and 47; the contribution of the forces of repulsion is, however, preponderant, in order to limit the stability of the equilibrium point and to allow the system to oscillate even with a low drive energy.
  • the magnetic field generated by the additional fixed magnets 47 is therefore preferably much smaller than the magnetic field of the magnets 40.
  • Additional magnets 47 with reversed poles, so as to reduce the stability of the equilibrium point, can also be devised within the scope of the invention.
  • Additional magnets may also be provided at the end of the race, either on a bridge or on the balance, so as to attract or push the balance in this position, and reduce the variation of the amplitude of the oscillations caused by disturbances.
  • the figure 6 illustrates in simplified manner a variant of the regulating member according to the invention, comprising a right rocker (in needle) 3 pivoting about a central axis 300.
  • the two ends of the balance 3 are provided with magnets 30 pushed to the equilibrium position by the mounted magnets40 mounted on a bridge not shown.
  • this arrangement reduces the size of the regulating member.
  • the figure 7 illustrates a top view of a variant of regulating member according to the invention, comprising a right balance 3 similar to that of the figure 6 , but pivoting about an axis 300 off-center. Only the end of the rocker 3 remote from the axis 300 is in this example provided with a magnet pushed towards the equilibrium position illustrated by means of two magnets 40.
  • the exhaust could be obtained by extending the balance 3 by an anchor-shaped part directly actuated by the anchor wheel.
  • the figure 8 illustrates a top view of a sixth variant of regulating member according to the invention.
  • the regulating organ is similar to that of Figures 1 to 2 but includes four movable magnets 30 distributed at 90 ° to each other on the balance 3 and four fixed magnets 40 distributed at 90 ° to each other on a not shown bridge. This arrangement makes it possible in particular to reduce the distance between the stationary magnets and the moving magnets, while multiplying the number of magnets, so that the resulting magnetic interaction force, and thus the return torque, are increased.
  • Arrangements comprising more than four mobile magnets and / or more than four fixed magnets can also be imagined.
  • magnetized parts with a plurality of zones of alternating magnetic polarities.
  • An alternating magnetic field in all or nothing, or according to a sinusoidal function for example, may for example be written by a magnetic head on the periphery of the balance and / or on a fixed element related to the movement.
  • the figure 9 illustrates a top view of a variant of regulating organ in which the number of movable magnets 30 on the balance is less than the number of fixed magnets 40.
  • Each moving magnet is thus subjected to the action of a pair of fixed magnets; each fixed magnet acts only on a single moving magnet.
  • Arrangements comprising two fixed magnets and a single movable magnet can also be imagined
  • the figure 10 illustrates a top view of a variant of regulating organ in which the number of movable magnets 30 on the balance is greater than the number of fixed magnets40.
  • Each moving magnet is thus subjected to the action of a single fixed magnet; however, each fixed magnet acts on two moving magnets.
  • the amplitude of the oscillations of the pendulum of the figure 9 is very limited, less than 90 °. It is thus possible to make it oscillate very quickly and to obtain a very fine resolution for the measurement of time.
  • oscillations of small amplitude, very fast have the disadvantage of amplifying the influence of the disturbances caused at each cycle by the friction with the anchor and the pendulum. According to the desired resolution and the quality of the realization of the escapement, it may therefore be desirable to increase the amplitude of the oscillations beyond 180 °, instead of trying to reduce it.
  • arrangements with two movable magnets and a single fixed magnet are also possible, or even a single fixed magnet and a single movable magnet that can achieve oscillations of almost 360 °.
  • inertia it is also possible to increase the rotational mass of inertia by linking the balance 3 with another oscillating mass through a kinematic chain, for example a gear on the axis the balance, or a belt. Oscillations of the balance are thus transmitted to an additional oscillating weight. Gear ratios between the rocker arm 3 and the additional oscillating mass also make it possible to obtain a different amplitude of oscillation on these two components. For example, it is conceivable to oscillate the balance 3 by 180 ° and to connect it kinematically through a gear of factor 8 to another rotating mass performing oscillations of 8 X 180 °, that is to say say four rounds, each cycle.
  • the figure 11 illustrates a variant of the invention in which the rocker is constituted by a movable magnet 30 whose path is constrained by a guide 43, for example a slide, a slide or a rail, in this example a toric slide.
  • the arrangement of the poles of the fixed magnet 40 is opposed to the arrangement of the poles of the movable magnet 30, so that the equilibrium position is reached when the movable magnet is diametrically opposed to the fixed magnet.
  • This provision allows to use a single moving magnet and a single fixed magnet.
  • Different shapes of slides, rails or slides 43, non-annular, can also be imagined; moreover, the fixed magnet 40 could be out of the slide.
  • the rocker 30 is driven through the anchor 20 actuated by an unrepresented escape wheel and articulated about the axis 300.
  • the anchor 20 extends the arm of the rocker out of the slide 43.
  • a magnetic escapement can also be used in the context of the invention.
  • the figure 12 illustrates a variant of the invention wherein the balance 3 is constituted by or comprises a magnet 3 linearly moving in a cylinder, a slide or along a rail 43 whose two ends are closed by fixed magnets 40.
  • the polarities magnets 30 and 40 are arranged so that the magnetic interaction force tends to urge the moving magnet 30 levitated midway between the two fixed magnets 40, as illustrated in FIG. figure 12 .
  • the balance 3 can be set oscillation by means of a member external to the rail 43 and following the movements of the balance 3 through a mechanical or magnetic link.
  • Rockers oscillating in a plane according to two degrees of freedom, or even three degrees of freedom, can also be imagined within the scope of the invention.
  • a plurality of permanent magnetsfixes In this case, they are intended to push the balance arm towards an equilibrium point around which a drive member makes it oscillate.
  • the Figures 13 and 14 illustrate a variant of the regulating member comprising a movable magnet 30 constituted by a disk mounted in the center of the balance 3.
  • the disc 30 comprises sectors, in the illustrated example two sectors, provided with alternating magnetic polarities.
  • the fixed magnet 40 is mounted above the movable magnet 30, in a parallel plane, and also constituted by a disk provided with sectors of alternating polarity.
  • the balance is positioned so that the opposite polarity sectors of the two magnets 30 and 40 are exactly superimposed.
  • the balance is brought into this position essentially by attraction of the opposite poles of the two magnets, and to a lesser extent by repulsion of the identical poles.
  • the balance oscillates around this position of stable equilibrium when a disturbance is brought to it for example by the escapement not shown in the figure.
  • FIGS. 13 and 14 It is also possible to modify the arrangement of FIGS. 13 and 14, for example by employing magnets 30 and 40 provided with more than two sectors of alternating polarity, or employing several fixed magnets in a first plane and several magnets moving in a parallel plane.
  • the moving magnets may also for example be placed on the periphery of the balance, and the magnets moving above these positions. It is also possible to use a number of different magnet magnets and moving magnets; for example, it is also possible in the context of the invention to mount the movable magnet 30 between a fixed magnet on an upper plane, as illustrated in the figures, and an additional fixed magnet, not shown, in a lower parallel plane.
  • the figure 15 illustrates a top view of a variant of a regulating member in which the moving magnets 30 are directly mounted on Anchor 20.
  • Fixed anchors40 tend to repel and swing these movable magnets around a position of equilibrium.
  • the anchor 20 thus acts as a pendulum.
  • This variant although conceivable, however, has the disadvantage of being more sensitive to shocks, the inertia of the anchor is generally insufficient to ensure isochronous oscillation. An anchor with high inertia would be possible, but would require a significant excitation energy to make it oscillate.
  • the variant of the figure 16 combines the features of the illustrated solutions on the Figures 13 and 15 , that is to say an anchor 20 itself acting as a pendulum and permanent and fixed magnetsconstitués by superimposed disks provided with alternating polarity sectors.
  • this relation guarantees a stable isochronic oscillation only when the oscillations satisfy very particular conditions (for example when their amplitude is small).
  • the variant of the figure 17 illustrates an example of a regulating organ in which the relationship between the beam spacing (ie its angular distance from the rest position) and the restoring force or torque obeys a different relationship.
  • the volume of the fixed magnets 40 increases when, within the range of oscillations p, one moves away from the rest position by an angular distance d, so as to increase the reminder force at a distance of this position.
  • the movable magnets 30 on the balance 3 are however of constant size along the trajectory of the oscillations. Mechanical or magnetic stops not shown can be provided to force the balance to remain in the oscillation range p even in case of shock for example.
  • the unrepresented escapement tends to rotate the balance in the antitemporal direction, which rotation is countered by the repulsion of the magnets.
  • the surface of the fixed magnets 40 in a plane parallel to the plane of the oscillations of the balance 3 increases inside the oscillation range p with the cube of the angular distance d, or possibly according to d 4 .
  • the fixed magnets40 thus have the form of sectioned moons.
  • Another possible arrangement is illustrated on the figure 19 , in which the balance oscillates around the axis 300 on each side of the rest position.
  • the mobile magnets30 of the figure 17 move in a circular path in a plane parallel to the plane of the fixed magnets40.
  • Other types of stackings of any number of moving magnet planes and fixed magnet planes can be imagined.
  • the figure 20 illustrates a variant of the invention in which the rocker 3 is provided with three spokes 302, at least one of which is magnetized with poles opposite to each radial end.
  • the fixed magnets 40 which are constituted by a magnetic ring 40 with a polarization in one direction inside, and in the opposite direction on the outside.
  • the density of the magnetic field generated by the fixed magnet varies along the periphery of the beam so as to preferably provide a restoring force that varies linearly with the angular position of the balance.
  • the pendulum could also be provided with a magnetic peripheral ring, or discrete magnets at the periphery, with a variable magnetization along the periphery.
  • the progressive magnetization of the fixed magnet can for example be obtained by magnetizing it by means of a recording head, as mentioned above.
  • a recording head in case of saturation of the magnetic material, it may be necessary to limit the oscillations of the balance in the portion ensuring the desired relationship between the angular position of the beam and the restoring force.
  • magnetizing the entire balance instead of magnetizing the entire balance, it is conceivable to magnetize only a magnetic track attached to the latter, parallel or perpendicular to the plane of the balance.
  • An additional fixed permanent magnet 47 is disposed facing the movable magnet 30 at the maximum repulsion position, in order to prevent the balance from reaching and exceeding this position.
  • This magnet 47 thus acts as a magnetic stop to move the balance from a position of undesired balance, without the disadvantages of mechanical stops causing shocks likely to disrupt the isochronic movement of the balance.
  • permanent magnets consist of a continuous ring.
  • a discontinuous ring for example provided with one or more air gaps or with discrete magnets.
  • the volume of fixed (and / or mobile) magnets thus varies continuously along the circular path of the balance, so as to control the relationship between the restoring force and the angular position of the balance.
  • the figure 21 illustrates a variant of the invention in which the thickness of the moving magnets 30 increases radially, while the thickness of the fixed magnets 40 decreases away from the axis of rotation 300.
  • An inverted arrangement, ensuring a gap between the magnets fixed and mobile, can also be adopted.
  • the radial variation in thickness can also be combined with a variation along the periphery of the regulating member.
  • the radial and / or circumferential thickness variation of the magnets 30, 40 can also be used with the embodiments of the Figures 13 and 14 having magnets superimposed.
  • the figure 22 illustrates a variant of the regulating member illustrated in the Figures 1 to 2 and further comprising a plurality of electrodes 44, whose electrical property varies as a function of the electric field to which they are subjected.
  • the electrodes 44 thus make it possible to detect or even to measure the rotating magnetic field generated by the oscillations of the moving magnets 30.
  • the electrodes 44 may for example be constituted by magnetoresistive electrodes or by Hall sensors. They can be connected to each other and to an integrated circuit 46 through conductive tracks 440 according to different topologies.
  • the circuit 440 makes it possible to determine the amplitude of the oscillations of the rocker 30 and / or the frequency of oscillation.
  • the circuit 46 may be powered by an independent energy source, for example a battery, or by a coil generating an alternating current under the action of the displacements of the balance, as illustrated in connection with the figure 18 mentioned below. An electronic correction of the running of a mechanical watch can thus be obtained.
  • an independent energy source for example a battery
  • a coil generating an alternating current under the action of the displacements of the balance as illustrated in connection with the figure 18 mentioned below.
  • the measurement of the frequency and / or the amplitude of the oscillations of the balance 30 makes it possible, for example, to detect any irregularities in the operating frequency.
  • This information can be used to correct the running of the watch, for example by exerting a correction torque on the balance 30 by means of unrepresented electromagnets or other electromechanical means, so as to correct the amplitude and the frequency of the oscillations.
  • This information can also be used to display an end-of-march signal, so as to signal to the user that the progress of the watch becomes inaccurate.
  • the figure 23 illustrates a variant of the regulating member in which a coil 45 opposite each movable magnet 30 generates a current proportional to the magnetic field generated during the displacement of this magnet near the coil.
  • a coil 45 opposite each movable magnet 30 generates a current proportional to the magnetic field generated during the displacement of this magnet near the coil.
  • Illuminated coils generate an approximately sinusoidal current whose frequency corresponds to the oscillation frequency of the pendulum. This frequency can be measured by a circuit 45, for example by comparing it with a reference frequency provided by a quartz, for example to inform the user in case of irregular frequency and / or correct this frequency, for example by injecting a compensation current in the coil 45.
  • the circuit 46 may comprise a rectifier and thus be powered itself by the current generated by the coil 45.
  • the current generated by the coil can also be used to power a circuit providing any type of function that one wishes to bring to a mechanical watch without battery.
  • the regulating organ described can be used in a movement for a stand-alone wristwatch, or in an auxiliary module, for example a chronograph module, intended to be superimposed on a basic movement.
  • the different regulating members described all comprise at least one mobile permanent magnet and at least one fixed permanent magnet.
  • the regulating member of the invention is preferably mounted in a mechanical movement, preferably without a battery, and in a watch case revealing at least part of the pendulum, which allows the user to control his movements at all times

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Magnetic Bearings And Hydrostatic Bearings (AREA)
  • Vibration Prevention Devices (AREA)
  • Reciprocating, Oscillating Or Vibrating Motors (AREA)
  • Electric Clocks (AREA)
  • Electromechanical Clocks (AREA)
  • Apparatuses For Generation Of Mechanical Vibrations (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Micromachines (AREA)
  • Magnetically Actuated Valves (AREA)
  • Switches With Compound Operations (AREA)

Abstract

The regulating unit has a balance (3) connected to a movable permanent magnet (30) that oscillates along a circular path around a rotational axis of the balance. Fixed permanent magnets (40) generate magnetic field to return the balance to a stable equilibrium position. An escapement maintains movement of the balance around the equilibrium position, where movement of the balance is constituted by oscillations around the axis. An independent claim is also included for a mechanical movement for a wristwatch including a regulating unit.

Description

La présente invention concerne un organe réglant pour montre bracelet, et un mouvement mécanique pour montre bracelet muni d'un tel mouvement.The present invention relates to a regulating organ for a wristwatch, and a mechanical movement for a wristwatch provided with such a movement.

Les montres mécaniques usuelles comportent un accumulateur d'énergie constitué par un barillet, une chaîne cinématique, ou rouage, entraînant des aiguilles, un organe réglant déterminant la marche de la montre, ainsi qu'un échappement pour transmettre les oscillations de l'organe réglant au rouage. La présente invention concerne en particulier l'organe réglant.The usual mechanical watches comprise an energy accumulator constituted by a barrel, a kinematic chain, or a train, driving needles, a regulating organ determining the running of the watch, and an escapement for transmitting the oscillations of the regulating organ. at the wheel. The present invention relates in particular to the regulating organ.

