[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1859103A1 - Efficacité accrue de fongicides dans le papier et le carton - Google Patents

Efficacité accrue de fongicides dans le papier et le carton

Info

Publication number
EP1859103A1
EP1859103A1 EP06717437A EP06717437A EP1859103A1 EP 1859103 A1 EP1859103 A1 EP 1859103A1 EP 06717437 A EP06717437 A EP 06717437A EP 06717437 A EP06717437 A EP 06717437A EP 1859103 A1 EP1859103 A1 EP 1859103A1
Authority
EP
European Patent Office
Prior art keywords
fungal
paper
resistant
sheet
fungicide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP06717437A
Other languages
German (de)
English (en)
Other versions
EP1859103B1 (fr
Inventor
Thomas I. Marks
Gary A. Meloni
Judy G. Lazonby
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AQUASERV Inc
Dow Global Technologies LLC
Original Assignee
AQUASERV Inc
Dow Global Technologies LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AQUASERV Inc, Dow Global Technologies LLC filed Critical AQUASERV Inc
Priority to PL06717437T priority Critical patent/PL1859103T3/pl
Publication of EP1859103A1 publication Critical patent/EP1859103A1/fr
Application granted granted Critical
Publication of EP1859103B1 publication Critical patent/EP1859103B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H21/00Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties
    • D21H21/14Non-fibrous material added to the pulp, characterised by its function, form or properties; Paper-impregnating or coating material, characterised by its function, form or properties characterised by function or properties in or on the paper
    • D21H21/36Biocidal agents, e.g. fungicidal, bactericidal, insecticidal agents
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/36Polyalkenyalcohols; Polyalkenylethers; Polyalkenylesters
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/21Macromolecular organic compounds of natural origin; Derivatives thereof
    • D21H17/24Polysaccharides
    • D21H17/28Starch
    • D21H17/29Starch cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/37Polymers of unsaturated acids or derivatives thereof, e.g. polyacrylates
    • D21H17/375Poly(meth)acrylamide
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/41Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups
    • D21H17/44Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing ionic groups cationic
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/55Polyamides; Polyaminoamides; Polyester-amides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/46Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/54Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
    • D21H17/56Polyamines; Polyimines; Polyester-imides
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H23/00Processes or apparatus for adding material to the pulp or to the paper
    • D21H23/02Processes or apparatus for adding material to the pulp or to the paper characterised by the manner in which substances are added
    • D21H23/04Addition to the pulp; After-treatment of added substances in the pulp
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H27/00Special paper not otherwise provided for, e.g. made by multi-step processes
    • D21H27/18Paper- or board-based structures for surface covering
    • D21H27/20Flexible structures being applied by the user, e.g. wallpaper

