[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1848674A1 - Composite ceramic hollow fibres method for production and use thereof - Google Patents

Composite ceramic hollow fibres method for production and use thereof

Info

Publication number
EP1848674A1
EP1848674A1 EP06706346A EP06706346A EP1848674A1 EP 1848674 A1 EP1848674 A1 EP 1848674A1 EP 06706346 A EP06706346 A EP 06706346A EP 06706346 A EP06706346 A EP 06706346A EP 1848674 A1 EP1848674 A1 EP 1848674A1
Authority
EP
European Patent Office
Prior art keywords
ceramic
hollow fibers
green
composite
hollow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP06706346A
Other languages
German (de)
French (fr)
Inventor
Mirjam Kilgus
Thomas Schiestel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Original Assignee
Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV filed Critical Fraunhofer Gesellschaft zur Forderung der Angewandten Forschung eV
Publication of EP1848674A1 publication Critical patent/EP1848674A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62236Fibres based on aluminium oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/026Wafer type modules or flat-surface type modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/087Details relating to the spinning process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/6225Fibres based on zirconium oxide, e.g. zirconates such as PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62231Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on oxide ceramics
    • C04B35/62259Fibres based on titanium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/62227Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres
    • C04B35/62272Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products obtaining fibres based on non-oxide ceramics
    • C04B35/62277Fibres based on carbides
    • C04B35/62281Fibres based on carbides based on silicon carbide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/71Ceramic products containing macroscopic reinforcing agents
    • C04B35/78Ceramic products containing macroscopic reinforcing agents containing non-metallic materials
    • C04B35/80Fibres, filaments, whiskers, platelets, or the like
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/001Joining burned ceramic articles with other burned ceramic articles or other articles by heating directly with other burned ceramic articles
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/008Bodies obtained by assembling separate elements having such a configuration that the final product is porous or by spirally winding one or more corrugated sheets
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/0081Uses not provided for elsewhere in C04B2111/00 as catalysts or catalyst carriers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/526Fibers characterised by the length of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5208Fibers
    • C04B2235/5264Fibers characterised by the diameter of the fibers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/52Constituents or additives characterised by their shapes
    • C04B2235/5284Hollow fibers, e.g. nanotubes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/34Oxidic
    • C04B2237/343Alumina or aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/76Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc
    • C04B2237/765Forming laminates or joined articles comprising at least one member in the form other than a sheet or disc, e.g. two tubes or a tube and a sheet or disc at least one member being a tube
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249922Embodying intertwined or helical component[s]

Definitions

  • the present invention relates to composites of ceramic hollow fibers, which are particularly suitable for liquid and gas filtrations, for
  • Example high-temperature applications such as gas separations, with the exception of the oxygen separation, are suitable and have a particularly high stability.
  • Ceramic hollow fibers are known per se. Their preparation is described, for example, in US-A-4,222,977 or in US-A-5,707,584.
  • Membranes made of ceramic materials can be made porous or gas-tight, on the other hand, selected ceramic materials have a gas permeability and can therefore be used for the separation of gases from gas mixtures. Possible applications of such ceramics are, in particular, high-temperature turanassembleen, such as gas separation or novel membrane reactors.
  • the known processes for producing ceramic hollow fibers comprise a spinning process in which, in a first step, elastic green fibers are produced from a spinnable mass comprising precursors of the ceramic material and polymer. The polymer fraction is then burned at high temperatures and there are purely ceramic hollow fibers.
  • the fibers produced in this way are mechanically relatively stable; however, they naturally show the brittleness and breaking sensitivity typical of ceramic materials.
  • ceramic hollow fibers made of selected materials can be combined with other shaped parts or with further ceramic hollow fibers to form more complex structures and can be joined by sintering. This can be done without the use of temporary adhesives. The result is structures with significantly higher stability, their handling, especially with regard to safety considerations, significantly improved.
  • the present invention is based inter alia on the surprising finding that precursors of selected ceramic materials when heated at the contact points with other materials sinter together very efficiently, without the need for an aid such as an adhesive or a slip would be required.
  • the technical problem underlying the present invention is to provide structures of one or more ceramic hollow fibers or ceramic hollow fibers with other shaped parts, wherein these structures are distinguished by a particularly high stability and improved handleability.
  • Another technical problem of the present invention is the provision of easy-to-implement methods for producing these stability-enhanced structures, in which conventional devices for producing ceramic shaped bodies can be used.
  • the present invention relates to a composite comprising at least one hollow fiber of a gas- or liquid-transporting ceramic material whose outer surface is in contact with the outer surface of the same hollow fiber or another hollow fiber of gas or liquid-transporting ceramic material and the contact points are connected by sintering.
  • a further embodiment of the present invention relates to a composite comprising at least one hollow fiber of gas or liquid-transporting ceramic material, and at least one, on one, preferably at both end faces of the hollow fiber arranged connection element (s) for the supply or discharge of
  • Fluids wherein the hollow fiber is connected to the at least one connecting element by sintering.
  • Such composites according to the invention are distinguished by an improved stability compared to the prior art with walls as thin as possible and a large specific surface area.
  • the hollow fibers used according to the invention may have any desired cross-sections, for example angular, elliptical or in particular circular cross-sections.
  • hollow fibers are to be understood to mean structures which have a hollow interior and whose outer dimensions, that is, diameters or linear dimensions, can be arbitrary.
  • hollow fibers is to be understood as meaning not only the classic meaning of this term but also capillaries with outer diameters of 0.5 to 5 mm and tubes with outer diameters of more than 5 mm.
  • Hollow fibers range up to 5 mm. Particular preference is given to using hollow fibers with outer diameters of less than 3 mm.
  • Hollow fibers in the context of this description are hollow fibers of arbitrary lengths. Examples of these are hollow monofilaments or hollow staple fibers (monofilaments of finite length).
  • the composites of the invention may be any combination of ceramic hollow fibers of gas or liquid transporting ceramic material.
  • the following composites can be created:
  • the fibers Due to the flexibility and elasticity of the green fibers, where the proportion of the ceramic (precursor) phase is not too high, many other geometries are possible. As a result of this structure, the fibers retain their original functionality, ie their liquid or gas permeability.
  • Such composites can then be further joined together to form membrane modules.
  • These systems are particularly suitable for use in high temperature applications, for example in the
  • the hollow fibers used according to the invention can be produced by a spinning process known per se. This may be a solution spinning process, such as dry or wet spinning, or a melt spinning process.
  • the material to be spun comprises, in addition to the finely divided ceramic material or its precursor, a spinnable polymer.
  • the content of spinnable polymer in the material to be spun can vary within wide ranges, but is typically Sch sample 2 to 30 wt.%, Preferably from 5 to 10 wt.%, Based on the total mass to be spun or dope.
  • the content of finely divided ceramic material or its precursor in the material to be spun can also vary within wide limits, but is typically 20 to 90 wt.
  • % preferably from 40 to 60 wt.%, Based on the total mass to be spun or dope.
  • the content of solvent in the material to be spun may vary within wide ranges, but is typically 10 to 80% by weight, preferably from 35 to 45% by weight, based on the total spinning solution.
  • Type and amount of spinnable polymer and finely divided ceramic material or its precursor are preferably chosen so that just spinnable masses are obtained, wherein the content of spinnable polymer is to be selected as low as possible.
