[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1774083A1 - Finished fibers and textile construction - Google Patents

Finished fibers and textile construction

Info

Publication number
EP1774083A1
EP1774083A1 EP05773891A EP05773891A EP1774083A1 EP 1774083 A1 EP1774083 A1 EP 1774083A1 EP 05773891 A EP05773891 A EP 05773891A EP 05773891 A EP05773891 A EP 05773891A EP 1774083 A1 EP1774083 A1 EP 1774083A1
Authority
EP
European Patent Office
Prior art keywords
fibers
active ingredients
textile fabrics
mixtures
microencapsulated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05773891A
Other languages
German (de)
French (fr)
Inventor
Raymond Mathis
Hans-Jürgen SLADEK
Markus FÜLLEBORN
Shefqet Emini
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cognis IP Management GmbH
Original Assignee
Cognis Deutschland GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Cognis Deutschland GmbH and Co KG filed Critical Cognis Deutschland GmbH and Co KG
Publication of EP1774083A1 publication Critical patent/EP1774083A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • D06M15/6436Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain containing amino groups
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/27Zinc; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/19Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
    • A61K8/29Titanium; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/44Oxides or hydroxides of elements of Groups 2 or 12 of the Periodic Table; Zincates; Cadmates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic Table; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M23/00Treatment of fibres, threads, yarns, fabrics or fibrous goods made from such materials, characterised by the process
    • D06M23/12Processes in which the treating agent is incorporated in microcapsules
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2800/00Properties of cosmetic compositions or active ingredients thereof or formulation aids used therein and process related aspects
    • A61K2800/40Chemical, physico-chemical or functional or structural properties of particular ingredients
    • A61K2800/41Particular ingredients further characterized by their size
    • A61K2800/413Nanosized, i.e. having sizes below 100 nm
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric

Definitions

  • the present invention is in the field of textile technology and relates to new finished fibers and fabrics with improved comfort, process for their preparation and the use of mixtures of active ingredients and Binde ⁇ means for textile equipment.
  • the term "wearing comfort” summarizes increased requirements of the consumer, who no longer want to be satisfied with the fact that the clothes he wears directly on the skin, such as lingerie or stockings, do not scratch or cause reddening of the skin, but quite the opposite expected to have a positive effect on the condition of his skin. This can be either to remedy fatigue, as well as to convey a fresh scent or to avoid skin roughness. There has therefore been no lack of efforts, textiles and again especially women's tights - this seems to be a particularly attractive consumer field - equipped with cosmetic agents that pass on to the skin when wearing and cause the desired effects there.
  • microencapsulated active substances which are either incorporated between the fiber fibrils or applied to the fibers with the aid of binders.
  • Such systems are known, for example, from the publications EP 0436729 A1, WO 01/098578 A1, US Pat. No. 6,355,263, DE 2318336 A1 and WO 03/093571 (Cognis).
  • the disadvantage is that the microencapsulation introduces additional complexity into the finishing process and, of course, makes it more expensive. More serious, however, is that many types of capsules are not sufficiently stable and release the drugs too early, in the worst case even at the application. If, instead, encapsulation systems are used which yield particularly resistant capsules, conversely, the release may take place only after a prolonged mechanical load and the consumer can not immediately perceive the expected wellness effect.
  • the object of the present invention has therefore consisted of equipping fibers and textiles with suitable active ingredients in such a way that they can be applied with as little effort as possible, gradually released during the first application, and after at least 20 to 50 washing cycles Wt .-% - based on the initial amount - on the fibers or textiles are present.
  • the invention relates to fibers and textile fabrics characterized aus ⁇ that they with mixtures of
  • Wt .-% of the originally applied drug remains on the fiber. Moreover, as a result of the lack of microencapsulation, it is also ensured that the active ingredients are slowly released when they are first applied, and the consumer can also experience the intended effect.
  • the choice of active ingredients is not critical per se and depends on the water solubility they possess and what effect is to be effected on the skin.
  • the active ingredients Preferably, have a water solubility at 20 0 C of less than 10 g / l and in particular less than 1 g / l.
  • hydrophobic active ingredients which have moisturizing properties, counteract cellulite and / or are skin-calming.
  • Typical examples are tocopherols, carotene compounds, sterols, ascorbic acid palmitate, (deoxy) ribonucleic acid and its fragmentation products, ⁇ -glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, chitosan Menthol, cosmetic oils and oily bodies, essential oils, vegetable proteins and their hydrolysis products, plant extracts, vitamin complexes, insect repellents and nano-integrated inorganic substances or minerals, which are explained in more detail below:
  • tocopherols is understood to mean chroman-6-ols (3,4-dihydro-2H-1-benzopyran-6-ols) substituted in the 2-position by a 4,8,12-trimethyltridecyl radical, which are also known as .alpha Biochinones are called.
  • Typical examples are the plastichinones, tocopherolquinones, ubiquinones, boviquinones, K-vitamins and melaninones (e.g., 2-methyl-1,4-naphthoquinones).
  • they are the quinones of the vitamin E series, i. ⁇ -, ß-, ⁇ -, ⁇ - and ⁇ -tocopherol, the latter still having the original unsaturated Prenylpitkette.
  • tocopherol quinones and hydroquinones and the esters of the quinones with carboxylic acids such as e.g. Acetic or palmitic acid in question.
  • carboxylic acids such as e.g. Acetic or palmitic acid in question.
  • ⁇ -tocopherol, tocopherol acetate and tocopherol palmitate and mixtures thereof is preferred.
  • Carotene compounds are essentially carotenes and carotenoids.
  • Carotenes are a group of 11- to 12-fold unsaturated triterpenes. Of particular importance are the three isomeric ⁇ -, ⁇ -, and ⁇ -carotenes, all of which share the same backbone with 9 conjugated double bonds, 8 methyl branches (including possible ring structures), and one Have ß-ionone ring structure at one end of the molecule and were originally regarded as a single natural product. Shown below are a number of carotene compounds which are suitable as component (b), without being a final Aufzäh ⁇ ment.
  • ⁇ -, ⁇ - and ⁇ -carotene are also suitable, although ⁇ -carotene (provitamin A) is of particular importance because of its high distribution; in the organism it is enzymatically split into two molecules of retinal.
  • Carotenoids are understood as meaning oxygen-containing derivatives of carotenes, which are also called xanthophylls, and whose skeleton consists of 8 isoprene units (tetraterpenes).
  • the carotenoids can be composed of two C 2 o-isoprenopides in such a way that the two middle methyl groups are in the 1,6-position to each other.
  • Typical examples are (3R, 6R) - ⁇ - ⁇ -carotene-3,3'-diol (lutein), (3R, 3'S, 5R) -3,3'-dihydroxy- ⁇ , ⁇ -carotene-6-one (Capsanthin), the 9-cis-6,6'-diapocarotindic acid 6'-methyl ester (Bixin), (3S, 3'S, 5R, 5R) -3,3'-dihydroxy- ⁇ , ⁇ -carotene-6,6 '-dione (capsorubin) or 3S, 3'S) - 3,3'-dihydroxy- ⁇ , ⁇ -carotene-4,4-dione (astaxanthin).
  • carotene compounds also includes their cleavage products such as, for example, 3,7-dimethyl-9- (2,6,6-trimethyl-1-cyclohexenyl) -2,4,6,8-nonatetraene -ol (retinol, vitamin Al) and 3,7-dimethyl-9- (2,6,6-trimethyl-1-cyclohexenyl) -2,4,6,8-nonatetraenal (retinal, vitamin Al aldehyde) ,
  • Sterols - also referred to as sterols - are steroids that have a hydroxyl group attached to the C-3 atom. Usually own Sterols have from 27 to 30 carbon atoms and one double bond, which is in the 5/6 position. The hydrogenation of the double bond leads to sterols, which are often referred to as conditions and which are also encompassed by this invention.
  • the figure shows the structure of the most well-known sterol, cholesterol, which belongs to the group of zoosterols.
  • sterols Due to their superior physiological properties, the use of plant sterols, the so-called phytosterols, is preferred. Examples of these are ergosterols, stigmasterols and, in particular, sitosterols and their hydrogenation products, the sitostanols. Also included in the present invention are the sterol esters, in particular the condensation products of said sterols with saturated or unsaturated fatty acids having 6 to 26 carbon atoms and up to 6 double bonds.
  • Chitosans are biopolymers and are counted among the group of hydrocolloids. Chemically, they are partially deacetylated chitins of different molecular weight containing the following - idealized - monomer unit:
  • chitosans In contrast to most hydrocolloids, which are negatively charged in the range of biological pH values, chitosans represent cationic biopolymers under these conditions.
  • the positively charged chitosans can be charged with opposite charges ⁇
  • Chitosans are produced by using chitin, preferably the shell residues of crustaceans, which are available in large quantities as inexpensive raw materials.
  • the chitin is thereby used in a process which was first described by Hackmann et al. has been described, usually initially deproteinized by the addition of bases, demineralized by the addition of mineral acids and finally deacetylated by the addition of strong bases, wherein the molecular weights can be distributed over a broad spectrum NEN.
  • cosmetic oils and oil bodies are, for example, Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C.
  • esters of linear C 6 -C 22 fatty acids with branched alcohols are esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C 10 fatty acids, liquid mono- / di- / Triglyceridmischept based on C ö -Qg fatty acids , Esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C 2 -C 12 dicarboxylic acids with linear or branched alcohols having 1 to 22 carbon atom
  • nanoparticles is understood by the person skilled in the art to mean particles which have average particle sizes of from 0.01 to 0.1 ⁇ m in the course of suitable preparation processes
  • Rapid Expansion of Supercritical Solutions RESS is known, for example, from the article by S. Chihlar, M. Turke and K. Schaber in Proceedings World Congress on Particle Technology 3, Brighton, 1998.
  • the starting materials in the presence of suitable protective colloids or emulsifiers to dissolve and / or relax the critical solutions in aqueous and / or alcoholic solutions of protective colloids or emulsifiers or in cosmetic oils, which in turn wie ⁇ the dissolved emulsifiers and / or Suitable protective colloids are, for example, gelatin, casein, chitosan, gum arabic m, lysalbinic acid, starch and polymers, such as polyvinyl alcohols, polyvinylpyrrolidones, polyalkylene glycols and polyacrylates.
  • the starting materials are first dissolved in a suitable organic solvent (for example alkanes, vegetable oils, ethers, esters, ketones, acetals and the like).
  • a suitable organic solvent for example alkanes, vegetable oils, ethers, esters, ketones, acetals and the like.
  • the solutions are then added in such a manner in water or another non-solvent, if appropriate in the presence of a surface-active compound dissolved therein, that precipitation of the nanoparticles occurs due to the homogenization of the two immiscible solvents, the organic solvent preferably evaporated.
  • O / W emulsions or O / W microemulsions can also be used.
  • GAS process gas anti-solvent recrystallization
  • the process uses a highly compressed gas or supercritical fluid (eg carbon dioxide) as non-solvent for the crystallization of solutes.
  • the compressed gas phase is introduced into the primary solution of the starting materials and absorbed there, whereby the liquid volume increases, the solubility decreases and finely divided particles are separated out.
  • PCA precipitation with a compressed fluid anti-solvent
  • the primary solution of the starting materials is introduced into a supercritical fluid, wherein very finely divided droplets form, in which run off diffusion processes, so that a precipitation of very fine particles takes place.
  • the starting materials are melted on by pressing on gas (for example carbon dioxide or propane). Pressure and temperature reach near or supercritical conditions.
  • gas for example carbon dioxide or propane.
  • the gas phase dissolves in the solid and causes a lowering of the melting temperature, the viscosity and the surface tension.
  • cooling effects cause the formation of very fine particles.
  • nanoparticles Another possibility for producing the nanoparticles is provided by the GPC or PVS process (gas phase condensation, physical vapor synthesis), in which metals vaporized with plasma are oxidized with oxygen and thencondensed in a controlled manner.
  • GPC gas phase condensation, physical vapor synthesis
  • the active ingredients are preferably nanoized zinc oxide, which has a surprisingly higher activity against atopic dermatitis compared to the conventional zinc oxide.
  • Further objects of the invention therefore relate to the use of optionally microencapsulated nanoized zinc oxide for finishing fibers and textiles and for producing cosmetic and / or pharmaceutical preparations.
  • the zinc oxide nanoparticles have average diameters in the range of 0.1 to 0.2 microns.
  • titanium dioxide and other nano-metal oxides as well as nano-mixed oxides such as ITO and ATO
  • Vegetable triglycerides such as coconut oil, palm oil, apricot kernel oil or hazelnut oil.
  • Nanoized zinc oxide or titanium dioxide are Nanoized zinc oxide or titanium dioxide.
  • the proportion of the active ingredients in the finished fibers and textiles can be 0.1 to 10, preferably 0.25 to 7.5 and in particular 0.5 to 5 wt .-%, based on the active substance.
  • the polymeric film-forming binders contemplated by the invention may be selected from the group formed by
  • Suitable polyurethanes (PU) and polyethyl (EVA) are the commercially available products from the series Stabiflex ® or Stabicryf Cognis Germany GmbH & Co. KG.
  • Melamine (synonym: 2,4,6-triamino-l, 3,5-triazine) is usually formed by trimerization of dicyandiamide or by cyclization of urea with elimination of carbon dioxide and ammonia.
  • melamines are oligomers or polymeric condensation products of melamine with formaldehyde, urea, phenol or mixtures thereof understood.
  • Glyoxal (synonym: oxaldehyde, ethanedial) is formed in the vapor-phase oxidation of ethylene glycol with air in the presence of silver catalysts.
  • glyoxals are understood as meaning the self-condensation products of glyoxal ("polyglyoxa").
  • Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylsilyloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which preferably solidify at room temperature or resinous.
  • silicon mimics which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates.
  • aminosiloxanes for example Cognis 3001 from Cognis Deutschland GmbH & Co. KG.
  • Their further crosslinking with H-siloxanes, eg Cognis 3002 of Cognis Germany GmbH & Co. KG. can increase the performance as a binder even further.
  • Epichlorohydrin-crosslinked polyamidoamines which are also referred to as “fibrabones” or “wet strength resins", are well known from textile and paper technology. Their preparation is preferably based on two methods:
  • Polyaminoamides are (a) initially reacted with an amount of 5 to 30 mol%, based on the nitrogen available for quaternization, of a quaternizing agent, and (b) subsequently the resulting quaternized polyaminoamides having a content crosslinking of non-quaternized nitrogen corresponding molar amount of epichlorohydrin, or
  • Polyaminoamides are (a) initially reacted at 10 to 35 ° C in an amount of 5 to 40 mol% - based on the nitrogen available for cross-linking - epichlorohydrin, and (b) the intermediate product to a pH - Setting value in the range of 8 to 11 and crosslinked at a temperature in the range of 20 to 45 0 C with a further amount of epichlorohydrin, so that the mola ⁇ re use ratio in total from 90 to 125 mol% - based on that for Ver Netting available nitrogen.
  • poly (meth) acrylates is homo- and copolymerization products of acrylic acid, methacrylic acid and optionally their esters, especially their esters with lower alcohols, such as. Methanol, ethanol, isopropyl alcohol, the isomeric butanols, cyclohexanol and the like, which are obtained in a manner known per se, for example by free-radical polymerization under UV irradiation.
  • the average molecular weight of the polymers is between 100 and 10,000, preferably 200 and 5,000 and especially 400 to 2,000 DaIton.
  • the binders are applied to the fibers in amounts of from 0.5 to 15, preferably from 1 to 10, and in particular from 1 to 5,% by weight, based on the active substance. microcapsules
  • the fibers and textiles are provided with both hydrophobic, non-encapsulated active ingredients and any other encapsulated active ingredients using said binders.
  • the unencapsulated agents act directly, i. but at the very first wearing and give the consumer the desired wellness effect, but the content decreases rapidly after the tenth wash, while the microencapsulated agents, especially then, if very resistant capsule systems are used, then only begin to release their active principles.
  • microcapsule or “nanocapsule” are understood by the person skilled in the art spherical aggregates having a diameter in the range of about 0.0001 to about 5 and preferably 0.005 to 0.5 mm, which contain at least one solid or liquid core ent More specifically, they are finely dispersed liquid or solid phases coated with film-forming polymers, which polymers are deposited on the material to be coated after emulsification and coacervation or interfacial polymerization Waxes in a matrix recorded (“Microsponge”), which may be additionally enveloped as microparticles with film-forming polymers.
  • Matocapsule spherical aggregates having a diameter in the range of about 0.0001 to about 5 and preferably 0.005 to 0.5 mm, which contain at least one solid or liquid core ent More specifically, they are finely dispersed liquid or solid phases coated with film-forming polymers, which polymers are deposited on the material to be coated after emulsification and coacervation or interfa
  • microscopically small capsules can be dried like powders
  • multinuclear aggregates also called microspheres
  • single or multinuclear microcapsules can be enclosed by an additional second, third, etc.
  • the shell can consist of natural, semisynthetic or synthetic materials, of course covering materials are, for example, gum arabic, agar -Agar, agarose, maltodextrins, alginic acid or its salts, for example sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides such as starch or dextran, polypeptides, protein hydrolysates, sucrose and Waxes Semisynthetic Covering Materials s inter alia chemically modified cellulose, in particular cellulose esters and ethers, for example cellulose acetate, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose, and also starch derivatives, in particular starch ethers and esters.
  • covering materials are, for example, gum arabic, agar -Agar, agarose, maltodextrins, algin
  • Synthetic envelope materials are, for example, polymers such as polyacrylates, polyamides, polyvinyl alcohol or polyvinylpyrrolidone.
  • microcapsules of the prior art are the following commercial products (in parentheses is the shell material):
  • Halter est Microcapsules gelatin, gum arabic
  • Coletica Thalaspheres marine collagen
  • Lipotec Millicapseln alginic acid, agar-agar
  • Induchem Unispheres Lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose
  • Unicerin C30 lactose, microcrystalline cellulose, hydroxypropylmethylcellulose
  • Kobo Glycospheres modified starch, fatty acid esters, phospholipids
  • Softspheres modified agar-agar
  • Kuhs Probiol Nanospheres phospholipids
  • Primaspheres and Primasponges chitosan, alginates
  • Primasys phospholipids
  • the microcapsules for example, prepare a 1 to 10, preferably 2 to 5 wt .-% aqueous solution of the gelling agent, preferably the agar agar ago and heated them under reflux. In the boiling heat, preferably at 80 to 100 0 C, a second aqueous solution is added, which contains the cationic polymer, preferably the chitosan in amounts of 0.1 to 2, preferably 0.25 to 0.5 wt .-% and the active ingredients in amounts of from 0.1 to 25 and especially from 0.25 to 10% by weight; this mixture is called a matrix.
  • the loading of the microcapsules with active ingredients can therefore also amount to 0.1 to 25% by weight, based on the capsule weight.
  • water-insoluble constituents for example inorganic pigments
  • inorganic pigments can also be added at this point in time to adjust the viscosity, these being added as a rule in the form of aqueous or aqueous / alcoholic dispersions.
  • emulsifiers and / or solubilizers can also be added to the matrix.
  • the matrix can optionally be very finely dispersed in an oil phase under strong shearing to produce the smallest possible particles in the subsequent encapsulation.
  • the resulting aqueous preparations generally have a microcapsule content in the range from 1 to 10% by weight. In some cases, it may be advantageous if the solution of the polymers contain other ingredients, such as emulsifiers or preservatives.
  • microcapsules are obtained which on average have a diameter in the range of preferably about 0.01 to 1 mm. It is recommended to sieve the capsules in order to ensure as uniform a size distribution as possible.
  • the microcapsules obtained in this way can have any desired shape in the production-related frame, but they are preferably spherical in shape. Alternatively, it is also possible to use the anionic polymers for preparing the matrix and to carry out the encapsulation with the cationic polymers, especially the chitosans.
  • the encapsulation can also be carried out with the exclusive use of cationic polymers, the advantage being taken of their ability to coagulate at pH values above the pKa value.
  • an O / W emulsion is prepared which, in addition to the oil body, water and the active substances, contains an effective amount of emulsifier.
  • this preparation is mixed with vigorous stirring with an appropriate amount of egg ner aqueous anion polymer solution.
  • the membrane formation takes place by adding the chitosan solution.
  • the pH is raised to 5 to 6, for example by adding triethanolamine or another base. This results in an increase in the viscosity, which is caused by the addition of further thickening agents, such as.
  • Polysaccharides in particular xanthan gum, guar-guar, agar-agar, alginates and Ty ⁇ loose, carboxymethylcellulose and hydroxyethylcellulose, high molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, polyacrylamides and derglei ⁇ chen can still be supported.
  • the microcapsules are separated from the aqueous phase, for example by decantation, filtration or centrifuging.
  • the formation of the microcapsules takes place around a preferably solid, for example, crystalline core, by enveloping it in layers with ent charged polyelectrolytes.
  • a preferably solid, for example, crystalline core by enveloping it in layers with ent charged polyelectrolytes.
  • hydrophobic active ingredients and film-forming polymers serve to equip fibers and all types of textile fabrics, ie both finished and semi-finished products during the manufacturing process or even after its completion, in order to improve the comfort on the skin.
  • the choice of materials from which the fibers or textiles consist is largely uncritical. Thus, all common natural and synthetic materials and mixtures thereof come into consideration, but especially cotton, polyamides, polyesters, viscose, modal, polyamide / elastane, cotton / elastane and cotton / polyester. Equally uncritical is the selection of textiles, whereby it is of course close to equipping those products which are in direct contact with the skin, ie in particular underwear, swimwear, nightwear, stockings and tights.
  • a further subject matter of the present invention relates to a first process for equipping fibers or textile fabrics, in which the substrates are impregnated with aqueous preparations comprising the hydrophobic active ingredients and the film-forming polymers and optionally further microencapsulated active ingredients and emulsifiers ,
  • the impregnation of the fibers or textiles takes place in the so-called draw-out process. This can be carried out in a commercially available washing machine or in a dyeing apparatus customary in the textile industry.
  • another subject of the invention relates to a second method for Ausrüs ⁇ tion of fibers and textile fabrics, in which the aqueous preparations comprising the hydrophobic active ingredients and the film-forming polymers and, where appropriate, further microencapsulated active ingredients and emulsifiers positively applied.
  • the substances to be provided are drawn through an immersion bath containing the microencapsulated active substances and the binder, the application then being carried out under pressure via a press. This is called a padding application.
  • the application concentration of the active compounds is from 0.5 to 15 and preferably from 1 to 10% by weight, based on the liquor or the dip bath.
  • concentrations are required than in the case of forced application in order to achieve equal loading of the fibers or textile fabrics with the active ingredients.
  • a final object of the invention finally relates to the use of mixtures containing (a) hydrophobic agents and
  • Example 1 was repeated, but instead of cotton a mixed fabric of polyamide and Lycra (90:10) was used.
  • the results (rounded average values from three test series in each case) are summarized in Table 2:
  • carbon dioxide was first taken from a reservoir at a constant pressure of 60 bar and purified via a column with an activated carbon and a molecular sieve packing. After the liquefaction, the CO 2 was compressed to the desired supercritical pressure p with the aid of a diaphragm pump at a constant delivery rate of 3.5 l / h. Subsequently, the solvent was brought to the required temperature Tl in a preheater and passed into an extraction column (steel, 400 ml), which was loaded with the metal sis.
  • the resulting supercritical, ie fluid mixture was sprayed via a laser-drawn nozzle (length 830 .mu.m, diameter 45 .mu.m) at a temperature T2 in a plexiglass expansion chamber containing a 4 wt .-% aqueous solution of E- emulsifier or protective colloid.
  • the fluid medium evaporated and left behind in the protective colloid, dispersed nanoparticles.
  • a 1 wt .-% dispersion of zinc oxide was added dropwise with vigorous stirring at 4O 0 C and a reduced pressure of 40 mbar in a 4 wt .-% aqueous solution of Coco Glucosides.
  • the vaporizing solvent was condensed in a cold trap while the dispersion with the nanoparticles remained.
  • the process conditions and the average particle size range are given in Table 4 below.
  • Aqueous dispersed nanoized zinc oxide (particle diameter 0.1-0, 2 ⁇ m) was mixed with various polymeric binders and applied by compulsory application to a polyamide / Lycra blended fabric.
  • the amount of zinc oxide used is 1% by weight, and that of the binder is 1% by weight.
  • All fabric samples were dried at 140 ° C for 2 minutes. They were then washed a total of ten times in a conventional washing machine at 40 0 C and determines the remaining zinc oxide on the fibers after various washing cycles.
  • Table 5 The results (mean values from three test series in each case) are summarized in Table 5:

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Veterinary Medicine (AREA)
  • Nanotechnology (AREA)
  • Epidemiology (AREA)
  • Birds (AREA)
  • Inorganic Chemistry (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Medical Informatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dermatology (AREA)
  • Cosmetics (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Multicomponent Fibers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)

Abstract

The invention relates to fibers and to a textile construction which are characterized in that they are finished with mixtures consisting of: (a) hydrophobic active substances, and; (b) film-forming polymers.

Description

Ausgerüstete Fasern und textile Flächengebilde Equipped fibers and textile fabrics
Gebiet der ErfindungField of the invention
Die vorliegende Erfindung befindet sich auf dem Gebiet der Textiltechnik und betrifft neue ausgerüstete Fasern und textile Flächengebilde mit verbessertem Tragekomfort, Verfahren zu deren Herstellung sowie die Verwendung von Mischungen aus Wirkstoffen und Binde¬ mitteln zur textilen Ausrüstung.The present invention is in the field of textile technology and relates to new finished fibers and fabrics with improved comfort, process for their preparation and the use of mixtures of active ingredients and Binde¬ means for textile equipment.
Stand der TechnikState of the art
Unter dem Begriff "Tragekomfort" werden gestiegene Anforderungen des Verbrauchers zusammengefasst, der sich nicht mehr allein damit zufrieden geben will, dass die von ihm unmittelbar auf der Haut getragene Wäsche, wie beispielsweise Dessous oder Strumpfho¬ sen weder kratzen noch Hautrötungen verursachen, sondern ganz umgekehrt erwartet, dass sie sich positiv auf den Zustand seiner Haut auswirkt. Dabei kann es sich sowohl darum handeln, Ermüdungserscheinungen abzuhelfen, als auch einen frischen Duft zu vermitteln oder Hautrauhigkeiten zu vermeiden. Es hat daher nicht an Bemühungen gefehlt, Textilien und abermals insbesondere Damenstrumpfhosen - dies scheint ein besonders attraktives Konsumentenfeld zu sein - mit kosmetischen Wirkstoffen auszurüsten, die beim Tragen auf die Haut übergehen und dort die gewünschten Effekte hervorrufen. Nun liegt es in der Na¬ tur der Sache, dass die gewünschten Wirkungen nur dann zustande kommen, wenn der ent¬ sprechende Wirkstoff vom Träger auf die Haut übertragen wird, d.h. nach einer mehr oder weniger langen Tragezeit ist auf dem Bekleidungsstück kein Wirkstoff mehr vorhanden. Dies stellt an den Hersteller solcher Produkte gewisse Anforderungen bei der Auswahl der Wirkstoffe, denn unter Abwägung von Leistung, aufbringbarer Menge und nicht zuletzt der damit verbundenen Kosten muss er einen Kompromiss finden, der ein Produkt ermöglicht, dessen Wirkung erlebbar ist und dessen erhöhter Preis auch vom Kunden gezahlt werden kann. Da kosmetische Wirkstoffe, die die gewünschten Wirkungen aufweisen, in aller Re¬ gel teuer sind und auch die Ausrüstung der Endprodukte mit zusätzlichen Kosten verbun¬ den ist, ist es für den Hersteller von besonderer Bedeutung, dass es außer durch den Kon¬ takt zwischen ausgerüstetem Endprodukt und der Haut des Trägers nicht zu weiteren uner¬ wünschten Verlusten an Wirkstoffen kommt, da dies dazu führen würde, dass der vom Kunden teuer bezahlte zusätzliche Tragekomfort über eine kürzere Zeit wirksam wird. Eine besonders unerwünschte Form des Wirkstoffverlustes tritt im Zusammenhang mit der Wä¬ sche der so ausgerüsteten Fasern und Textilien auf. Auch wenn sich diese Verluste nicht völlig vermeiden lassen, so liegt es auf der Hand, dass es ein besonderes Anliegen der Her- steller entsprechender Produkte ist, die Wirkstoffe in solcher Weise auf die Fasern aufzu¬ bringen, dass diese nicht ohne weiteres aufgelöst oder mechanisch abgelöst werden.The term "wearing comfort" summarizes increased requirements of the consumer, who no longer want to be satisfied with the fact that the clothes he wears directly on the skin, such as lingerie or stockings, do not scratch or cause reddening of the skin, but quite the opposite expected to have a positive effect on the condition of his skin. This can be either to remedy fatigue, as well as to convey a fresh scent or to avoid skin roughness. There has therefore been no lack of efforts, textiles and again especially women's tights - this seems to be a particularly attractive consumer field - equipped with cosmetic agents that pass on to the skin when wearing and cause the desired effects there. Now it is in the nature of the thing that the desired effects only come about when the ent speaking active ingredient is transferred from the wearer to the skin, ie after a more or less long wearing time on the garment no active ingredient is present , This places certain demands on the manufacturer of such products in the selection of active ingredients, because, weighing the performance, the application rate and last but not least the associated costs, he has to find a compromise that enables a product whose effect can be experienced and its increased price can be paid by the customer. Since cosmetic active ingredients which have the desired effects are generally expensive and also the equipment of the end products is associated with additional costs, it is of particular importance for the manufacturer that, in addition to the contact between the finished product and the finished product Endprodukt and the skin of the wearer does not come to further uner¬ desired losses of active ingredients, as this would mean that the customer expensive paid additional comfort over a shorter time is effective. A particularly undesirable form of loss of active ingredient occurs in connection with the washing of the fibers and textiles so finished. Although these losses can not be completely avoided, it is obvious that it is a particular concern of the It is appropriate for the corresponding products to apply the active ingredients to the fibers in such a way that they are not readily dissolved or mechanically removed.
Eine Lösung für dieses Problem stellt der Einsatz von mikroverkapselten Wirkstoffen dar, die entweder also solche zwischen die Faserfibrillen eingelagert oder mit Hilfe von Binde¬ mittel auf die Fasern aufgebracht werden. Derartige Systeme sind beispielsweise aus den Druckschriften EP 0436729 Al, WO 01/098578 Al, US 6,355,263, DE 2318336 Al so¬ wie WO 03/093571 (Cognis) bekannt. Von Nachteil ist jedoch, dass die Mikroverkapse- lung eine zusätzliche Komplexität in das Ausrüstungsverfahren hineinbringt und dieses natürlich auch verteuert. Schwerwiegender ist jedoch, dass sich viele Kapseltypen als nicht ausreichend stabil erweisen und die Wirkstoffe zu früh freisetzen, schlimmstenfalls sogar schon bei der Applikation. Werden statt dessen Verkapselungssysteme verwendet, die be¬ sonders beständige Kapseln ergeben, kann es umgekehrt dazu kommen, dass die Freiset¬ zung erst nach längerer mechanischer Belastung erfolgt und der Verbraucher den erwarte¬ ten Wellness-Effekt nicht unmittelbar wahrnehmen kann.One solution to this problem is the use of microencapsulated active substances, which are either incorporated between the fiber fibrils or applied to the fibers with the aid of binders. Such systems are known, for example, from the publications EP 0436729 A1, WO 01/098578 A1, US Pat. No. 6,355,263, DE 2318336 A1 and WO 03/093571 (Cognis). The disadvantage, however, is that the microencapsulation introduces additional complexity into the finishing process and, of course, makes it more expensive. More serious, however, is that many types of capsules are not sufficiently stable and release the drugs too early, in the worst case even at the application. If, instead, encapsulation systems are used which yield particularly resistant capsules, conversely, the release may take place only after a prolonged mechanical load and the consumer can not immediately perceive the expected wellness effect.
Die Aufgabe der vorliegenden Erfindung hat folglich darin bestanden, Fasern und Textilien in solcher Weise mit geeigneten Wirkstoffen auszurüsten, dass diese mit möglichst gerin¬ gem aufwand aufgebracht werden können, schon beim ersten Tragen allmählich freigesetzt und nach 5 Waschzyklen noch wenigstens zu wenigstens 20 bis 50 Gew.-% - bezogen auf die Ausgangsmenge - auf den Fasern oder Textilien vorhanden sind.The object of the present invention has therefore consisted of equipping fibers and textiles with suitable active ingredients in such a way that they can be applied with as little effort as possible, gradually released during the first application, and after at least 20 to 50 washing cycles Wt .-% - based on the initial amount - on the fibers or textiles are present.
Beschreibung der ErfindungDescription of the invention
Gegenstand der Erfindung sind Fasern und textile Flächengebilde, die sich dadurch aus¬ zeichnen, dass sie mit Mischungen ausThe invention relates to fibers and textile fabrics characterized aus¬ that they with mixtures of
(a) hydrophoben Wirkstoffen und(a) hydrophobic agents and
(b) filmbildenden Polymeren(b) film-forming polymers
ausgerüstet sind.are equipped.
Entgegen dem allgemeinen technischen Vorurteil, dass sich Wirkstoffe nur dann mit eini¬ ger Dauer auf Fasern und Textilien aufbringen lassen, wenn man diese zuvor mikroverkap- selt, wurde überraschenderweise gefunden, dass sich hydrophobe Wirkstoffe auch ohne Verkapselung applizieren lassen, wenn man diese in solchen polymeren Bindemitteln fein¬ verteilt, die über filmbildende Eigenschaften verfügen. Die Erfindung schließt die Erkennt¬ nis ein, dass bei diesem sogenannten „compositefinishing" in Abhängigkeit der Natur des Bindemittels und des Wirkstoffs auch nach 5 bis 10 Wäschen noch in der Regel 10 bis 50 ^Contrary to the general technical prejudice that active ingredients can only be applied to fibers and textiles with a short duration if they have been previously microencapsulated, it has surprisingly been found that hydrophobic active ingredients can also be applied without encapsulation, if these are used in such cases polymer binders fein¬ distributed, which have film-forming properties. The invention includes the knowledge that in this so-called "compositefinishing" depending on the nature of the binder and of the active substance, even after 5 to 10 washes, as a rule still 10 to 50 ^
Gew.-% des ursprünglich aufgebrachten Wirkstoffes auf der Faser verbleibt. Infolge der fehlenden Mikroverkapselung ist im übrigen auch sichergestellt, dass die Wirkstoffe schon beim ersten Tragen langsam freigesetzt werden und der Verbraucher die beabsichtigte Wir¬ kung auch erleben kann.Wt .-% of the originally applied drug remains on the fiber. Moreover, as a result of the lack of microencapsulation, it is also ensured that the active ingredients are slowly released when they are first applied, and the consumer can also experience the intended effect.
Wirkstoffedrugs
Die Auswahl der Wirkstoffe ist an sich unkritisch und richtet sich ausschlich danach, wel¬ che Wasserlöslichkeit sie besitzen und welcher Effekt auf der Haut bewirkt werden soll. Vorzugsweise weisen die Wirkstoffe eine Wasserlöslichkeit bei 20 0C von weniger als 10 g/l und insbesondere weniger als 1 g/l auf.The choice of active ingredients is not critical per se and depends on the water solubility they possess and what effect is to be effected on the skin. Preferably, the active ingredients have a water solubility at 20 0 C of less than 10 g / l and in particular less than 1 g / l.
Bevorzugt sind hydrophobe Wirkstoffe, die feuchtigkeitsspendende Eigenschaften aufwei¬ sen, Cellulitis entgegenwirken und/oder hautberuhigend sind. Typische Beispiele sind To- copherole, Carotinverbindungen, Sterole, Ascorbinsäurepalmitat, (Desoxy)Ribonuklein- säure und deren Fragmentierangsprodukte, ß-Glucane, Retinol, Bisabolol, Allantoin, Phy- tantriol, Panthenol , AHA-Säuren, Aminosäuren, Ceramide, Pseudoceramide, Chitosan, Menthol, kosmetische Öle und Ölkörper, ätherische Öle, pflanzliche Proteine und deren Hydrolyseprodukte, Pflanzenextrakte, Vitaminkomplexe, Insektenrepellentien sowie nanoi- sierte anorganische Stoffe oder Mineralien zu verstehen, die auszugsweise nachfolgend näher erläutert werden:Preference is given to hydrophobic active ingredients which have moisturizing properties, counteract cellulite and / or are skin-calming. Typical examples are tocopherols, carotene compounds, sterols, ascorbic acid palmitate, (deoxy) ribonucleic acid and its fragmentation products, β-glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, chitosan Menthol, cosmetic oils and oily bodies, essential oils, vegetable proteins and their hydrolysis products, plant extracts, vitamin complexes, insect repellents and nano-integrated inorganic substances or minerals, which are explained in more detail below:
• Tocopherole• tocopherols