Definitions

  • Fungal growth is a serious threat to human health, and the potential costs for remediation or replacement of contaminated building materials are astronomical. Fungal spores, released from surface growth, are well-recognized as allergens, and additional concerns have been raised due to toxic byproducts of at least one species. According to recent studies by Gorny et al., occupant exposure to various health problems, including those referred to as "sick building syndrome," is increasing. Further concern is being raised by human allergic responses, similar to that observed with fungal spores, to fungal fragments that can be released at much lower humidity levels (as low as 20%).
  • Paper and paperboard used in those building materials have been observed as the sites for such fungal growth. Typical moisture in paper, paperboard, and building materials is sufficient to maintain growth.
  • fungi can grow in temperatures from as low as 4O 0 F to as high as 13O 0 F, most indoor conditions, as well as a large segment of outdoor conditions, will easily allow their growth. Although efforts have been made to use careful construction practices and humidity control to limit fungal growth, fungi contamination problems have been observed in regions such as the Northeast U.S. where relative humidity rarely exceeds recommended maximums, and building materials were not exposed to the weather. Atmospheric fungal spores provide sufficient inoculation of fungi to the materials, and added moisture from condensation or water damage makes the threat of fungal contamination more likely.
  • Gypsum panels are used for drywall building products in heavy use for residential, educational, and commercial buildings. Gypsum panels are used primarily for interior wall and ceiling construction, and some specialty panels are used in exterior applications. Even though fungal contamination can come from the gypsum core, made of calcium sulfate hemihydrates, the primary location for fungal growth on gypsum panels is the facing and backing paper that covers each side of the gypsum core. Once installed, gypsum panels can make treatment and/or remediation extremely difficult and expensive, as fungal contamination may be enclosed and inaccessible.
  • U.S. Pat. No. 6,705,939 teaches design of air dehumidification systems to control growth.
  • regions of the U.S. where low humidity is the typical condition, such as the Northeast have discovered serious problems with contamination.
  • new studies indicate that fungal fragments, which are potentially as allergenic as fungal spores, are more optimally released at humidity levels as low as 40%.
  • U.S. Pat. No. 5,421,867 to Yeager et al. and assigned to CuCorp, Inc., suggests application of a fungicidal agent to cementious-based products.
  • U.S. Pat. Nos. 3,918,891 and 3,998,944 to Long and assigned to United States Gypsum Company, recommend application of fungicidal agent to the paper that covers the gypsum core to improve gypsum board.
  • the fungicidal agents discussed therein are water-soluble metal quinolate salts, more specifically a copper quinolate. Such preservatives are undesirable from an environmental perspective.
  • the antifungal compositions discussed are quite specific in their application and lack the flexibility needed to handle the array of applications for gypsum products.
  • U.S. Pat. No. 6,440,365 discusses usage of hydrochloric acid and heat to destroy growth after it occurs. This method may destroy the organisms, but it also damages cellulose fibers present in paper facings of gypsum board and installed wood components. Additionally, hydrochloric acid presents serious fume exposure concerns for users, and a corrosion concern for surrounding materials. Complete removal from enclosed areas of existing buildings is difficult, causing ongoing health and corrosion concerns.
  • U.S. Pat. Nos. 5,338,345 and 5,882,731 teach the use of barrier coating to prevent atmospheric fungi from reaching the board. However, growth of fungi can proceed unhindered within the core or under the surface of the board, in areas where the coating is thinned or damaged from long-term exposure to cleaning or environmental stress.
  • U.S. Pat. Nos. 4,533,435 and 6,248,761 discuss using binders or microencapsulation to help control the preservative application.
  • U.S. Pat. No. 6,767,647 involves the use of more than one fungicide in the wallboard manufacturing process and
  • U.S. patent application 20040005484A1 teaches methods that rely on a high amount of a water-soluble fungicide in the core and migration of the preservative from the core to treat the facing paper. Whether the problem is inability to get sufficient treatment at the critical points or an inconsistent treatment throughout the sheet, none of these have been able to provide desired levels of antifungal protection for the sheet or the finished building products of which it is a component.
  • a more desirable alternative to achieve an effective fungicidal preservative application would be to add the preservative to the pulp slurry, at a wet-end addition point.
  • the current use of fungicides in the wet-end of paper processing has generally been limited to slime (deposit) control, rather than incorporation into the finished paper product. Due to challenges associated with obtaining good distribution and cost-effective levels of preservative, wet-end addition of fungicides into paper products used in building materials has never achieved commercial success. Successful addition of a fungicide at the wet-end during paper processing would require a method of distributing a sufficient amount of the fungicide evenly in the pulp slurry. Having the fungicide distributed throughout the paper, preferably attached to the paper fibers, should offer enhanced protection of the finished paper or paperboard under typical use conditions.