  • the spinning is carried out by extruding the spinning solution or the heated and plasticized dope through an annular die, followed by cooling in air and / or introduction into a precipitation bath which contains a non-solvent for the polymer used in the dope.
  • the obtained green hollow fiber can be subjected to further processing steps, for example cutting into stacks or winding for intermediate storage.
  • the resulting green hollow fiber is combined to form the desired composite.
  • This may involve the combination of a plurality of identical or different green hollow fibers or else the combination of one or more green hollow fibers with at least one connection element for the supply or removal of fluids, such as liquids or in particular, arranged on their end face or end faces gases.
  • the combination of the green hollow fibers can be done by any techniques. Examples include the manual combination, such as the juxtaposition of parallel hollow fibers, but also textile surface-forming techniques, such as the production of crocheted, woven, knitted, knitted or braided structures.
  • the polymer is removed in a conventional manner by thermal treatment.
  • This step also includes forming a ceramic from the precursor for the ceramic material and / or sintering the finely divided ceramic particles together.
  • the hollow fibers combined according to the invention consist of gas or liquid-transporting ceramic material.
  • the ceramic material used according to the invention is a gas or liquid-transporting ceramic material.
  • These may be conventional ceramics or oxide ceramics, such as Al 2 O 3 , ZrO 2 , TiO 2 or else SiC.
  • functional ceramics such as perovskites or other liquid or
  • Gas-conducting ceramics are used. However, excluded from the subject of this teaching are oxygen-conducting or -transporting ceramics.
  • the invention therefore also relates to doped ceramics, for example Y-doped zirconium oxide.
  • composites that is to say combinations of ceramics, for example metals or combinations of ceramics with ceramic or metal coatings, for example spinel nanoparticles, which are layered on ceramics to adjust the pore size, or hydrogen-conducting Pd alloys, which are layered on the ceramics.
  • the ceramics used according to the invention may be porous, that is to say in particular microporous or nanoporous, or gas-tight.
  • the invention also relates to a process for producing the composites described above, comprising the measures: i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
  • step ii) forming a green composite from one or more of the green hollow fibers produced in step i) by making contacts between the outer surface (s) of the green hollow fiber (s), and
  • step iii) thermal treatment of the green composite produced in step ii) to remove the polymer, optionally form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) at the contact points by sintering.
  • the invention relates to a method for producing the composite defined above, comprising the measures:
  • a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
  • step iv) producing a green composite from one or more of the green hollow fibers produced in step i) and at least one connecting element for the cement. or removal of fluids at at least one end face of the green hollow fibers, and
  • step iv) thermal treatment of the green composite produced in step iv) in order to remove the polymer, if necessary to form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) and the at least one connecting element at the contact points by sintering.
  • the ceramic employed prior to spinning, is in the desired structure and crystallinity.
  • it can also be provided to carry out the extrusion step (step i) with ceramic precursors and to form the ceramic only during the thermal treatment (steps iii or v).
  • Outer diameter (D a ) and inner diameter (Dj) of the hollow fibers produced according to the invention can vary within wide ranges.
  • Examples of D a are 0.1 to 5 mm, in particular 0.5 to 3 mm.
  • Examples of Dj are 0.01 to 4.5 mm, especially 0.4 to 2.8 mm.
  • hollow fibers in the form of monofilaments whose cross-sectional shape is round, oval or n-shaped, where n is greater than or equal to 3.
  • D 3 is the largest dimension of the outer cross section and D 1 is the largest dimension of the inner cross section.
  • the polymers known per se for the production of ceramic fibers can be used. In principle, this can be any polymer which can be spun from the melt or from solution. Examples of these are polyesters, polyamides, polysulfones, polyarylene sulfides, polyethersulfones and cellulose.
  • the ceramic compositions known per se for the production of ceramic fibers which have a conductivity for the gas or liquid to be separated, or precursors thereof can be used.
  • gas or liquid-transporting ceramic compositions have already been mentioned above.
  • the precursors of these ceramic compositions may be, for example, mixtures which are non-crystalline or partially crystalline in the shaping and which do not change into the desired crystal structure until the molds have been sintered.
  • the green hollow fiber is introduced into a precipitation bath or cooling bath, preferably into a water bath, and then wound up.
  • the take-off speed is usually 1 to 100 m per
  • the green hollow fibers may contain, in addition to the ceramic materials or their precursors and the polymers, other auxiliaries.
  • stabilizers for the slip such as polyvinyl alcohol, polyethylene glycol, surfactants, ethylenediaminetetraacetic acid or citric acid, additives for adjusting the viscosity of the slip, such as polyvinylpyrrolidone, or salts as sources of cations for doping the ceramic.
  • the green hollow fibers After the green hollow fibers have been produced, they are combined into composites in the manner described above, ie with other green hollow fibers and / or with feeds and discharges for fluids.
  • the inlets and outlets may be shaped bodies of metals, ceramics or precursors of ceramics.
  • the green composites are tempered. This can be done in air or in a protective gas atmosphere. Temperature program and sintering times must be adapted to the individual case.
  • the annealing step results in densification of the green precursor.
  • the polymer disappears and, on the other hand, the pores of the resulting ceramics close due to suitably selected tempering conditions, so that, if required, gas-tight composites can also be obtained.
  • the composites according to the invention can be used in all industrial fields.
  • the invention also relates to the use of the above described composites for the recovery of certain gases or liquids from gas or liquid mixtures.
  • Example 1 Production of a green hollow fiber
  • a ceramic powder of the composition AI2O 3 were stirred with polysulfone (Udel P-3500, Solvay and 1-methyl-2-pyrrolidone (NMP) ( ⁇ 99.0%, Merck) to form a slurry. This was subsequently in a ball mill homogenized.
  • polysulfone Udel P-3500, Solvay and 1-methyl-2-pyrrolidone (NMP) ( ⁇ 99.0%, Merck)
  • the dope obtained in this way was spun through a hollow-core die with outer diameter (D a ) of 1.7 mm and inner diameter (Dj) of 1.2 mm.
  • the dope was poured into a pressure vessel and pressurized with nitrogen. After opening the tap on the pressure vessel, the dope flowed out and was pressed through the hollow core nozzle. The green fiber strand was passed through a precipitating water bath and then dried.
  • Example 2 Production of a composite of ceramic hollow fibers
  • This composite of green hollow fibers was sintered for 2 hours at 1500 ° C in a hanging furnace.
  • the individual hollow fibers possessed a length of 30 - 35 cm, and diameter D 3 of 0.8 - 0.9 mm and D-, from 0.5 - 0.6 mm.
  • Example 2 Several hollow fibers made according to Example 1 were manually intertwined and thermally treated according to the method described in Example 2.
  • Example 1 Several hollow fibers produced according to Example 1 were manually combined with one another on the surface of a rod-shaped mold such that they were arranged as a tubular multi-channel element whose individual capillaries were hollow fibers running parallel to one another.
  • the resulting green multi-channel element was thermally treated according to the method described in Example 2.
  • the interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold. It became a multi-channel ment obtained from mutually parallel and sintered together hollow fibers.
  • Example 5 Production of a further composite of ceramic hollow fibers
  • the resulting green multi-channel element was thermally treated according to the method described in Example 2.
  • the interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold.
  • a multi-channel element consisting of parallel and helical mutually sintered hollow fibers was obtained.
  • Example 6 Production of a Composite of Ceramic Hollow Fibers with Connection Elements for the Supply and Exhaustion of Gases
  • Example 1 Several hollow fibers produced according to Example 1 were manually combined so that they arranged themselves in the form of a multi-channel element whose individual capillaries were parallel hollow fibers. The interior of the multi-channel element was completely filled with hollow fibers when viewed in cross-section. At both end faces of the green multi-channel element metallic connection elements for the supply and discharge of gases were placed.
  • the resulting green composite was thermally treated according to the method described in Example 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Inorganic Fibers (AREA)