Unter dem Begriff Tocopherole sind die in 2-Stellung mit einem 4,8,12- Trimethyltridecyl-Rest substituierten Chroman-6-ole (3,4-Dihydro-2H-l-benzopyran-6- ole) zu verstehen, die auch als Biochinone bezeichnet werden. Typische Beispiele sind die Plastichinone, Tocopherolchinone, Ubichinone, Bovichinone, K- Vitamine und Me- nachinone (z.B. 2-Methyl-l,4-naphthochinone). Vorzugsweise handelt es sich um die Chinone aus der Vitamin-E-Reihe, d.h. α-, ß-, γ-, δ- und ε-Tocopherol, wobei letzteres noch über die ursprüngliche ungesättigte Prenylseitenkette verfügt.The term tocopherols is understood to mean chroman-6-ols (3,4-dihydro-2H-1-benzopyran-6-ols) substituted in the 2-position by a 4,8,12-trimethyltridecyl radical, which are also known as .alpha Biochinones are called. Typical examples are the plastichinones, tocopherolquinones, ubiquinones, boviquinones, K-vitamins and melaninones (e.g., 2-methyl-1,4-naphthoquinones). Preferably, they are the quinones of the vitamin E series, i. α-, ß-, γ-, δ- and ε-tocopherol, the latter still having the original unsaturated Prenylseitenkette.
α-Tocopherol und α-Tocopherolchinonα-tocopherol and α-tocopherolquinone
Daneben kommen auch Tocopherolchinone und -hydrochinone sowie die Ester der Chinone mit Carbonsäuren, wie z.B. Essigsäure oder Palmitinsäure in Frage. Der Ein¬ satz von α-Tocopherol, Tocopherolacetat und Tocopherolpalmitat sowie deren Gemi¬ sche ist bevorzugt.In addition, there are also tocopherol quinones and hydroquinones and the esters of the quinones with carboxylic acids, such as e.g. Acetic or palmitic acid in question. The use of α-tocopherol, tocopherol acetate and tocopherol palmitate and mixtures thereof is preferred.
• Carotinverbindungen• Carotene compounds
Unter Carotinverbindungen, sind im wesentlichen Carotine und Carotinoide zu verste¬ hen. Carotine stellen eine Gruppe von 11- bis 12fach ungesättigten Triterpenen dar. Von besonderer Bedeutung sind die drei isomeren α-, ß- und γ-Carotine, die alle über das gleiche Grundgerüst mit 9 konjugierten Doppelbindungen, 8 Methylverzweigungen (einschließlich möglicher Ringstrukturen) und einer ß-Ionon-Ringstruktur an einem Molekülende verfügen und ursprünglich als einheitlicher Naturstoff angesehen worden waren. Nachstehend sind eine Reihe von Carotinverbindungen abgebildet, die als Komponente (b) in Frage kommen, ohne dass es sich um eine abschließende Aufzäh¬ lung handelt.Carotene compounds are essentially carotenes and carotenoids. Carotenes are a group of 11- to 12-fold unsaturated triterpenes. Of particular importance are the three isomeric α-, β-, and γ-carotenes, all of which share the same backbone with 9 conjugated double bonds, 8 methyl branches (including possible ring structures), and one Have ß-ionone ring structure at one end of the molecule and were originally regarded as a single natural product. Shown below are a number of carotene compounds which are suitable as component (b), without being a final Aufzäh¬ ment.
Beta CarotinBeta carotene
Capsanthin capsanthin
Astaxanthinastaxanthin
Neben den bereits genannten Isomeren kommen auch das δ-, ε- und ζ-Carotin (Lyco- pin) in Betracht, wobei freilich das ß-Carotin (Provitamin A) wegen seiner hohen Verbreitung von besonderer Bedeutung ist; im Organismus wird es enzymatisch in zwei Moleküle Retinal gespalten. Unter Carotinoiden versteht man sauerstoffhaltige Derivate der Carotine, die auch als Xanthophylle bezeichnet werden, und deren Grundgerüst aus 8 Isopreneinheiten (Tetraterpene) bestehen. Man kann sich die Caro¬ tinoide aus zwei C2o-Isoprenopiden derart zusammengesetzt denken, dass die beiden mittleren Methylgruppen in 1,6-Stellung zueinander stehen. Typische Beispiele sind das (3R,6R)-ß-ε-Carotin-3,3'-diol (Lutein), (3R,3'S,5R)-3,3'-Dihydroxy-ß,κ-carotin- 6-on (Capsanthin), das 9 -cis-6,6'-Diapocarotindisäure-6'-methylester (Bixin), (3S,3'S,5R,5R)-3,3'-Dihydroxy-κ,κ-carotin-6,6'-dion (Capsorubin) oder das 3S,3'S)- 3,3'-Dihydroxy-ß,ß -carotin-4,4-dion (Astaxanthin). Neben den Carotinen und Caroti¬ noiden sollen unter dem Begriff Carotinverbindungen auch deren Spaltprodukte wie beispielsweise 3,7-Dimethyl-9-(2,6,6-trimethyl-l-cyclohexenyl)-2,4,6,8-nonatetraen- l-ol (Retinol, Vitamin Al) und 3,7-Dimethyl-9-(2,6,6-trimethyl-l-cyclohexenyl)- 2,4,6,8-nonatetraenal (Retinal, Vitamin AI-Aldehyd) verstanden werden.In addition to the isomers already mentioned, δ-, ε- and ζ-carotene (lycopene) are also suitable, although β-carotene (provitamin A) is of particular importance because of its high distribution; in the organism it is enzymatically split into two molecules of retinal. Carotenoids are understood as meaning oxygen-containing derivatives of carotenes, which are also called xanthophylls, and whose skeleton consists of 8 isoprene units (tetraterpenes). The carotenoids can be composed of two C 2 o-isoprenopides in such a way that the two middle methyl groups are in the 1,6-position to each other. Typical examples are (3R, 6R) -β-ε-carotene-3,3'-diol (lutein), (3R, 3'S, 5R) -3,3'-dihydroxy-β, κ-carotene-6-one (Capsanthin), the 9-cis-6,6'-diapocarotindic acid 6'-methyl ester (Bixin), (3S, 3'S, 5R, 5R) -3,3'-dihydroxy-κ, κ-carotene-6,6 '-dione (capsorubin) or 3S, 3'S) - 3,3'-dihydroxy-β, β-carotene-4,4-dione (astaxanthin). In addition to carotenes and carotenoids, the term "carotene compounds" also includes their cleavage products such as, for example, 3,7-dimethyl-9- (2,6,6-trimethyl-1-cyclohexenyl) -2,4,6,8-nonatetraene -ol (retinol, vitamin Al) and 3,7-dimethyl-9- (2,6,6-trimethyl-1-cyclohexenyl) -2,4,6,8-nonatetraenal (retinal, vitamin Al aldehyde) ,
Sterolesterols
Sterole - die auch als Sterine bezeichnet werden - stellen Steroide dar, die über eine Hydroxylgruppe verfügen, die an das C-3-Atom gebunden ist. Üblicherweise besitzen Sterole 27 bis 30 Kohlenstoffatome und eine Doppelbindung, die sich in 5/6-Stellung befindet. Die Hydrierung der Doppelbindung führt zu Sterolen, die vielfach als Stande bezeichnet werden und die ebenfalls von dieser Erfindung umfasst werden. Die Abbil¬ dung zeigt die Struktur des bekanntesten Sterols, des Cholesterols, welches zur Gruppe der Zoosterolen zählt.Sterols - also referred to as sterols - are steroids that have a hydroxyl group attached to the C-3 atom. Usually own Sterols have from 27 to 30 carbon atoms and one double bond, which is in the 5/6 position. The hydrogenation of the double bond leads to sterols, which are often referred to as conditions and which are also encompassed by this invention. The figure shows the structure of the most well-known sterol, cholesterol, which belongs to the group of zoosterols.
Aufgrand ihrer überlegenen physiologischen Eigenschaften ist der Einsatz von pflanzli¬ chen Sterolen, den sogenannten Phytosterolen bevorzugt. Beispiele hierfür sind Er- gosterole, Stigmasterole sowie insbesondere Sitosterole sowie deren Hydrierprodukte die Sitostanole. Ebenfalls von der vorliegenden Erfindung mitumfasst werden die Ste- rolester, vor allem die Kondensationsprodukte der genannten Sterole mit gesättigten oder ungesättigten Fettsäuren mit 6 bis 26 Kohlenstoffatomen und bis zu 6 Doppelbin¬ dungen.Due to their superior physiological properties, the use of plant sterols, the so-called phytosterols, is preferred. Examples of these are ergosterols, stigmasterols and, in particular, sitosterols and their hydrogenation products, the sitostanols. Also included in the present invention are the sterol esters, in particular the condensation products of said sterols with saturated or unsaturated fatty acids having 6 to 26 carbon atoms and up to 6 double bonds.
• Chitosane• Chitosan
Chitosane stellen Biopolymere dar und werden zur Gruppe der Hydrokolloide gezählt. Chemisch betrachtet handelt es sich um partiell deacetylierte Chitine unterschiedlichen Molekulargewichtes, die den folgenden - idealisierten - Monomerbaustein enthalten:Chitosans are biopolymers and are counted among the group of hydrocolloids. Chemically, they are partially deacetylated chitins of different molecular weight containing the following - idealized - monomer unit:
Im Gegensatz zu den meisten Hydrokolloiden, die im Bereich biologischer pH-Werte negativ geladen sind, stellen Chitosane unter diesen Bedingungen kationische Biopo¬ lymere dar. Die positiv geladenen Chitosane können mit entgegengesetzt geladenen ^In contrast to most hydrocolloids, which are negatively charged in the range of biological pH values, chitosans represent cationic biopolymers under these conditions. The positively charged chitosans can be charged with opposite charges ^
Oberflächen in Wechselwirkung treten und werden daher in kosmetischen Haar- und Körpeφflegemitteln sowie pharmazeutischen Zubereitungen eingesetzt. Zur Herstel¬ lung der Chitosane geht man von Chitin, vorzugsweise den Schalenresten von Krusten¬ tieren aus, die als billige Rohstoffe in großen Mengen zur Verfügung stehen. Das Chi¬ tin wird dabei in einem Verfahren, das erstmals von Hackmann et al. beschrieben wor¬ den ist, üblicherweise zunächst durch Zusatz von Basen deproteiniert, durch Zugabe von Mineralsäuren demineralisiert und schließlich durch Zugabe von starken Basen deacetyliert, wobei die Molekulargewichte über ein breites Spektrum verteilt sein kön¬ nen. Vorzugsweise werden solche Typen eingesetzt, wie die ein durchschnittliches Mo¬ lekulargewicht von 10.000 bis 500.000 bzw. 800.000 bis 1.200.000 Dalton aufweisen und/oder eine Viskosität nach Brookfield (1 Gew.-%ig in Glycolsäure) unterhalb von 5000 mPas, einen Deacetylierungsgrad im Bereich von 80 bis 88 % und einem Asche¬ gehalt von weniger als 0,3 Gew.-% besitzen.Surfaces interact and are therefore used in cosmetic hair and Körpeφflegemitteln and pharmaceutical preparations. Chitosans are produced by using chitin, preferably the shell residues of crustaceans, which are available in large quantities as inexpensive raw materials. The chitin is thereby used in a process which was first described by Hackmann et al. has been described, usually initially deproteinized by the addition of bases, demineralized by the addition of mineral acids and finally deacetylated by the addition of strong bases, wherein the molecular weights can be distributed over a broad spectrum NEN. Preference is given to using those types which have an average molecular weight of from 10,000 to 500,000 or from 800,000 to 1,200,000 daltons and / or a Brookfield viscosity (1% strength by weight in glycolic acid) below 5,000 mPas, a degree of deacetylation in the range from 80 to 88% and an ash content of less than 0.3% by weight.
• Kosmetische Öle und Ölkörper• Cosmetic oils and oils
Als kosmetische Öle und Ölkörper kommen beispielsweise Guerbetalkohole auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 Kohlenstoffatomen, Ester von linearen C6-C22-Fettsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen bzw. Ester von verzweigten C6-Ci3-Carbonsäuren mit linearen oder verzweigten C6-C22- Fettalkoholen, wie z.B. Myristylmyristat, Myristylpalmitat, Myristylstearat, Myristyli- sostearat, Myristyloleat, Myristylbehenat, Myristyleracat, Cetylmyristat, Cetylpalmitat, Cetylstearat, Cetylisostearat, Cetyloleat, Cetylbehenat, Cetyleracat, Stearylmyristat, Stearylpalmitat, Stearylstearat, Stearylisostearat, Stearyloleat, Stearylbehenat, Stearyle- racat, Isostearylmyristat, Isostearylpalmitat, Isostearylstearat, Isostearylisostearat, I- sostearyloleat, Isostearylbehenat, Isostearyloleat, Oleylmyristat, Oleylpalmitat, O- leylstearat, Oleylisostearat, Oleyloleat, Oleylbehenat, Oleylerucat, Behenylmyristat, Behenylpalmitat, Behenylstearat, Behenylisostearat, Behenyloleat, Behenylbehenat, Behenylerucat, Erucylmyristat, Erucylpalmitat, Erucylstearat, Erucylisostearat, Erucylo- leat, Erucylbehenat und Erucyleracat. Daneben eignen sich Ester von linearen C6-C22- Fettsäuren mit verzweigten Alkoholen, insbesondere 2-Ethylhexanol, Ester von C18- C38-Alkylhydroxycarbonsäuren mit linearen oder verzweigten C6-C22-Fettalkoholen, insbesondere Dioctyl Malate, Ester von linearen und/oder verzweigten Fettsäuren mit mehrwertigen Alkoholen (wie z.B. Propylenglycol, Dimerdiol oder Trimertriol) und/oder Guerbetalkoholen, Triglyceride auf Basis C6-C10-Fettsäuren, flüssige Mono- /Di-/Triglyceridmischungen auf Basis von Cö-Qg-Fettsäuren, Ester von C6-C22- Fettalkoholen und/oder Guerbetalkoholen mit aromatischen Carbonsäuren, insbesonde¬ re Benzoesäure, Ester von C2-C12-Dicarbonsäuren mit linearen oder verzweigten Alko¬ holen mit 1 bis 22 Kohlenstoffatomen oder Polyolen mit 2 bis 10 Kohlenstoffatomen und 2 bis 6 Hydroxylgruppen, pflanzliche Öle, verzweigte primäre Alkohole, substitu¬ ierte Cyclohexane, lineare und verzweigte C6-C22-Fettalkoholcarbonate, wie z.B. Di- caprylyl Carbonate (Cetiol® CC), Guerbetcarbonate auf Basis von Fettalkoholen mit 6 bis 18, vorzugsweise 8 bis 10 C Atomen, Ester der Benzoesäure mit linearen und/oder verzweigten C6-C22- Alkoholen (z.B. Finsolv® TN), lineare oder verzweigte, symmetri¬ sche oder unsymmetrische Dialkylether mit 6 bis 22 Kohlenstoffatomen pro Al- kylgruppe, wie z.B. Dicaprylyl Ether (Cetiol® OE), Ringöffnungsprodukte von epoxi- dierten Fettsäureestern mit Polyolen, Siliconöle (Cyclomethicone, Siliciummethiconty- pen u.a.) und/oder aliphatische bzw. naphthenische Kohlenwasserstoffe, wie z.B. wie Squalan, Squalen oder Dialkylcyclohexane in Betracht.As cosmetic oils and oil bodies are, for example, Guerbet alcohols based on fatty alcohols having 6 to 18, preferably 8 to 10 carbon atoms, esters of linear C 6 -C 22 fatty acids with linear or branched C 6 -C 22 fatty alcohols or esters of branched C. 6 -C 3 -carboxylic acids with linear or branched C 6 -C 22 - sostearat fatty alcohols, such