Lesorganesréglant conventionnels comportent le plus souvent un balancier monté sur un axe en rotation et un organe de rappel exerçant un couple sur le balancier pour le ramener vers une position d'équilibre. L'échappement, ou organe d'entraînement, entretient les oscillations du balancier autour de la position d'équilibre. L'organe de rappel comporte généralement un ressort spiral, souvent appelé spiral, monté coaxialement au balancier. Le spiral transmet un couple de rappel au balancier au travers de la virole ; la position de reposdu ressort spiral détermine la position de rappel du balancier.The conventional regulating members most often comprise a rocker mounted on a rotating axis and a return member exerting a torque on the balance to bring it back to an equilibrium position. The escapement, or drive member, maintains oscillations of the balance around the equilibrium position. The return member generally comprises a spiral spring, often called spiral, mounted coaxially with the balance. The hairspring transmits a restoring torque to the balance wheel through the ferrule; the rest position of the spiral spring determines the return position of the balance.

Cette disposition très répandue présente cependant certains inconvénients.This widespread provision, however, has certain disadvantages.

Tout d'abord, la déformation de matière à chaque oscillation du ressort spiral occasionne une déperdition d'énergie, et donc une réduction de la durée de marche de la montre. D'autre part, la précision de la montre dépend dansune large mesure despropriétésdu matériau utilisé pour le ressort spiral, ainsi que de la précision d'usinage des courbes terminales. En dépit de progrès important dans la métallurgie, la reproductibilité de ces propriétés est difficile à garantir. Par ailleurs, les ressortsspiraux tendent à se fatiguer avec le temps, en sorte que la force de rappel diminue avec le vieillissement de la montre, ce qui entraîne une variation de la précision.First, the deformation of material at each oscillation of the spiral spring causes a loss of energy, and therefore a reduction in the running time of the watch. On the other hand, the precision of the watch depends to a large extent on the properties of the material used for the spiral spring, as well as the machining accuracy of the end curves. Despite significant progress in metallurgy, the reproducibility of these properties is difficult to guarantee. Moreover, the spiral springs tend to getting tired over time, so that the restoring force decreases with the aging of the watch, resulting in a variation in accuracy.

Par ailleurs, les oscillations du balancier dans un sens, par exemple dans le sens horaire, tendent à dérouler le ressort spiral tandisque les rotationsdans le sensopposé ont au contraire pour effet de le contracter. La déformation du ressort s'exerce donc différemment selon le sensde rotation du balancier, ce qui influence la force de rappel et donc la précision et la reproductibilité.Moreover, the oscillations of the balance in one direction, for example in the clockwise direction, tend to unroll the spiral spring while the rotations in the opposite direction have the effect of contracting it. The deformation of the spring is therefore exerted differently depending on the direction of rotation of the balance, which influences the return force and therefore the accuracy and reproducibility.

Le piton et la virole permettant de fixer le spiral au coq (ou pont de balancier), respectivement au balancier, constituent d'autres sources de perturbationset un balourd qui déséquilibre le balancier. D'autre part, le spiral exerce un couple de torsion sur le balancier au niveau du point d'attache de la virole, ce qui influence négativement la précision obtenue. En position verticale, le spiral tend par ailleurs à se déformer sousson propre poidsce qui entraîne un déplacement de son centre de gravité et une perturbation de la période.The peg and the ferrule to fix the hairspring to the cock (or balance bridge), respectively to the pendulum, are other sources of disturbance and unbalance that unbalance the pendulum. On the other hand, the hairspring exerts a torsion torque on the balance at the point of attachment of the ferrule, which negatively influences the accuracy obtained. In a vertical position, the hairspring also tends to deform under its own weight, which causes a shift in its center of gravity and a disturbance of the period.

D'autre part, le balancier est également soumis à l'attraction gravitationnelle ainsi qu'aux accélérations provoquées par les mouvements du porteur. La force de rappel du ressort spiral étant peu importante, ces perturbationsextérieuresont une influence importante sur la précision de la marche, et des mécanismesde correction complexes, par exemple des tourbillons ou mêmes des tourbillons à trois axes, sont parfois employés pour les compenser.On the other hand, the balance is also subject to gravitational attraction as well as acceleration caused by the movements of the wearer. Since the spring force of the spiral spring is small, these external disturbances have an important influence on the accuracy of the gait, and complex correction mechanisms, for example vortices or even three-axis vortices, are sometimes used to compensate for them.

Ensuite, l'épaisseur du spiral s'ajoute à celle du balancier, en sorte que l'épaisseur totale de l'organe réglant est relativement importante.Then, the thickness of the spiral is added to that of the balance, so that the total thickness of the regulating member is relatively large.

Des organes réglants pour montre bracelet mettant en oeuvre un diapason vibrant ont été imaginés, qui permettent de résoudre un certain nombre des problèmes évoqués. Ces organes réglants agissent cependant aussi par déformation et vibration élastique de matière dans les branches du diapason, en sorte que la précision dépend dansce cas également de la métallurgie et de la précision d'usinage. Ces solutions ne se sont pas imposéesà large échelle.Regulating organs for a wristwatch using a vibrating tuning fork have been devised, which make it possible to solve a certain number of the problems mentioned. These regulating members, however, also act by deformation and elastic vibration of material in the branches of the tuning fork, so that the accuracy also depends on the metallurgy and machining precision. These solutions have not been widely adopted.

Des organes réglant de constructions très variées ont également été imaginés dans des pendules, des horloges, ou d'autres dispostifs horlogersde grande dimension. Le volume à disposition, et la position verticale fixe, permettent par exemple d'employer la force gravitationnelle pour rappeler un balancier, ou pendule, vers sa position d'équilibre. La miniaturisation et les accélérations importantes imposées aux mouvements de montre mécaniques usuels dissuadent cependant les constructeurs horlogersde transposer les solutions utilisées pour des pendules ou des horlogesà des mouvements pour montre bracelets.Regulating organs of very varied constructions have also been imagined in clocks, clocks, or other large-scale horological devices. The volume available, and the fixed vertical position, allow for example to use the gravitational force to recall a pendulum, or pendulum, to its equilibrium position. The miniaturization and the major accelerations imposed on the usual mechanical watch movements dissuade the watchmakers from transposing the solutions used for clocks or clocks to movements for wristwatches.

Un but de la présente invention est donc de proposer un organe réglant pour montre bracelet différent et qui évite les inconvénients de l'art antérieur.An object of the present invention is therefore to provide a regulating organ for a different wristwatch and which avoids the disadvantages of the prior art.

Un autre but est de proposer un organe réglant pouvant être employé avec une montre mécanique, dépourvue de source d'alimentation électrique.Another object is to provide a regulating member that can be used with a mechanical watch, devoid of power source.

Un autre but de l'invention est de proposer un organe régulant à balancier pour montre mécanique qui soit dépourvu de coq, de piton, de virole et d'autres moyensde fixation de l'organe de rappel au balancier et à l'axe du balancier.Another object of the invention is to provide a regulating device with a pendulum for a mechanical watch which is devoid of a cock, stud, ferrule and other means for fixing the return member to the balance wheel and to the axis of the balance wheel .

Selon l'invention, cesbutssont atteintsau moyen d'un organe réglant comportant les caractéristiques de la revendication principale, des variantespréférentiellesétant indiquées dans les revendications dépendantes.According to the invention, these steps are achieved by means of a regulating member having the features of the main claim, withpreferred variants being indicated in the dependent claims.

Ces buts sont notamment atteints au moyen d'un organe réglant tel que défini dans la revendication 1.These aims are achieved in particular by means of a regulating member as defined in claim 1.

Cette disposition a l'avantage de permettre la suppression complète du ressort spiral dans les montres mécaniques, et de la plupart desproblèmesqui lui sont associés.This arrangement has the advantage of allowing the complete removal of the spiral spring in mechanical watches, and of most of the problems associated with it.

Cette disposition a également l'avantage d'offrir une précision supérieure, ainsi qu'une influence moindre aux perturbations occasionnées par la gravitation ou par des accélérations externes.This arrangement also has the advantage of offering greater precision, as well as less influence to disturbances caused by gravitation or by external accelerations.

Dans une variante, l'organe de rappel tend à ramener le balancier vers au moins une position d'équilibre stable dont l'organe d'entraînement, par exemple un échappement, tend à l'écarter.In a variant, the return member tends to return the balance to at least one stable equilibrium position, the drive member, for example an exhaust, tends to remove it.

Des organes oscillants employant des champs magnétiques sont notamment décritsdans US4'266'291 , US3'921'386 , US3'714'773 , US3'665'699 , US3'161'012 , de2424212 , et GB1444627 . Cessept documents concernent cependant des montres électriques, dans lesquels un champ magnétique est généré au moyen d'un électro-aimant. Ces solutions ne sont donc pas adaptées à des montres mécaniques dépourvues de source d'alimentation électrique.Oscillating members employing magnetic fields are described in particular US4'266'291 , US3'921'386 , US3'714'773 , US3'665'699 , US3'161'012 , de2424212 , and GB1444627 . Cessept documents however relate to electric watches, in which a magnetic field is generated by means of an electromagnet. These solutions are therefore not suitable for mechanical watches devoid of power source.

Le document supplémentaire US2003/0137901 décrit un mouvement de montre mécanique dans lequel le balancier est muni d'aimants permanents. Le champ tournant provoqué par les oscillations du balancier est détecté par un mécanisme de contrôle de marche afin de contrôler les variations dans les oscillations du balancier. Ces oscillations sont cependant provoquées par un ressort spiral conventionnel, avectous les inconvénients mentionnés plus haut.The additional document US2003 / 0137901 describes a mechanical watch movement in which the balance is provided with permanent magnets. The rotating field caused by the pendulum oscillations is detected by a gait control mechanism to control the variations in the pendulum oscillations. These oscillations are however caused by a conventional spiral spring, with all the drawbacks mentioned above.

Le document US 3937001 décrit une montre ayant une source d'alimentation mécanique et un organe réglant comportant un balancier muni d'aimants permanents.The document US 3937001 discloses a watch having a mechanical power source and a regulating member having a balance provided with permanent magnets.

La fréquence du balancier est controlée de façon élecromécanique grâce à un éléctro-aimant alimenté par un circuit de contrôle.The frequency of the pendulum is controlled electrically by means of an electromagnet powered by a control circuit.

On connaît également le document GB 1389 293 qui montre (figures 10 et 11) un aimant permanent fixé sur la platine et coopérant avec un aimant permanent montré sur le balancier. Toutefois, l'aimant permanent fixé sur la platine n'exerce pas la fonction d'organe de rappel.The document is also known GB 1389 293 which shows ( figures 10 and 11 ) a permanent magnet fixed on the plate and cooperating with a permanent magnet shown on the balance. However, the permanent magnet fixed on the plate does not exert the function of return member.

Dans une variante préférentielle de l'invention, le champ magnétique généré par la partie fixe de l'organe de rappel est fixe et constant, c'est-à-dire qu'il n'est pastournant et qu'il ne varie pasdans le temps.In a preferred variant of the invention, the magnetic field generated by the fixed part of the return member is fixed and constant, that is to say that it is not a current and that it does not vary in the time.

Dans une variante préférentielle, le champ magnétique généré par le ou lesaimantsmobilesest tournant ; c'est-à-dire que le balancier comporte un axe de rotation et que le ou les aimants mobiles, solidaires du balancier sur lequel ils sont directement fixés, oscillent selon une trajectoire circulaire autour dudit axe de rotation. On réduit ainsi le nombre de pièces mobiles et on évite des mouvementsde translation qui génèrent des frottements plus importants. En outre, la totalité de l'énergie cinématique desaimantsmobilesest transmise au balancier. Par ailleurs, les mouvementsde rotation du balancier peuvent être transmisau moyen d'un échappement conventionnel au reste de la montre. Le mouvement du balancier est ainsi constitué par des oscillations autour de l'axe de rotation du balancier, l'amplitude des oscillations étant inférieure à 360°, par exemple inférieure à 180°, voire même inférieure à 120°. Il est ainsi possible d'obtenir une fréquence d'oscillations importante, favorable à la précision et à la résolution de l'organe réglant ; en outre, il est plus aisé d'obtenir une relation sans discontinuités entre la force de rappel et la position angulaire du balancier lorsque ce dernier oscille dansun intervalle limité. L'invention n'est cependant pas limitée à des amplitudes d'oscillation particulières; des amplitudes d'oscillation entre 180 et 300°, ou même des amplitudes prochesde 360°, peuvent aussi être employées, par exemple en employant un seul aimant fixe et un seul aimant mobile. Ces oscillations de plus grande amplitude ont l'avantage de minimiser l'impact de la perturbation introduite par l'échappement à chaque cycle.In a preferred variant, the magnetic field generated by the mobile magnet (s) is rotating; that is to say that the balance has an axis of rotation and that the mobile magnet or magnets, integral with the balance on which they are directly fixed, oscillate along a path circular around said axis of rotation. This reduces the number of moving parts and avoids translational movements that generate greater friction. In addition, all of the kinematic energy of the mobile magnets is transmitted to the balance. In addition, the movements of rotation of the balance can be transmitted by means of a conventional exhaust to the rest of the watch. The movement of the balance is thus constituted by oscillations around the axis of rotation of the balance, the amplitude of the oscillations being less than 360 °, for example less than 180 °, or even less than 120 °. It is thus possible to obtain a high frequency of oscillation, favorable to the precision and the resolution of the regulating organ; in addition, it is easier to obtain a relationship without discontinuities between the restoring force and the angular position of the balance when it oscillates in a limited range. The invention is however not limited to particular oscillation amplitudes; oscillation amplitudes between 180 and 300 °, or even amplitudes close to 360 °, may also be employed, for example by employing a single fixed magnet and a single movable magnet. These oscillations of greater amplitude have the advantage of minimizing the impact of the disturbance introduced by the exhaust at each cycle.

De préférence, au moinsun aimant mobile oscille selon une trajectoire circulaire entre deux aimants permanents fixes disposés sur un arcde cercle et espacés angu lai rement de moinsde 180°. En rapprochant ainsi les aimants permanents fixes, on créé une interaction magnétique importante dont l'intensité varie selon une fonction continue le long de la trajectoire d'oscillation.Preferably, at least one movable magnet oscillates in a circular path between two fixed permanent magnets arranged on a circular arc and spaced angularly by less than 180 °. By thus bringing the fixed permanent magnets together, a large magnetic interaction is created whose intensity varies according to a continuous function along the oscillation trajectory.

Dans une variante préférentielle de l'invention, le balancier est excité par des éléments mécaniques pour osciller de manière isochrone autour de la position d'équilibre. De manière avantageuse, le balancier peut ainsi être associé à un échappement classique pour montre mécanique. Alternativement, l'énergie nécessaire à l'excitation du balancier peut être transmise depuis l'échappement au travers d'aimants permanents Ainsi le balancier magnétique de l'invention peut être employé dansune montre purement mécanique, dépourvue de bobines, d'électro-aimantset de source d'alimentation électrique.In a preferred embodiment of the invention, the balance is excited by mechanical elements to oscillate isochronously around the equilibrium position. Advantageously, the balance can thus be associated with a conventional escapement for a mechanical watch. Alternatively, the energy required for the excitation of the balance can be transmitted from the exhaust through permanent magnets Thus the magnetic balance of the invention can be used in a purely mechanical watch, without coils, electromagnets and power supply.