Abstract

The invention relates to composites, comprising at least one hollow fibre made from a gas- or liquid-transporting ceramic material, the outer surface of which is in contact with the outer surface of the same or a different hollow fibre and the contact points are connected by sintering. Further composites comprise at least one hollow fibre made from gas- or liquid-transporting ceramic material and a connector element on at least one front face, for the introduction or removal of fluids, whereby the hollow fibres are connected to the connector element by means of sintering. The composites are suitable for obtaining gasses from gas mixtures.

Description

Verbünde keramischer Hohlfasern. Verfahren zu deren Herstellung und deren VerwendungComposites of ceramic hollow fibers. Process for their preparation and their use
Beschreibungdescription
Die vorliegende Erfindung betrifft Verbünde aus keramischen Hohl- fasern, die sich insbesondere für Flüssig- und Gasfiltrationen, zumThe present invention relates to composites of ceramic hollow fibers, which are particularly suitable for liquid and gas filtrations, for
Beispiel Hochtemperaturanwendungen, wie Gastrennungen, mit Ausnahme der Sauerstoff abtrennung, eignen und die eine besonders hohe Stabilität aufweisen.Example high-temperature applications, such as gas separations, with the exception of the oxygen separation, are suitable and have a particularly high stability.
Keramische Hohlfasern sind an sich bekannt. Deren Herstellung wird beispielsweise in der US-A-4,222,977 oder in der US-A-5,707,584 beschrieben.Ceramic hollow fibers are known per se. Their preparation is described, for example, in US-A-4,222,977 or in US-A-5,707,584.
S. Uu, X. Tan, K. Li und R. Hughes berichten in J. Mem.Sci. 193(2001) 249-260, über die Herstellung von keramischen Membranen und Hohlfasern aus SrCe0,95Ybo,o5θ2,975. Es wurden gasdichte Hohlfasern hergestellt und deren mechanische Eigenschaften sowie deren Mikrostruktur untersucht.S.Uu, X. Tan, K.Li and R. Hughes report in J. Mem. Sci. 193 (2001) 249-260, on the preparation of ceramic membranes and hollow fibers of SrCe 0 , 9 5Ybo, o5θ 2 , 975th Gas-tight hollow fibers were produced and their mechanical properties and their microstructure were investigated.
In CIMTEC 2002, S. 249-258 berichtet J. Luyten über die Herstellung keramischer perowskitischer Fasern. Es werden Hohlfasern aus Lao,6Sro,4Cθo,8Feo,2θ3-δ beschrieben.In CIMTEC 2002, pp. 249-258, J. Luyten reports on the production of ceramic perovskite fibers. It describes hollow fibers of Lao , 6 Sro, 4 Cθo , 8 Feo, 2 θ 3-δ .
Membranen aus keramischen Materialien lassen sich porös oder gasdicht herstellen, andererseits weisen ausgewählte keramische Materialien eine Gaspermeabilität auf und lassen sich daher zur Trennung von Gasen aus Gasgemischen einsetzen. Mögliche Anwendungen derartiger Keramiken sind insbesondere Hochtempera- turanwendungen, wie z.B. die Gastrennung oder auch neuartige Membranreaktoren.Membranes made of ceramic materials can be made porous or gas-tight, on the other hand, selected ceramic materials have a gas permeability and can therefore be used for the separation of gases from gas mixtures. Possible applications of such ceramics are, in particular, high-temperature turanwendungen, such as gas separation or novel membrane reactors.
Die bekannten Verfahren zur Herstellung keramischer Hohlfasern umfassen einen Spinnprozess, bei dem in einem ersten Schritt elas- tische Grünfasern aus einer verspinnbaren Masse enthaltend Vorläufer des keramischen Materials und Polymer hergestellt werden. Der Polymeranteil wird anschließend bei hohen Temperaturen verbrannt und es entstehen rein keramische Hohlfasern.The known processes for producing ceramic hollow fibers comprise a spinning process in which, in a first step, elastic green fibers are produced from a spinnable mass comprising precursors of the ceramic material and polymer. The polymer fraction is then burned at high temperatures and there are purely ceramic hollow fibers.
Beim Verspinnen erfolgt ein Phaseninversionsprozess und es resul- tieren im ersten Schritt in der Regel poröse Membranen. Diese können über eine kontrollierte Temperatursteuerung auch dicht gebrannt werden.During spinning, a phase inversion process takes place and as a rule, porous membranes result in the first step. These can also be densely fired via a controlled temperature control.
Die auf diese Weise hergestellten Fasern sind mechanisch vergleichsweise stabil; allerdings zeigen sie natürlich die für keramische Materialien typische Sprödigkeit und Bruchempfindlichkeit.The fibers produced in this way are mechanically relatively stable; however, they naturally show the brittleness and breaking sensitivity typical of ceramic materials.
Es wurde nun überraschend gefunden, dass keramische Hohlfasern aus ausgewählten Materialien mit anderen Formteilen oder mit weiteren keramischen Hohlfasern zu komplexeren Strukturen kombiniert werden können und sich durch Sintern verbinden lassen. Dieses kann ohne den Einsatz von temporären Klebmitteln erfolgen. Es entstehen Strukturen mit deutlich höherer Stabilität, deren Handhabung, insbesondere auch im Hinblick auf Sicherheitserwägungen, wesentlich verbessert ist.It has now surprisingly been found that ceramic hollow fibers made of selected materials can be combined with other shaped parts or with further ceramic hollow fibers to form more complex structures and can be joined by sintering. This can be done without the use of temporary adhesives. The result is structures with significantly higher stability, their handling, especially with regard to safety considerations, significantly improved.
Die vorliegende Erfindung beruht unter anderem auf der überra- sehenden Erkenntnis, dass Vorläufer ausgewählter keramischer Materialien beim Erhitzen an den Kontaktstellen mit anderen Materialien sehr effizient zusammensintern, ohne dass dafür der Einsatz eines Hilfsmittels, wie eines Klebstoffes oder eines Schlickers, erforderlich wäre.The present invention is based inter alia on the surprising finding that precursors of selected ceramic materials when heated at the contact points with other materials sinter together very efficiently, without the need for an aid such as an adhesive or a slip would be required.
Das der vorliegenden Erfindung zugrundeliegende technische Prob- lern ist die Bereitstellung von Strukturen aus ein oder mehreren keramischen Hohlfasern oder aus keramischen Hohlfasem mit anderen Formteilen, wobei sich diese Strukturen durch eine besonders hohe Stabilität und eine verbesserte Handhabbarkeit auszeichnen.The technical problem underlying the present invention is to provide structures of one or more ceramic hollow fibers or ceramic hollow fibers with other shaped parts, wherein these structures are distinguished by a particularly high stability and improved handleability.
Ein weiteres technisches Problem der vorliegenden Erfindung ist die Bereitstellung von einfach durchzuführenden Verfahren zur Herstellung dieser stabilitätsverbesserten Strukturen, bei denen übliche Vorrichtungen zur Herstellung keramischer Formkörper eingesetzt werden können.Another technical problem of the present invention is the provision of easy-to-implement methods for producing these stability-enhanced structures, in which conventional devices for producing ceramic shaped bodies can be used.
Die vorliegende Erfindung betrifft einen Verbund umfassend mindes- tens eine Hohlfaser aus einem Gas- oder Flüssigkeits- transportierendem keramischem Material, deren äußere Oberfläche mit der äußeren Oberfläche der gleichen Hohlfaser oder einer anderen Hohlfaser aus Gas- oder Flüssigkeits-transportierendem keramischem Material in Kontakt steht und die Kontaktstellen durch Sintern verbunden sind.The present invention relates to a composite comprising at least one hollow fiber of a gas- or liquid-transporting ceramic material whose outer surface is in contact with the outer surface of the same hollow fiber or another hollow fiber of gas or liquid-transporting ceramic material and the contact points are connected by sintering.
Eine weitere Ausgestaltung der vorliegenden Erfindung betrifft einen Verbund umfassend mindestens eine Hohlfaser aus Gas- oder Flüssigkeits-transportierendem keramischem Material, und mindestens einem, an einer, vorzugsweise an beiden Stirnflächen der Hohlfaser angeordneten Anschlusselement(en) für die Zu- oder Abführung vonA further embodiment of the present invention relates to a composite comprising at least one hollow fiber of gas or liquid-transporting ceramic material, and at least one, on one, preferably at both end faces of the hollow fiber arranged connection element (s) for the supply or discharge of
Fluiden, wobei die Hohlfaser mit dem mindestens einen Anschlusselement durch Sintern verbunden ist. Derartige erfindungsgemäße Verbünde zeichnen sich durch eine gegenüber dem Stand der Technik verbesserte Stabilität bei möglichst dünnen Wänden und großer spezifischer Oberfläche aus.Fluids, wherein the hollow fiber is connected to the at least one connecting element by sintering. Such composites according to the invention are distinguished by an improved stability compared to the prior art with walls as thin as possible and a large specific surface area.
Die erfindungsgemäß eingesetzten Hohlfasern können beliebige Querschnitte aufweisen, beispielsweise eckige, ellipsenförmige oder insbesondere kreisförmige Querschnitte.The hollow fibers used according to the invention may have any desired cross-sections, for example angular, elliptical or in particular circular cross-sections.
Unter Hohlfasern sind im Rahmen dieser Beschreibung Gebilde zu verstehen, die einen hohlen Innenraum aufweisen und deren äußere Dimensionen, also Durchmesser oder lineare Dimensionen beliebig sein können.For the purposes of this description, hollow fibers are to be understood to mean structures which have a hollow interior and whose outer dimensions, that is, diameters or linear dimensions, can be arbitrary.