  • Chemistries for improved fiber and fines retention and drainage are known to be useful additives to the wet-end of paper processing, and include flocculants.
  • Polymer flocculants improve attachment of fibers and fines through their relatively high molecular weights to attract the cellulosic materials.
  • flocculants typically have limited charge density to reduce negative impact of charged contaminants and use, the complex mechanical and hydraulic action of the paper machine during processing to properly align the fibers to provide good formation.
  • Fixatives, as compared to flocculants are much more compact in size, have relatively high charge densities, are typically cationic, and are lower in molecular weight.
  • a wide variety of both organic and inorganic molecules has been used to fix dye, pitch, size, stickles particles, and anionic trash. However, fixative use has not previously included the attachment of preservatives for enhancement of their application efficiency, proximity to the fiber and dispersion throughout the sheet, and finished goods effectiveness.
  • U.S. Pat. No. 4,443,222 teaches that a preservative can be permanently attached to a textile fiber through usage of a water-soluble compound, urea, and a non-reversible, heat-generated reaction.
  • this type of permanent attachment reduces the effectiveness of many preservatives by binding up the active antimicrobial sites.
  • This invention is a method for making a fungal-resistant paper or paperboard sheet, particularly for use in building materials.
  • the method includes adding a hydrophobic fungicide and a specific cationic fixative in a controlled manner to pulp slurry during manufacture of the paper or paperboard, as opposed to a surface coating, addition after sheet formation, or with an off-machine application. Addition to the pulp slurry is often referred to as addition to the wet end of a paper-making process.
  • the method of this invention further includes processing the pulp slurry in a paper machine to create a finished sheet.
  • feed points for the fungicide and cationic fixative need to be optimally chosen based upon individual paper machine system flow, available options for injection, potential for improved mechanical distribution and mixing, and locations of other potentially influencing additives.
  • the cationic fixative is added, either neat or diluted, directly to the higher concentration pulp slurry, often referred to as thick stock, in the machine chest, allowing distribution throughout the slurry and activation of the fiber before addition of the fungicide.
  • the hydrophobic fungicide is then added into the main stock flow prior to the fan pump or pumps to allow for adequate distribution and mixing.
  • the cationic fixative is added directly to the machine vats, while the hydrophobic fungicide is added indirectly to the stock return loop, which is then recycled back into the main pulp slurry flow.
  • the cationic fixative is added directly to the machine vats, while the hydrophobic fungicide is added indirectly to the stock return loop, which is then recycled back into the main pulp slurry flow.
  • One skilled in the art may optimize the method of this invention for a particular paper machine system design. This invention allows for a pre-activation of the fiber by the fixative followed by a more even distribution of the fungicide.
  • Paper or paperboard made by the process of the invention exhibits the following benefits not presently found in fungicide-treated papers currently available in the marketplace:
  • This invention is a method for making a fungal-resistant paper sheet for use in building materials.
  • the method includes adding a hydrophobic fungicide and a cationic fixative to a paper slurry during manufacture of the paper or paperboard, and processing the paper slurry in a paper machine to create a sheet. Addition to the paper slurry is often referred to as addition to the wet end of a paper-making process.
  • the hydrophobic fungicide suitable for use in this invention must possess several qualities. It must have extremely limited water solubility to prevent its leaching after installation and reduce the threat of environmental or human exposure. A preferred water solubility is less than 0.3 g/L at 25 °C, and a more preferred water solubility is less 0.05 g/L at 25 0 C.
  • the preservative must be temperature-stable against both the conditions of the paper machine dryer section and the building product manufacturing process (such as the gypsum board kilns). The preservative must be considered safe for humans, especially due to the higher risk for exposure of children in homes and schools. The preservative application must be cost-effective enough to be practical.
  • the preservative must provide a sufficient and consistent level of protection throughout the sheet to help prevent fungal growth.
  • suitable fungicides include: diiodomethyl-p-tolylsulfone (DIMTS), zinc pyrithione, thiabendazole, 3-iodo-2-propynyl butylcarbamate, dichloro-octylisothiazolinone, o- phenylphenol, bromonitrostyrene, and 2-(thiocyanomethylthio) benzothiazole.
  • Table 1 gives approximate values of some low-solubility fungicides. Table 1.
  • a preferred fungicide for use in the present invention is diiodomethyl-p- tolylsulfone, known by several names including P-ToIyI diiodomethyl sulfone and DIMTS (CAS Registry No. 020018-09-1).
  • a preferred formulation of diiodomethyl- p-tolylsulfone for use in this invention is commercially available from The Dow Chemical Company of Midland, MI as FUNGI-BLOCKTM fungicidal agent, which contains approximately 40 wt. % DIMTS.
  • the primary challenge to application of this material is to achieve a consistent and cost-efficient treatment.
  • the haphazard entrapment of water-insoluble preservative particles in an application on its own leaves lower sheet concentrations and inconsistent results.