Dansune variante préférentielle, le ou les aimants mobiles sont fixespar rapport au balancier, ce qui facilite la construction. Le balancier et les aimants oscillent donc selon le même mouvement circulaire alterné.In a preferred embodiment, the mobile magnet or magnets are fixed relative to the balance, which facilitates the construction. The pendulum and the magnets oscillate according to the same alternating circular movement.

Les aimants fixes agissent de préférence de manière à repousser les aimants mobiles montés sur le balancier. La position d'équilibre est déterminée par desforcesde répulsion, et est atteinte lorsque les aimants mobilesse trouvent à équidistance entre deux aimants fixes, et que la force de répulsion des deux aimantsfixesagissant sur chaque aimant mobile se compense. Ainsi, le champ magnétique généré par lesaimantsfixesest minimal à la position d'équilibre, en sorte que la quantité d'énergie nécessaire pour écarter le balancier de cette position d'équilibre et pour entretenir une oscillation est réduite. L'interaction magnétique entre les aimantsfixeset mobilesaugmente à mesure que le balancier s'éloigne de la position d'équilibre, en sorte que la force de rappel augmente proportionnellement avec la distance angulaire du balancier par rapport à sa position de reposThe fixed magnets preferably act to repel the moving magnets mounted on the balance. The position of equilibrium is determined by repulsion forces, and is reached when the mobile magnets are equidistant between two fixed magnets, and the repulsive force of the two fixed magnets acting on each moving magnet is compensated. Thus, the magnetic field generated by the fixed magnets is minimal at the equilibrium position, so that the amount of energy required to move the balance from this equilibrium position and to maintain an oscillation is reduced. The magnetic interaction between the fixed and movable magnets increases as the balance moves away from the equilibrium position, so that the return force increases proportionally with the angular distance of the balance relative to its rest position.

La stabilité du point d'équilibre peut cependant être contrôlée par des aimants supplémentaires agissant par attraction. De même, le balancier peut être écarté de positions d'équilibres non souhaitéesThe stability of the equilibrium point can however be controlled by additional magnets acting by attraction. Likewise, the balance can be moved away from positions of undesired equilibrium

L'invention n'exclut pas des variantes dans lesquelles la position d'équilibre est déterminée par des forces d'attraction, et est atteinte lorsque lesaimants mobiles se trouvent à distance minimale d'aimantsfixes correspondants, ou à équidistance entre deux aimantsfixesdont les forces d'attraction se compensent. Cette variante a cependant l'inconvénient de nécessiter une excitation plusimportante pour faire osciller le balancier autour d'une position d'équilibre correspondant à un maximum de l'attraction magnétique.The invention does not exclude variants in which the equilibrium position is determined by attraction forces, and is reached when the moving magnets are at a minimum distance from corresponding magnets, or equidistant between two fixed magnets, attraction offset each other. However, this variant has the disadvantage of requiring a greater excitation to oscillate the balance around a position of equilibrium corresponding to a maximum of the magnetic attraction.

Dans une variante, les pièces aimantées sont constituées par des portions magnétisées du balancier lui-même. Le balancier pourrait ainsi être constitué d'un anneau magnétisé avec des polarités alternées le long de la périphérie.In a variant, the magnetized parts are constituted by magnetized portions of the balance itself. The pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery.

Dans une autre variante, les aimants mobiles sont directement montés sur ou liésà l'ancre de l'échappement. L'ancre constitue alors un balancier, c'est-à-dire un élément oscillant de façon isochronique dans un champ magnétique.In another variant, the moving magnets are directly mounted on or connected to the anchor of the exhaust. The anchor then constitutes a pendulum, that is to say an oscillating element isochronically in a magnetic field.

L'invention sera mieux comprise à la lecture desexemplesde modesde réalisation illustrés par les figures annexées qui montrent:

  • La figure 1a une vue de dessus schématique d'une première variante d'organe réglant selon l'invention.
  • La figure 1b une vue de dessus schématique d'une première variante d'organe réglant selon l'invention, le balancier étant dans la position d'équilibre définie par les aimants.
  • La figure 2 une vue en coupe de l'organe réglant selon la première variante de l'invention, comprenant danscet exemple deux paliers magnétiques et un blindage magnétique.
  • La figure 3 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant desaimantsfixeset des aimants mobiles constitués chacun de deux aimants bipolaires accolés en opposition.
  • La figure 4 une vue de dessus d'une variante d'organe réglant selon l'invention, comprenant des aimants fixes constitués chacun de deux aimantsbipolairesaccolésen opposition, et des aimants mobiles constitués chacun d'un seul aimant bipolaire.
  • La figure 5 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant des aimants supplémentaires pour augmenter localement la stabilité du point d'équilibre.
  • La figure 6 une vue de dessus d'une variante d'organe réglant selon l'invention, comprenant un balancier droit pivotant autour d'un axe central.
  • La figure 7 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un balancier droit pivotant autour d'un axe décentré.
  • La figure 8 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant quatre aimants mobiles sur le balancier et quatre aimantsfixes.
  • La figure 9 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant deux aimants mobiles sur le balancier et quatre aimants fixes.
  • La figure 10 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant quatre aimants mobiles sur le balancier et deux aimants fixes.
  • La figure 11 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un élément torique dans lequel un aimant mobile est repoussé vers une position d'équilibre par un aimant fixe.
  • La figure 12 une vue de dessusd'une variante d'organe réglant selon l'invention, comprenant un cylindre fermé à sesextrémitéspar deux aimants fixes, ainsi qu'un aimant mobile repoussé en position intermédiaire par lesdeux aimants fixes.
  • La figure 13 une vue en perspective d'une variante d'organe réglant selon l'invention dans laquelle lesaimants mobiles liés au balancier et les aimants fixes sont superposés, dans deux plans parallèles, l'organe réglant étant en position d'équilibre.
  • La figure 14 une vue en perspective de l'organe réglant de la figure 13, oscillant dansune position intermédiaire.
  • La figure 15 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle les aimants mobiles sont directement montés sur l'ancre qui agit ainsi comme balancier.
  • La figure 16 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle les aimants mobiles sont directement montés sur l'ancre qui agit ainsi comme balancier, lesaimantsfixesétant superposé aux aimants mobiles dans un plan parallèle.
  • La figure 17 une vue de dessusd'une variante d'organe réglant selon l'invention, dans laquelle lesaimantsfixesont une forme particulière destinée à garantir une force de rappel proportionnelle à la distance angulaire, et dans laquelle le balancier a la forme d'une tige.
  • La figure 18 une coupe transversale de l'organe réglant de la figure 17 dans le plan de la tige.
  • La figure 19 une vue de dessusd'une autre variante d'organe réglant dans laquelle la force de rappel est proportionnelle à la distance angulaire.
  • La figure 20 une vue de dessusd'une autre variante d'organe réglant dans laquelle la force de rappel est proportionnelle à la distance angulaire, cette variante employant un anneau magnétique avec une magnétisation variant le long de la périphérie.
  • La figure 21 une vue en coupe d'une variante d'organe réglant selon l'invention comportant desaimantsd'épaisseur variable radialement.
  • La figure 22 une vue de dessusd'une variante d'organe réglant selon l'invention, correspondant à la première variante mais dans laquelle un capteur et un circuit permettent de déterminer et/ou contrôler l'amplitude des oscillations du balancier.
  • La figure 23 une vue de dessusd'une variante d'organe réglant selon l'invention, correspondant à la première variante maisdans laquelle une bobine génère un courant dont la fréquence dépend de la fréquence d'oscillation du balancier.
The invention will be better understood on reading the examples of embodiments illustrated by the appended figures which show:
  • The figure 1a a schematic top view of a first variant of regulating member according to the invention.
  • The figure 1b a schematic top view of a first variant of the regulating member according to the invention, the balance being in the equilibrium position defined by the magnets.
  • The figure 2 a sectional view of the regulating member according to the first variant of the invention, comprising in this example two magnetic bearings and a magnetic shielding.
  • The figure 3 a top view of a variant of a regulating member according to the invention, comprisingfixesmagnetsand mobile magnets each consisting of two bipolar magnets contiguous in opposition.
  • The figure 4 a top view of a variant of regulating organ according to the invention, comprising fixed magnets each consisting of two magnetsbipolairesaccolésen opposition, and movable magnets each consisting of a single bipolar magnet.
  • The figure 5 a top view of an alternative regulating member according to the invention, comprising additional magnets for locally increasing the stability of the equilibrium point.
  • The figure 6 a top view of an alternative regulating member according to the invention, comprising a right rocker pivoting about a central axis.
  • The figure 7 a top view of an alternative regulating member according to the invention, comprising a right rocker pivoting about an off-axis.
  • The figure 8 a top view of a variant of regulating organ according to the invention, comprising four movable magnets on the balance and four fixed magnets.
  • The figure 9 a top view of a variant of the regulating organ according to the invention, comprising two movable magnets on the balance and four fixed magnets.
  • The figure 10 a top view of a variant of regulating organ according to the invention, comprising four movable magnets on the balance and two fixed magnets.
  • The figure 11 a top view of a variant of regulating member according to the invention, comprising a toroidal element in which a movable magnet is pushed back to an equilibrium position by a fixed magnet.
  • The figure 12 a top view of a variant of the regulating member according to the invention, comprising a cylinder closed at its ends by two fixed magnets, and a movable magnet pushed in the intermediate position by the two fixed magnets.
  • The figure 13 a perspective view of a variant of a regulating member according to the invention in which the mobile magnets linked to the balance and the fixed magnets are superimposed in two parallel planes, the regulating member being in equilibrium position.
  • The figure 14 a perspective view of the regulating organ of the figure 13 oscillating in an intermediate position.
  • The figure 15 a top view of a variant of regulating organ according to the invention, wherein the moving magnets are directly mounted on the anchor which acts as a rocker.
  • The figure 16 a top view of a variant of the regulating organ according to the invention, in which the moving magnets are directly mounted on the anchor which acts as a rocker, the fixed magnets being superimposed on the moving magnets in a parallel plane.
  • The figure 17 a top view of a variant of a regulating member according to the invention, in which the fixed magnets have a particular shape intended to guarantee a restoring force proportional to the angular distance, and in which the balance has the shape of a rod.
  • The figure 18 a cross section of the regulating organ of the figure 17 in the plane of the stem.
  • The figure 19 a view from above of another variant of regulating organ in which the restoring force is proportional to the angular distance.
  • The figure 20 a view from above of another variant of a regulating member in which the restoring force is proportional to the angular distance, this variant employing a magnetic ring with a magnetization varying along the periphery.
  • The figure 21 a cross-sectional view of a variant of a regulating member according to the invention comprising magnets of variable thickness radially.
  • The figure 22 a top view of an alternative regulating member according to the invention, corresponding to the first variant but in which a sensor and a circuit for determining and / or controlling the amplitude of the pendulum oscillations.
  • The figure 23 a top view of an alternative regulating member according to the invention, corresponding to the first variant but in which a coil generates a current whose frequency depends on the oscillation frequency of the balance.

Dans la description qui suit et dans les revendications, l'adjectif « fixe » se réfère toujoursau mouvement. Un élément est fixe s'il ne se déplace pas par rapport au mouvement, par exemple par rapport à la platine du mouvement.In the following description and in the claims, the adjective "fixed" always refers to the motion. An element is fixed if it does not move relative to the movement, for example with respect to the movement stage.

Le terme « balancier » désigne une pièce oscillant sous l'effet d'une excitation autour d'une position d'équilibre. Les oscillations sensiblement isochroniques déterminent la marche de la montre. Le balancier peut être constitué par une roue avec un nombre quelconque de rayons, un disque, une tige, une ancre, etc.The term "pendulum" designates an oscillating piece under the effect of an excitation around a position of equilibrium. The substantially isochronic oscillations determine the progress of the watch. The balance can be constituted by a wheel with any number of spokes, a disc, a rod, an anchor, etc.

La figure 1b illustre de manière schématique un organe réglant 1 comportant un balancier 3 oscillant autour d'un axe 300 perpendiculaire à la platine du mouvement. Danscet exemple, le balancier 3 comporte une serge annulaire et comporte deux rayons (ou bras) radiaux 302 autour de l'axe 300. Des vis 301 permettent de déplacer facilement le moment d'inertie du balancier. Le balancier constitue une masse d'inertie; sa masse, ainsi que son rayon, sont de préférence importants dans les limites imposées par la volonté de miniaturisation du mouvement. La force de rappel importante que permet la solution revendiquée permet d'utiliser des massesd'inertie particulièrement importantes.The figure 1b schematically illustrates a regulating member 1 comprising a rocker 3 oscillating about an axis 300 perpendicular to the plate of the movement. In this example, the balance 3 comprises an annular serge and has two radial spokes (or arms) 302 about the axis 300. Screws 301 can easily move the moment of inertia of the balance. The pendulum constitutes a mass of inertia; its mass, as well as its radius, are preferably important within the limits imposed by the will of miniaturization of the movement. The large restoring force that the claimed solution allows allows the use of particularly important weights of inertia.

Des balanciers bimétalliques qui se déforment pour compenser lesvariationsde température sont aussi possibles dans le cadre de l'invention. D'autres moyens peuvent être misen oeuvre pour compenser la variation de l'intensité du champ magnétique liée à la température.Bimetallic rockers that deform to compensate for temperature variations are also possible in the context of the invention. Other means can be implemented to compensate for the variation of the intensity of the magnetic field related to the temperature.

Le balancier 3 est lié à ou muni d'aimants permanents mobiles30 entraînésen rotation avec le balancier. L'exemple illustré comporte deux aimants bipolaires permanents discrets qui sont disposéssymétriquement par rapport à l'axe 300, à 180° l'un de l'autre. Chaque aimant comporte un pôle positif et un pôle négatif à équidistance de l'axe 300. Lesaimants30 peuvent être maintenus mécaniquement ou par collage sur le balancier 3. Comme indiqué, les pièces aimantéespourraient aussi être constituées par desportionsmagnétiséesdu balancier lui-même, ou d'une piste magnétique sur le balancier. Le balancier pourrait ainsi être constitué d'un anneau magnétisé avec des polarités alternées le long de la périphérie. Le balancier pourrait par exemple être magnétisé de manière homogène ou progressive au moyen d'une tête d'enregistrement, c'est-à-dire une bobine générant un champ magnétique d'intensité contrôlée dans un entrefer.The balance 3 is connected to or provided with mobile permanent magnets 30 driven in rotation with the balance. The illustrated example comprises two discrete permanent bipolar magnets which are arranged asymmetrically with respect to the axis 300, at 180 ° to one another. Each magnet has a positive pole and a negative pole equidistant from the axis 300. The magnets 30 can be held mechanically or by sticking on the balance 3. As indicated, the magnetized parts could also be constituted by magnified parts of the balance itself, or by a magnetic track on the balance. The pendulum could thus be constituted by a magnetized ring with alternating polarities along the periphery. The pendulum could for example be magnetized homogeneously or gradually by means of a recording head, that is to say a coil generating a magnetic field of controlled intensity in a gap.