Unter dem Begriff Hohlfasern sind im Rahmen dieser Beschreibung neben der klassischen Bedeutung dieses Begriffes auch Kapillaren mit äußeren Durchmessern von 0,5 bis 5 mm sowie Rohre mit äußeren Durchmessern von mehr als 5 mm zu verstehen.In the context of this description, the term hollow fibers is to be understood as meaning not only the classic meaning of this term but also capillaries with outer diameters of 0.5 to 5 mm and tubes with outer diameters of more than 5 mm.
Bevorzugte äußere Durchmesser oder lineare Dimensionen derPreferred outer diameter or linear dimensions of
Hohlfasern bewegen sich im Bereich von bis zu 5 mm. Besonders bevorzugt eingesetzt werden Hohlfasern mit Außendurchmessem von kleiner als 3 mm.Hollow fibers range up to 5 mm. Particular preference is given to using hollow fibers with outer diameters of less than 3 mm.
Unter Hohlfasern sind im Rahmen dieser Beschreibung Hohlfasern mit beliebigen Längen zu verstehen. Beispiele dafür sind hohle Mo- nofilamente oder hohle Stapelfasern (Monofilamente endlicher Länge).Hollow fibers in the context of this description are hollow fibers of arbitrary lengths. Examples of these are hollow monofilaments or hollow staple fibers (monofilaments of finite length).
Die erfindungsgemäßen Verbünde können beliebige Kombinationen von keramischen Hohlfasern aus Gas- oder Flüssigkeits- transportierendem keramischen Material darstellen. So lassen sich beispielsweise die folgenden Verbünde herstellen:The composites of the invention may be any combination of ceramic hollow fibers of gas or liquid transporting ceramic material. For example, the following composites can be created:
mehrere Hohlfasern in Längskontakt angeordnet in einer Ebeneseveral hollow fibers arranged in longitudinal contact in a plane
mehrere Hohlfasem geflochten oder miteinander ver- drilltseveral hollow fibers braided or twisted together
mehrere Hohlfasern zu einem Monolith kombiniert (MuI- tikanalelement aus Hohlfasern)combined several hollow fibers into one monolith (multi-element element made of hollow fibers)
Durch die Flexibilität und Elastizität der Grünfasern, bei denen der Anteil der keramischen (Vorläufer)phase nicht zu hoch ist, sind viele weitere Geometrien möglich. Die Fasern behalten durch diese Struk- turgebung ihre ursprüngliche Funktionalität, dass heißt ihre Flüssig- keits- beziehungsweise Gaspermeabilität.Due to the flexibility and elasticity of the green fibers, where the proportion of the ceramic (precursor) phase is not too high, many other geometries are possible. As a result of this structure, the fibers retain their original functionality, ie their liquid or gas permeability.
Solche Verbünde können dann weiter zu Membranmodulen zusammengefügt werden. Diese Systeme sind insbesondere zum Einsatz bei Hochtemperaturanwendungen geeignet, zum Beispiel in derSuch composites can then be further joined together to form membrane modules. These systems are particularly suitable for use in high temperature applications, for example in the
Gastrennung oder auch als Komponenten von Membranreaktoren.Gas separation or as components of membrane reactors.
Die erfindungsgemäß eingesetzten Hohlfasern lassen sich durch einen an sich bekannten Spinnprozess herstellen. Dabei kann es sich um ein Lösungsspinnverfahren, wie Trocken- oder Nassspin- nen, handeln oder um ein Schmelzspinnverfahren.The hollow fibers used according to the invention can be produced by a spinning process known per se. This may be a solution spinning process, such as dry or wet spinning, or a melt spinning process.
Die zu verspinnende Masse umfasst neben dem feinteiligen keramischen Material oder dessen Vorläufer ein verspinnbares Polymer.The material to be spun comprises, in addition to the finely divided ceramic material or its precursor, a spinnable polymer.
Der Gehalt an verspinnbarem Polymer in der zu verspinnenden Masse kann in weiten Bereichen schwanken, beträgt jedoch typi- scherweise 2 bis 30 Gew. %, vorzugsweise von 5 bis 10 Gew. %, bezogen auf die gesamte zu verspinnende Masse oder Spinnlösung.The content of spinnable polymer in the material to be spun can vary within wide ranges, but is typically Scherweise 2 to 30 wt.%, Preferably from 5 to 10 wt.%, Based on the total mass to be spun or dope.
Der Gehalt an feinteiligem keramischen Material oder an dessen Vorläufer in der zu verspinnenden Masse kann ebenfalls in weiten Bereichen schwanken, beträgt jedoch typischerweise 20 bis 90 Gew.The content of finely divided ceramic material or its precursor in the material to be spun can also vary within wide limits, but is typically 20 to 90 wt.
%, vorzugsweise von 40 bis 60 Gew. %, bezogen auf die gesamte zu verspinnende Masse oder Spinnlösung.%, preferably from 40 to 60 wt.%, Based on the total mass to be spun or dope.
Der Gehalt an Lösungsmittel in der zu verspinnenden Masse kann in weiten Bereichen schwanken, beträgt jedoch typischerweise 10 bis 80 Gew. %, vorzugsweise von 35 bis 45 Gew. %, bezogen auf die gesamte Spinnlösung.The content of solvent in the material to be spun may vary within wide ranges, but is typically 10 to 80% by weight, preferably from 35 to 45% by weight, based on the total spinning solution.
Art und Menge von verspinnbarem Polymer und feinteiligem keramischem Material oder dessen Vorläufer werden vorzugsweise so gewählt, dass gerade noch verspinnbare Massen erhalten werden, wo- bei der Gehalt an verspinnbarem Polymer möglichst niedrig zu wählen ist.Type and amount of spinnable polymer and finely divided ceramic material or its precursor are preferably chosen so that just spinnable masses are obtained, wherein the content of spinnable polymer is to be selected as low as possible.
Das Verspinnen erfolgt durch Extrudieren der Spinnlösung oder der erhitzten und plastifizierten Spinnmasse durch eine Ringdüse, gefolgt von Abkühlen in Luft und/oder Einbringen in ein Fällbad, das ein für das in der Spinnmasse eingesetzte Polymer Nichtlösemittel enthält.The spinning is carried out by extruding the spinning solution or the heated and plasticized dope through an annular die, followed by cooling in air and / or introduction into a precipitation bath which contains a non-solvent for the polymer used in the dope.
Danach kann die erhaltene grüne Hohlfaser weiteren Bearbeitungsschritten unterzogen werden, beispielsweise Schneiden zu Stapeln oder Aufwickeln zur Zwischenlagerung. In einem sich an die Ausformung anschließenden Verarbeitungsschritt wird die erhaltene grüne Hohlfaser zu dem gewünschten Verbund kombiniert.Thereafter, the obtained green hollow fiber can be subjected to further processing steps, for example cutting into stacks or winding for intermediate storage. In a subsequent processing step, the resulting green hollow fiber is combined to form the desired composite.
Dabei kann es sich um die Kombination mehrerer gleicher oder auch unterschiedlicher grüner Hohlfasem handeln oder auch um die Kombination von ein oder mehreren grünen Hohlfasern mit an deren Stirnfläche oder Stirnflächen angeordneten mindestens einem Anschlusselement für die Zu- oder Abführung von Fluiden, wie Flüssigkeiten oder insbesondere von Gasen.This may involve the combination of a plurality of identical or different green hollow fibers or else the combination of one or more green hollow fibers with at least one connection element for the supply or removal of fluids, such as liquids or in particular, arranged on their end face or end faces gases.
Die Kombination der grünen Hohlfasern kann durch beliebige Techniken erfolgen. Beispiele dafür sind die manuelle Kombination, wie das Nebeneinanderlegen von parallel zueinander verlaufenden Hohlfasern, aber auch textile flächenbildende Techniken, wie das Herstellen von Gestricken, Geweben, Gelegen, Gewirken, Geflechten oder von verdrillten Gebilden.The combination of the green hollow fibers can be done by any techniques. Examples include the manual combination, such as the juxtaposition of parallel hollow fibers, but also textile surface-forming techniques, such as the production of crocheted, woven, knitted, knitted or braided structures.
Nach der Herstellung des Verbundes der grünen Hohlfaser(n) wird das Polymer in an sich bekannter Weise durch thermische Behandlung entfernt. Dieser Schritt umfasst auch das Ausbilden einer Keramik aus dem Vorläufer für das keramische Material und/oder ein Zusammensintern der feinteiligen keramischen Teilchen. Durch dieAfter the preparation of the composite of the green hollow fiber (s), the polymer is removed in a conventional manner by thermal treatment. This step also includes forming a ceramic from the precursor for the ceramic material and / or sintering the finely divided ceramic particles together. By the
Auswahl der Behandlungsparameter, wie Temperaturprogramm und Atmosphäre, lassen sich die Eigenschaften der entstehenden Keramik in der dem Fachmann bekannten Weise steuern.Selection of treatment parameters, such as temperature program and atmosphere, the properties of the resulting ceramic can be controlled in the manner known in the art.
Die erfindungsgemäß zu Verbunden kombinierten Hohlfasern beste- hen aus Gas- oder Flüssigkeits-transportierendem keramischem Material. Derartige Materialien sind an sich bekannt. Das erfindungsgemäß eingesetzte keramische Material ist ein Gas- oder Flüssigkeits-transportierendes keramisches Material. Es kann sich dabei um übliche Keramiken oder Oxidkeramiken, wie AI2O3, ZrO2, Tiθ2 oder auch SiC handeln. Darüber hinaus können auch Funktionskeramiken wie Perowskite oder sonstige Flüssigkeit- oderThe hollow fibers combined according to the invention consist of gas or liquid-transporting ceramic material. Such materials are known per se. The ceramic material used according to the invention is a gas or liquid-transporting ceramic material. These may be conventional ceramics or oxide ceramics, such as Al 2 O 3 , ZrO 2 , TiO 2 or else SiC. In addition, functional ceramics such as perovskites or other liquid or