  • the complex environment of paper manufacturing can lead to inefficient attachment of the preservative or uneven treatment of the whole sheet.
  • Voids in the microenvironment of an inconsistently treated sheet allow fungi to "take root" at multiple points, allowing growth over the
  • the active fungicide is added at amount equal to at least 0.02 pound active fungicide per ton dry fiber produced, more preferably, when the active fungicide is diiodomethyl-p-tolylsulfone, between about 2.0 pounds and 10.0 pounds DIMTS per ton dry fiber produced, most preferably between about 2.0 and 3.2 pounds DIMTS per ton dry fiber produced.
  • the cationic fixative is chosen to provide the optimum concentration of hydrophobic fungicide in the finished sheet and the best results with respect to antifungal treatment.
  • the cationic fixative is chosen from the group consisting of cationic homopolymers and copolymers of polyacrylamides, polyamines, polyD ADMACs, polyguanidines, polyethyleneimines, cellulosic ethers, starches, aluminum-based coagulants, iron-based coagulants, modified clays, modified talcs, silica microparticle systems, and combinations thereof, more preferably a polyamine.
  • the fixative can be fed ahead of, together with, or after the addition of the diiodomethyl-p-tolylsulfone. However, we have found that the fixative works well when added before the fungicide.
  • Dosage ratios of cationic fixative-to-fungicide can be from 1 :35 to 15:1 parts by weight, more preferably 1:35 to 2.5:1.
  • the cationic fixative is fed at a cationic fixative-to-fungicide ratio from about 1:3.5 to 1:0.8.
  • Some fixatives of the present invention may be selected from paper processing products referred to as coagulants. Even though coagulants are frequently used in paper manufacturing, their use has been completely unrelated to attachment of preservatives to fibers. Coagulants have been used exclusively to improve drainage, assist in fiber and fines retention, and to reduce problems with anionic trash (organic contaminants).
  • Polyamines have shorter chain lengths, especially in comparison with flocculants, and higher charge densities. Polyamines tightly bind any attracted particles to each other or to fiber. This tight binding provides polyamine with the lowest application dosage requirement to meet demand. Polyamines also provide a broader operating window in order to successfully make the mold-resistant material. Polyamines used in papermaking are generally obtained from condensation reactions between epichlorohydrin and dimethylamine (known commonly as EPI-DMA polyamines). With any overdose of polyamine, agglomeration of anionic particles can occur (instead of attachment to the fiber, particles attach to each other) and an uneven distribution can result.
  • EPI-DMA polyamines condensation reactions between epichlorohydrin and dimethylamine
  • cationic fixative and levels that work best with a paper slurry can be optimized by one skilled in the art.
  • Some of the application variables that will change the effectiveness of the fixative include, but are not limited to, system flows, raw materials (especially the fiber source), specific machine layout and components, percentage closure (percentage of excess water and stock not removed from the mill as waste), other additives present, feed location, feed method (e.g., continuous, slug), system temperatures, operating parameters (e.g., speed, drying capacity), and so forth.
  • the paper may be secondarily treated with a biocide to provide additional resistance to microbial growth.
  • the paper sheet may be treated in any of the means known in the art, such as with a surface treatment or coating at the size press, calendar stack, water box, or off- machine.
  • other treatments known in the art such as treating the paper for moisture resistance and strength enhancement, may be done to improve the usefulness of the paper as a construction material.
  • TAPPI test (T-487) was used to evaluate fungal growth on paper made with fungicides and fixatives added to the pulp. A 40% DIMTS formulation was used in the test. Values presented below are converted to an "as active" basis. Experiments were performed using six various cationic coagulants and two flocculants.
  • fixative was added to an aliquot of paper stock at variable doses. A 40% concentration of DIMTS was then added at a dose of 2 pounds per ton of active ingredient. The water was drained from the stock and the resulting paper mat was blotted, couched, and dried to form a paper sheet.
  • the cationic polyamine used was a medium molecular weight polyamine.
  • Examples include Aquaserv AQ-294 from Aquaserv and Agefloc A50 from Ciba.
  • Cationic polyacrylamides used in papermaking are typically copolymers of acrylamide and various cationic substituents. Examples include Aquaserv AQ-330 from Aquaserv and Drenafloc 402C from Europolimeri. When the flocculant was applied as a fixative with a 2 pound per ton dose of DIMTS, some of the paper samples supported mold growth while others were resistant.
  • Table 2 indicates fungal growth on paper, where "0" indicates no growth; “I' indicates 25% coverage of the surface with fungal growth; “2" indicates 50% coverage; “3” indicates 75% coverage; “4" indicates 100% coverage. Three sample results are presented for each mixture.
  • Paper samples were made to test the order of addition of DEvITS and polyamine, using similar conditions to Example 1. hi Table 3, adding polyamine at 1# /ton ahead of the DIMTS addition prevented growth for all three weeks. However, adding 5#/ton of polyamine before adding the DIMTS resulted in microbial growth at 2 weeks. Using the reverse order, adding the DIMTS before adding polyamine at 5# per ton resulted in microbial growth in one sample at week 3.
  • Table 3 also shows the results of experiments conducted on other potential fixatives. These coagulants include