as myristyl myristate, myristyl palmitate, myristyl stearate, Myristyli-, myristyl, Myristylbehenat, Myristyleracat, cetyl myristate, cetyl palmitate, cetyl stearate, Cetylisostearat, cetyl oleate, cetyl behenate, Cetyleracat, Stearylmyristat, stearyl palmitate, stearyl stearate, Stearylisostearat, stearyl oleate, stearyl behenate, Stearyle- Racat, isostearyl, isostearyl palmitate, Isostearylstearat, isostearyl isostearate, Isostearyloleat, isostearyl behenate, Isostearyloleat, oleyl myristate, oleyl palmitate, O- leylstearat, oleyl isostearate, oleyl oleate, Oleylbehenat, oleyl erucate, behenyl myristate, Behenyl palmitate, behenyl stearate, Beh enyl isostearate, behenyl oleate, behenyl behenate, behenyl erucate, erucyl myristate, erucyl palmitate, erucyl stearate, erucyl isostearate, erucyl leal, erucyl behenate and erucyl eracate. In addition, esters of linear C 6 -C 22 fatty acids with branched alcohols, in particular 2-ethylhexanol, esters of C 18 -C 38 -alkylhydroxycarboxylic acids with linear or branched C 6 -C 22 fatty alcohols, in particular dioctyl malates, are esters of linear and / or branched fatty acids with polyhydric alcohols (such as propylene glycol, dimerdiol or trimer triol) and / or Guerbet alcohols, triglycerides based on C 6 -C 10 fatty acids, liquid mono- / di- / Triglyceridmischungen based on C ö -Qg fatty acids , Esters of C 6 -C 22 fatty alcohols and / or Guerbet alcohols with aromatic carboxylic acids, in particular benzoic acid, esters of C 2 -C 12 dicarboxylic acids with linear or branched alcohols having 1 to 22 carbon atoms or polyols having 2 to 10 carbon atoms and 2 to 6 hydroxyl groups, vegetable oils, branched primary alcohols, substitu¬ ierte cyclohexanes, linear and branched C 6 -C 22 -fatty alcohol carbonates, such as di- caprylyl carbonate (Cetiol ® CC), Guerbet carbonates based on fatty alcohols having 6 to 18 , preferably 8 to 10 C atoms, esters of benzoic acid with linear and / or branched C 6 -C 22 -alcohols (eg Finsolv® TN), linear or branched, symmetrical or unsymmetrical dialkyl ethers having 6 to 22 carbon atoms per alkyl group , such as dicaprylyl ethers (Cetiol ® OE), ring-opening products of epoxidized fatty acid esters with polyols, silicone oils (Cyclomethicone, Siliciummethiconty- pen, etc.) and / or aliphatic or naphthenic hydrocarbons, such as squalane, squalene or dialkylcyclohexanes into consideration.
• Nanoisierte anorganische Stoffe und Mineralien• Nanophysical inorganic substances and minerals
Unter dem Begriff „Nanoteilchen" versteht der Fachmann Teilchen, die im Zuge geeig¬ neter Herstellverfahren über mittlere Teilchengrößen von 0,01 bis 0,1 μm verfügen. Ein solches Verfahren zur Herstellung von Nanoteilchen durch rasche Entspannung von überkritischen Lösungen (Rapid Expansion of Supercritical Solutions RESS) ist bei¬ spielsweise aus dem Aufsatz von S.Chihlar, M.Türk und K.Schaber in Proceedings World Congress on Particle Technology 3, Brighton, 1998 bekannt. Um zu verhin¬ dern, dass die Nanoteilchen wieder zusammenbacken, empfiehlt es sich, die Ausgangs¬ stoffe in Gegenwart geeigneter Schutzkolloide oder Emulgatoren zu lösen und/oder die kritischen Lösungen in wässrige und/oder alkoholische Lösungen der Schutzkolloide bzw. Emulgatoren oder aber in kosmetische Öle zu entspannen, welche ihrerseits wie¬ der gelöste Emulgatoren und/oder Schutzkolloide enthalten können. Geeignete Schutz¬ kolloide sind dabei z.B. Gelatine, Casein, Chitosan, Gummi arabicum, Lysalbinsäure, Stärke sowie Polymere, wie etwa Polyvinylalkohole, Polyvinylpyrrolidone, Polyalky- lenglycole und Polyacrylate.The term "nanoparticles" is understood by the person skilled in the art to mean particles which have average particle sizes of from 0.01 to 0.1 μm in the course of suitable preparation processes Such a process for the preparation of nanoparticles by rapid relaxation of supercritical solutions (Rapid Expansion of Supercritical Solutions RESS) is known, for example, from the article by S. Chihlar, M. Turke and K. Schaber in Proceedings World Congress on Particle Technology 3, Brighton, 1998. In order to prevent the nanoparticles from caking again, it is recommended itself, the starting materials in the presence of suitable protective colloids or emulsifiers to dissolve and / or relax the critical solutions in aqueous and / or alcoholic solutions of protective colloids or emulsifiers or in cosmetic oils, which in turn wie¬ the dissolved emulsifiers and / or Suitable protective colloids are, for example, gelatin, casein, chitosan, gum arabic m, lysalbinic acid, starch and polymers, such as polyvinyl alcohols, polyvinylpyrrolidones, polyalkylene glycols and polyacrylates.
Ein weiteres geeignetes Verfahren zur Herstellung der nanoskaligen Teilchen bietet die Evaporationstechnik. Hierbei werden die Ausgangsstoffe zunächst in einem geeigne¬ ten organischen Lösungsmittel (z.B. Alkane, pflanzliche Öle, Ether, Ester, Ketone, A- cetale und dergleichen) gelöst. Anschließend werden die Lösungen derart in Wasser oder einem anderen Nicht-Lösungsmittel, gegebenenfalls in Gegenwart einer darin ge¬ lösten oberflächenaktiven Verbindung gegeben, dass es durch die Homogenisierung der beiden nicht miteinander mischbaren Lösungsmittel zu einer Ausfällung der Nanoteil¬ chen kommt, wobei das organische Lösungsmittel vorzugsweise verdampft. Anstelle einer wässrigen Lösung können auch O/W-Emulsionen bzw. O/W-Mikroemulsionen eingesetzt werden. Als oberflächenaktive Verbindungen können die bereits eingangs er¬ läuterten Emulgatoren und Schutzkolloide verwendet werden. Eine weitere Möglichkeit zur Herstellung von Nanoteilchen besteht in dem sogenann¬ ten GAS-Verfahren (Gas Anti Solvent Recrystallization). Das Verfahren nutzt ein hochkomprimiertes Gas oder überkritisches Fluid (z.B. Kohlendioxid) als Nicht¬ Lösungsmittel zur Kristallisation von gelösten Stoffen. Die verdichtete Gasphase wird in die Primärlösung der Ausgangsstoffe eingeleitet und dort absorbiert, wodurch sich das Flüssigkeitsvolumen vergrößert, die Löslichkeit abnimmt und feinteilige Partikel aus-geschieden werden.Another suitable method for producing the nanoscale particles is the evaporation technique. In this case, the starting materials are first dissolved in a suitable organic solvent (for example alkanes, vegetable oils, ethers, esters, ketones, acetals and the like). The solutions are then added in such a manner in water or another non-solvent, if appropriate in the presence of a surface-active compound dissolved therein, that precipitation of the nanoparticles occurs due to the homogenization of the two immiscible solvents, the organic solvent preferably evaporated. Instead of an aqueous solution, O / W emulsions or O / W microemulsions can also be used. As surface-active compounds it is possible to use the emulsifiers and protective colloids already explained in the introduction. Another possibility for the production of nanoparticles is the so-called GAS process (gas anti-solvent recrystallization). The process uses a highly compressed gas or supercritical fluid (eg carbon dioxide) as non-solvent for the crystallization of solutes. The compressed gas phase is introduced into the primary solution of the starting materials and absorbed there, whereby the liquid volume increases, the solubility decreases and finely divided particles are separated out.
Ähnlich geeignet ist das PCA-Verfahren (Precipitation with a Compressed Fluid Anti- Solvent). Hier wird die Primärlösung der Ausgangsstoffe in ein überkritisches Fluid eingeleitet, wobei sich feinstverteilte Tröpfchen bilden, in denen Diffusionsvorgänge ablaufen, so dass eine Ausfällung feinster Partikel erfolgt.Similarly suitable is the PCA process (precipitation with a compressed fluid anti-solvent). Here, the primary solution of the starting materials is introduced into a supercritical fluid, wherein very finely divided droplets form, in which run off diffusion processes, so that a precipitation of very fine particles takes place.
Beim PGSS-Verfahren (Particles from Gas Saturated Solutions) werden die Aus¬ gangsstoffe durch Aufpressen von Gas (z.B. Kohlendioxid oder Propan) aufgeschmol¬ zen. Druck und Temperatur erreichen nahe- oder überkritische Bedingungen. Die Gas¬ phase löst sich im Feststoff und bewirkt eine Absenkung der Schmelztemperatur, der Viskosität und der Oberflächenspannung. Bei der Expansion durch eine Düse kommt es durch Abkühlungseffekte zur Bildung feinster Teilchen.In the PGSS process (Particles from Gas Saturated Solutions), the starting materials are melted on by pressing on gas (for example carbon dioxide or propane). Pressure and temperature reach near or supercritical conditions. The gas phase dissolves in the solid and causes a lowering of the melting temperature, the viscosity and the surface tension. When expanding through a nozzle, cooling effects cause the formation of very fine particles.
Ein weitere Möglichkeit zur Herstellung der Nanoteilchen bieten das GPC- bzw. PVS Verfahren (Gas Phase Condensation; Physical Vapor Synthesis), bei welchem mit Plasma verdampfte Metalle mit Sauerstoff oxidiert werden und dann kontrolliert kon¬ densiert werden.Another possibility for producing the nanoparticles is provided by the GPC or PVS process (gas phase condensation, physical vapor synthesis), in which metals vaporized with plasma are oxidized with oxygen and thencondensed in a controlled manner.
Im Sinne der vorliegenden Erfindung handelt es sich bei den Wirkstoffen vorzugsweise um nanoisiertes Zinkoxid, welches gegenüber dem herkömmlichen Zinkoxid über eine überraschend höhere Wirksamkeit gegenüber Neurodermitis verfügt. Weitere Gegens¬ tände der Erfindung betreffen daher die Verwendung von gegebenenfalls mikroverkap- seltem nanoisiertem Zinkoxid zur Ausrüstung von Fasern und Textilien sowie zur Her¬ stellung von kosmetischen und/oder pharmazeutischen Zubereitungen. Üblicherweise weisen die Zinkoxid-Nanoteilchen mittlere Durchmesser im Bereich von 0,1 bis 0,2 μm auf. In Frage kommen auch Titandioxid und andere Nano-Metalloxide sowie Nano- Mischoxide wie ITO und ATOFor the purposes of the present invention, the active ingredients are preferably nanoized zinc oxide, which has a surprisingly higher activity against atopic dermatitis compared to the conventional zinc oxide. Further objects of the invention therefore relate to the use of optionally microencapsulated nanoized zinc oxide for finishing fibers and textiles and for producing cosmetic and / or pharmaceutical preparations. Usually, the zinc oxide nanoparticles have average diameters in the range of 0.1 to 0.2 microns. Also suitable are titanium dioxide and other nano-metal oxides as well as nano-mixed oxides such as ITO and ATO
Unter dem Gesichtspunkt des umfangreichsten Wirkungsprofils ist der Einsatz der folgen¬ den Wirkstoffe besonders bevorzugt,From the point of view of the most extensive effect profile, the use of the following active substances is particularly preferred,
• Tocopherol, Tocopherolacetat, Tocopherolpalmitat• tocopherol, tocopherol acetate, tocopherol palmitate
• ß-Carotin, Retinol • Jojobaöl,• ß-carotene, retinol • jojoba oil,
• Pflanzliche Triglyceride wie Kokosöl, Palmöl, Aprikoseπkernöl oder Haselnussöl.• Vegetable triglycerides such as coconut oil, palm oil, apricot kernel oil or hazelnut oil.
• Ätherische Öle• Essential oils
• Squalan,• squalane,
• Chitosan,• Chitosan,
• Menthol,• menthol,
• pflanzliche oder tierische (Seide) Proteine und deren Hydrolyseprodukte,• vegetable or animal (silk) proteins and their hydrolysis products,
• N,N-diethyl-3-methyl-benzamide (DEET) undN, N-diethyl-3-methylbenzamide (DEET) and
• nanoisiertes Zinkoxid oder Titandioxid,Nanoized zinc oxide or titanium dioxide,
da diese - alleine oder in Kombination -because these - alone or in combination -
• zum Gleichgewicht der cutanen Hydrolipidschicht beitragen,• contribute to the balance of the cutaneous hydrolipid layer,
• dem Wasserverlust und damit der Falteribildung vorbeugen,• prevent the loss of water and thus the formation of folds,
• die Haut erfrischen und Ermüdungserscheinungen entgegenwirken,• refresh the skin and counteract signs of fatigue,
• der Haut ein weiches und elastisches Gefühl verleihen,• give the skin a soft and elastic feeling,
• die Hautdrainage, die Zufuhr von Nährstoffen und die Blutzirkulation verbessern,• improve skin drainage, nutrient intake and blood circulation,
• gegen oxidativen Stress , Umweltgifte, Hautalterang und freie Radikale wirken,• act against oxidative stress, environmental toxins, skin aging and free radicals,
• den durch Wasser und Sonne bewirkten Verlust an Fetten ausgleichen,• compensate for the loss of fats caused by water and sun,
• gegen Zellulite wirken• act against cellulite
• die Wasserbeständigkeit von UV-Filtern verbessern,• improve the water resistance of UV filters,
• die Bräunung beschleunigen bzw . länger erhalten,• accelerate the browning resp. get longer
• Insekten abstoßen oder töten und schließlich zudem auch• Repel or kill insects, and eventually kill them
• antimikrobielle, antiinflammatorische und antineurodermitische Eigenschaften be¬ sitzen.• antimicrobial, antiinflammatory and antineurodermitische properties be¬ sit.