L'organe réglant comporte en outre deux aimants permanents fixes40, montés sur un pont ou sur la platine du mouvement par n'importe quel moyen adapté. Lesdeux aimants sont disposés dans le plan du balancier 3, symétriquement et à 180° par rapport à l'axe 300. Dans une variante non illustrée, les aimants fixes 40 pourraient aussi être disposés dans un autre plan, parallèle au plan du balancier 3. Lesaimants40 comportent chacun un pôle positif et un pôle négatif dont la disposition, symétrique par rapport à l'axe 300, est toutefois inversée par rapport à la disposition des pôles sur les aimants mobiles 30. Ainsi, les aimants fixes 40 et mobiles30 se repoussent avec une force d'interaction magnétique maximale lorsqu'ils sont proches. La position d'équilibre est atteinte en tournant le balancier de 90°, de manière à repousser chaque aimant mobile 30 à équidistance desdeux aimantsfixes40 ; le champ magnétique généré par les aimants permanents 40 est minimal dans cette disposition, en sorte que la force ou le moment nécessaire pour quitter cette position d'équilibre est également réduit.The regulating member further comprises two fixed permanent magnets 40, mounted on a bridge or on the stage of the movement by any suitable means. The two magnets are arranged in the plane of the balance 3, symmetrically and at 180 ° with respect to the axis 300. In a variant not shown, the fixed magnets 40 could also be arranged in another plane, parallel to the plane of the balance 3. The magnets 40 each comprise a positive pole and a negative pole whose arrangement, symmetrical with respect to the axis 300, is, however, reversed with respect to the arrangement of the poles on the moving magnets 30. Thus, the stationary magnets 40 and mobiles 30 repel with each other. a maximum magnetic interaction force when they are close. The equilibrium position is reached by turning the balance by 90 °, so as to push each movable magnet 30 equidistant from two fixed magnets40; the magnetic field generated by the permanent magnets 40 is minimal in this arrangement, so that the force or moment necessary to leave this equilibrium position is also reduced.

Les aimants 30 et 40 sont de préférence choisis de manière à ce que la force de répulsion magnétique, même dans la position d'équilibre illustrée, soit largement supérieure à la force gravitationnelle exercée sur le balancier 3. Des aimants permanents composés d'oxydes métalliques, de composés de terres rares ou d'alliages de platine-cobalt seront de préférence utilisés pour obtenir des champs rémanents importants.The magnets 30 and 40 are preferably chosen so that the magnetic repulsion force, even in the equilibrium position illustrated, is much greater than the gravitational force exerted on the balance 3. Permanent magnets composed of metal oxides , rare earth compounds or platinum-cobalt alloys will preferably be used to obtain large residual fields.

La position des aimants fixes, ou même la position desaimants mobiles, peut danst.outes les variantes être ajustée, par exemple au moyen de vis, afin de régler la fréquence d'oscillation du balancier.The position of the fixed magnets, or even the position of the movable magnets, may in all variants be adjusted, for example by means of screws, in order to adjust the oscillation frequency of the balance.

Les oscillations du balancier dépendent ainsi peu de l'inclinaison du balancier. La masse tournante du balancier 3 (y compris les vis 301) et des aimants mobiles 30 est en outre de préférence répartie aussi régulièrement que possible autour de l'axe 300, de manière à améliorer l'équilibrage du balancier.Oscillations of the balance thus depend little on the inclination of the balance. The rotating mass of the balance 3 (including the screws 301) and moving magnets 30 is furthermore preferably distributed as evenly as possible around the axis 300, so as to improve the balance of the balance.

Dans tous les modes de réalisation, des butées mécaniques supplémentaires, non représentées, peuvent être prévues sur le balancier 3 et/ou sur un pont afin de limiter l'amplitude des rotations possibles du balancier, et empêcher ainsi que le balancier passe d'une position d'équilibre à une autre suite à un choc, par exemple. Desélémentsde butée similaires peuvent aussi être employés avec les autres variantes de réalisation discutées plus bas. Les butées supplémentaires peuvent par exemple comprendre des moyens élastiques pour amortir les chocs en fin de course.In all the embodiments, additional mechanical stops, not shown, can be provided on the balance 3 and / or on a bridge in order to limit the amplitude of the possible rotations of the balance, and thus prevent the balance from moving position of balance to another following a shock, for example. Similar abutment elements may also be employed with the other embodiments discussed below. The additional stops may for example comprise elastic means for damping shocks at the end of the race.

Le balancier 3 est misen oscillation autour de la position d'équilibre de la figure 1b au moyen d'un organe d'entraînement constitué dans cet exemple par un échappement 2, ici un échappement à ancre 20 suisse conventionnel. L'échappement peut aussi être spécialement adapté pour tenir compte de la faible amplitude d'oscillation du balancier.The balance 3 is swinging around the equilibrium position of the figure 1b by means of a drive member constituted in this example by an escapement 2, here a conventional Swiss anchor escapement. The escapement can also be specially adapted to take into account the low oscillation amplitude of the balance.

Une roue d'échappement 210 entraînée par les barillets (non représentés) ou par n'importe quelle source d'énergie mécanique appropriée actionne l'ancre 20 au travers des palettes en rubis200. Les déplacements de l'ancre, limitées par les butées 201 sont transmises au balancier 3 par l'intermédiaire de la fourchette 202 et de la cheville 31.An escape wheel 210 driven by the barrels (not shown) or by any suitable mechanical energy source actuates the anchor 20 through the rubis200 pallets. The movements of the anchor, limited by the stops 201 are transmitted to the balance 3 through the fork 202 and the pin 31.

D'autres types d'échappements, y compris des échappements électriques ou magnétiques, peuvent être utilisés dans le cadre de l'invention. Dansun échappement magnétique, les impulsions données au balancier 30 le sont de préférence par attraction ou répulsion entre des pièces aimantées sur le balancier et sur l'échappement. Un entraînement sanscontact est ainsi possible.Other types of exhausts, including electric or magnetic exhausts, may be used in the context of the invention. In a magnetic escapement, the pulses given to the balance 30 are preferably by attraction or repulsion between magnetized parts on the balance and on the exhaust. Uncontacted training is possible.

L'amplitude et la fréquence des oscillations autour de la position d'équilibre sont déterminées par la force et la disposition des aimants, et par l'amplitude du couple transmis par l'organe d'entraînement. On constate par ailleursque le balancier 30 oscille sansdéformationsde matière, en sorte que la fréquence d'oscillation ne dépend pas des caractéristiques métallurgiques ni du vieillissement de pièces élastiquesThe amplitude and the frequency of the oscillations around the equilibrium position are determined by the force and disposition of the magnets, and by the amplitude of the torque transmitted by the drive member. It is also noted that the rocker 30 oscillates without material deformations, so that the oscillation frequency does not depend on the metallurgical characteristics or the aging of elastic parts.

La force de rappel importante que permet l'utilisation d'aimants puissants permet d'obtenir des fréquences d'oscillations importantes, supérieures aux fréquences habituellesdans les montres mécaniques usuelles, et doncd'augmenter la précision et/ou la résolution du mouvement. Un choix d'aimantset de géométrie appropriés permet ainsi d'afficher des indications de temps ou de durée avec une résolution de l'ordre de dixième ou même du centième de seconde.The large restoring force that the use of powerful magnets makes it possible to obtain high oscillation frequencies, higher than the usual frequencies in the usual mechanical watches, and thus to increase the accuracy and / or the resolution of the movement. A choice of appropriate magnets and geometry thus makes it possible to display indications of time or duration with a resolution of the order of one tenth or even one hundredth of a second.

L'organe réglant de la figure 1b est représenté en coupe partielle sur la figure 2, l'échappement 2 ayant été supprimé de la figure pour en améliorer la lisibilité. Dans l'exemple de réalisation illustré, le balancier 3 pivote autour d'un axe 300 perpendiculaire au pont supérieur 41 et au pont inférieur 42. Les ponts 41 et 42 forment de préférence un blindage magnétique permettant à la foisde protéger le balancier 3 des champs magnétiques externes, et de protéger les autres composants de la montre des champs magnétiques générés notamment par lesaimants30 et 40. Un blindage peut également, dans une variante non illustrée, être obtenu au moyen d'éléments distincts des ponts, par exemple au moyen de la platine, du cadran, de la boîte, ou d'éléments dédiés. Un blindage sur toutes les faces peut aussi être adopté. On utilisera par ailleurs de préférence un mouvement dont au moins certains axes, pignons, roues et ou ponts sont réalisés dans des matériaux non magnétiques. Dans une variante préférentielle, la chaîne cinématique entre l'organe réglant et lesaiguilles comporte au moins un élément en matériau synthétique, par exemple une courroie entraînée par une poulie.The regulating organ of the figure 1b is shown in partial section on the figure 2 , the exhaust 2 has been removed from the figure to improve readability. In the exemplary embodiment illustrated, the rocker 3 pivots about an axis 300 perpendicular to the upper bridge 41 and the lower bridge 42. The bridges 41 and 42 preferably form a magnetic shielding both to protect the balance 3 of the fields external magnets, and to protect the other components of the watch from the magnetic fields generated in particular by the magnets 30 and 40. A shielding may also, in a variant not shown, be obtained by means of elements distinct from the bridges, for example by means of the platinum, dial, box, or dedicated items. Shielding on all sides can also be adopted. It will also preferably use a movement of which at least some axes, gears, wheels and or bridges are made of non-magnetic materials. In a preferred embodiment, the kinematic chain between the regulating member and the needles comprises at least one element made of synthetic material, for example a belt driven by a pulley.

L'axe 300 du balancier 3 est maintenu dans les ponts 41, 42 au moyen de deux paliers 410 et 420, par exemple des paliersantichocs conventionnels, des paliers incablocs ou dans l'exemple préférentiel illustré des paliers magnétiques Dans cet exemple, les extrémités supérieures 3001 et inférieures3002de l'axe 300 sont aimantéesou munies d'aimants. Les paliers 410 respectivement 420 comportent chacun un logement 4100 respectivement 4200 dont la profondeur et le diamètre sont légèrement supérieurs aux dimensions correspondantes de l'axe 300. Lesparoisdes logements sont aimantéesavecune polarisation identique à celle des extrémités correspondantes de l'axe 300, de manière à repousser cet axe qui est ainsi maintenu en lévitation entre les paliers 410 et 420. L'axe 300 peut ainsi pivoter sans frottements. Cet arrangement permet en outre de supprimer l'usure des paliers 410, 420 et de l'axe 300.The axis 300 of the balance 3 is maintained in the bridges 41, 42 by means of two bearings 410 and 420, for example conventional bearing blocks, incabloc bearings or in the preferred example illustrated magnetic bearings In this example, the upper ends 3001 and lower 3002 of the axis 300 are magnetized or provided with magnets. The bearings 410 respectively 420 each comprise a housing 4100 respectively 4200 whose depth and diameter are slightly greater than the corresponding dimensions of the axis 300. The walls of the housings are magnetized with a polarization identical to that of the corresponding ends of the axis 300, so as to push this axis which is thus levitated between the bearings 410 and 420. The axis 300 can rotate without friction. This arrangement also makes it possible to eliminate the wear of the bearings 410, 420 and the axis 300.

Le balancier 3 de l'invention peut ainsi osciller sansaucun contact avec d'autres éléments, en étant rappelé vers sa position d'équilibre au moyen desaimants30,40, maintenu par despaliersmagnétiques410, 420 et/ou entraîné par un échappement magnétique. Il est ainsi possible de réduire les frottements et les usures occasionnées par les mouvements du balancier. Ces différentes mesures peuvent cependant être mises en oeuvre indépendamment les unes des autres.The balance 3 of the invention can thus oscillate without any contact with other elements, being recalled to its equilibrium position by means of magnets 30,40, maintained by magnetic palms410, 420 and / or driven by a magnetic escapement. It is thus possible to reduce the friction and wear caused by the movements of the balance. These different measures can however be implemented independently of each other.

La figure 1a illustre une variante d'organe réglant similaire à la variante de la figure 1b, maisdans lequel la réalisation de l'échappement permet des oscillations du balancier de plusgrande amplitude, par exemple des oscillations de 180°au maximum, voir davantage en modifiant la disposition desaimants L'échappement est de préférence un échappement à ancre suisse qui permet des oscillations importantes du balancier sans générer d'oscillations excessive de l'ancre. Le balancier 3 est en outre équipé de vis permettant de corriger d'éventuels balourds, ou d'autres sourcesde perturbationsde la marche.The figure 1a illustrates a variant of regulating organ similar to the variant of the figure 1b , but in which the realization of the escapement allows oscillation of the balance of greater amplitude, for example oscillations up to 180 °, see more by modifying the disposition of the magnets The exhaust is preferably an exhaust Swiss anchor that allows significant oscillations of the pendulum without generating excessive oscillations of the anchor. The balance 3 is further equipped with screws for correcting any unbalance, or other sources of disturbances of walking.

La géométrie du balancier décrit en relation avec les figures 1a, 1b et 2 est similaire à celle des balanciers des organes réglants mécaniques conventionnels. L'usage d'un organe de rappel magnétique permet cependant d'imaginer des constructions de balanciers 3 différentes, dont plusieurs exemples vont être décritsen relation avec lesfigures3 à 13 notamment.The geometry of the balance described in relation to figures 1a , 1b and 2 is similar to that of the rockers of the conventional mechanical regulating organs. The use of a magnetic return member, however, makes it possible to imagine constructions of 3 different balances, several examples of which will be described in relation to Figures 3 to 13 in particular.

La figure 3 illustre de manière simplifiée une deuxième variante d'organe réglant selon l'invention (sans l'échappement 2), dans laquelle les aimants permanents fixes 40 et les aimants permanents mobiles 30 sont chacun constitués par deux aimants accolés en opposition. La pièce aimantée résultante comporte ainsi deux extrémités munies de polarités identiques.The figure 3 illustrates in a simplified manner a second variant regulating member according to the invention (without the exhaust 2), wherein the fixed permanent magnets 40 and the moving permanent magnets 30 are each constituted by two magnets contiguous in opposition. The resulting magnetized piece thus has two ends provided with identical polarities.

La figure 4 illustre de manière simplifiée une troisième variante d'organe réglant selon l'invention, dans laquelle les aimants permanents fixes40 sont chacun constitués de deux aimantsaccolésen opposition. La pièce aimantée résultante comporte ainsi deux extrémités muniesde polarités identiques Lesdeux aimants mobiles 30 sur le balancier 3 sont cependant constitués chacun d'un aimant bipolaire, l'ensemble comportant un axe de symétrie horizontal.The figure 4 illustrates in a simplified manner a third variant of the regulating member according to the invention, in which the fixed permanent magnets40 each consist of two magnetsaccolésen opposition. The resulting magnetized piece thus comprises two ends provided with identical polarities. The two movable magnets 30 on the balance 3 each consist however of a bipolar magnet, the assembly comprising a horizontal axis of symmetry.