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pest Control & Pesticides (AREA)
  • Paper (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une feuille de papier ou de carton résistant aux champignons qui s'utilise dans des matériaux de construction. Le procédé comporte les étapes consistant à: ajouter à une suspension de pâte à papier, au cours de la fabrication du papier ou du carton, un fongicide hydrophobe présentant une solubilité dans l'eau inférieure à 0,3 g/L à 25° C, et traiter la suspension dans une machine à papier afin de produire une feuille. L'ajout d'un deuxième additif de procédé, notamment un fixatif cationique, permet d'améliorer de façon synergique l'efficacité du fongicide hydrophobe. Le fongicide préféré est le diiodométhyl-p-tolylsulfone.
EP06717437.5A 2005-01-05 2006-01-05 Efficacité accrue de fongicides dans le papier et le carton Active EP1859103B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL06717437T PL1859103T3 (pl) 2005-01-05 2006-01-05 Ulepszona skuteczność fungicydów w papierze i kartonie

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US64161805P 2005-01-05 2005-01-05
PCT/US2006/000233 WO2006074255A1 (fr) 2005-01-05 2006-01-05 Efficacité accrue de fongicides dans le papier et le carton

Publications (2)

Publication Number Publication Date
EP1859103A1 true EP1859103A1 (fr) 2007-11-28
EP1859103B1 EP1859103B1 (fr) 2015-04-08

Family

ID=36405972

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06717437.5A Active EP1859103B1 (fr) 2005-01-05 2006-01-05 Efficacité accrue de fongicides dans le papier et le carton

Country Status (9)

Country Link
US (1) US20060169431A1 (fr)
EP (1) EP1859103B1 (fr)
JP (1) JP2008527191A (fr)
KR (1) KR101276386B1 (fr)
CN (1) CN101098999B (fr)
CA (1) CA2594189A1 (fr)
MX (1) MX2007008240A (fr)
PL (1) PL1859103T3 (fr)
WO (1) WO2006074255A1 (fr)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2571389C (fr) * 2004-07-06 2011-10-04 International Paper Company Substrats de papier contenant un compose antimicrobien et procedes de fabrication et modes d'utilisation desdits substrats
EP1838151A1 (fr) * 2004-12-17 2007-10-03 Dow Gloval Technologies Inc. Utilisation de polymeres solubles dans l'eau afin d'ameliorer la stabilite du diiodomethyl-para-tolylsulfone dans des matrices complexes
DE102005008184A1 (de) * 2005-02-23 2006-08-31 Lanxess Deutschland Gmbh Antimikrobiell ausgerüstete Gipsbauplatten
EP2754350A3 (fr) * 2005-10-25 2014-11-12 Dow Global Technologies LLC Composition antimicrobienne et procédé associé
US8362051B2 (en) * 2007-01-26 2013-01-29 Rohm And Haas Company Mold-resistant wallboard
EP2165989B1 (fr) * 2007-06-19 2019-08-14 Yoshino Gypsum Co., Ltd. Plaque de plâtre résistant aux moisissures
KR101647856B1 (ko) * 2008-07-18 2016-08-11 다우 글로벌 테크놀로지스 엘엘씨 살생물 조성물
WO2010148156A1 (fr) * 2009-06-16 2010-12-23 International Paper Company Substrats de papier antimicrobien utiles dans des applications de joint de panneaux muraux
JP5782736B2 (ja) 2010-03-16 2015-09-24 株式会社リコー 感熱記録媒体
ES2594978T3 (es) * 2010-08-25 2016-12-27 Solenis Technologies Cayman, L.P. Método para aumentar las ventajas del almidón en material celulósico convertido en pulpa en la producción de papel y cartón
JP5364936B2 (ja) * 2010-11-09 2013-12-11 ダウ グローバル テクノロジーズ エルエルシー フルメツラムまたはジクロスラムとジヨードメチル−p−トリルスルホンとの相乗的組み合わせ
JP5529833B2 (ja) * 2010-12-22 2014-06-25 ダウ グローバル テクノロジーズ エルエルシー グリホサート化合物とdmitsとの相乗的組み合わせ
JP5529831B2 (ja) * 2010-12-22 2014-06-25 ダウ グローバル テクノロジーズ エルエルシー グリホサート化合物とipbcとの相乗的組み合わせ
US20150030862A1 (en) * 2013-07-26 2015-01-29 United State Gypsum Company Mold-resistant paper and gypsum panel, antimicrobial paper coating and related methods
CN109265693A (zh) * 2018-07-27 2019-01-25 华南理工大学 一种基于半纤维素的抗菌剂及其制备方法与应用
KR102578908B1 (ko) * 2021-02-18 2023-09-13 중앙대학교 산학협력단 트리플루오로메틸화된 하이드로퀴논 유도체를 포함하는 항균제