Der Anteil der Wirkstoffe an den ausgerüsteten Fasern und Textilien kann - bezogen auf Aktivsubstanz - 0,1 bis 10, vorzugsweise 0,25 bis 7,5 und insbesondere 0,5 bis 5 Gew.-% betragen.The proportion of the active ingredients in the finished fibers and textiles can be 0.1 to 10, preferably 0.25 to 7.5 and in particular 0.5 to 5 wt .-%, based on the active substance.
Bindemittelbinder
Die im Sinne der Erfindung in Betracht kommenden polymeren, filmbildenden Bindemittel können ausgewählt sein aus der Gruppe, die gebildet wird vonThe polymeric film-forming binders contemplated by the invention may be selected from the group formed by
• Polyurethanen• polyurethanes
• Polyethylvinylacetaten,• polyethylvinyl acetates,
• polymeren Melaminverbindungen,Polymeric melamine compounds,
• polymeren Glyoxalverbindungen, ^Polymeric glyoxal compounds, ^
• polymeren Siliconverbindungen,Polymeric silicone compounds,
• epichlorhydrinvernetzten Polyamidoaminen,Epichlorohydrin-crosslinked polyamidoamines,
• Poly(meth)acrylaten und• poly (meth) acrylates and
• polymeren Fluorkohlenwasserstoffen.• polymeric fluorocarbons.
• Polyurethane und Polwinylacetate• Polyurethanes and polyvinyl acetates
Geeignete Polyurethane (PU) und Polyethylvinylacetate (EVA) stellen die im Handel erhältlichen Produkte aus der Reihe Stabiflex® bzw. Stabicryf der Cognis Deutschland GmbH & Co. KG.Suitable polyurethanes (PU) and polyethyl (EVA) are the commercially available products from the series Stabiflex ® or Stabicryf Cognis Germany GmbH & Co. KG.
• Polymere Melaminverbindungen• Polymeric melamine compounds
Melamin (synonym : 2,4,6-triamino-l,3,5-triazin) entsteht üblicherweise durch Trime- risierung von Dicyandiamid oder durch Cyclisierung von Harnstoff unter Abspaltung von Kohlendioxid und Ammoniak.Im Sinne der Erfindung werden unter Melaminen o- ligomere oder polymere Kondensationsprodukte des Melamins mit Formaldehyd, Harn¬ stoff, Phenol oder deren Gemischen verstanden.Melamine (synonym: 2,4,6-triamino-l, 3,5-triazine) is usually formed by trimerization of dicyandiamide or by cyclization of urea with elimination of carbon dioxide and ammonia. For the purposes of the invention, melamines are oligomers or polymeric condensation products of melamine with formaldehyde, urea, phenol or mixtures thereof understood.
• Polymere Glvoxalverbindungen• Polymeric glvoxal compounds
Glyoxal (synonym : Oxaldehyd, Ethandial) entsteht bei der Dampfphasenoxidation von Ethylenglycol mit Luft in Gegenwart von Silberkatalysatoren. Im Sinne der Erfindung werden unter Glyoxalen die Eigenkondensationsprodukte des Glyoxals ("Polyglyoxa- Ie") verstanden.Glyoxal (synonym: oxaldehyde, ethanedial) is formed in the vapor-phase oxidation of ethylene glycol with air in the presence of silver catalysts. For the purposes of the invention, glyoxals are understood as meaning the self-condensation products of glyoxal ("polyglyoxa").
• Polymere Siliconverbindungen• Polymeric silicone compounds
Geeignete Siliconverbindungen sind beispielsweise Dimethylpolysiloxane, Methylphe- nyl-polysiloxane, cyclische Silicone sowie amino-, fettsäure-, alkohol-, polyether-, e- poxy-, fluor-, glykosid- und/oder alkylmodifizierte Siliconverbindungen, die bei Raum¬ temperatur vorzugsweise fest oder harzförmig vorliegen. Weiterhin geeignet sind Si- methicone, bei denen es sich um Mischungen aus Dimethiconen mit einer durchschnitt¬ lichen Kettenlänge von 200 bis 300 Dimethylsiloxan-Einheiten und hydrierten Silicaten handelt. Besonders bevorzugt ist der Einsatz von Aminosiloxanen, z.B Cognis 3001 der Cognis Deutschland GmbH & Co. KG. Deren weiteren Vernetzung mit H-Siloxanen, z.B. Cognis 3002 der Cognis Deutschland GmbH & Co. KG. kann die Leistung als Bindemittel noch weiter steigern.Suitable silicone compounds are, for example, dimethylpolysiloxanes, methylphenylsilyloxanes, cyclic silicones and amino, fatty acid, alcohol, polyether, epoxy, fluorine, glycoside and / or alkyl-modified silicone compounds which preferably solidify at room temperature or resinous. Also suitable are silicon mimics, which are mixtures of dimethicones having an average chain length of from 200 to 300 dimethylsiloxane units and hydrogenated silicates. Particular preference is given to the use of aminosiloxanes, for example Cognis 3001 from Cognis Deutschland GmbH & Co. KG. Their further crosslinking with H-siloxanes, eg Cognis 3002 of Cognis Germany GmbH & Co. KG. can increase the performance as a binder even further.
• Epichlorhydrinvernetzte Polvamidoamine• epichlorohydrin-crosslinked polvamidoamines
Epichlorhydrinvernetzte Polyamidoamine, die auch als ,^Fibrabones" oder „Wet strength resins" bezeichnet werden, sind aus der Textil- und Papiertechnologie hinrei¬ chend bekannt. Zu ihrer Herstellung geht man vorzugsweise von zwei Verfahren aus:Epichlorohydrin-crosslinked polyamidoamines, which are also referred to as "fibrabones" or "wet strength resins", are well known from textile and paper technology. Their preparation is preferably based on two methods:
i) Polyaminoamide werden (a) zunächst mit einer Menge von 5 bis 30 Mol-% - be¬ zogen auf den zur Quaternierung zur Verfügung stehenden Stickstoff - eines Quaternierungsmittels umgesetzt, und (b) anschließend die resultierenden qua- ternierten Polyaminoamide mit einer dem Gehalt an nicht quaterniertem Stick¬ stoff entsprechenden molaren Menge Epichlorhydrin vernetzt, oderi) Polyaminoamides are (a) initially reacted with an amount of 5 to 30 mol%, based on the nitrogen available for quaternization, of a quaternizing agent, and (b) subsequently the resulting quaternized polyaminoamides having a content crosslinking of non-quaternized nitrogen corresponding molar amount of epichlorohydrin, or
ii) Polyaminoamide werden (a) zunächst bei 10 bis 35 °C mit einer Menge von 5 bis 40 Mol-% - bezogen auf den für die Vernetzung zur Verfügung stehenden Stick¬ stoff - Epichlorhydrin umgesetzt, und (b) das Zwischenprodukt auf einen pH- Wert im Bereich von 8 bis 11 einstellt und bei einer Temperatur im Bereich von 20 bis 450C mit einer weiteren Menge Epichlorhydrin vernetzt, so dass das mola¬ re Einsatzverhältnis in Summe 90 bis 125 Mol-% - bezogen auf den für die Ver¬ netzung zur Verfügung stehenden Stickstoff - beträgt.ii) Polyaminoamides are (a) initially reacted at 10 to 35 ° C in an amount of 5 to 40 mol% - based on the nitrogen available for cross-linking - epichlorohydrin, and (b) the intermediate product to a pH - Setting value in the range of 8 to 11 and crosslinked at a temperature in the range of 20 to 45 0 C with a further amount of epichlorohydrin, so that the mola¬ re use ratio in total from 90 to 125 mol% - based on that for Ver Netting available nitrogen.
• Poly(meth)acrylate• poly (meth) acrylates
Unter dem Begriff Poly(meth)acrylate sind Homo- und Copolymerisationsprodukte der Acrylsäure, Methacrylsäure sowie gegebenenfalls deren Ester, speziell deren Ester mit niederen Alkoholen, wie z.B. Methanol, Ethanol, Isopropylalkohol, den isomeren Bu- tanolen, Cyclohexanol und dergleichen zu verstehen, welche in an sich bekannter Wei¬ se, beispielsweise durch radikalische Polymerisation unter UV-Bestrahlung erhalten werden. Typischerweise liegt das mittlere Molekulargewicht der Polymeren zwischen 100 und 10.000, vorzugsweise bei 200 und 5.000 und insbesondere 400 bis 2.000 DaI- ton.The term poly (meth) acrylates is homo- and copolymerization products of acrylic acid, methacrylic acid and optionally their esters, especially their esters with lower alcohols, such as. Methanol, ethanol, isopropyl alcohol, the isomeric butanols, cyclohexanol and the like, which are obtained in a manner known per se, for example by free-radical polymerization under UV irradiation. Typically, the average molecular weight of the polymers is between 100 and 10,000, preferably 200 and 5,000 and especially 400 to 2,000 DaIton.
Üblicherweise werden die Bindemittel - bezogen auf Aktivsubstanz - in Mengen von 0,5 bis 15, vorzugsweise 1 bis 10 und insbesondere 1 bis 5 Gew.-% auf die Fasern aufgebracht. MikrokapselnUsually, the binders are applied to the fibers in amounts of from 0.5 to 15, preferably from 1 to 10, and in particular from 1 to 5,% by weight, based on the active substance. microcapsules
In einer bevorzugten Ausfuhrungsform der vorliegenden Erfindung werden die Fasern und Textilien sowohl mit hydrophoben unverkapselten Wirkstoffen als auch beliebigen anderen verkapselten Wirkstoffen unter Verwendung der genannten Bindemittel ausgerüstet. Auf diese Weise kombiniert man die Vorteile beider Wirkmechanismen und gleicht deren Nachteile aus : die unverkapselten Wirkstoffe wirken unmittelbar, d.h. schon beim ersten Tragen und vermitteln dem Verbraucher den gewünschten Wellnesseffekt, der Gehalt nimmt aber nach der zehnten Wäsche rasch ab, während die mikroverkapselten Wirkstoffe, zumal dann, wenn ausgesprochen beständige Kapselsysteme verwendet werden, dann erst beginnen, ihre aktiven Prinzipien freizusetzen.In a preferred embodiment of the present invention, the fibers and textiles are provided with both hydrophobic, non-encapsulated active ingredients and any other encapsulated active ingredients using said binders. In this way, one combines the advantages of both mechanisms of action and compensates for their disadvantages: the unencapsulated agents act directly, i. but at the very first wearing and give the consumer the desired wellness effect, but the content decreases rapidly after the tenth wash, while the microencapsulated agents, especially then, if very resistant capsule systems are used, then only begin to release their active principles.
Unter den Begriffen "Mikrokapsel" oder „Nanokapsel" werden vom Fachmann sphärische Aggregate mit einem Durchmesser im Bereich von etwa 0,0001 bis etwa 5 und vorzugs¬ weise 0,005 bis 0,5 mm verstanden, die mindestens einen festen oder flüssigen Kern ent¬ halten, der von mindestens einer kontinuierlichen Hülle umschlossen ist. Genauer gesagt handelt es sich um mit filmbildenden Polymeren umhüllte feindisperse flüssige oder feste Phasen, bei deren Herstellung sich die Polymere nach Emulgierαng und Koazervation oder Grenzflächenpolymerisation auf dem einzuhüllenden Material niederschlagen. Nach einem anderen Verfahren werden geschmolzene Wachse in einer Matrix aufgenommen („mic- rosponge"), die als Mikropartikel zusätzlich mit filmbildenden Polymeren umhüllt sein können. Nach einem dritten Verfahren werden Partikel abwechselnd mit Polyelektrolyten unterschiedlicher Ladung beschichtet („layer-by-layer"- Verfahren). Die mikroskopisch kleinen Kapseln lassen sich wie Pulver trocknen. Neben einkernigen Mikrokapseln sind auch mehrkernige Aggregate, auch Mikrosphären genannt, bekannt, die zwei oder mehr Kerne im kontinuierlichen Hüllmaterial verteilt enthalten. Ein- oder mehrkernige Mikro¬ kapseln können zudem von einer zusätzlichen zweiten, dritten etc. Hülle umschlossen sein. Die Hülle kann aus natürlichen, halbsynthetischen oder synthetischen Materialien bestehen. Natürlich Hüllmaterialien sind beispielsweise Gummi Arabicum, Agar-Agar, Agarose, Maltodextrine, Alginsäure bzw. ihre Salze, z.B. Natrium- oder Calciumalginat, Fette und Fettsäuren, Cetylalkohol, Collagen, Chitosan, Lecithine, Gelatine, Albumin, Schellack, Polysaccharide, wie Stärke oder Dextran, Polypeptide, Proteinhydrolysate, Sucrose und Wachse. Halbsynthetische Hüllmaterialien sind unter anderem chemisch modifizierte CeI- lulosen, insbesondere Celluloseester und -ether, z.B. Celluloseacetat, Ethylcellulose, Hydroxypropylcellulose, Hydroxypropylmethylcellulose und Carboxymethylcellulose, so¬ wie Stärkederivate, insbesondere Stärkeether und -ester. Synthetische Hüllmaterialien sind beispielsweise Polymere wie Polyacrylate, Polyamide, Polyvinylalkohol oder Polyvinylpyr- rolidon. Beispiele für Mikrokapseln des Stands der Technik sind folgende Handelsprodukte (in Klammern angegeben ist jeweils das Hüllmaterial) : Halter est Microcapsules (Gelatine, Gummi Arabicum), Coletica Thalaspheres (maritimes Collagen), Lipotec Millicapseln (Alginsäure, Agar-Agar), Induchem Unispheres (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose); Unicerin C30 (Lactose, mikrokristalline Cellulose, Hydroxypropylmethylcellulose), Kobo Glycospheres (modifizierte Stärke, Fettsäureester, Phospholipide), Softspheres (modifiziertes Agar-Agar) und Kuhs Probiol Nanospheres (Phospholipide) sowie Primaspheres und Primasponges (Chitosan, Alginate) und Primasys (Phospholipide). Chitosanmikrokapseln und Verfahren zu ihrer Herstellung sind Gegens¬ tand früherer Patenanmeldungen der Patentanmelderin [WO 01/01926, WO 01/01927, WO 01/01928, WO 01/01929].The terms "microcapsule" or "nanocapsule" are understood by the person skilled in the art spherical aggregates having a diameter in the range of about 0.0001 to about 5 and preferably 0.005 to 0.5 mm, which contain at least one solid or liquid core ent More specifically, they are finely dispersed liquid or solid phases coated with film-forming polymers, which polymers are deposited on the material to be coated after emulsification and coacervation or interfacial polymerization Waxes in a matrix recorded ("Microsponge"), which may be additionally enveloped as microparticles with film-forming polymers. According to a third method, particles are coated alternately with polyelectrolytes of different charge ("layer-by-layer" method) .The microscopically small capsules can be dried like powders In addition to mononuclear microcapsules, multinuclear aggregates, also called microspheres, are known In addition, single or multinuclear microcapsules can be enclosed by an additional second, third, etc. The shell can consist of natural, semisynthetic or synthetic materials, of course covering materials are, for example, gum arabic, agar -Agar, agarose, maltodextrins, alginic acid or its salts, for example sodium or calcium alginate, fats and fatty acids, cetyl alcohol, collagen, chitosan, lecithins, gelatin, albumin, shellac, polysaccharides such as starch or dextran, polypeptides, protein hydrolysates, sucrose and Waxes Semisynthetic Covering Materials s inter alia chemically modified cellulose, in particular cellulose esters and ethers, for example cellulose acetate, ethylcellulose, hydroxypropylcellulose, hydroxypropylmethylcellulose and carboxymethylcellulose, and also starch derivatives, in particular starch ethers and esters. Synthetic envelope materials are, for example, polymers such as polyacrylates, polyamides, polyvinyl alcohol or polyvinylpyrrolidone. Examples of microcapsules of the prior art are the following commercial products (in parentheses is the shell material): Halter est Microcapsules (gelatin, gum arabic), Coletica Thalaspheres (marine collagen), Lipotec Millicapseln (alginic acid, agar-agar), Induchem Unispheres ( Lactose, microcrystalline cellulose, hydroxypropylmethyl cellulose); Unicerin C30 (lactose, microcrystalline cellulose, hydroxypropylmethylcellulose), Kobo Glycospheres (modified starch, fatty acid esters, phospholipids), Softspheres (modified agar-agar) and Kuhs Probiol Nanospheres (phospholipids) as well as Primaspheres and Primasponges (chitosan, alginates) and Primasys (phospholipids) , Chitosan microcapsules and processes for their preparation are the subject of earlier patent applications by the patent applicant [WO 01/01926, WO 01/01927, WO 01/01928, WO 01/01929].
Zur Herstellung der Mikrokapseln stellt man beispielsweise eine 1 bis 10, vorzugsweise 2 bis 5 Gew.-%ige wässrige Lösung des Gelbildners, vorzugsweise des Agar-Agars her und erhitzt diese unter Rückfluss. In der Siedehitze, vorzugsweise bei 80 bis 1000C, wird eine zweite wässrige Lösung zugegeben, welche das Kationpolymer, vorzugsweise das Chitosan in Mengen von 0,1 bis 2, vorzugsweise 0,25 bis 0,5 Gew.-% und den Wirkstoffen in Men¬ gen von 0,1 bis 25 und insbesondere 0,25 bis 10 Gew.-% enthält; diese Mischung wird als Matrix bezeichnet. Die Beladung der Mikrokapseln mit Wirkstoffen kann daher ebenfalls 0,1 bis 25 Gew.-% bezogen auf das Kapselgewicht betragen. Falls gewünscht, können zu diesem Zeitpunkt zur Viskositätseinstellung auch wasserunlösliche Bestandteile, bei¬ spielsweise anorganische Pigmente zugegeben werden, wobei man diese in der Regel in Form von wässrigen oder wässrig/alkoholischen Dispersionen zusetzt. Zur Emulgierang bzw. Dispergierung der Wirkstoffe kann es ferner von Nutzen sein, der Matrix Emulgato- ren und/oder Lösungsvermittler hinzuzugeben. Nach der Herstellung der Matrix aus Gel¬ bildner, Kationpolymer und Wirkstoffen kann die Matrix optional in einer Ölphase unter starker Scherang sehr fein dispergiert werden, um bei der nachfolgenden Verkapselung möglichst kleine Teilchen herzustellen. Dabei hat es sich als besonders vorteilhaft erwie¬ sen, die Matrix auf Temperaturen im Bereich von 40 bis 60 0C zu erwärmen, während man die Ölphase auf 10 bis 20 0C kühlt. Im letzten, nun wieder obligatorischen Schritt erfolgt dann die eigentliche Verkapselung, d.h. die Ausbildung der Hüllmembran durch Inkon- taktbringen des Kationpolymers in der Matrix mit den anionischen Polymeren. Hierzu empfiehlt es sich, die gegebenenfalls in der Ölphase dispergierte Matrix bei einer Tempera¬ tur im Bereich von 40 bis 100, vorzugsweise 50 bis 60 0C mit einer wässrigen, etwa 1 bis 50 und vorzugsweise 10 bis 15 Gew.-%ige wässrigen Lösung des Anionpolymers zu be¬ handeln und dabei - falls erforderlich - gleichzeitig oder nachträglich die Ölphase zu ent¬ fernen. Die dabei resultierenden wässrigen Zubereitungen weisen in der Regel einen Mik- rokapselgehalt im Bereich von 1 bis 10 Gew.-% auf. In manchen Fällen kann es dabei von Vorteil sein, wenn die Lösung der Polymeren weitere Inhaltsstoffe, beispielsweise Emulga- toren oder Konservierungsmittel enthält. Nach Filtration werden Mikrokapseln erhalten, welche im Mittel einen Durchmesser im Bereich von vorzugsweise etwa 0,01 bis 1 mm aufweisen. Es empfiehlt sich, die Kapseln zu sieben, um eine möglichst gleichmäßige Grö¬ ßenverteilung sicherzustellen. Die so erhaltenen Mikrokapseln können im herstellungsbe¬ dingten Rahmen eine beliebige Form aufweisen, sie sind jedoch bevorzugt näherangs weise kugelförmig. Alternativ kann man die Anionpolymere auch zur Herstellung der Matrix einsetzen und die Verkapselung mit den Kationpolymeren, speziell den Chitosanen durch¬ führen.To prepare the microcapsules, for example, prepare a 1 to 10, preferably 2 to 5 wt .-% aqueous solution of the gelling agent, preferably the agar agar ago and heated them under reflux. In the boiling heat, preferably at 80 to 100 0 C, a second aqueous solution is added, which contains the cationic polymer, preferably the chitosan in amounts of 0.1 to 2, preferably 0.25 to 0.5 wt .-% and the active ingredients in amounts of from 0.1 to 25 and especially from 0.25 to 10% by weight; this mixture is called a matrix. The loading of the microcapsules with active ingredients can therefore also amount to 0.1 to 25% by weight, based on the capsule weight. If desired, water-insoluble constituents, for example inorganic pigments, can also be added at this point in time to adjust the viscosity, these being added as a rule in the form of aqueous or aqueous / alcoholic dispersions. To emulsify or disperse the active ingredients, it may also be useful to add emulsifiers and / or solubilizers to the matrix. After the preparation of the matrix of gel former, cation polymer and active ingredients, the matrix can optionally be very finely dispersed in an oil phase under strong shearing to produce the smallest possible particles in the subsequent encapsulation. It has proved particularly advantageous erwie¬ sen to heat the matrix to temperatures in the range of 40 to 60 0 C, while cooling the oil phase to 10 to 20 0 C. In the last, now again obligatory step, the actual encapsulation takes place, ie the formation of the enveloping membrane by incontacting the cationic polymer in the matrix with the anionic polymers. For this purpose, it is recommended that the optionally dispersed in the oil phase matrix at a tempera ture in the range of 40 to 100, preferably 50 to 60 0 C with an aqueous, about 1 to 50 and preferably 10 to 15 wt .-% aqueous solution of the anionic polymer and, if necessary, simultaneously or subsequently to remove the oil phase. The resulting aqueous preparations generally have a microcapsule content in the range from 1 to 10% by weight. In some cases, it may be advantageous if the solution of the polymers contain other ingredients, such as emulsifiers or preservatives. After filtration, microcapsules are obtained which on average have a diameter in the range of preferably about 0.01 to 1 mm. It is recommended to sieve the capsules in order to ensure as uniform a size distribution as possible. The microcapsules obtained in this way can have any desired shape in the production-related frame, but they are preferably spherical in shape. Alternatively, it is also possible to use the anionic polymers for preparing the matrix and to carry out the encapsulation with the cationic polymers, especially the chitosans.
Alternativ kann die Verkapselung auch unter ausschließlicher Verwendung von Kationpo¬ lymeren erfolgen, wobei man sich deren Eigenschaft zu Nutze macht, bei pH- Werten ober¬ halb des pKs-Wertes zu koagulieren.Alternatively, the encapsulation can also be carried out with the exclusive use of cationic polymers, the advantage being taken of their ability to coagulate at pH values above the pKa value.
In einem zweiten alternativen Verfahren wird zur Herstellung der erfindungsgemäßen Mik¬ rokapseln wird zunächst eine O/W-Emulsion zubereitet, welche neben dem Ölkörper, Was¬ ser und den Wirkstoffen eine wirksame Menge Emulgator enthält. Zur Herstellung der Matrix wird diese Zubereitung unter starkem Rühren mit einer entsprechenden Menge ei¬ ner wässrigen Anionpolymerlösung versetzt. Die Membranbildung erfolgt durch Zugabe der Chitosanlösung. Der gesamte Vorgang findet vorzugsweise im schwach sauren Bereich bei pH =3 bis 4 statt. Falls erforderlich erfolgt die pH-Einstellung durch Zugabe von Mine¬ ralsäure. Nach der Membranbildung wird der pH-Wert auf 5 bis 6 angehoben, beispiels¬ weise durch Zugabe von Triethanolamin oder einer anderen Base. Hierbei kommt es zu einem Anstieg der Viskosität, die durch Zugabe von weiteren Verdickungsmitteln, wie z.B. Polysacchariden, insbesondere Xanthan-Gum, Guar-Guar, Agar-Agar, Alginaten und Ty¬ losen, Carboxymethylcellulose und Hydroxyethylcellulose, höhermolekularen Polyethy- lenglycolmono- und -diestern von Fettsäuren, Polyacrylaten, Polyacrylamiden und derglei¬ chen noch unterstützt werden kann. Abschließend werden die Mikrokapseln von der wäss¬ rigen Phase beispielsweise durch Dekantieren, Filtrieren oder Zentrifugieren abgetrennt.In a second alternative process, to prepare the microcapsules according to the invention, first an O / W emulsion is prepared which, in addition to the oil body, water and the active substances, contains an effective amount of emulsifier. To prepare the matrix, this preparation is mixed with vigorous stirring with an appropriate amount of egg ner aqueous anion polymer solution. The membrane formation takes place by adding the chitosan solution. The entire process preferably takes place in the weakly acidic range at pH = 3 to 4. If necessary, the pH is adjusted by addition of mineral acid Mine¬. After the membrane has been formed, the pH is raised to 5 to 6, for example by adding triethanolamine or another base. This results in an increase in the viscosity, which is caused by the addition of further thickening agents, such as. Polysaccharides, in particular xanthan gum, guar-guar, agar-agar, alginates and Ty¬ loose, carboxymethylcellulose and hydroxyethylcellulose, high molecular weight polyethylene glycol mono- and diesters of fatty acids, polyacrylates, polyacrylamides and derglei¬ chen can still be supported. Finally, the microcapsules are separated from the aqueous phase, for example by decantation, filtration or centrifuging.
In einem dritten alternativen Verfahren erfolgt die Bildung der Mikrokapseln um einen vorzugsweise festen, beispielsweise kristallinen Kern, indem dieser schichtweise mit ent¬ gegengesetzt geladenen Polyelektrolyten eingehüllt wird. In diesem Zusammenhang sei auf das Europäische Patent EP 1064088 Bl (Max-Planck Gesellschaft) verwiesen.In a third alternative method, the formation of the microcapsules takes place around a preferably solid, for example, crystalline core, by enveloping it in layers with ent charged polyelectrolytes. In this connection, reference is made to the European patent EP 1064088 Bl (Max Planck Society).
Weitere Verfahren zur Herstellung von Mikrokapseln auf Basis PVMMA sind in den bei¬ den Druckschriften DE 3512565 Al (BASF) und US 4,089,802 (NCR Corp.) beschrieben. Dabei werden beispielsweise wässrige Polyacrylatlösungen mit Paraffinen gemischt und mit einem Vorkondensat aus Melamin und Formaldehyd versetzt. 16 2005/008092Further processes for the preparation of microcapsules based on PVMMA are described in the two publications DE 3512565 A1 (BASF) and US Pat. No. 4,089,802 (NCR Corp.). For example, aqueous polyacrylate solutions are mixed with paraffins and admixed with a precondensate of melamine and formaldehyde. 16 2005/008092
Gewerbliche AnwendbarkeitIndustrial Applicability
Die Zubereitungen aus hydrophoben Wirkstoffen und filmbildenden Polymeren dienen dazu, Fasern und alle Arten von textilen Flächengebilden, also sowohl Fertig- wie auch Halbfertigprodukte während des Herstellprozesses oder aber auch nach dessen Abschluss auszurüsten, um auf diese Weise den Tragekomfort auf der Haut zu verbessern. Die Aus¬ wahl der Materialien, aus denen die Fasern oder die Textilien bestehen, ist dabei weitestge- hend unkritisch. So kommen alle gängigen natürlichen und synthetischen Materialien so¬ wie deren Gemische in Betracht, insbesondere aber Baumwolle, Polyamide, Polyester, Viskose, Modal, Polyamid/Elastan, Baumwolle/Elastan und Baumwolle/Polyester. Ebenso unkritisch ist die Auswahl der Textilien, wobei es natürlich nahe liegt solche Produkte aus¬ zurüsten, die in unmittelbarem Kontakt mit der Haut stehen, also insbesondere Unterwä¬ sche, Bademode, Nachtwäsche, Strümpfe und Strumpfhosen.The preparations of hydrophobic active ingredients and film-forming polymers serve to equip fibers and all types of textile fabrics, ie both finished and semi-finished products during the manufacturing process or even after its completion, in order to improve the comfort on the skin. The choice of materials from which the fibers or textiles consist is largely uncritical. Thus, all common natural and synthetic materials and mixtures thereof come into consideration, but especially cotton, polyamides, polyesters, viscose, modal, polyamide / elastane, cotton / elastane and cotton / polyester. Equally uncritical is the selection of textiles, whereby it is of course close to equipping those products which are in direct contact with the skin, ie in particular underwear, swimwear, nightwear, stockings and tights.