La figure 5 illustre de manière simplifiée une quatrième variante de l'invention, correspondant à la figure 1, mais dans laquelle des aimants permanents fixes supplémentaires 47 sont disposés en regard des aimants mobiles30 à la position d'équilibre. Dansl'exemple illustré, lesaimants supplémentaires fixes 47 et les aimants mobiles 30 s'attirent mutuellement à la position d'équilibre. La position d'équilibre est ainsi déterminée à la fois par la répulsion des aimants 30 et 40, et par l'attraction des ai mants 30 et 47 ; la contribution desforcesde répulsion est cependant prépondérante, de manière à limiter la stabilité du point d'équilibre et à permettre au système d'osciller même avec une faible énergie d'entraînement. Le champ magnétique généré par les aimants fixes supplémentaires 47 est donc de préférence largement inférieur au champ magnétique desaimants40.The figure 5 illustrates in a simplified manner a fourth variant of the invention, corresponding to the figure 1 but in which additional fixed permanent magnets 47 are arranged facing moving magnets 30 at the equilibrium position. In the illustrated example, the fixed additional magnets 47 and the moving magnets 30 attract each other to the equilibrium position. The equilibrium position is thus determined both by the repulsion of magnets 30 and 40, and by the attraction of magnets 30 and 47; the contribution of the forces of repulsion is, however, preponderant, in order to limit the stability of the equilibrium point and to allow the system to oscillate even with a low drive energy. The magnetic field generated by the additional fixed magnets 47 is therefore preferably much smaller than the magnetic field of the magnets 40.

Des aimants supplémentaires 47 avec des pôles inversés, de manière à réduire la stabilité du point d'équilibre, peuvent aussi être imaginés dans le cadre de l'invention.Additional magnets 47 with reversed poles, so as to reduce the stability of the equilibrium point, can also be devised within the scope of the invention.

Des résultats similaires peuvent être obtenus en disposant des aimants permanents supplémentaires sur le balancier.Similar results can be obtained by placing additional permanent magnets on the balance.

Des aimants supplémentaires peuvent aussi être prévus en bout de course, soit sur un pont soit sur le balancier, de manière à attirer ou à repousser le balancier dans cette position, et à réduire la variation de l'amplitude des oscillations provoquée par des perturbations.Additional magnets may also be provided at the end of the race, either on a bridge or on the balance, so as to attract or push the balance in this position, and reduce the variation of the amplitude of the oscillations caused by disturbances.

La figure 6 illustre de manière simplifiée une variante d'organe réglant selon l'invention, comprenant un balancier droit (en aiguille) 3 pivotant autour d'un axe central 300. Lesdeux extrémitésdu balancier 3 sont muniesd'aimants30 repoussésversla position d'équilibre par les aimantsfixes40 montés sur un pont non représenté. Bien que la masse d'inertie du balancier 3 danscette variante d'exécution soit fortement réduite, cette disposition permet de réduire l'encombrement de l'organe réglant.The figure 6 illustrates in simplified manner a variant of the regulating member according to the invention, comprising a right rocker (in needle) 3 pivoting about a central axis 300. The two ends of the balance 3 are provided with magnets 30 pushed to the equilibrium position by the mounted magnets40 mounted on a bridge not shown. Although the mass of inertia of the balance 3 in this variant embodiment is greatly reduced, this arrangement reduces the size of the regulating member.

La figure 7 illustre une vue de dessus d'une variante d'organe réglant selon l'invention, comprenant un balancier droit 3 similaire à celui de la figure 6, mais pivotant autour d'un axe 300 décentré. Seule l'extrémité du balancier 3 éloignée de l'axe 300 est dans cet exemple munie d'un aimant repoussé vers la position d'équilibre illustrée au moyen de deux aimants 40.The figure 7 illustrates a top view of a variant of regulating member according to the invention, comprising a right balance 3 similar to that of the figure 6 , but pivoting about an axis 300 off-center. Only the end of the rocker 3 remote from the axis 300 is in this example provided with a magnet pushed towards the equilibrium position illustrated by means of two magnets 40.

Dans cette variante, l'échappement pourrait être obtenu en prolongeant le balancier 3 par une pièce en forme d'ancre directement actionnée par la roue d'ancre.In this variant, the exhaust could be obtained by extending the balance 3 by an anchor-shaped part directly actuated by the anchor wheel.

Outre les balanciers droits (en aiguille, ou en I) desfigures6 et 7, des balanciers en forme de T ou de H, par exemple, peuvent aisément être imaginés.In addition to the straight rockers (needle, or I) desfigures6 and 7, T-shaped or H-shaped balances, for example, can easily be imagined.

La figure 8 illustre une vue de dessusd'une sixième variante d'organe réglant selon l'invention. L'organe réglant est similaire à celui des figures 1 à 2, maiscomprend quatre aimants mobiles 30 répartis à 90° les uns des autres sur le balancier 3 et quatre aimants fixes 40 répartis à 90° les uns des autres sur un pont non représenté. Cette disposition permet notamment de réduire la distance entre les aimants fixes et les aimants mobiles, tout en multipliant le nombre d'aimants, en sorte que la force d'interaction magnétique résultante, et donc le couple de rappel, sont augmentés.The figure 8 illustrates a top view of a sixth variant of regulating member according to the invention. The regulating organ is similar to that of Figures 1 to 2 but includes four movable magnets 30 distributed at 90 ° to each other on the balance 3 and four fixed magnets 40 distributed at 90 ° to each other on a not shown bridge. This arrangement makes it possible in particular to reduce the distance between the stationary magnets and the moving magnets, while multiplying the number of magnets, so that the resulting magnetic interaction force, and thus the return torque, are increased.

Des dispositions comprenant plusde quatre aimantsmobiles et/ou plusde quatre aimants fixes peuvent également être imaginées. Par ailleurs, comme évoqué, il est aussi possible d'employer des pièces aimantées avec une pluralité de zonesde polarités magnétiques alternées. Un champ magnétique alterné en tout ou rien, ou selon une fonction sinusoïdale par exemple, peut par exemple être écrit par une tête magnétique sur la périphérie du balancier et/ou sur un élément fixe lié au mouvement.Arrangements comprising more than four mobile magnets and / or more than four fixed magnets can also be imagined. Moreover, as mentioned, it is also possible to use magnetized parts with a plurality of zones of alternating magnetic polarities. An alternating magnetic field in all or nothing, or according to a sinusoidal function for example, may for example be written by a magnetic head on the periphery of the balance and / or on a fixed element related to the movement.

La figure 9 illustre une vue de dessusd'une variante d'organe réglant dans laquelle le nombre d'aimants mobiles 30 sur le balancier est inférieur au nombre d'aimants fixes 40. Chaque aimant mobile est ainsi soumis à l'action d'une paire d'aimantsfixes; chaque aimant fixe n'agit que sur un seul aimant mobile. Des dispositions comportant deux aimants fixes et un seul aimant mobile peuvent aussi être imaginéesThe figure 9 illustrates a top view of a variant of regulating organ in which the number of movable magnets 30 on the balance is less than the number of fixed magnets 40. Each moving magnet is thus subjected to the action of a pair of fixed magnets; each fixed magnet acts only on a single moving magnet. Arrangements comprising two fixed magnets and a single movable magnet can also be imagined

La figure 10 illustre une vue de dessus d'une variante d'organe réglant dans laquelle le nombre d'aimants mobiles 30 sur le balancier est supérieur au nombre d'aimantsfixes40. Chaque aimant mobile est ainsi soumis à l'action d'un seul aimant fixe ; chaque aimant fixe agit cependant sur deux aimants mobiles.The figure 10 illustrates a top view of a variant of regulating organ in which the number of movable magnets 30 on the balance is greater than the number of fixed magnets40. Each moving magnet is thus subjected to the action of a single fixed magnet; however, each fixed magnet acts on two moving magnets.

L'amplitude des oscillations du balancier de la figure 9 est très limitée, inférieure à 90°. Il est ainsi possible de le faire osciller très rapidement et d'obtenir une résolution trèsfine pour la mesure du temps Toutefois, des oscillations de faible amplitude, trèsrapidesont l'inconvénient d'amplifier l'influence des perturbations provoquées à chaque cycle par les frottements avec l'ancre et le balancier. Selon la résolution souhaitée et la qualité de la réalisation de l'échappement, il peut donc être souhaitable d'augmenter l'amplitude des oscillations au-delà de 180°, au lieu de chercher à la réduire. Dans ce but, des dispositions comportant deux aimants mobileset un seul aimant fixe sont aussi possibles, ou même un seul aimant fixe et un seul aimant mobile qui permettent d'obtenir des oscillations de presque 360°.The amplitude of the oscillations of the pendulum of the figure 9 is very limited, less than 90 °. It is thus possible to make it oscillate very quickly and to obtain a very fine resolution for the measurement of time. However, oscillations of small amplitude, very fast, have the disadvantage of amplifying the influence of the disturbances caused at each cycle by the friction with the anchor and the pendulum. According to the desired resolution and the quality of the realization of the escapement, it may therefore be desirable to increase the amplitude of the oscillations beyond 180 °, instead of trying to reduce it. For this purpose, arrangements with two movable magnets and a single fixed magnet are also possible, or even a single fixed magnet and a single movable magnet that can achieve oscillations of almost 360 °.

Par ailleurs, dans une variante non illustrée, il est aussi possible d'augmenter la masse d'inertie en rotation en liant le balancier 3 avec une autre masse oscillante au traversd'une chaîne cinématique, par exemple d'un engrenage sur l'axe du balancier, ou d'une courroie. Les oscillations du balancier sont ainsi transmises à une masse oscillante supplémentaire. Des rapportsd'engrenage entre le balancier 3 et la masse oscillante supplémentaire permettent en outre d'obtenir une amplitude d'oscillation différente sur cesdeux composants. Par exemple, il est imaginable de faire osciller le balancier 3 de 180°et de le relier cinématiquement au travers d'un engrenage de facteur 8 à une autre masse en rotation effectuant des oscillations de 8 X 180°, c'est-à-dire de quatre tours, à chaque cycle.Furthermore, in a variant not illustrated, it is also possible to increase the rotational mass of inertia by linking the balance 3 with another oscillating mass through a kinematic chain, for example a gear on the axis the balance, or a belt. Oscillations of the balance are thus transmitted to an additional oscillating weight. Gear ratios between the rocker arm 3 and the additional oscillating mass also make it possible to obtain a different amplitude of oscillation on these two components. For example, it is conceivable to oscillate the balance 3 by 180 ° and to connect it kinematically through a gear of factor 8 to another rotating mass performing oscillations of 8 X 180 °, that is to say say four rounds, each cycle.

La figure 11 illustre une variante de l'invention dans laquelle le balancier est constitué par un aimant mobile 30 dont la trajectoire est contrainte par un guide 43, par exemple une coulisse, une glissière ou un rail, dans cet exemple une coulisse torique. La disposition despôlesde l'aimant fixe 40 est opposée à la disposition des pôlesde l'aimant mobile 30, en sorte que la position d'équilibre est atteinte lorsque l'aimant mobile se trouve diamétralement opposé à l'aimant fixe. Cette disposition permet d'employer un seul aimant mobile et un seul aimant fixe. Desformesde coulisses, de rails ou de glissières 43 différentes, non annulaires, peuvent aussi être imaginées; par ailleurs l'aimant fixe 40 pourrait se trouver hors de la glissière.The figure 11 illustrates a variant of the invention in which the rocker is constituted by a movable magnet 30 whose path is constrained by a guide 43, for example a slide, a slide or a rail, in this example a toric slide. The arrangement of the poles of the fixed magnet 40 is opposed to the arrangement of the poles of the movable magnet 30, so that the equilibrium position is reached when the movable magnet is diametrically opposed to the fixed magnet. This provision allows to use a single moving magnet and a single fixed magnet. Different shapes of slides, rails or slides 43, non-annular, can also be imagined; moreover, the fixed magnet 40 could be out of the slide.

Dans cet exemple, le balancier 30 est entraîné au traversde l'ancre 20 actionnée par une roue d'échappement non représentée et articulée autour de l'axe 300. L'ancre 20 prolonge le brasdu balancier hors de la coulisse 43. Un échappement magnétique peut aussi être utilisé dans le cadre de l'invention.In this example, the rocker 30 is driven through the anchor 20 actuated by an unrepresented escape wheel and articulated about the axis 300. The anchor 20 extends the arm of the rocker out of the slide 43. A magnetic escapement can also be used in the context of the invention.

Des dispositions d'organes réglants comportant plusieurs positions d'équilibre stables peuvent aussi être imaginéesdans le cadre de l'invention.Arrangements of regulating members having a plurality of stable equilibrium positions may also be imagined within the scope of the invention.

La figure 12 illustre une variante de l'invention dans laquelle le balancier 3 est constitué par ou comporte un aimant 3 se déplaçant linéairement dansun cylindre, une coulisse ou le long d'un rail 43 dont les deux extrémités sont fermées par des aimants fixes 40. Les polarités des aimants30 et 40 sont disposées de manière à ce que la force d'interaction magnétique tend à repousser l'aimant mobile 30 en lévitation à mi-distance entre lesdeux aimantsfixes40, comme illustré sur la figure 12. Le balancier 3 peut être misen oscillation au moyen d'un organe externe au rail 43 et suivant les déplacements du balancier 3 au traversd'une liaison mécanique ou magnétique.The figure 12 illustrates a variant of the invention wherein the balance 3 is constituted by or comprises a magnet 3 linearly moving in a cylinder, a slide or along a rail 43 whose two ends are closed by fixed magnets 40. The polarities magnets 30 and 40 are arranged so that the magnetic interaction force tends to urge the moving magnet 30 levitated midway between the two fixed magnets 40, as illustrated in FIG. figure 12 . The balance 3 can be set oscillation by means of a member external to the rail 43 and following the movements of the balance 3 through a mechanical or magnetic link.

Le mouvement du balancier dans les figures 11 et 12 est contraint par lesguides43, ce qui entraîne une déperdition d'énergie et une perte de précision en casde déformation ou de dilatation des surfaces de guidage. Ces variantes permettent cependant de mettre en oeuvre des solutions non conventionnelles pour répondre à des besoins particuliers.The movement of the pendulum in Figures 11 and 12 is constrained by the guides43, resulting in loss of energy and loss of accuracy in case of deformation or expansion of the guide surfaces. These variants, however, make it possible to implement unconventional solutions to meet particular needs.

Des balanciers oscillant dansun plan selon deux degrésde liberté, ou même troisdegrésde liberté, peuvent aussi être imaginésdans le cadre de l'invention. Une pluralité d'aimantspermanentsfixesdoivent dansce cas être prévuspour repousser le balancier versun point d'équilibre autour duquel un organe d'entraînement le fait osciller. La faible épaisseur à disposition dansune montre bracelet, et lesdifficultésde réalisation de l'échappement, rendent toutefois de telles solutions plus difficilement applicables.Rockers oscillating in a plane according to two degrees of freedom, or even three degrees of freedom, can also be imagined within the scope of the invention. A plurality of permanent magnetsfixes In this case, they are intended to push the balance arm towards an equilibrium point around which a drive member makes it oscillate. The small thickness available in a wristwatch, and the difficulties of achieving the exhaust, however, make such solutions more difficult to apply.

Les figures 13 et 14 illustrent une variante de l'organe réglant comportant un aimant mobile 30 constitué par un disque monté au centre du balancier 3. Le disque 30 comporte des secteurs, dans l'exemple illustré deux secteurs, munisde polarités magnétiques alternées. L'aimant fixe 40 est monté au-dessusde l'aimant mobile 30, dans un plan parallèle, et également constitué par un disque munisde secteursde polarités alternées. Dans la position d'équilibre illustrée sur la figure 13, le balancier se positionne de manière à ce que les secteurs de polarité opposéesdesdeux aimants30 et 40 soient exactement superposés. Le balancier est amené danscette position essentiellement par attraction des pôles opposés des deux aimants, et dansune moindre mesure par répulsion despôles identiques. Le balancier oscille autour de cette position d'équilibre stable lorsqu'une perturbation lui est apportée par exemple par l'échappement non représenté sur la figure.The Figures 13 and 14 illustrate a variant of the regulating member comprising a movable magnet 30 constituted by a disk mounted in the center of the balance 3. The disc 30 comprises sectors, in the illustrated example two sectors, provided with alternating magnetic polarities. The fixed magnet 40 is mounted above the movable magnet 30, in a parallel plane, and also constituted by a disk provided with sectors of alternating polarity. In the equilibrium position illustrated on the figure 13 the balance is positioned so that the opposite polarity sectors of the two magnets 30 and 40 are exactly superimposed. The balance is brought into this position essentially by attraction of the opposite poles of the two magnets, and to a lesser extent by repulsion of the identical poles. The balance oscillates around this position of stable equilibrium when a disturbance is brought to it for example by the escapement not shown in the figure.