Family Cites Families (63)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3761418A (en) * 1967-09-27 1973-09-25 Procter & Gamble Detergent compositions containing particle deposition enhancing agents
US3993822A (en) * 1970-02-25 1976-11-23 Gebr. Knauf Westdeutsche Gipswerke Multi-layer plasterboard
US3726815A (en) * 1970-11-16 1973-04-10 Colgate Palmolive Co Compositions containing amino-polyureylene resin
US3998944A (en) * 1972-08-14 1976-12-21 United States Gypsum Company Fungicidal paper
GB1411905A (en) * 1973-05-09 1975-10-29 Smidth & Co As F L Planetary cooler
US4010252A (en) * 1974-12-19 1977-03-01 Colgate-Palmolive Company Antimicrobial compositions
US4058491A (en) * 1975-02-11 1977-11-15 Plastomedical Sciences, Inc. Cationic hydrogels based on heterocyclic N-vinyl monomers
US5037818A (en) * 1982-04-30 1991-08-06 Chesebrough-Pond's Usa Co., Division Of Conopco, Inc. Washing composition for the hair
US4443222A (en) * 1983-08-30 1984-04-17 The United States Of America As Represented By The Secretary Of Agriculture Zinc pyrithione process to impart antimicrobial properties to textiles
US4533435A (en) * 1984-06-07 1985-08-06 Microban Products Company Antimicrobial paper
DE3584595D1 (de) * 1984-08-29 1991-12-12 Kao Corp Antimikrobische suspensionen und antimikrobische haarbehandlungsmittel.
US4675178A (en) * 1985-05-02 1987-06-23 Calgon Corporation Use of cationic polymers (polydimethyldialkyl ammonium chloride-acrylamide copolymers and dimethyldialkyl ammonium chloride) to increase deposition and/or retention of active agent (S) of deodorant formulations on surfaces
DE3711680A1 (de) * 1987-04-07 1988-10-27 Hoechst Ag Waessrige biozide kationische kunststoffdispersionen und deren verwendung als fungizide, bakterizide und algizide ausruestungsmittel
GB8909095D0 (en) * 1989-04-21 1989-06-07 Allied Colloids Ltd Thickened aqueous compositions
JP2886229B2 (ja) * 1989-12-27 1999-04-26 三菱製紙株式会社 防黴シート
JPH0825847B2 (ja) * 1990-01-04 1996-03-13 株式会社日鉱 抗菌作用性物質、抗菌性樹脂組成物、抗菌性樹脂成形物、合成樹脂製抗菌性水槽、抗菌性合成繊維、抗菌性を有する紙、抗菌性塗料、局所用抗菌剤および化粧品
US5283264A (en) * 1992-11-30 1994-02-01 Betz Laboratories, Inc. Chemically stable antimicrobial formulations of dimps
JPH06183914A (ja) * 1992-12-16 1994-07-05 Permachem Asia Ltd 工業用殺菌組成物
US5338345A (en) * 1993-05-05 1994-08-16 Eastman Kodak Company Water-based water repellent coating compositions
JPH0717809A (ja) * 1993-07-05 1995-01-20 Shinto Paint Co Ltd 工業用防カビ組成物
US5407919A (en) * 1993-09-29 1995-04-18 Brode; George L. Double-substituted cationic cellulose ethers
US5421867A (en) * 1993-10-18 1995-06-06 Cucorp, Inc. Composition and process of combining a grout or mortar mix with copper-8-quinolinolate to form an antimicrobial composition
US5849311A (en) * 1996-10-28 1998-12-15 Biopolymerix, Inc. Contact-killing non-leaching antimicrobial materials
US5575993A (en) * 1994-08-31 1996-11-19 Buckman Laboratories International, Inc. Ionene polymers containing biologically-active anions
US6730294B1 (en) * 1995-04-24 2004-05-04 Novapharm Research (Australia) Pty Limited Method of forming a water soluble biocidal film on a solid surface
JPH11509220A (ja) * 1995-07-14 1999-08-17 ユニリーバー・ナームローゼ・ベンノートシヤープ 抗菌性ヘアトリートメント組成物
JP3481021B2 (ja) * 1995-09-11 2003-12-22 オーエム工業株式会社 燃料タンクの燃料遮断装置
US6008173A (en) * 1995-11-03 1999-12-28 Colgate-Palmolive Co. Bar composition comprising petrolatum
US5882731A (en) * 1996-07-24 1999-03-16 Owens; Richard L. Method of applying a mildewcide laden film and composition for the use therewith
US6582711B1 (en) * 1997-01-09 2003-06-24 3M Innovative Properties Company Hydroalcoholic compositions thickened using polymers
US6083517A (en) * 1997-09-26 2000-07-04 Lever Brothers Company, Division Of Conopco, Inc. Ultramild antibacterial cleaning composition for frequent use
FR2769469B1 (fr) * 1997-10-15 1999-11-26 Rhodia Chimie Sa Systeme a base d'un biocide et d'un silicone polyether et son utilisation pour la desinfection des surfaces dures