Applikationsverfahrenapplication method
Ein weiterer Gegenstand der vorliegenden Erfindung betrifft ein erstes Verfahren zur Aus¬ rüstung von Fasern oder textilen Flächengebilden, bei dem man die Substrate mit wässri- gen Zubereitungen enthaltend die hydrophoben Wirkstoffe und die filmbildenden Polyme¬ ren sowie gegebenenfalls weitere mikroverkapselte Wirkstoffe und Emulgatoren impräg¬ niert. Die Imprägnierung der Fasern oder Textilien erfolgt im sogenannten Ausziehverfah¬ ren. Das kann in einer handelsüblichen Waschmaschine oder in einem in der Textilindust¬ rie üblichen Färbeapparat durchgeführt werden.A further subject matter of the present invention relates to a first process for equipping fibers or textile fabrics, in which the substrates are impregnated with aqueous preparations comprising the hydrophobic active ingredients and the film-forming polymers and optionally further microencapsulated active ingredients and emulsifiers , The impregnation of the fibers or textiles takes place in the so-called draw-out process. This can be carried out in a commercially available washing machine or in a dyeing apparatus customary in the textile industry.
Alternativ betrifft ein anderer Gegenstand der Erfindung ein zweites Verfahren zur Ausrüs¬ tung von Fasern und textilen Flächengebilden, bei dem man die wässrigen Zubereitungen enthaltend die hydrophoben Wirkstoffe und die filmbildenden Polymeren sowie gegebe¬ nenfalls weitere mikroverkapselte Wirkstoffe und Emulgatoren zwangsappliziert. Hierbei werden die auszurüstenden Stoffe durch ein die mikroverkapselten Wirkstoffe und die Bin¬ demittel enthaltendes Tauchbad gezogen, wobei die Applikation dann über eine Presse unter Druck durchgeführt wird. Man spricht hierbei von einer Foulardapplikation.Alternatively, another subject of the invention relates to a second method for Ausrüs¬ tion of fibers and textile fabrics, in which the aqueous preparations comprising the hydrophobic active ingredients and the film-forming polymers and, where appropriate, further microencapsulated active ingredients and emulsifiers positively applied. In this case, the substances to be provided are drawn through an immersion bath containing the microencapsulated active substances and the binder, the application then being carried out under pressure via a press. This is called a padding application.
Üblicherweise beträgt die Anwendungskonzentration der Wirkstoffe 0,5 bis 15 und vor¬ zugsweise 1 bis 10 Gew.-% bezogen auf die Flotte bzw. das Tauchbad. Im Fall der Im¬ prägnierung werden im allgemeinen niedrigere Konzentrationen benötigt als bei der Zwangsapplikation um gleiche Beladungen der Fasern bzw. textilen Flächengebilden mit den Wirkstoffen zu erreichen.Usually, the application concentration of the active compounds is from 0.5 to 15 and preferably from 1 to 10% by weight, based on the liquor or the dip bath. In the case of impregnation, generally lower concentrations are required than in the case of forced application in order to achieve equal loading of the fibers or textile fabrics with the active ingredients.
Ein letzter Gegenstand der Erfindung betrifft schließlich die Verwendung von Gemischen, enthaltend (a) hydrophobe Wirkstoffe undA final object of the invention finally relates to the use of mixtures containing (a) hydrophobic agents and
(b) filmbildende Wirkstoffe sowie gegebenenfalls(B) film-forming agents and optionally
(c) weitere mikroverkapselte Wirkstoffe(c) other microencapsulated agents
zur Ausrüstung von Fasern und textilen Flächengebilden. for finishing fibers and textile fabrics.
BeispieleExamples
Beispiel 1example 1
Eine Wirkstoffmischung aus Monoi de Tahiti (raffiniertes Kokosöl mit Wirksubstanzen der Tiare-Blume) und Vitamin E im Gewichtsverhältnis 9 : 1 wurde mit verschiedenen poly- meren Bindemitteln (Stabiflex : Polyurethan, Cognis 3001, 3002 =Polysiloxane) gemischt und durch Zwangsapplikation auf Baumwollgewebe aufgebracht. Jeweils bezogen auf Ak¬ tivstoff und Fasergewicht betrug die Einsatzmenge der Wirkstoffe 1 Gew.-%, die der Bin¬ demittel 3 Gew.-%. Alle Gewebemuster wurden 2 min bei 14O0C getrocknet. Das Baum¬ wollgewebe wurde insgesamt lOmal in einer konventionellen Waschmaschine bei 4O0C gewaschen und nach verschiedenen Waschzyklen die verbliebene Menge Wirkstoff auf den Fasern bestimmt. Die Ergebnisse (gerundetete Mittelwerte aus jeweils drei Versuchsreihen) sind in Tabelle 1 zusammengefasst:An active ingredient mixture of Monoi de Tahiti (refined coconut oil with active ingredients of the Tiare flower) and vitamin E in a weight ratio of 9: 1 was mixed with various polymeric binders (Stabiflex: polyurethane, Cognis 3001, 3002 = polysiloxanes) and applied by compulsory application on cotton fabric , In each case based on Ak¬ tivstoff and fiber weight, the amount used of the active ingredients was 1 wt .-%, the Bin¬ median 3 wt .-%. All fabric samples were dried at 14O 0 C for 2 min. The cotton fabric was washed a total of 10 times in a conventional washing machine at 4O 0 C and determined after various washing cycles, the remaining amount of active ingredient on the fibers. The results (rounded mean values from three test series each) are summarized in Table 1:
Tabelle 1 WaschversucheTable 1 Washing tests
Beispiel 2Example 2
Beispiel 1 wurde wiederholt, jedoch an Stelle von Baumwolle ein Mischgewebe aus Poly¬ amid und Lycra (90:10) verwendet, Die Ergebnisse (Gerundete Mittelwerte aus jeweils drei Versuchsreihen) sind in Tabelle 2 zusammengefasst:Example 1 was repeated, but instead of cotton a mixed fabric of polyamide and Lycra (90:10) was used. The results (rounded average values from three test series in each case) are summarized in Table 2:
Tabeüe 2 Waschversuche Table 2 wash attempts
Beispiel 3Example 3
Ein technisches Sterolgemisch (Generol® R, Cognis Deutschland GmbH & Co. KG) wur¬ de mit verschiedenen polymeren Bindemitteln gemischt und durch Zwangsapplikation auf ein Polyamid/Lycra-Mischgewebe aufgebracht. Jeweils bezogen auf Aktivstoff und Faser¬ gewicht betrug die Einsatzmenge der Sterole 1 Gew.-%, die der Bindemittel 3 Gew.-%. Alle Gewebemuster wurden 2 min bei 1400C getrocknet. Das Gewebe wurde insgesamt lOmal in einer konventionellen Waschmaschine bei 40 0C gewaschen und nach verschie¬ denen Waschzyklen die verbliebene Sterolmenge auf den Fasern bestimmt. Die Ergebnisse (Mittelwerte aus jeweils drei Versuchsreihen) sind in Tabelle 3 zusammengefasst:A technical sterol blend (GenerolTM ® R, Cognis Germany GmbH & Co. KG) wur¬ de mixed with various polymeric binders and applied by pressure application to a polyamide / lycra blend fabric. In each case based on the active substance and fiber weight, the amount of sterols used was 1% by weight, and that of the binder was 3% by weight. All fabric samples were dried at 140 ° C. for 2 minutes. The tissue was washed a total of ten times in a conventional washing machine at 40 0 C and after verschie¬ which wash cycles the remaining Sterolmenge determined on the fibers. The results (mean values from three test series in each case) are summarized in Table 3:
Tabelle 3 WaschversucheTable 3 washing tests
Beispiele 4 bis 9Examples 4 to 9
Zur Herstellung der nanoskaligen Metalloxide (Beispiele 4 bis 8) wurde zunächst Kohlen¬ dioxid einem Reservoir mit einem konstanten Druck von 60 bar entnommen und über eine Kolonne mit einer Aktivkohle- und einer Molekularsieb-Packung gereinigt. Nach der Ver¬ flüssigung wurde das CO2 mit Hilfe einer Diaphragma-Pumpe bei einer konstanten För¬ dermenge von 3,5 l/h auf den gewünschten überkritischen Druck p verdichtet. Anschlie¬ ßend wurde das Lösungsmittel in einem Vorheizer auf die erforderliche Temperatur Tl gebracht und in eine Extraktionskolonne (Stahl, 400 ml) geleitet, welche mit den Metallsei¬ fen beladen war. Die resultierende überkritische, d.h. fluide Mischung wurde über eine lasergezogene Düse (Länge 830 μm, Durchmesser 45 μm) bei einer Temperatur T2 in eine Plexiglas Expansionskammer versprüht, die eine 4 Gew.-%ige wässrige Lösung eines E- mulgators bzw. Schutzkolloids enthielt. Das fluide Medium verdampfte und zurück blieben die im Schutzkolloid eingeschlossenen, dispergierten Nanopartikel. Zur Herstellung der Nanoteilchen gemäß Beispiel 9 wurde eine 1 Gew.-%ige Dispersion von Zinkoxid unter starkem Rühren bei 4O0C und einem verminderten Druck von 40 mbar in eine 4 Gew.-% wäßrige Lösung von Coco Glucosides getropft. Das verdampfende Lösungsmittel wurde in einer Kühlfalle kondensiert, während die Dispersion mit den Nanopartikeln zurückblieb. Die Verfahrensbedingungen und der mittlere Partikelgrößenbereich (photometrisch nach der 3-WEM-Methode bestimmt) sind in der nachfolgenden Tabelle 4 angegeben.To produce the nanoscale metal oxides (Examples 4 to 8), carbon dioxide was first taken from a reservoir at a constant pressure of 60 bar and purified via a column with an activated carbon and a molecular sieve packing. After the liquefaction, the CO 2 was compressed to the desired supercritical pressure p with the aid of a diaphragm pump at a constant delivery rate of 3.5 l / h. Subsequently, the solvent was brought to the required temperature Tl in a preheater and passed into an extraction column (steel, 400 ml), which was loaded with the metal sis. The resulting supercritical, ie fluid mixture was sprayed via a laser-drawn nozzle (length 830 .mu.m, diameter 45 .mu.m) at a temperature T2 in a plexiglass expansion chamber containing a 4 wt .-% aqueous solution of E- emulsifier or protective colloid. The fluid medium evaporated and left behind in the protective colloid, dispersed nanoparticles. To prepare the nanoparticles according to Example 9, a 1 wt .-% dispersion of zinc oxide was added dropwise with vigorous stirring at 4O 0 C and a reduced pressure of 40 mbar in a 4 wt .-% aqueous solution of Coco Glucosides. The vaporizing solvent was condensed in a cold trap while the dispersion with the nanoparticles remained. The process conditions and the average particle size range (determined photometrically by the 3-WEM method) are given in Table 4 below.
Tabelle 4 Nano-MetalloxideTable 4 Nano-metal oxides
Beispiel 10 Example 10
Wäßrig dispergiertes nanoisiertes Zinkoxid (Teilchendurchmesser 0,1-0 ,2 μm) wurde mit verschiedenen polymeren Bindemitteln gemischt und durch Zwangsapplikation auf ein Polyamid/Lycra-Mischgewebe aufgebracht. Jeweils bezogen auf Aktivstoff und Faserge¬ wicht betrag die Einsatzmenge Zinkoxid 1 Gew.-%, die der Bindemittel 1 Gew.-%. Alle Gewebemuster wurden 2 min bei 140 °C getrocknet. Danach wurden sie insgesamt lOmal in einer konventionellen Waschmaschine bei 40 0C gewaschen und nach verschiedenen Waschzyklen die verbliebene Zinkoxidmenge auf den Fasern bestimmt. Die Ergebnisse (Mittelwerte aus jeweils drei Versuchsreihen) sind in Tabelle 5 zusammengefasst:Aqueous dispersed nanoized zinc oxide (particle diameter 0.1-0, 2 μm) was mixed with various polymeric binders and applied by compulsory application to a polyamide / Lycra blended fabric. In each case, based on the active substance and fiber weight, the amount of zinc oxide used is 1% by weight, and that of the binder is 1% by weight. All fabric samples were dried at 140 ° C for 2 minutes. They were then washed a total of ten times in a conventional washing machine at 40 0 C and determines the remaining zinc oxide on the fibers after various washing cycles. The results (mean values from three test series in each case) are summarized in Table 5:
Tabelle 5 WaschversucheTable 5 Washes
Beispiel 11Example 11
Eine unverkapseltes Vitamin E und mikroverkapseltes Vitamin E (Primaspheres, Cognis Iberia S. L.) wurde gemeinsam mit verschiedenen polymeren Bindemitteln gemischt und durch Zwangsapplikation auf Baumwollgewebe aufgebracht. Jeweils bezogen auf Aktiv¬ stoff und Fasergewicht betrag die Einsatzmenge der Wirkstoffe 1 Gew.-%, die der Binde¬ mittel 3 Gew.-%. Das Baumwollgewebe wurde insgesamt lOmal in einer konventionellen Waschmaschine bei 400C gewaschen und nach verschiedenen Waschzyklen die verbliebe¬ ne Menge Wirkstoff auf den Fasern bestimmt. Die Ergebnisse (Mittelwerte aus jeweils drei Versuchsreihen) sind in Tabelle 6 zusammengefasst: Tabelle 6 WaschversucheAn unencapsulated vitamin E and microencapsulated vitamin E (Primaspheres, Cognis Iberia SL) was mixed together with various polymeric binders and applied by force applied to cotton fabric. In each case, based on the active substance and fiber weight, the amount used of the active compounds is 1% by weight, that of the binder is 3% by weight. The cotton fabric was washed a total of ten times in a conventional washing machine at 40 0 C and determines the verbliebe¬ ne amount of active compound on the fibers after various washing cycles. The results (mean values from three test series in each case) are summarized in Table 6: Table 6 Washing tests