Il est également possible de modifier l'arrangement desfigures 13 et 14 par exemple en employant desaimants30 et 40 munisde plusde deux secteursde polarités alternées, ou en employant plusieursaimants fixesdansun premier plan et plusieurs aimants mobiles dans un plan parallèle. Les aimants mobiles peuvent aussi par exemple être placésà la périphérie du balancier, et les aimants mobiles au-dessus de ces positions. Il est aussi possible d'employer un nombre d'aimantsfixeset d'aimants mobiles différents; par exemple, on pourrait aussi dans le cadre de l'invention monter l'aimant mobile 30 entre un aimant fixe sur un plan supérieur, comme illustré sur les figures, et un aimant fixe supplémentaire, non représenté, dansun plan parallèle inférieur.It is also possible to modify the arrangement of FIGS. 13 and 14, for example by employing magnets 30 and 40 provided with more than two sectors of alternating polarity, or employing several fixed magnets in a first plane and several magnets moving in a parallel plane. The moving magnets may also for example be placed on the periphery of the balance, and the magnets moving above these positions. It is also possible to use a number of different magnet magnets and moving magnets; for example, it is also possible in the context of the invention to mount the movable magnet 30 between a fixed magnet on an upper plane, as illustrated in the figures, and an additional fixed magnet, not shown, in a lower parallel plane.

La figure 15 illustre une vue de dessusd'une variante d'organe réglant dans laquelle les aimants mobiles 30 sont directement montés sur l'ancre 20. Desaimantsfixes40 tendent à repousser et à faire osciller ces aimantsmobilesautour d'une position d'équilibre. L'ancre 20 agit ainsi elle-même comme balancier. Cette variante, bien qu'envisageable, présente cependant l'inconvénient d'être plus sensible aux chocs, l'inertie de l'ancre étant généralement insuffisante pour garantir une oscillation isochronique. Une ancre à forte inertie serait envisageable, mais nécessiterait une énergie d'excitation importante pour la faire osciller.The figure 15 illustrates a top view of a variant of a regulating member in which the moving magnets 30 are directly mounted on Anchor 20. Fixed anchors40 tend to repel and swing these movable magnets around a position of equilibrium. The anchor 20 thus acts as a pendulum. This variant, although conceivable, however, has the disadvantage of being more sensitive to shocks, the inertia of the anchor is generally insufficient to ensure isochronous oscillation. An anchor with high inertia would be possible, but would require a significant excitation energy to make it oscillate.

La variante de la figure 16 combine lescaractéristiquesdes solutions illustrées sur les figures 13 et 15, c'est-à-dire une ancre 20 agissant elle-même comme balancier et desaimantsfixeset permanentsconstitués par des disques superposés munis de secteursde polarités alternées.The variant of the figure 16 combines the features of the illustrated solutions on the Figures 13 and 15 , that is to say an anchor 20 itself acting as a pendulum and permanent and fixed magnetsconstitués by superimposed disks provided with alternating polarity sectors.

Les aimants mécaniques ordinaires ont une force de rappel proportionnelle à leur élongation d : F = k d

Figure imgb0001
Ordinary mechanical magnets have a restoring force proportional to their elongation d: F = k d
Figure imgb0001

Appliqué à un ressort spiral destiné à ramener un balancier vers sa position de repos stable, cette force garantit une oscillation isochronique lorsque l'excitation du balancier, provoquée par l'échappement, obéit à certaines contraintes.Applied to a spiral spring intended to bring a rocker to its stable rest position, this force guarantees an isochronic oscillation when the excitation of the rocker, caused by the escapement, obeys certain constraints.

La force de rappel entre deux aimantsponctuelsdécroit en revanche de manière quadratique, ou même cubique, lorsque l'écartement d entre les aimants augmente : F j / d 2 ou F j / d 3

Figure imgb0002
The restoring force between two punctual magnetsdécroit on the other hand in a quadratic manner, or even cubic, when the spacing d between the magnets increases: F j / d 2 or F j / d 3
Figure imgb0002

Employé avec un échappement conventionnel, cette relation ne garantit une oscillation isochronique stable que lorsque les oscillations satisfont à des conditions très particulières (par exemple lorsque leur amplitude est faible).Used with a conventional escapement, this relation guarantees a stable isochronic oscillation only when the oscillations satisfy very particular conditions (for example when their amplitude is small).

La variante de la figure 17 illustre un exemple d'organe réglant dans laquelle la relation entre l'écartement du balancier (c'est-à-dire sa distance angulaire par rapport à la position de repos) et la force ou le couple de rappel obéit à une relation différente.The variant of the figure 17 illustrates an example of a regulating organ in which the relationship between the beam spacing (ie its angular distance from the rest position) and the restoring force or torque obeys a different relationship.

Pour cela, le volume desaimantsfixes40 augmente lorsque, à l'intérieur de la plage d'oscillations p, l'on s'éloigne de la position de repos d'une distance angulaire d, de manière à accroitre la force de rappel à distance de cette position. Les aimants mobiles30 sur le balancier 3 sont en revanche de taille constante le long de la trajectoire des oscillations. Des butées mécaniques ou magnétiques non représentées peuvent être prévues pour contraindre le balancier à rester dans la plage d'oscillation p même en cas de choc par exemple.For this, the volume of the fixed magnets 40 increases when, within the range of oscillations p, one moves away from the rest position by an angular distance d, so as to increase the reminder force at a distance of this position. The movable magnets 30 on the balance 3 are however of constant size along the trajectory of the oscillations. Mechanical or magnetic stops not shown can be provided to force the balance to remain in the oscillation range p even in case of shock for example.

Ainsi, l'échappement non représenté tend à faire tourner le balancier dans le sensantihoraire, rotation qui est contrée par la répulsion des aimants.Thus, the unrepresented escapement tends to rotate the balance in the antitemporal direction, which rotation is countered by the repulsion of the magnets.

Dans l'exemple de la figure 17, la surface desaimantsfixes40 dansun plan parallèle au plan des oscillations du balancier 3 augmente à l'intérieur du domaine d'oscillation p avec le cube de la distance angulaire d, ou éventuellement selon d4. Lesaimantsfixes40 ont ainsi la forme de lunes sectionnées. Une autre disposition possible est illustrée sur la figure 19, dans laquelle le balancier oscille autour de l'axe 300 de chaque côté de la position de repos.In the example of the figure 17 the surface of the fixed magnets 40 in a plane parallel to the plane of the oscillations of the balance 3 increases inside the oscillation range p with the cube of the angular distance d, or possibly according to d 4 . The fixed magnets40 thus have the form of sectioned moons. Another possible arrangement is illustrated on the figure 19 , in which the balance oscillates around the axis 300 on each side of the rest position.

Lesaimants mobiles30 de la figure 17 se déplacent selon une trajectoire circulaire dans un plan parallèle au plan desaimantsfixes40. Il est cependant aussi possible, afin d'augmenter l'interaction magnétique, de faire tourner les aimants mobiles entre deux plans parallèles munis chacun d'un ou plusieurs aimants fixes 40. Inversement, il est aussi possible de prévoir un balancier 3 composé de plusieurs plateaux superposés, tournant sur un même axe et tous munis d'aimants mobiles 30 ; les différents plateaux mobiles sont alors séparés par un pont ou plusieurs ponts portant les aimants fixes. D'autres types d'empilages d'un nombre quelconque de plans d'aimants mobiles et de plans d'aimants fixes peuvent être imaginés.The mobile magnets30 of the figure 17 move in a circular path in a plane parallel to the plane of the fixed magnets40. However, it is also possible, in order to increase the magnetic interaction, to rotate the moving magnets between two parallel planes each provided with one or more fixed magnets 40. Conversely, it is also possible to provide a balance 3 composed of several superposed trays, rotating on the same axis and all provided with movable magnets 30; the different moving plates are then separated by a bridge or several bridges carrying fixed magnets. Other types of stackings of any number of moving magnet planes and fixed magnet planes can be imagined.

D'autres dispositions non illustrées sont possibles pour corriger la relation entre la force de rappel provoquée par les aimants 30, 40 et la distance ou la distance angulaire du balancier 3 par rapport à la position de repos Par exemple, au lieu de varier la surface desaimantsfixesdans le plan horizontal, il est possible de varier la surface des aimants mobiles. D'autre part, il est aussi possible de modifier l'épaisseur desaimantsfixes et/ou mobiles, ou leur magnétisation, le long du parcoursdu balancier. Ces différentes mesures peuvent en outre être combinées entre elles. Par ailleurs, il est aussi possible d'employer desaimantsde volume ou de magnétisation variable dans un système comprenant un balancier circulaire avec une inertie importante, et/ou d'employer un nombre arbitraire d'aimantsfixeset/ou mobilesde volume ou de densité variable. Enfin, une force de rappel variable selon la distance angulaire du balancier peut aussi être obtenue avecdesaimantsdiscretsde taille, de matériau, de magnétisation et/ouOther non-illustrated arrangements are possible to correct the relationship between the restoring force caused by the magnets 30, 40 and the distance or the angular distance of the balance 3 from the rest position. For example, instead of varying the surface Fixed magnets in the horizontal plane, it is possible to vary the surface of the moving magnets. On the other hand, it is also possible to modify the thickness of the fixed and / or mobile magnets, or their magnetization, along the path of the balance. These different measures can be combined with each other. Moreover, it is also possible to use magnets of variable volume or magnetization in a system comprising a circular balance with a large inertia, and / or to use an arbitrary number of fixed and / or mobile magnets of variable volume or density. Finally, a restoring force that varies according to the angular distance of the balance can also be obtained with discrete magnets of size, material, magnetization and / or

La figure 20 illustre une variante de l'invention dans laquelle le balancier 3 est muni de trois rayons 302, dont au moins un est magnétisé avec des pôles opposés à chaque extrémité radiale. Ainsi, seul le pôle externe du rayon exerce une interaction importante avec lesaimantsfixes 40, qui sont constitués par un anneau magnétique 40 avec une polarisation dansun sensà l'intérieur, et dans le sensopposé à l'extérieur. En outre, la magnétisation de l'aimant fixe 40 augmente, de préférence selon d3 ou éventuellement selon d4, avec la distance angulaire d par rapport à la position de repos d=0 du balancier. La densité du champ magnétique généré par l'aimant fixe varie le long de la périphérie du balancier de manière à assurer de préférence une force de rappel variant linéairement avec la position angulaire du balancier. Dansune variante non illustrée, le balancier pourrait aussi être muni d'un anneau périphérique magnétique, ou d'aimants discrets à la périphérie, avec une magnétisation variable le long de la périphérie.The figure 20 illustrates a variant of the invention in which the rocker 3 is provided with three spokes 302, at least one of which is magnetized with poles opposite to each radial end. Thus, only the outer pole of the beam exerts a strong interaction with the fixed magnets 40, which are constituted by a magnetic ring 40 with a polarization in one direction inside, and in the opposite direction on the outside. In addition, the magnetization of the fixed magnet 40 increases, preferably according to d 3 or possibly according to d 4 , with the angular distance d relative to the rest position d = 0 of the balance. The density of the magnetic field generated by the fixed magnet varies along the periphery of the beam so as to preferably provide a restoring force that varies linearly with the angular position of the balance. In a variant not illustrated, the pendulum could also be provided with a magnetic peripheral ring, or discrete magnets at the periphery, with a variable magnetization along the periphery.

L'aimantation progressive de l'aimant fixe peut par exemple être obtenue en le magnétisant au moyen d'une tête d'enregistrement, comme mentionné plus haut. En casde saturation du matériau magnétique, il peut être nécessaire de limiter les oscillations du balancier dans la portion garantissant la relation souhaitée entre la position angulaire du balancier et la force de rappel. Par ailleurs, au lieu de magnétiser tout le balancier, il est imaginable de ne magnétiser qu'une piste magnétique fixée sur ce dernier, parallèlement ou perpendiculairement au plan du balancier.The progressive magnetization of the fixed magnet can for example be obtained by magnetizing it by means of a recording head, as mentioned above. In case of saturation of the magnetic material, it may be necessary to limit the oscillations of the balance in the portion ensuring the desired relationship between the angular position of the beam and the restoring force. Moreover, instead of magnetizing the entire balance, it is conceivable to magnetize only a magnetic track attached to the latter, parallel or perpendicular to the plane of the balance.

Un aimant permanent fixe supplémentaire 47 est disposé en regard de l'aimant mobile 30 à la position de répulsion maximale, afin d'empêcher le balancier d'atteindre puisde dépasser cette position. Cet aimant 47 agit ainsi comme une butée magnétique pour écarter le balancier d'une position d'équilibre non désirée, sans présenter les inconvénients des butées mécaniques provoquant des chocs susceptibles de perturber la marche isochronique du balancier.An additional fixed permanent magnet 47 is disposed facing the movable magnet 30 at the maximum repulsion position, in order to prevent the balance from reaching and exceeding this position. This magnet 47 thus acts as a magnetic stop to move the balance from a position of undesired balance, without the disadvantages of mechanical stops causing shocks likely to disrupt the isochronic movement of the balance.

Dans le cas d'oscillations du balancier inférieuresà 180°, il serait aussi possible et même préférable de prévoir des butées magnétiques 47 non illustrées plus proches des limites de la course du balancier, par exemple une butée à 10 heures et une seconde butée à 2 heures afin de repousser le balancier bien avant qu'il n'atteigne la position d'équilibre instable indésirable à 12 heures.In the case of pendulum oscillations less than 180 °, it would also be possible and even better to provide magnetic stops 47 not shown closer to the limits of the balance of the balance, for example a stop at 10 o'clock and a second stop 2 hours to push the pendulum well before it reaches the unstable unstable equilibrium position at 12 o'clock.

Sur la variante de la figure 20, les aimants permanentssont constitués par un anneau continu. Il est cependant aussi possible de prévoir un anneau discontinu, par exemple muni d'un ou plusieurs entrefers ou comportant des aimants discrets.On the variant of the figure 20 permanent magnets consist of a continuous ring. However, it is also possible to provide a discontinuous ring, for example provided with one or more air gaps or with discrete magnets.

Sur lesvariantesdesfigures 17 à 20, le volume desaimantsfixes (et/ou mobiles) varie donc de manière continue le long de la trajectoire circulaire du balancier, de manière à contrôler la relation entre la force de rappel et la position angulaire du balancier.On the variantsoffigures 17 to 20, the volume of fixed (and / or mobile) magnets thus varies continuously along the circular path of the balance, so as to control the relationship between the restoring force and the angular position of the balance.