US5980925A (en) * 1997-12-30 1999-11-09 Ethicon, Inc. High glycerin containing anti-microbial cleansers
JPH11349413A (ja) * 1998-06-08 1999-12-21 Sumitomo Chem Co Ltd 害虫防除剤
US6428814B1 (en) * 1999-10-08 2002-08-06 Elan Pharma International Ltd. Bioadhesive nanoparticulate compositions having cationic surface stabilizers
US6703331B1 (en) * 1999-02-25 2004-03-09 E. I. Du Pont De Nemours And Company Fungus resistant gypsum-based substrate
US6034043A (en) * 1999-04-20 2000-03-07 Lever Brothers Company, Division Of Conopco, Inc. Mild antimicrobial liquid cleansing formulations comprising polyvalent cation or cations for improving an antimicrobial effectiveness
BR0015768B1 (pt) * 1999-11-19 2009-08-11 método para fabricação de papel ou papelão e aparelho para fabricação de papel.
US20020051754A1 (en) * 2000-04-13 2002-05-02 Schroeder Joseph D. Anti-microbial packaging polymer and its method of use
DE10022987A1 (de) * 2000-05-11 2001-11-22 Aventis Cropscience Gmbh Kombinationen von Pflanzenschutzmitteln mit kationischen Polymeren
CA2409783C (fr) * 2000-05-31 2005-07-26 Roger R. Roff Procede et dispositif servant a limiter les maladies respiratoires parmi les occupants de batiments
EP1313689A1 (fr) * 2000-08-28 2003-05-28 Ciba SC Holding AG Procede de preparation de composes phenylphenol
EP1334076B1 (fr) * 2000-10-17 2006-08-23 James Hardie International Finance B.V. Matiere composite en fibro-ciment utilisant des fibres de cellulose durables traitees aux biocides
PT1381476E (pt) * 2001-04-11 2010-06-04 Int Paper Co Artigos em papel para armazenamento a longo prazo
US6770354B2 (en) * 2001-04-19 2004-08-03 G-P Gypsum Corporation Mat-faced gypsum board
US6440365B1 (en) * 2001-07-10 2002-08-27 Larry J. Poye Method of treating a building contaminated with black mold
EP1421242A1 (fr) * 2001-08-03 2004-05-26 Temple-Inland Forest Products Corporation Plaque de platre antifongique
US6680127B2 (en) * 2001-08-03 2004-01-20 Temple-Inland Forest Products, Corporation Antifungal gypsum board
JP4534051B2 (ja) * 2001-08-16 2010-09-01 株式会社片山化学工業研究所 ウエットパルプの防腐防かび方法およびその防腐防かび組成物
JP4901034B2 (ja) * 2001-09-05 2012-03-21 住化エンビロサイエンス株式会社 工業用抗菌組成物および抗菌方法
US7125471B2 (en) * 2001-11-29 2006-10-24 Buckman Laboratories International, Inc. Papermaking process using enzyme-treated sludge, and products
MXPA04012297A (es) * 2002-06-07 2005-04-08 Microban Products Carton de yeso antimicrobiano.
CA2431614C (fr) * 2002-06-12 2010-12-07 Dominic Hamel Comeau Carton ondule resistant a la moisissure et structures et processus de formation de vides
US6893752B2 (en) * 2002-06-28 2005-05-17 United States Gypsum Company Mold-resistant gypsum panel and method of making same
US20040063591A1 (en) * 2002-09-30 2004-04-01 Bausch & Lomb Incorporated Compositions with enhanced antimicrobial efficacy against acanthamoebae
US7067479B2 (en) * 2002-09-30 2006-06-27 Bausch & Lomb Inc. Compositions with enhanced antimicrobial efficacy against E. coli
US20040175352A1 (en) * 2003-03-06 2004-09-09 David Oppong Microbicidal compositions including an ionene polymer and 2,4,4-trichloro-2-hydroxydiphenyl ether, and methods of using the same
WO2004098291A2 (fr) * 2003-03-17 2004-11-18 Novozymes Biologicals, Inc. Procedes d'inhibition de la croissance fongique dans des materiaux
US6762162B1 (en) * 2003-06-18 2004-07-13 S. C. Johnson & Son, Inc. Disinfecting cationic polymer cleaner comprising an acrylate cationic polymer
US20050063919A1 (en) * 2003-09-19 2005-03-24 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Oral composition
US20050063920A1 (en) * 2003-09-19 2005-03-24 Unilever Home & Personal Care Usa, Division Of Conopco, Inc. Oral composition
US7678823B2 (en) * 2004-10-04 2010-03-16 Myriad Pharmaceticals, Inc. Compounds for alzheimer's disease
EP1838151A1 (fr) * 2004-12-17 2007-10-03 Dow Gloval Technologies Inc. Utilisation de polymeres solubles dans l'eau afin d'ameliorer la stabilite du diiodomethyl-para-tolylsulfone dans des matrices complexes