Gas-leitende Keramiken eingesetzt werden. Vom Gegenstand dieser Lehre ausgenommen sind jedoch Sauerstoff-leitende beziehungsweise -transportierende Keramiken.Gas-conducting ceramics are used. However, excluded from the subject of this teaching are oxygen-conducting or -transporting ceramics.
Selbstverständlich können auch makroskopische Gemische ver- schiedener Keramiken eingesetzt werden, zum Beispiel AI2O3-Of course, macroscopic mixtures of various ceramics can also be used, for example Al 2 O 3.
Partikel kombiniert mit TiO2-Partikeln. Darüber hinaus können auch atomare Gemische eingesetzt werden, dass heißt bestimmte Kristallgitterplätze einer Keramik werden durch andere Atome ersetzt. Die Erfindung betrifft daher auch dotierte Keramiken, zum Beispiel Y- dotiertes Zirkonoxid.Particles combined with TiO 2 particles. In addition, atomic mixtures can be used, that is, certain crystal lattice sites of a ceramic are replaced by other atoms. The invention therefore also relates to doped ceramics, for example Y-doped zirconium oxide.
Darüber hinaus können erfindungsgemäß auch Komposite eingesetzt werden, dass heißt Kombinationen von Keramiken, mit zum Beispiel Metallen oder Kombinationen von Keramiken mit Keramikoder Metallbeschichtungen, beispielsweise Spinell-Nanopartikel, die zur Einstellung der Porengröße auf Keramiken geschichtet werden, oder Wasserstoff-leitende Pd-Legierungen, die auf die Keramiken geschichtet werden.In addition, according to the invention, it is also possible to use composites, that is to say combinations of ceramics, for example metals or combinations of ceramics with ceramic or metal coatings, for example spinel nanoparticles, which are layered on ceramics to adjust the pore size, or hydrogen-conducting Pd alloys, which are layered on the ceramics.
Die erfindungsgemäß eingesetzten Keramiken können porös, dass heißt insbesondere mikro- oder nanoporös, oder gasdicht sein.The ceramics used according to the invention may be porous, that is to say in particular microporous or nanoporous, or gas-tight.
Die Erfindung betrifft auch ein Verfahren zur Herstellung der oben beschriebenen Verbünde umfassend die Maßnahmen: i) Herstellung einer grünen Hohlfaser durch Extrudieren einer Zusammensetzung enthaltend neben einem Polymer eine Keramik, insbesondere Oxidkeramik, oder einen Vorläufer für eine Keramik, durch eine Ringdüse in an sich bekannter Weise,The invention also relates to a process for producing the composites described above, comprising the measures: i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
ii) Erzeugen eines grünen Verbundes aus einer oder mehreren der in Schritt i) hergestellten grünen Hohlfasern durch Herstellung von Kontakten zwischen der oder den äußeren Oberfläche(n) der grünen Hohlfaser(n), undii) forming a green composite from one or more of the green hollow fibers produced in step i) by making contacts between the outer surface (s) of the green hollow fiber (s), and
iii) thermische Behandlung des in Schritt ii) erzeugten grünen Verbundes, um das Polymer zu entfernen, gegebenenfalls die Keramik, insbesondere Oxidkeramik, auszubilden und die Hohlfaser(n) an den Kontaktstellen durch Sintern zu verbinden.iii) thermal treatment of the green composite produced in step ii) to remove the polymer, optionally form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) at the contact points by sintering.
In einer weiteren Ausgestaltung betrifft die Erfindung ein Verfahren zur Herstellung des oben definierten Verbundes umfassend die Maßnahmen:In a further embodiment, the invention relates to a method for producing the composite defined above, comprising the measures:
i) Herstellung einer grünen Hohlfaser durch Extrudieren einer Zusammensetzung enthaltend neben einem Polymer eine Keramik, insbesondere Oxidkeramik, oder einen Vorläufer für eine Keramik, durch eine Ringdüse in an sich bekannter Weise,i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
iv) Erzeugen eines grünen Verbundes aus einer oder meh- reren der in Schritt i) hergestellten grünen Hohlfasern und mindestens einem Anschlusseiement für die Zu- oder Abführung von Fluiden an mindestens einer Stirnfläche der grünen Hohlfasern, undiv) producing a green composite from one or more of the green hollow fibers produced in step i) and at least one connecting element for the cement. or removal of fluids at at least one end face of the green hollow fibers, and
v) thermische Behandlung des in Schritt iv) erzeugten grünen Verbundes, um das Polymer zu entfernen, ge- gebenenfalls die Keramik, insbesondere Oxidkeramik auszubilden und die Hohlfaser(n) und das mindestens eine Anschlusselement an den Kontaktstellen durch Sintern zu verbinden.v) thermal treatment of the green composite produced in step iv) in order to remove the polymer, if necessary to form the ceramic, in particular oxide ceramic, and to connect the hollow fiber (s) and the at least one connecting element at the contact points by sintering.
In den beiden vorgenannten Ausführungsformen der vorliegenden Erfindung liegt die eingesetzte Keramik vor dem Spinnen in der gewünschten Struktur und Kristallinität vor. Es kann aber auch vorgesehen sein, den Extrusionsschritt (Schritt i) mit Keramik-Vorläufern durchzuführen und die Keramik erst während der thermischen Behandlung auszubilden (Schritte iii beziehungsweise v).In the two aforementioned embodiments of the present invention, prior to spinning, the ceramic employed is in the desired structure and crystallinity. However, it can also be provided to carry out the extrusion step (step i) with ceramic precursors and to form the ceramic only during the thermal treatment (steps iii or v).
Außendurchmesser (Da) und Innendurchmesser (Dj) der erfindungsgemäß hergestellten Hohlfasern können in weiten Bereichen schwanken. Beispiele für Da sind 0,1 bis 5 mm, insbesondere 0,5 bis 3 mm. Beispiele für Dj sind 0,01 bis 4,5 mm, insbesondere 0,4 bis 2,8 mm.Outer diameter (D a ) and inner diameter (Dj) of the hollow fibers produced according to the invention can vary within wide ranges. Examples of D a are 0.1 to 5 mm, in particular 0.5 to 3 mm. Examples of Dj are 0.01 to 4.5 mm, especially 0.4 to 2.8 mm.
Besonders bevorzugt werden Hohlfasern in Form von Monofilamen- ten hergestellt, deren Querschnittsform rund, oval oder n-eckig ist, wobei n größer gleich 3 ist.Particular preference is given to producing hollow fibers in the form of monofilaments whose cross-sectional shape is round, oval or n-shaped, where n is greater than or equal to 3.
Bei nichtrunden Faserquerschnitten ist unter D3 die größte Dimension des äußeren Querschnitts und unter D1 die größte Dimension des inneren Querschnitts zu verstehen. Zur Herstellung der erfindungsgemäß eingesetzten Hohlfasern können die für die Herstellung keramischer Fasern an sich bekannten Polymere verwendet werden. Dabei kann es sich grundsätzlich um jedes aus der Schmelze oder aus Lösung verspinnbare Polymer handeln. Beispiele dafür sind Polyester, Polyamide, Polysulfone, Po- lyarylensulfide, Polyethersulfone und Cellulose.For non-round fiber cross sections, D 3 is the largest dimension of the outer cross section and D 1 is the largest dimension of the inner cross section. To produce the hollow fibers used according to the invention, the polymers known per se for the production of ceramic fibers can be used. In principle, this can be any polymer which can be spun from the melt or from solution. Examples of these are polyesters, polyamides, polysulfones, polyarylene sulfides, polyethersulfones and cellulose.
Zur Herstellung der erfindungsgemäß eingesetzten Hohlfasern können die für die Herstellung keramischer Fasern an sich bekannten keramischen Massen, die eine Leitfähigkeit für das zu trennende Gas- oder Flüssigkeit aufweisen, oder Vorläufer davon verwendet werden. Beispiele für Gas- oder Fiüssigkeits-transportierende keramische Massen sind bereits weiter oben erwähnt worden. Bei den Vorläufern dieser keramischen Massen kann es sich beispielsweise um Gemische handeln, die bei der Formgebung noch nichtkristallin oder teilkristallin vorliegen und die erst beim Sintern der Formen in die gewünschte Kristallstruktur übergehen.To produce the hollow fibers used according to the invention, the ceramic compositions known per se for the production of ceramic fibers, which have a conductivity for the gas or liquid to be separated, or precursors thereof can be used. Examples of gas or liquid-transporting ceramic compositions have already been mentioned above. The precursors of these ceramic compositions may be, for example, mixtures which are non-crystalline or partially crystalline in the shaping and which do not change into the desired crystal structure until the molds have been sintered.
Nach dem Verpressen der Spinnmasse durch eine Spinndüse wird die grüne Hohlfaser in ein Fällbad oder Kühlbad eingetragen, vorzugsweise in ein Wasserbad, und anschließend aufgewickelt.After the spinning mass has been pressed through a spinneret, the green hollow fiber is introduced into a precipitation bath or cooling bath, preferably into a water bath, and then wound up.
Die Abzugsgeschwindigkeit beträgt üblicherweise 1 bis 100 m proThe take-off speed is usually 1 to 100 m per
Minute, vorzugsweise 5 bis 20 m/min.Minute, preferably 5 to 20 m / min.
Die grünen Hohlfasern können neben den keramischen Materialien oder deren Vorläufern und den Polymeren noch weitere Hilfsstoffe enthalten. Beispiele dafür sind Stabilisatoren für den Schlicker, wie Polyvinylalkohol, Polyethylenglykol, Tenside, Ethylendiamintetraes- sigsäure oder Citronensäure, Zusätze zur Einstellung der Viskosität des Schlickers, wie Polyvinylpyrrolidon, oder Salze als Quellen für Kationen zum Dotieren der Keramik.The green hollow fibers may contain, in addition to the ceramic materials or their precursors and the polymers, other auxiliaries. Examples of these are stabilizers for the slip, such as polyvinyl alcohol, polyethylene glycol, surfactants, ethylenediaminetetraacetic acid or citric acid, additives for adjusting the viscosity of the slip, such as polyvinylpyrrolidone, or salts as sources of cations for doping the ceramic.