La figure 21 illustre une variante de l'invention dans laquelle l'épaisseur des aimants mobiles 30 augmente radialement, tandisque l'épaisseur des aimants fixes 40 diminue en s'éloignant de l'axe de rotation 300. Une disposition inversée, assurant un interstice entre les aimants fixes et mobiles, peut aussi être adoptée. Par ailleurs, la variation radiale d'épaisseur peut aussi être combinée avec une variation le long de la périphérie de l'organe réglant. La variation radiale et/ou circonférentielle d'épaisseur des aimants 30, 40 peut aussi être employée avec les modes d'exécution des figures 13 et 14 comportant des aimants superposés. Par ailleurs, il est aussi possible de varier la magnétisation des aimants fixes et ou mobiles en fonction de la distance au centre.The figure 21 illustrates a variant of the invention in which the thickness of the moving magnets 30 increases radially, while the thickness of the fixed magnets 40 decreases away from the axis of rotation 300. An inverted arrangement, ensuring a gap between the magnets fixed and mobile, can also be adopted. Moreover, the radial variation in thickness can also be combined with a variation along the periphery of the regulating member. The radial and / or circumferential thickness variation of the magnets 30, 40 can also be used with the embodiments of the Figures 13 and 14 having magnets superimposed. Moreover, it is also possible to vary the magnetization of the fixed and mobile magnets as a function of the distance to the center.

La figure 22 illustre une variante de l'organe réglant illustré sur les figures 1 à 2, et comprenant en outre une pluralité d'électrodes 44 dont une propriété électrique varie en fonction du champ électrique auxquelles elles sont soumises. Les électrodes 44 permettent ainsi de détecter ou même de mesurer le champ magnétique tournant généré par les oscillations des aimants mobiles 30. Les électrodes 44 peuvent par exemple être constituées par des électrodes magnétorésistives ou par des capteurs de Hall. Elles peuvent être connectées entre elleset à un circuit intégré 46 au travers de pistes conductrices 440 selon différentes topologies. Le circuit 440 permet de déterminer l'amplitude des oscillations du balancier 30 et/ou la fréquence d'oscillation. Le circuit 46 peut être alimenté par une source d'énergie indépendante, par exemple une batterie, ou par une bobine générant un courant alternatif sous l'action des déplacements du balancier, comme illustré en relation avec la figure 18 évoquée plus bas. Une correction électronique de la marche d'une montre mécanique peut ainsi être obtenue.The figure 22 illustrates a variant of the regulating member illustrated in the Figures 1 to 2 and further comprising a plurality of electrodes 44, whose electrical property varies as a function of the electric field to which they are subjected. The electrodes 44 thus make it possible to detect or even to measure the rotating magnetic field generated by the oscillations of the moving magnets 30. The electrodes 44 may for example be constituted by magnetoresistive electrodes or by Hall sensors. They can be connected to each other and to an integrated circuit 46 through conductive tracks 440 according to different topologies. The circuit 440 makes it possible to determine the amplitude of the oscillations of the rocker 30 and / or the frequency of oscillation. The circuit 46 may be powered by an independent energy source, for example a battery, or by a coil generating an alternating current under the action of the displacements of the balance, as illustrated in connection with the figure 18 mentioned below. An electronic correction of the running of a mechanical watch can thus be obtained.

La mesure de la fréquence et/ou de l'amplitude des oscillations du balancier 30 permet par exemple de détecter d'éventuelles irrégularités dans la fréquence de marche. Cette information peut être utilisée pour corriger la marche de la montre, par exemple en exerçant un couple de correction sur le balancier 30 au moyen d'électroaimants non représentés ou d'autres moyens électromécaniques, de manière à corriger l'amplitude et la fréquence des oscillations. Cette information peut aussi être utilisée pour afficher un signal de fin de marche, de manière à signaler à l'utilisateur que la marche de la montre devient imprécise.The measurement of the frequency and / or the amplitude of the oscillations of the balance 30 makes it possible, for example, to detect any irregularities in the operating frequency. This information can be used to correct the running of the watch, for example by exerting a correction torque on the balance 30 by means of unrepresented electromagnets or other electromechanical means, so as to correct the amplitude and the frequency of the oscillations. This information can also be used to display an end-of-march signal, so as to signal to the user that the progress of the watch becomes inaccurate.

La figure 23 illustre une variante de l'organe réglant dans laquelle une bobine 45 en regard de chaque aimant mobile 30 génère un courant proportionnel au champ magnétique généré lorsdu déplacement de cet aimant prèsde la bobine. Des dispositions comportant deux bobines en opposition de phase, ou t rois bobines générant un système de courant triphasé, peuvent aussi être utilisées. Les bobines illust rées génèrent un courant approximativement sinusoïdal dont la fréquence correspond à la fréquence d'oscillation du balancier. Cette fréquence peut être mesurée par un circuit 45, par exemple en la comparant à une fréquence de référence fournie par un quartz, afin par exemple d'informer l'utilisateur en casde fréquence irrégulière et/ou de corriger cette fréquence, par exemple en injectant un courant de compensation dans la bobine 45. Le circuit 46 peut comporter un redresseur et ainsi être alimenté lui-même par le courant généré par la bobine 45. Le courant généré par la bobine peut aussi servir à alimenter un circuit fournissant n'importe quel type de fonction que l'on souhaite apporter à une montre mécanique sans batterie.The figure 23 illustrates a variant of the regulating member in which a coil 45 opposite each movable magnet 30 generates a current proportional to the magnetic field generated during the displacement of this magnet near the coil. Arrangements having two coils in phase opposition, or three coils generating a three-phase current system, can also be used. Illuminated coils generate an approximately sinusoidal current whose frequency corresponds to the oscillation frequency of the pendulum. This frequency can be measured by a circuit 45, for example by comparing it with a reference frequency provided by a quartz, for example to inform the user in case of irregular frequency and / or correct this frequency, for example by injecting a compensation current in the coil 45. The circuit 46 may comprise a rectifier and thus be powered itself by the current generated by the coil 45. The current generated by the coil can also be used to power a circuit providing any type of function that one wishes to bring to a mechanical watch without battery.

L'organe réglant décrit peut être utilisé dans un mouvement pour montre bracelet autonome, ou dansun module auxiliaire, par exemple un module chronographe, destiné à être superposé à un mouvement de base.The regulating organ described can be used in a movement for a stand-alone wristwatch, or in an auxiliary module, for example a chronograph module, intended to be superimposed on a basic movement.

Les différents organes réglant décrits comportent tousau moins un aimant permanent mobile et au moins un aimant permanent fixe.The different regulating members described all comprise at least one mobile permanent magnet and at least one fixed permanent magnet.

L'organe réglant de l'invention est de préférence monté dans un mouvement mécanique, de préférence dépourvu de batterie, et dans une boîte de montre laissant apparaître au moins une partie du balancier, ce qui permet à l'utilisateur de contrôler ses déplacements en tout tempsThe regulating member of the invention is preferably mounted in a mechanical movement, preferably without a battery, and in a watch case revealing at least part of the pendulum, which allows the user to control his movements at all times

Claims (47)

  1. Regulating member for mechanical wristwatch, having:
    a balance (3), linked to at least one mobile permanent magnet (30),
    a return member (30, 40) arranged for returning said balance towards at least one position of equilibrium,
    a driving element (2) arranged for maintaining the balance's movement around said position of equilibrium,
    characterized in that said return member has at least one fixed permanent magnet (40) arranged for generating a magnetic field in order to return said balance towards said position of equilibrium.
  2. The regulating member of claim 1, wherein said balance has a rotation axle (300), said at least one mobile permanent magnet oscillating along a circular trajectory around said rotation axle.
  3. The regulating member of one of the claims 1 to 2, wherein said fixed magnets are distributed on an arc of circle.
  4. The regulating member of claim 3, wherein at least one said mobile magnet (30) is arranged for oscillating along a circular trajectory between two fixed magnets (40) spaced angularly by less than 180° on said arc of circle.
  5. The regulating member of one of the claims 1 to 4, wherein said movement of the balance is constituted by oscillations around the balance's rotation axle, the amplitude of said oscillations being less than 180°.
  6. The regulating member of one of the claims 1 to 4, wherein said movement of the balance is constituted by oscillations around the balance's rotation axle, the amplitude of said oscillations being greater than 180° and preferably less than 300°.
  7. The regulating member of one of the claims 1 to 6, wherein said driving element (2) is constituted by an escapement to transmit the circular oscillations from the balance to the rest of the movement.
  8. The regulating member of one of the claims 1 to 7, wherein said return member is arranged for acting on said balance (3) without matter deformation.
  9. The regulating member of one of the claims 1 to 8, wherein said return member is arranged for acting without contact with said balance (3).
  10. The regulating member of one of the claims 1 to 9, wherein said magnetic field is constant in time.
  11. The regulating member of one of the claims 1 to 10, wherein at least one said fixed magnet (40) is placed so as to push back at least one said mobile magnet (30) towards said position of equilibrium.
  12. The regulating member of one of the claims 1 to 11, wherein the magnetic interaction between said at least one fixed magnet (40) and said at least one mobile magnet (30) is minimal at said position of equilibrium.
  13. The regulating member of one of the claims 1 to 12, wherein said position of equilibrium is determined by the action of at least two fixed magnets (40) acting on at least one same mobile magnet (30).
  14. The regulating member of claim 13, wherein, at the position of equilibrium, the magnetic fields exerted by the two said fixed magnets (40) onto said at least one same mobile magnet (30) are of equal intensity.
  15. The regulating member of one of the claims 13 or 14, wherein said mobile magnet (30) is at equidistance between two fixed magnets (40) at said position of equilibrium.
  16. The regulating member of one of the claims 1 to 15, wherein said position of equilibrium is determined by the action of at least one fixed magnet (40) acting simultaneously on at least two mobile magnets (30).
  17. The regulating member of one of the claims 1 to 16, wherein said position of equilibrium is a stable position of equilibrium in which the magnetic attraction between the fixed magnets and the mobile magnets is minimal.
  18. The regulating member of one of the claims 1 to 17, having the same number of mobile magnets (30) as fixed magnets (40).
  19. The regulating member of one of the claims 1 to 18, wherein, at the position of equilibrium:
    each fixed magnet (40) is arranged for exerting a magnetic field of equal intensity on two mobile magnets (30),
    and each mobile magnet (30) is arranged for exerting a magnetic field of equal intensity on two fixed magnets (40).
  20. The regulating member of one of the claims 1 to 19, wherein said mobile magnet or magnets (30) are fixed relative to said balance (3).
  21. The regulating member of claim 20, wherein said balance (30) is symmetrical relative to said rotation axle (300).
  22. The regulating member of one of the claims 20 or 21, wherein said mobile magnets (30) are placed in symmetric fashion around said rotation axle (300).
  23. The regulating member of one of the claims 1 to 22, having mechanical and/or magnetic stops to limit the amplitude of possible rotations of said balance (3).
  24. The regulating member of one of the claims 1 to 23, wherein said balance is constituted by a mobile permanent magnet (30).
  25. The regulating member of one of the claims 1 to 24, wherein said at least one mobile permanent magnet (30) is linked to the pallets (20) that thus also constitute the balance.
  26. The regulating member of one of the claims 1 to 25, wherein said at least one mobile permanent magnet (30) is mounted in the plane of the balance and wherein said at least one fixed permanent magnet (40) is mounted in a plane parallel to said balance.
  27. The regulating member of claim 26, wherein said at least one fixed permanent magnet and said at least one mobile permanent magnet are each constituted by a disc having sectors of alternating polarities.
  28. The regulating member of one of the claims 1 to 27, having means for compensating the variation of magnetic field linked to the temperature.
  29. The regulating member of one of the claims 1 to 28, wherein said driving element (2) is constituted by a mechanical escapement, for example a Swiss pallets escapement.
  30. The regulating member of one of the claims 1 to 29, wherein said escapement is a magnetic escapement.
  31. The regulating member of one of the claims 1 to 30, said balance (30) being held by at least one magnetic bearing (410, 420).
  32. The regulating member of one of the claims 1 to 31, the position of said at least one magnet (30, 40, 47) being adjustable for regulating the frequency of the oscillations of said balance (3).
  33. The regulating member of one of the claims 1 to 32, at least one said magnet (30) acting on an electronic system (44, 45, 46) to correct or determine the frequency of oscillation of said balance (3).
  34. The regulating member of claim 33, said electronic system having at least one Hall sensor or a magnetoresistive sensor (44) subjected to the action of the magnetic field of one of the magnets to generate a measuring signal depending on the oscillations of said balance.
  35. The regulating member of one of the claims 33 or 34, said electronic system having at least one coil (45) subjected to the action of the magnetic field of one of the mobile magnets (30) to generate a signal depending on the oscillations of said balance (3).
  36. The regulating member of one of the claims 33 to 35, having at least one electronic circuit powered by the electro-motor force generated by the displacement of one of said magnets in the proximity of a coil.
  37. The regulating member of one of the claims 1 to 36, having at least one bridge made of a non-magnetic material.
  38. The regulating member of one of the claims 1 to 37, having a magnetic screen (41, 42) in order to protect external elements from the magnetic field generated by said permanent magnets.
  39. The regulating member of one of the claims 1 to 38, wherein the displacements of said balance (30) are constrained by a guiding surface (43).
  40. The regulating member of one of the claims 1 to 39, arranged in a way that the return force of said balance (30) varies linearly with the angular position (d) of the balance (3).
  41. The regulating member of one of the claims 1 to 40, wherein said balance moves along a circular trajectory,
    the volume of the fixed and/or mobile magnets and/or their magnetization varying in continuous manner along said trajectory.
  42. The regulating member of claim 41, wherein said balance (3) oscillates around a position of equilibrium along a circular trajectory,
    the magnetic interaction between said fixed permanent magnets and said mobile permanent magnets increases when the balance moves away from said position of equilibrium along said trajectory, so as to achieve an increasing return force.
  43. The regulating member of one of the claims 1 to 42, wherein at least one of said fixed and/or mobile permanent magnets (30, 40) is magnetized in non-homogenous manner.
  44. The regulating member of one of the claims 1 to 43, wherein said balance is constituted of several oscillating elements connected by a cinematic chain and oscillating with variable frequencies.
  45. Mechanical movement for wristwatch having a regulating member according to one of the claims 1 to 44.
  46. Movement according to claim 45, wherein the cinematic chain between said regulating member and the display elements has at least one belt of non-magnetic material.
  47. Movement according to one of the claims 45 to 46, wherein at least one portion of said balance (3) is visible from outside the movement.
EP05801381A 2004-10-26 2005-10-26 Wristwatch regulating member and mechanical movement comprising one such regulating member Active EP1805565B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP10176455A EP2282240B1 (en) 2004-10-26 2005-10-26 Chronograph module for wristwatch

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH17682004 2004-10-26
PCT/EP2005/055582 WO2006045824A2 (en) 2004-10-26 2005-10-26 Wristwatch regulating member and mechanical movement comprising one such regulating member

Publications (2)

Publication Number Publication Date
EP1805565A2 EP1805565A2 (en) 2007-07-11
EP1805565B1 true EP1805565B1 (en) 2010-09-15

Family

ID=34974327

Family Applications (2)

Application Number Title Priority Date Filing Date
EP05801381A Active EP1805565B1 (en) 2004-10-26 2005-10-26 Wristwatch regulating member and mechanical movement comprising one such regulating member
EP10176455A Active EP2282240B1 (en) 2004-10-26 2005-10-26 Chronograph module for wristwatch