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006074255A1 *

Also Published As

Publication number Publication date
CA2594189A1 (fr) 2006-07-13
KR20070104545A (ko) 2007-10-26
WO2006074255A1 (fr) 2006-07-13
MX2007008240A (es) 2008-03-24
EP1859103B1 (fr) 2015-04-08
PL1859103T3 (pl) 2015-09-30
CN101098999A (zh) 2008-01-02
US20060169431A1 (en) 2006-08-03
KR101276386B1 (ko) 2013-06-19
JP2008527191A (ja) 2008-07-24
CN101098999B (zh) 2011-10-19

Similar Documents

Publication Publication Date Title
EP1859103B1 (fr) Efficacité accrue de fongicides dans le papier et le carton
US20210277605A1 (en) Paper substrates and articles containing antimicrobial components as well as methods of making and using the same
AU2003245402B2 (en) Antimicrobial wallboard
US8007921B2 (en) Gypsum board containing antimicrobial and antibacterial compounds
NZ561605A (en) Papermaking process using enzyme-treated sludge, and products
JP2008527191A5 (fr)
KR101647856B1 (ko) 살생물 조성물
NO345386B1 (no) Kartong for anvendelse som et belegg på en gipsplate, hvor kartongen først har blitt behandlet med en benzosyresalt løsning før den har blitt behandlet med en polymerforbindelse som omfatter voksaktige polymerer som tillater damp å slippe igjennom den behandlede kartongen.
AU2005262841A1 (en) Antimicrobial insulation
WO2008112534A2 (fr) Utilisation de borates d'ammonium quaternaire en tant que biocides antifongiques, anti-mildiou, anti-moisissure pour le traitement de pâte et de papier à papier
JPH06272199A (ja) 抗菌性壁紙用難燃裏打紙
US20070149402A1 (en) Quaternary ammonium borate compositions and substrate preservative solutions containing them
US20070142630A1 (en) Quaternary ammonium betaines for protection of wood structures
WO2005061228A1 (fr) Isolation antimicrobienne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070613

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090415

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DOW GLOBAL TECHNOLOGIES LLC

Owner name: AQUASERV, INC.

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20140527

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20141027

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 720688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150515

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602006045031

Country of ref document: DE

Effective date: 20150521

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 720688

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150408

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20150408

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150808

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150709

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602006045031

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150408

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

26N No opposition filed

Effective date: 20160111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20160105

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160131

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20060105

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150408

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20191216

Year of fee payment: 15

Ref country code: PL

Payment date: 20191212

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20200102

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 602006045031

Country of ref document: DE

Representative=s name: FLEISCHER, ENGELS & PARTNER MBB, PATENTANWAELT, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006045031

Country of ref document: DE

Owner name: AQUASERV, INC., MEMPHIS, US

Free format text: FORMER OWNERS: AQUASERV, INC., MEMPHIS, TENN., US; DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, MICH., US

Ref country code: DE

Ref legal event code: R081

Ref document number: 602006045031

Country of ref document: DE

Owner name: NUTRITION & BIOSCIENCES USA 1, LLC, ROCHESTER, US

Free format text: FORMER OWNERS: AQUASERV, INC., MEMPHIS, TENN., US; DOW GLOBAL TECHNOLOGIES LLC, MIDLAND, MICH., US

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231130

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231205

Year of fee payment: 19

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210105