Nach der Herstellung der grünen Hohlfasern werden diese in der oben beschriebenen Weise zu Verbunden kombiniert, also mit ande- ren grünen Hohlfasern und/oder mit Zu- und Ableitungen für Fluide.After the green hollow fibers have been produced, they are combined into composites in the manner described above, ie with other green hollow fibers and / or with feeds and discharges for fluids.
Die Zu- und Ableitungen können Formkörper aus Metallen, Keramiken oder Vorläufern von Keramiken sein.The inlets and outlets may be shaped bodies of metals, ceramics or precursors of ceramics.
Anschließend werden die grünen Verbünde getempert. Dieses kann an der Luft oder in Schutzgasatmosphäre erfolgen. Temperaturpro- gramm und Sinterzeiten sind an den Einzelfall anzupassen. DemSubsequently, the green composites are tempered. This can be done in air or in a protective gas atmosphere. Temperature program and sintering times must be adapted to the individual case. the
Fachmann sind die einzustellenden Parameter dafür bekannt. Der Temperschritt führt zu einem Verdichten des grünen Vorläufers. Einerseits verschwindet das Polymer und andererseits schließen sich durch geeignet gewählte Temperbedingungen die Poren der entste- henden Keramik, so das bei Bedarf auch gasdichte Verbünde erhalten werden können.Those skilled in the parameters to be set are known. The annealing step results in densification of the green precursor. On the one hand, the polymer disappears and, on the other hand, the pores of the resulting ceramics close due to suitably selected tempering conditions, so that, if required, gas-tight composites can also be obtained.
Die erfindungsgemäßen Verbünde lassen sich auf allen industriellen Gebieten einsetzen.The composites according to the invention can be used in all industrial fields.
Die Erfindung betrifft auch die Verwendung der oben beschriebenen Verbünde zur Gewinnung von bestimmten Gasen oder Flüssigkeiten aus Gas- oder Flüssigkeitsgemischen.The invention also relates to the use of the above described composites for the recovery of certain gases or liquids from gas or liquid mixtures.
Die nachfolgenden Beispiele erläutern die Erfindung ohne diese zu begrenzen. Prozentangaben beziehen sich auf das Gewicht, sofern nichts anderes angegeben ist. Beispiel 1 : Herstellung einer grünen HohlfaserThe following examples illustrate the invention without limiting it. Percentages are by weight unless otherwise specified. Example 1: Production of a green hollow fiber
Ein keramisches Pulver der Zusammensetzung AI2O3 wurden mit Polysulfon (UDEL P-3500, Solvay und 1 -Methyl-2-pyrrolidon (NMP) (≥ 99,0%, Merck) zu einem Schlicker verrührt. Dieser wurde an- schließend in einer Kugelmühle homogenisiert.A ceramic powder of the composition AI2O 3 were stirred with polysulfone (Udel P-3500, Solvay and 1-methyl-2-pyrrolidone (NMP) (≥ 99.0%, Merck) to form a slurry. This was subsequently in a ball mill homogenized.
Die auf diese Weise erhaltene Spinnmasse wurde durch eine Hohl- kemdüse mit Außendurchmesser (Da) 1 ,7 mm und Innendurchmesser (Dj) 1 ,2 mm versponnen. Dazu wurde die Spinnmasse in einen Druckbehälter eingefüllt und mit Stickstoff unter Druck gesetzt. Nach Öffnen des Hahns am Druckbehälter floss die Spinnmasse heraus und wurde durch die Hohlkerndüse verpresst. Der Grünfaserstrang wurde durch ein Fäll-Wasserbad geleitet und anschließend getrocknet.The dope obtained in this way was spun through a hollow-core die with outer diameter (D a ) of 1.7 mm and inner diameter (Dj) of 1.2 mm. For this purpose, the dope was poured into a pressure vessel and pressurized with nitrogen. After opening the tap on the pressure vessel, the dope flowed out and was pressed through the hollow core nozzle. The green fiber strand was passed through a precipitating water bath and then dried.
Beispiel 2: Herstellung eines Verbundes aus keramischen HohlfasernExample 2: Production of a composite of ceramic hollow fibers
Mehrere nach Beispiel 1 hergestellte Hohlfasern wurden parallel zueinander angeordnet, so dass sie sich jeweils entlang ihrer Außenmäntel berührten.Several hollow fibers made according to Example 1 were arranged parallel to each other so that they each touched along their outer shells.
Dieser Verbund aus grünen Hohlfasern wurde 2 Stunden bei 1500°C in einem Ofen hängend gesintert.This composite of green hollow fibers was sintered for 2 hours at 1500 ° C in a hanging furnace.
Nach dem Sintern wurde ein zusammenhängender Verbund aus einzelnen Hohlfasern erhalten. Die einzelnen Hohlfasern besaßen eine Länge von 30 - 35 cm, sowie Durchmesser D3 von 0,8 - 0,9 mm und D-, von 0,5 - 0,6 mm.After sintering, a coherent composite of individual hollow fibers was obtained. The individual hollow fibers possessed a length of 30 - 35 cm, and diameter D 3 of 0.8 - 0.9 mm and D-, from 0.5 - 0.6 mm.
Beispiel 3: Herstellung eines weiteren Verbundes aus keramischen HohlfasernExample 3 Production of a Further Composite of Ceramic Hollow Fibers
Mehrere nach Beispiel 1 hergestellte Hohlfasern wurden manuell miteinander verflochten und nach der in Beispiel 2 beschriebenen Methode thermisch behandelt.Several hollow fibers made according to Example 1 were manually intertwined and thermally treated according to the method described in Example 2.
Nach dem Sintern wurde ein zusammenhängendes Geflecht aus einzelnen Hohlfasern erhalten.After sintering, a coherent web of individual hollow fibers was obtained.
Beispiel 4: Herstellung eines weiteren Verbundes aus keramischen HohlfasernExample 4 Production of a Further Composite of Ceramic Hollow Fibers
Mehrere nach Beispiel 1 hergestellte Hohlfasern wurden auf der O- berfläche einer stabförmigen Form manuell so miteinander kombiniert, dass diese sich als rohrförmiges Multikanalelement anordneten, dessen einzelne Kapillaren parallel zueinander verlaufende Hohlfasern waren.Several hollow fibers produced according to Example 1 were manually combined with one another on the surface of a rod-shaped mold such that they were arranged as a tubular multi-channel element whose individual capillaries were hollow fibers running parallel to one another.
Das erhaltene grüne Mulikanalelement wurde nach der in Beispiel 2 beschriebenen Methode thermisch behandelt.The resulting green multi-channel element was thermally treated according to the method described in Example 2.
Der Innenraum des Multikanalelements war nach dem Sintern und Entfernen der stabförmigen Form leer. Es wurde ein Multikanalele- ment aus parallel zueinander verlaufenden und zusammengesinterten Hohlfasem erhalten.The interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold. It became a multi-channel ment obtained from mutually parallel and sintered together hollow fibers.
Beispiel 5: Herstellung eines weiteren Verbundes aus keramischen HohlfasernExample 5: Production of a further composite of ceramic hollow fibers
Mehrere nach Beispiel 1 hergestellte Hohlfasern wurden entlang der Oberfläche einer stabförmigen Form gewickelt, so dass diese sich als helixförmiges Multikanalelement anordneten, dessen einzelne Kapillaren sich entlang der Wendel einander berührten.Several hollow fibers made according to Example 1 were wound along the surface of a rod-shaped mold so as to be arranged as a helical multi-channel element whose individual capillaries touched each other along the coil.
Das erhaltene grüne Mulikanalelement wurde nach der in Beispiel 2 beschriebenen Methode thermisch behandelt.The resulting green multi-channel element was thermally treated according to the method described in Example 2.
Der Innenraum des Multikanalelements war nach dem Sintern und Entfernen der stabförmigen Form leer. Es wurde ein Multikanalelement aus parallel und helixförmig zueinander verlaufenden, zusam- mengesinterten Hohlfasem erhalten.The interior of the multi-channel element was empty after sintering and removal of the rod-shaped mold. A multi-channel element consisting of parallel and helical mutually sintered hollow fibers was obtained.
Beispiel 6: Herstellung eines Verbundes aus keramischen Hohlfasem mit Anschlusselementen für die Zu- und Abführung von GasenExample 6: Production of a Composite of Ceramic Hollow Fibers with Connection Elements for the Supply and Exhaustion of Gases
Mehrere nach Beispiel 1 hergestellte Hohlfasern wurden manuell so miteinander kombiniert, dass diese sich in Form eines Multikanalelements anordneten, dessen einzelne Kapillaren parallel zueinander verlaufende Hohlfasern waren. Der Innenraum des Multikanalelements war im Querschnitt betrachtet vollständig mit Hohlfasem ausgefüllt. An beiden Stirnseiten des grünen Multikanalelements wurden metallische Anschlusselemente für die Zu- und Ableitung von Gasen aufgesetzt.Several hollow fibers produced according to Example 1 were manually combined so that they arranged themselves in the form of a multi-channel element whose individual capillaries were parallel hollow fibers. The interior of the multi-channel element was completely filled with hollow fibers when viewed in cross-section. At both end faces of the green multi-channel element metallic connection elements for the supply and discharge of gases were placed.
Der erhaltene grüne Verbund wurde nach der in Beispiel 2 beschrie- benen Methode thermisch behandelt.The resulting green composite was thermally treated according to the method described in Example 2.
Nach dem Sintern wurde ein Multikanalelement aus parallel zueinander verlaufenden und zusammengesinterten Hohlfasern erhalten, die eine Gaspermeabilität aufwiesen. Dieses Multikanalelement war an beiden Stirnseiten mit den metallischen Anschlusselementen durch Sintern fest verbunden. After sintering, a multi-channel element of parallel and co-sintered hollow fibers having gas permeability was obtained. This multi-channel element was firmly connected at both ends with the metallic connection elements by sintering.