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP10176455A Active EP2282240B1 (en) 2004-10-26 2005-10-26 Chronograph module for wristwatch

Country Status (10)

Country Link
US (1) US7396154B2 (en)
EP (2) EP1805565B1 (en)
JP (1) JP4607966B2 (en)
KR (1) KR100918186B1 (en)
CN (1) CN101091141B (en)
AT (2) ATE557328T1 (en)
DE (1) DE602005023633D1 (en)
HK (1) HK1113830A1 (en)
RU (1) RU2356079C2 (en)
WO (1) WO2006045824A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035131A1 (en) 2014-12-18 2016-06-22 Jeanneret, Marc Andre Oscillator for a clock movement

Families Citing this family (58)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1710636A1 (en) * 2005-04-06 2006-10-11 Daniel Rochat Escapement for a watch
NL1032149C2 (en) * 2006-07-11 2008-01-14 Magnetic Motion Systems Mms B Watch.
CH697273B1 (en) * 2006-07-26 2008-07-31 Detra Sa An electromechanical escapement and timepiece provided with such a device
EP1973013B1 (en) * 2007-03-21 2010-12-22 Richemont International S.A. Balance for a timepiece movement
TWI362574B (en) * 2008-09-25 2012-04-21 Pegatron Corp Multifunction time display
EP2287683B1 (en) * 2009-08-17 2012-10-31 The Swatch Group Research and Development Ltd. Magnetischer Schutz für eine Spiralfeder einer Uhr
CH702187A2 (en) 2009-11-02 2011-05-13 Lvmh Swiss Mft Sa Regulating element for wristwatch and timepiece including such a regulating organ.
CH702188B1 (en) * 2009-11-02 2017-12-29 Lvmh Swiss Mft Sa A regulating organ for a wristwatch, and a timepiece comprising such a regulating organ.
CH702156B1 (en) * 2009-11-13 2017-08-31 Nivarox Far Sa Spiral balance resonator for a timepiece.
EP2336832B1 (en) * 2009-12-21 2020-12-02 Rolex Sa Swiss lever escapement
EP2450758B1 (en) * 2010-11-09 2017-01-04 Montres Breguet SA Magnetic pivot and electrostatic pivot
CH704685B1 (en) * 2011-03-23 2015-12-15 Lvmh Swiss Mft Sa Magnetic regulating organ for mechanical watches.
US9016933B2 (en) 2011-07-29 2015-04-28 Rolex S.A. Balance wheel assembly with optimized pivoting
EP2565727A1 (en) * 2011-09-05 2013-03-06 Nivarox-FAR S.A. Method for forming a clock balance wheel-hairspring assembly and adjusting the oscillation frequency
JP5882089B2 (en) * 2012-03-08 2016-03-09 セイコーインスツル株式会社 Temperature compensated balance, watch movement and watch
JP5840043B2 (en) * 2012-03-22 2016-01-06 セイコーインスツル株式会社 Balance, watch movement, and watch
CN104204966B (en) * 2012-03-29 2017-02-22 尼瓦洛克斯-法尔股份有限公司 Flexible escapement mechanism having a mobile frame
EP2706416B1 (en) * 2012-09-07 2015-11-18 The Swatch Group Research and Development Ltd Constant force flexible anchor
RU2526561C1 (en) * 2012-12-21 2014-08-27 Общество с ограниченной ответственностью "Часовой завод "НИКА" Mystery wrist watch
EP2762985B1 (en) * 2013-02-04 2018-04-04 Montres Breguet SA Magnetic or electrostatic pivot of a clock mobile
JP6025202B2 (en) * 2013-02-25 2016-11-16 セイコーインスツル株式会社 Temperature compensated balance, watch movement, and mechanical watch
JP6025203B2 (en) * 2013-02-25 2016-11-16 セイコーインスツル株式会社 Temperature-compensated balance, movement for watch, mechanical watch, and method for manufacturing temperature-compensated balance
CN104007650B (en) * 2013-02-25 2017-09-05 精工电子有限公司 Temperature compensating type escapement and its manufacture method, clock machine core, mechanical clock
US9459590B1 (en) 2013-04-22 2016-10-04 Donald J. Lecher Methods and devices using a series of sequential timekeeping periods
US9612577B2 (en) 2013-04-22 2017-04-04 Donald J. Lecher Device displaying a series of sequential timekeeping periods
CH707990B1 (en) * 2013-04-24 2017-11-15 Lvmh Swiss Mft Sa Mechanical watch movement comprising a tourbillon and a magnetic regulating member.
EP2998801A1 (en) * 2014-09-19 2016-03-23 The Swatch Group Research and Development Ltd. Magnetic clock escapement and device for controlling the operation of a clock movement
US9772604B2 (en) 2013-12-23 2017-09-26 Eta Sa Manufacture Horlogere Suisse Timepiece synchronization mechanism
JP6236164B2 (en) * 2013-12-23 2017-11-22 ニヴァロックス−ファー ソシエテ アノニム Non-contact cylinder escapement mechanism for timepiece
EP2908188B1 (en) * 2014-02-17 2018-06-27 The Swatch Group Research and Development Ltd. Adjustment of a clock piece resonator by changing the rigidity of a resilient return means
EP3001259A1 (en) * 2014-09-26 2016-03-30 ETA SA Manufacture Horlogère Suisse Device for regulating the operation of a mechanical clock movement
EP2998799A1 (en) 2014-09-18 2016-03-23 Montres Breguet SA Contactless notching
CN105738034B (en) * 2014-12-12 2018-05-22 天津海鸥表业集团有限公司 Balance measuring method for laser correction balance wheel gravity center shift and measuring cutting device
EP3128379B1 (en) * 2015-08-04 2019-10-02 The Swatch Group Research and Development Ltd. Escapement with escape wheel with field rramps and a non-return device
EP3130966B1 (en) 2015-08-11 2018-08-01 ETA SA Manufacture Horlogère Suisse Mechanical clockwork provided with a motion feedback system
CN107924157B (en) * 2015-08-25 2019-12-13 西铁城时计株式会社 Escapement mechanism for a timepiece
EP3182224B1 (en) * 2015-12-18 2019-05-22 Montres Breguet S.A. Safety regulator for timepiece escapement
EP3185083B1 (en) * 2015-12-23 2018-11-14 Montres Breguet S.A. Mechanical timepiece mechanism with anchor escapement
JP6653181B2 (en) * 2016-01-21 2020-02-26 セイコーインスツル株式会社 Tourbillon, movement and watches
KR102597049B1 (en) * 2016-01-27 2023-11-02 삼성디스플레이 주식회사 Display apparatus having indicator needle
EP3339982B1 (en) * 2016-12-23 2021-08-25 The Swatch Group Research and Development Ltd Regulation by mechanical breaking of a horological mechanical oscillator
CN106707718B (en) * 2017-03-01 2019-01-29 谭泽华 Clock and watch split axle impacts release catch
EP3489763B1 (en) * 2017-11-22 2021-06-16 Nivarox-FAR S.A. Pallet for watch movement escapement
CN108561530B (en) * 2017-12-04 2020-12-29 安徽未来机电科技有限公司 Balance wheel assembly for speed reducer
JP7060988B2 (en) * 2018-03-16 2022-04-27 セイコーインスツル株式会社 Temperature-compensated balance, movement and watch
EP3579058B1 (en) * 2018-06-07 2021-09-15 Montres Breguet S.A. Timepiece comprising a tourbillon
EP3584645B1 (en) * 2018-06-19 2021-06-30 The Swatch Group Research and Development Ltd Timepiece comprising a mechanical movement of which the operation is controlled by an electromechanical device
CN108953896B (en) * 2018-08-06 2020-10-09 广州市纳祺科技有限公司 Automatic micro-rotation all-dimensional dead-angle-free monitoring support
EP3620867B1 (en) * 2018-09-04 2022-01-05 The Swatch Group Research and Development Ltd Timepiece comprising a mechanical oscillator whose average frequency is synchronised to that of a reference electronic oscillator
EP3627242B1 (en) 2018-09-19 2021-07-21 The Swatch Group Research and Development Ltd Optimised magneto-mechanical timepiece escapement mechanism
EP3650954A1 (en) * 2018-11-09 2020-05-13 Montres Breguet S.A. Governor for a watch
KR102066047B1 (en) * 2018-12-13 2020-01-14 오성근 Mechanical timer with adjustable time
EP3719588B1 (en) 2019-04-03 2021-11-03 The Swatch Group Research and Development Ltd Auto-adjustable clock oscillator
EP3767397B1 (en) * 2019-07-19 2022-04-20 The Swatch Group Research and Development Ltd Clock movement comprising a rotary element provided with a magnetic structure having a periodic configuration
JP2022546337A (en) * 2019-08-29 2022-11-04 コンプリタイム エスアー A mechanism for moving objects for jewelry or costume jewelry items
IT202000013213A1 (en) * 2020-06-04 2021-12-04 Antonio Corazza DEVICE EQUIPPED WITH MOBILE STRUCTURES, SUCH DUE TO THE INTERACT BETWEEN THE MAGNETS INTEGRATED IN THE STRUCTURES SAME
US11703807B2 (en) * 2020-08-18 2023-07-18 Kevin Farrelly Nolan Magnetically coupled dead beat escapement breakaway mechanism
EP4202564A1 (en) * 2021-12-22 2023-06-28 The Swatch Group Research and Development Ltd Mechanical timepiece movement comprising a magnetically pivoted balance

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389293A (en) * 1971-05-04 1975-04-03 Golay Bernard Sa Oscillating devices

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH385751A (en) 1962-08-22 1964-08-31 Ebauches Sa Motor balance for electric timepiece
US3524118A (en) * 1967-09-21 1970-08-11 Reich Robert W Electronic oscillating motor timepiece drive
CH519741A (en) * 1968-09-06 1971-10-29 Far Fab Assortiments Reunies Watch balance
US3670492A (en) * 1969-05-28 1972-06-20 Citizen Watch Co Ltd Balance wheel assembly
US3665699A (en) * 1970-04-16 1972-05-30 Centre Electron Horloger Device for locking an electro-dynamically maintained balance/balance-spring
JPS4912905B1 (en) * 1970-07-27 1974-03-28
US3851461A (en) * 1971-02-10 1974-12-03 Timex Corp Balance wheel
BE790818A (en) * 1971-11-01 1973-02-15 Timex Corp AMPLITUDE CONTROL MEANS FOR BALANCER OSCILLATORS
DE2238405B2 (en) * 1972-08-04 1977-09-22 Deutsche Itt Industries Gmbh, 7800 Freiburg PROCESS FOR SYNCHRONIZING MECHANICAL VIBRATORS OF USED WATCHES
CH597636B5 (en) 1972-11-21 1978-04-14 Ebauches Sa
DE2309291A1 (en) 1973-02-24 1974-08-29 Itt Ind Gmbh Deutsche PROCESS FOR SYNCHRONIZING MECHANICAL VIBRATORS OF USED WATCHES
DE2424212A1 (en) * 1974-05-17 1975-11-27 Mauthe Gmbh Friedr Drive oscillator for electric timepiece - is fitted with oscillating balance wheel secured to torsion wire
US4266291A (en) * 1977-12-27 1981-05-05 Iida Sankyo Co., Ltd. Electromagnetic swing device
JP4003382B2 (en) * 2000-07-14 2007-11-07 セイコーエプソン株式会社 Generator and electronically controlled mechanical clock
US20030137901A1 (en) * 2000-12-20 2003-07-24 Takeshi Tokoro Mechanical timepiece with posture detector and the posture detector
DE60314143T2 (en) * 2003-10-01 2008-01-31 Asulab S.A. Clock with a mechanical movement, which is coupled with an electronic regulator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1389293A (en) * 1971-05-04 1975-04-03 Golay Bernard Sa Oscillating devices

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3035131A1 (en) 2014-12-18 2016-06-22 Jeanneret, Marc Andre Oscillator for a clock movement

Also Published As

Publication number Publication date
KR20070067732A (en) 2007-06-28
CN101091141B (en) 2012-03-21
EP2282240B1 (en) 2012-05-09
KR100918186B1 (en) 2009-09-22
EP2282240A2 (en) 2011-02-09
WO2006045824A2 (en) 2006-05-04
RU2007119565A (en) 2008-12-10
HK1113830A1 (en) 2008-10-17
US7396154B2 (en) 2008-07-08
RU2356079C2 (en) 2009-05-20
EP1805565A2 (en) 2007-07-11
EP2282240A3 (en) 2011-02-23
CN101091141A (en) 2007-12-19
WO2006045824A3 (en) 2006-08-17
JP2008518221A (en) 2008-05-29
US20070201317A1 (en) 2007-08-30
DE602005023633D1 (en) 2010-10-28
JP4607966B2 (en) 2011-01-05
ATE481662T1 (en) 2010-10-15
ATE557328T1 (en) 2012-05-15

Similar Documents

Publication Publication Date Title
EP1805565B1 (en) Wristwatch regulating member and mechanical movement comprising one such regulating member
EP2496990B1 (en) Regulating member for a wristwatch, and timepiece comprising such a regulating member
EP3130966B1 (en) Mechanical clockwork provided with a motion feedback system
EP2990885B1 (en) Mechanical clock movement with magnetic escapement
EP3030938B1 (en) Regulator system for mechanical watch
EP2887157A1 (en) Optimised escapement
WO2016037938A1 (en) Magnetic timepiece escapement and regulator device for the operation of a timepiece movement
EP2802942B1 (en) Timepiece having a plurality of balances
EP3234701A1 (en) Oscillator for timepiece movement
EP3265879B1 (en) Time-keeping movement comprising a regulator with three-dimensional magnetic resonance
CH707990A1 (en) Mechanical watch movement.
WO2011051498A1 (en) Setting member for a wristwatch, and timepiece comprising such a setting member
CH714600A2 (en) Timepiece equipped with a tourbillon.
EP3757684B1 (en) Inertial mobile for timepiece resonator with device for magnetic interaction insensitive to external magnetic field
EP4063973A1 (en) Timepiece including an actuator comprising an electromechanical device
CH718445A2 (en) Timepiece incorporating an actuator comprising an electromechanical device.
CH709019A2 (en) Mechanism of magnetic or electrostatic exhaust.
CH716347A2 (en) Inertial mobile for a clock resonator with magnetic interaction device insensitive to the external magnetic field.
CH711408A2 (en) A mechanical watch movement with a movement feedback system.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070425

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

Ref country code: CH

Ref legal event code: EP

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: LVMH SWISS MANUFACTURES SA

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTS & TECHNOLOGY SURVEYS SA

REF Corresponds to:

Ref document number: 602005023633

Country of ref document: DE

Date of ref document: 20101028

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101216

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Owner name: LVMH SWISS MANUFACTURES SA

Free format text: LVMH SWISS MANUFACTURES SA#RUE LOUIS-JOSEPH-CHEVROLET 6A#2300 LA CHAUX-DE-FONDS (CH) -TRANSFER TO- LVMH SWISS MANUFACTURES SA#RUE LOUIS-JOSEPH-CHEVROLET 6A#2300 LA CHAUX-DE-FONDS (CH)

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

BERE Be: lapsed

Owner name: TAG HEUER SA

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110115

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110117

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101226

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110616

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005023633

Country of ref document: DE

Effective date: 20110616

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101215

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20110316

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101026

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101215

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20151022

Year of fee payment: 11

Ref country code: IT

Payment date: 20151028

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151023

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005023633

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20170630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20231102

Year of fee payment: 19