Claims

Patentansprüche claims
1. Verbund, umfassend mindestens eine Hohlfaser aus Gasoder Flüssigkeits-transportierendem keramischem Material, deren äußere Oberfläche mit der äußeren Oberfläche der gleichen Hohlfa- ser oder einer anderen Hohlfaser aus Gas- oder Flüssigkeits- transportierendem keramischem Material in Kontakt steht und die Kontaktstellen durch Sintern verbunden sind, wobei Sauerstofftransportierende keramische Materialien ausgenommen sind.A composite comprising at least one hollow fiber of gas- or liquid-transporting ceramic material whose outer surface is in contact with the outer surface of the same hollow fiber or other hollow fiber of gas- or liquid-transporting ceramic material and the contact points are connected by sintering are excluding oxygen-carrying ceramic materials.
2. Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass dieser mehrere miteinander verflochtene oder verdrillte Hohlfasern aus Gas- oder Flüssigkeits-transportierendem keramischem Material aufweist.2. Composite according to claim 1, characterized in that it comprises a plurality of intertwined or twisted hollow fibers of gas or liquid-transporting ceramic material.
3. Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass dieser mindestens zwei parallel zueinander verlaufende Hohlfasern aus Gas- oder Flüssigkeits-transportierendem keramischem Material aufweist, deren Außenmäntel sich zumindest teilweise entlang ihrer Länge berühren und die an den Berührungsstellen durch Sintern verbunden sind.3. The composite of claim 1, characterized in that it comprises at least two mutually parallel hollow fibers of gas or liquid-transporting ceramic material, the outer shells at least partially touching along their length and which are connected at the contact points by sintering.
4. Verbund nach Anspruch 3, dadurch gekennzeichnet, dass dieser mehrere in Form eines rohrförmigen Multikanalelements angeordnete und parallel zueinander verlaufende Hohlfasern oder Rohre aufweist, deren Außenmäntel sich zumindest teilweise entlang ihrer Länge berühren und die an den Berührungslinien durch Sintern verbunden sind. 4. Composite according to claim 3, characterized in that it comprises a plurality of in the form of a tubular multi-channel element and parallel to each other extending hollow fibers or tubes whose outer shells touch at least partially along their length and which are connected at the contact lines by sintering.
5. Verbund nach Anspruch 4, dadurch gekennzeichnet, dass die Hohlfasern oder Rohre den Mantel eines rohrförmigen Multikanal- elements ausbilden, dessen Innenraum hohl ist oder ein stabförmi- ges Verstärkungsmaterial aufweist.5. Composite according to claim 4, characterized in that the hollow fibers or tubes form the shell of a tubular multi-channel element, the interior of which is hollow or has a rod-shaped reinforcing material.
6. Verbund nach Anspruch 5, dadurch gekennzeichnet, dass die6. Composite according to claim 5, characterized in that the
Hohlfasern oder Rohre entlang der Innenseite eines Rohres aus gasdichtem Material verlaufen.Hollow fibers or tubes along the inside of a tube of gas-tight material.
7. Verbund nach Anspruch 5, dadurch gekennzeichnet, dass der hohle Innenraum des rohrförmigen Multikanalelements einen Kataly- sator aufweist.7. Composite according to claim 5, characterized in that the hollow interior of the tubular multi-channel element comprises a catalyst.
8. Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass dieser ein oder mehrere Hohlfasern aufweist, die miteinander verwoben, verwirkt oder verstrickt sind.8. Composite according to claim 1, characterized in that it comprises one or more hollow fibers which are interwoven, forfeited or entangled.
9. Verbund nach Anspruch 1 , dadurch gekennzeichnet, dass das Gas- oder Flüssigkeits-transportierende keramische Material eine9. Composite according to claim 1, characterized in that the gas or liquid-transporting ceramic material a
Oxidkeramik ist.Oxide ceramics is.
10. Verbund, umfassend mindestens eine Hohlfaser aus Gasoder Flüssigkeits-transportierendem keramischem Material und an beiden Stirnflächen jeweils ein Anschlusselement für die Zu- oder Abführung von Fluiden, wobei die mindestens eine Hohlfaser mit den10. composite, comprising at least one hollow fiber of gas or liquid-transporting ceramic material and at both end faces in each case a connection element for the supply or discharge of fluids, wherein the at least one hollow fiber with the
Anschlusselementen durch Sintern verbunden ist.Connection elements is connected by sintering.
11. Verbund nach Anspruch 10, dadurch gekennzeichnet, dass dieser mindestens zwei parallel zueinander verlaufende Hohlfasern aufweist, deren Außenmäntel sich zumindest teilweise entlang ihrer Länge berühren und an den Berührungsstellen durch Sintern verbunden sind.11. The composite according to claim 10, characterized in that it comprises at least two mutually parallel hollow fibers whose outer shells at least partially along their Touch length and connected at the contact points by sintering.
12. Verbund nach Anspruch 11, dadurch gekennzeichnet, dass dieser mehrere in Form eines rohrförmigen Multikanalelements an- geordnete und parallel zueinander verlaufende Hohlfasern aufweist, deren Außenmäntel sich zumindest teilweise entlang ihrer Länge berühren und an den Berührungsstellen durch Sintern verbunden sind.12. The composite according to claim 11, characterized in that it has several in the form of a tubular multi-channel element arranged and parallel to each other running hollow fibers whose outer shells touch at least partially along its length and are connected at the contact points by sintering.
13. Verbund nach Anspruch 12, dadurch gekennzeichnet, dass die Hohlfasem den Mantel eines rohrförmigen Multikanalelements ausbilden, dessen Innenraum hohl ist oder ein stabförmiges Verstärkungsmaterial aufweist.13. The composite according to claim 12, characterized in that the hollow fibers form the shell of a tubular multi-channel element whose interior is hollow or has a rod-shaped reinforcing material.
14. Verbund nach Anspruch 11 , dadurch gekennzeichnet, dass die Hohlfasern entlang der Innenseite eines Rohres aus gasdichtem Material verlaufen.14. Composite according to claim 11, characterized in that the hollow fibers extend along the inside of a tube of gas-tight material.
15. Verbund nach Anspruch 10, dadurch gekennzeichnet, dass das Gas- oder Flüssigkeits-transportierende keramische Material eine Oxidkeramik ist.15. Composite according to claim 10, characterized in that the gas or liquid-transporting ceramic material is an oxide ceramic.
16. Verbund nach Anspruch 15, dadurch gekennzeichnet, dass die Oxidkeramik eine Perowskitstruktur oder eine Brownmilleritstruk- tur aufweist,16. The composite according to claim 15, characterized in that the oxide ceramic has a perovskite structure or a brownmillerite structure,
17. Verfahren zur Herstellung des Verbundes nach Anspruch 1 , umfassend die folgenden Verfahrensschritte, vorzugsweise in der angegebenen Reihenfolge: i) Herstellung einer grünen Hohlfaser durch Extrudieren einer Zusammensetzung enthaltend neben einem Polymer eine Keramik, insbesondere Oxidkeramik, oder einen Vorläufer für eine Keramik, durch eine Ringdüse in an sich bekannter Weise,17. A process for the preparation of the composite according to claim 1, comprising the following process steps, preferably in the order given: i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
ii) Erzeugen eines grünen Verbundes aus einer oder mehreren der in Schritt i) hergestellten grünen Hohlfasern durch Herstellung von Kontakten zwischen der oder den äußeren Oberfläche(n) der grünen Hohlfaser(n), undii) forming a green composite from one or more of the green hollow fibers produced in step i) by making contacts between the outer surface (s) of the green hollow fiber (s), and
iii) thermische Behandlung des in Schritt ii) erzeugten grünen Verbundes, um das Polymer zu entfernen und den Kontakt zwischen den keramischen Hohlfasern sowie gegebenenfalls die Keramik, insbesondere Oxidkera- mik, auszubilden.iii) thermal treatment of the green composite produced in step ii) in order to remove the polymer and to form the contact between the ceramic hollow fibers and optionally the ceramic, in particular oxide ceramic.
18. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Extrudieren nach dem Trockenspinnverfahren, dem Nassspinn- verfahren oder dem Schmelzspinnverfahren erfolgt.18. The method according to claim 17, characterized in that the extrusion takes place by the dry spinning process, the wet spinning process or the melt spinning process.
19. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass das Erzeugen des Verbundes durch Flechten, Drillen, Weben, Wirken, Stricken der grünen Hohlfaser(n) oder durch Legen von parallel zueinander verlaufenden grünen Hohlfasern erfolgt.19. The method according to claim 17, characterized in that the production of the composite by braiding, drilling, weaving, knitting, knitting the green hollow fiber (s) or by laying parallel green hollow fibers takes place.
20. Verfahren nach Anspruch 19, dadurch gekennzeichnet, dass die grünen Hohlfasern um ein stabförmiges Verstärkungselement oder um ein Rohr angeordnet werden. 20. The method according to claim 19, characterized in that the green hollow fibers are arranged around a rod-shaped reinforcing element or around a pipe.
21. Verfahren nach Anspruch 17, dadurch gekennzeichnet, dass die thermische Behandlung des in Schritt ii) erzeugten grünen Verbundes bei Temperaturen im Bereich von 900 bis 16000C erfolgt.21. The method according to claim 17, characterized in that the thermal treatment of the green composite produced in step ii) takes place at temperatures in the range of 900 to 1600 0 C.
22. Verfahren zur Herstellung des Verbundes nach Anspruch 10, umfassend die Maßnahmen:22. A method for producing the composite according to claim 10, comprising the measures:
i) Herstellung einer grünen Hohlfaser durch Extrudieren einer Zusammensetzung enthaltend neben einem Polymer eine Keramik, insbesondere Oxidkeramik, oder einen Vorläufer für eine Keramik, durch eine Ringdüse in an sich bekannter Weise,i) production of a green hollow fiber by extruding a composition comprising, in addition to a polymer, a ceramic, in particular oxide ceramic, or a precursor for a ceramic, by a ring nozzle in a manner known per se,
iv) Erzeugen eines grünen Verbundes aus einer oder mehreren der in Schritt i) hergestellten grünen Hohlfasern und mindestens zwei Anschlusselementen für die Zu- oder Abführung von Fluiden an beiden Stirnflächen der grünen Hohlfasern, undiv) producing a green composite from one or more of the green hollow fibers produced in step i) and at least two connection elements for the supply or removal of fluids at both end faces of the green hollow fibers, and
v) thermische Behandlung des in Schritt iv) erzeugten grünen Verbundes, um das Polymer zu entfernen und den Kontakt zwischen den keramischen Hohlfasern und den Anschlusselementen sowie gegebenenfalls die Ke- ramik, insbesondere Oxidkeramik, auszubilden.v) thermal treatment of the green composite produced in step iv) in order to remove the polymer and to form the contact between the ceramic hollow fibers and the connecting elements and optionally the ceramic, in particular oxide ceramic.
23. Verwendung des Verbundes nach einem der Ansprüche 1 bis 16 zur Gewinnung von Gasen aus Gasgemischen oder zur Flüssigfiltration. 23. Use of the composite according to one of claims 1 to 16 for the production of gases from gas mixtures or for liquid filtration.
EP06706346A 2005-02-04 2006-01-21 Composite ceramic hollow fibres method for production and use thereof Withdrawn EP1848674A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200510005467 DE102005005467A1 (en) 2005-02-04 2005-02-04 Composites of ceramic hollow fibers, process for their preparation and their use
PCT/EP2006/000539 WO2006081957A1 (en) 2005-02-04 2006-01-21 Composite ceramic hollow fibres, method for production and use thereof

Publications (1)

Publication Number Publication Date
EP1848674A1 true EP1848674A1 (en) 2007-10-31

Family

ID=36123082

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06706346A Withdrawn EP1848674A1 (en) 2005-02-04 2006-01-21 Composite ceramic hollow fibres method for production and use thereof

Country Status (5)

Country Link
US (1) US20080176056A1 (en)
EP (1) EP1848674A1 (en)
JP (1) JP2008528283A (en)
DE (1) DE102005005467A1 (en)
WO (1) WO2006081957A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005005464B4 (en) * 2005-02-04 2007-06-14 Uhde Gmbh Composites of ceramic hollow fibers, process for their preparation and their use
DE102008036379A1 (en) * 2008-08-05 2010-02-11 Mann + Hummel Gmbh Method for producing a ceramic filter element
DE102009033716B4 (en) * 2009-07-13 2011-06-16 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. A process for the preparation of an open-pore structure permeable by a fluid as well as a use of the structure produced by the process
CN104271534B (en) * 2012-03-22 2019-11-12 圣戈本陶瓷及塑料股份有限公司 Sinter bonded ceramic
CN107061873A (en) 2012-03-22 2017-08-18 圣戈本陶瓷及塑料股份有限公司 Extension tube structure and forming method thereof
US9290311B2 (en) 2012-03-22 2016-03-22 Saint-Gobain Ceramics & Plastics, Inc. Sealed containment tube
FR3038616B1 (en) 2015-07-06 2020-11-06 Gl Biocontrol PROCESS FOR PURIFICATION AND CONCENTRATION OF NUCLEIC ACIDS.
CN106673636A (en) * 2016-12-13 2017-05-17 南京工业大学 Preparation method of composite metal oxide hollow fiber
KR101913178B1 (en) 2017-08-08 2018-10-31 한국화학연구원 Method for manufacturing of ceramic hollow fiber membrane and the ceramic hollow fiber membrane thereby
GB202110213D0 (en) * 2021-07-15 2021-09-01 Microtech Ceramics Ltd Methods of manufacturing green bodies and substrates
CN114920549B (en) * 2022-05-30 2023-04-25 东南大学 Method for preparing oxide ceramic nanofiber membrane by using precursor liquid as binder

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB390199A (en) * 1930-09-29 1933-03-29 Hermsdorf Schomburg Isolatoren Improvements in or relating to ceramic containers for fluid resistances and methods for the production thereof
US3137602A (en) * 1959-08-21 1964-06-16 Continental Can Co Ceramic honeycomb
US4446024A (en) * 1977-02-22 1984-05-01 E. I. Du Pont De Nemours & Company Hollow filament product
US4268278A (en) * 1978-05-16 1981-05-19 Monsanto Company Inorganic anisotropic hollow fibers
US4222977A (en) * 1978-05-16 1980-09-16 Monsanto Company Process to produce inorganic hollow fibers
US4175153A (en) * 1978-05-16 1979-11-20 Monsanto Company Inorganic anisotropic hollow fibers
US4292348A (en) * 1980-01-14 1981-09-29 Johnson Matthey, Inc. Low density ceramic insulating
EP0038777B1 (en) * 1980-04-22 1983-10-05 Ciba-Geigy Ag Process for the preparation of oh or chloro derivatives of quinizarine bisubstituted in position 5 and 8
US4900698A (en) * 1987-05-26 1990-02-13 W. R. Grace & Co.-Conn. Ceramic product and process
US5127783A (en) * 1989-05-25 1992-07-07 The B.F. Goodrich Company Carbon/carbon composite fasteners
NL9300642A (en) * 1993-04-15 1994-11-01 Tno Process for the production of ceramic hollow fibers, in particular hollow fiber membranes for microfiltration, ultrafiltration and gas separation.
DE4425209A1 (en) * 1994-07-16 1996-01-18 Jenoptik Jena Gmbh Process for joining compact sintered ceramic bodies
JPH09217618A (en) * 1996-02-09 1997-08-19 Isuzu Ceramics Kenkyusho:Kk Exhaust emission control device
NL1007456C2 (en) * 1997-11-05 1999-05-07 Tno A method of manufacturing hollow fiber membranes for microfiltration, ultrafiltration or gas separation.
US6712131B1 (en) * 1998-03-12 2004-03-30 Nederlandse Organisatie Voor Toegepast - Natuurwetenschappelijk Onderzoek Tno Method for producing an exchanger and exchanger
JP3277918B2 (en) * 1999-06-15 2002-04-22 住友電気工業株式会社 Filter using porous ceramics
DE10043666C1 (en) * 2000-08-29 2001-10-25 Fraunhofer Ges Forschung Production of a ceramic insulating material, used as protection for temperature-sensitive materials in e.g. furnaces and firing devices, comprises

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2006081957A1 *

Also Published As

Publication number Publication date
US20080176056A1 (en) 2008-07-24
WO2006081957A8 (en) 2006-12-14
WO2006081957A1 (en) 2006-08-10
DE102005005467A1 (en) 2006-08-10
JP2008528283A (en) 2008-07-31

Similar Documents

Publication Publication Date Title
EP1846345B1 (en) Composite ceramic hollow fibres method for production and use thereof
EP1848674A1 (en) Composite ceramic hollow fibres method for production and use thereof
EP1858632B1 (en) Process for producing gas-tight and temperature-stable modules with ceramic hollow-fibre or capillary membranes
EP1018495B1 (en) Method of making hollow microfibres of ceramic material
US8771404B2 (en) Hollow ceramic fibers, precursors for manufacture thereof utilizing nanoparticles, methods of making the same, and methods of using the same
US8747525B2 (en) Composite hollow ceramic fibers, precursors for, methods of making the same, and methods of using the same
WO2013019783A1 (en) Hollow ceramic fibers, precursors for manufacture thereof utilizing pore formers, methods of making the same, and methods of using the same
WO2015180954A1 (en) Ceramic multilayer filter membrane, in particular in the form of a hollow fiber
DE102009038814A1 (en) Process for potting ceramic capillary membranes
EP2748120A1 (en) Ceramic composition
DE19701751B4 (en) Micro hollow fiber made of ceramic material, a process for their preparation and their use
DE102009033716B4 (en) A process for the preparation of an open-pore structure permeable by a fluid as well as a use of the structure produced by the process
DE19758431B4 (en) Process for the production of hollow micro fibers and their further processing into shaped bodies
WO2008074460A1 (en) Hollow ceramic fibres, process for producing them, membrane reactor containing these and also apparatus and process for producing hollow ceramic fibres
AT337659B (en) CATALYST SUPPORT AND METHOD FOR ITS MANUFACTURING
DE102006060970A1 (en) Method for producing ceramic capillaries, comprises producing green hollow fibers by extruding a composition and fastening a suitable number of hollow fibers at both ends of the capillaries in fastening elements in stretched condition
DE102006060971A1 (en) Method for producing ceramic capillaries, comprises producing green hollow fibers by extruding composition, producing woven, braided/twisted bundle from the fibers and fastening suitable number of hollow fibers at both ends of capillaries

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070904

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080717

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20081128