Claims

Ansprüche claims
1. Fasern und textile Rächengebilde, dadurch gekennzeichnet, dass sie mit Mischungen aus1. Fibers and textile Avengers, characterized in that they are made with mixtures of
(a) hydrophoben Wirkstoffen und(a) hydrophobic agents and
(b) filmbildenden Polymeren(b) film-forming polymers
ausgerüstet sind.are equipped.
2. Fasern und textile Flächengebilde nach Ansprach 1, dadurch gekennzeichnet, dass sie mit Wirkstoffen ausgerüstet sind, die ausgewählt sind aus der Gruppe, die gebildet wird von Tocopherole, Carotinverbindungen, Sterolen, , Ascorbinsäure, (Deso- xy)Ribonucleinsäure und deren Fragmentierungsprodukten, ß-Glucanen, Retinol, Bi- sabolol, Allantoin, Phytantriol, Panthenol, AHA-Säuren, Aminosäuren, Ceramiden, Pseudoceramiden, Chitosan, Menthol, kosmetischen Ölen und Ölkörpern, ätherische Öle, pflanzlichen Proteinen und deren Hydrolyseprodukten, Pflanzenextrakten, Vita¬ minkomplexen, Insektenrepellentien, nanoisierten anorganischen Stoffen und Minera¬ lien sowie deren Gemischen.2. Fibers and textile fabrics according to claim 1, characterized in that they are provided with active ingredients selected from the group formed by tocopherols, carotene compounds, sterols, ascorbic acid, (deoxyribonucleic acid) and their fragmentation products, β-glucans, retinol, bisabolol, allantoin, phytantriol, panthenol, AHA acids, amino acids, ceramides, pseudoceramides, chitosan, menthol, cosmetic oils and oily bodies, essential oils, vegetable proteins and their hydrolysis products, plant extracts, vitamine complexes, Insect repellents, nanozed inorganic substances and minerals and their mixtures.
3. Fasern und textile Flächengebilde nach den Ansprüchen 1 und/oder 2, dadurch ge¬ kennzeichnet, dass sie die Wirkstoffe - bezogen auf Aktivsubstanz - in Mengen von 0,1 bis 10 Gew.-% enthalten.3. fibers and textile fabrics according to claims 1 and / or 2, characterized ge indicates that they contain the active ingredients - based on the active substance - in amounts of 0.1 to 10 wt .-%.
4. Fasern und textile Flächengebilde nach mindestens einem der Ansprüche 1 bis 3, da¬ durch gekennzeichnet, dass sie mit Bindemitteln ausgerüstet sind, die ausgewählt sind aus der Gruppe, die gebildet wird von Polyurethanen, Polyvinylacetaten, polyme- ren Melaminverbindungen, polymeren Glyoxalverbindungen, polymeren Siliconver- bindungen, epichlorhydrinvernetzten Polyamidoaminen, Poly(meth)acrylaten und po¬ lymeren Fluorkohlenwasserstoffen sowie deren Gemischen .4. Fibers and textile fabrics according to at least one of claims 1 to 3, da¬ characterized in that they are equipped with binders selected from the group consisting of polyurethanes, polyvinyl acetates, polymeric melamine melamine compounds, polymeric glyoxal compounds, polymeric silicone compounds, epichlorohydrin-crosslinked polyamidoamines, poly (meth) acrylates and polymeric fluorohydrocarbons and mixtures thereof.
5. Fasern und textile Flächengebilde nach mindestens einem der Ansprüche 1 bis 4, da¬ durch gekennzeichnet, dass sie die Bindemittel - bezogen auf Aktivsubstanz - in Mengen von 0,5 bis 15 Gew.-% enthalten.5. fibers and textile fabrics according to any one of claims 1 to 4, da¬ characterized in that they contain the binder - based on the active substance - in amounts of 0.5 to 15 wt .-%.
6. Fasern und textile Flächengebilde nach mindestens einem der Ansprüche 1 bis 5, da¬ durch gekennzeichnet, dass die Mischungen, mit denen sie ausgerüstet werden wei¬ terhin als Komponente (c) mikroverkapselte Wirkstoffe enthalten. 6. fibers and textile fabrics according to any one of claims 1 to 5, da¬ characterized in that the mixtures with which they are equipped wei¬ terhin as component (c) contain microencapsulated agents.
7. Verfahren zur Ausrüstung von Fasern oder textilen Flächengebilden, bei dem man die Substrate mit wässrigen Zubereitungen enthaltend hydrophobe Wirkstoffe und filmbil¬ dende Polymeren sowie gegebenenfalls mikroverkapselte Wirkstoffe imprägniert bzw. im Ausziehverfahren appliziert.7. A process for finishing fibers or textile fabrics, in which the substrates are impregnated with aqueous preparations containing hydrophobic active ingredients and film-forming polymers and optionally microencapsulated active ingredients or applied by exhaustion.
8. Verfahren zur Ausrüstung von Fasern und textilen Flächengebilden, bei dem man die wässrigen Zubereitungen enthaltend hydrophobe Wirkstoffe und filmbildende Polyme¬ ren sowie gegebenenfalls mikroverkapselte Wirkstoffe zwangsappliziert.8. A process for finishing fibers and textile fabrics in which the aqueous preparations containing hydrophobic active ingredients and film-forming polymers and optionally microencapsulated active ingredients are force-applied.
9. Verwendung von Gemischen, enthaltend9. Use of mixtures containing
(a) hydrophobe Wirkstoffe und(a) hydrophobic agents and
(b) filmbildende Polymere sowie gegebenenfalls(B) film-forming polymers and optionally
(c) weitere mikroverkapselte Wirkstoffe(c) other microencapsulated agents
zur Ausrüstung von Fasern und textilen Flächengebilden.for finishing fibers and textile fabrics.
10. Verwendung von nanoisiertem Zink- und/oder Titandioxid zur Ausrüstung von Fasern und textilen Flächengebilden.10. Use of nanoized zinc and / or titanium dioxide for finishing fibers and fabrics.
11. Verwendung von nanoisiertem Zink- und/oder Titandioxid zur Herstellung von kos¬ metischen und/oder pharmazeutischen Zubereitungen.11. Use of nanoated zinc and / or titanium dioxide for the production of kos¬ metic and / or pharmaceutical preparations.
12. Verwendung nach den Ansprüchen 10 und 11, dadurch gekennzeichnet, dass das nanoisierte Zink- und/oder Titandioxid mikroverkapselt vorliegt. 12. Use according to claims 10 and 11, characterized in that the nanoated zinc and / or titanium dioxide is microencapsulated.
EP05773891A 2004-08-04 2005-07-26 Finished fibers and textile construction Withdrawn EP1774083A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200410037752 DE102004037752A1 (en) 2004-08-04 2004-08-04 Equipped fibers and textile fabrics
PCT/EP2005/008092 WO2006015718A1 (en) 2004-08-04 2005-07-26 Finished fibers and textile construction

Publications (1)

Publication Number Publication Date
EP1774083A1 true EP1774083A1 (en) 2007-04-18

Family

ID=35447492

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05773891A Withdrawn EP1774083A1 (en) 2004-08-04 2005-07-26 Finished fibers and textile construction

Country Status (7)

Country Link
US (1) US20080248704A1 (en)
EP (1) EP1774083A1 (en)
JP (1) JP2008508444A (en)
CN (1) CN100572651C (en)
BR (1) BRPI0514110A (en)
DE (1) DE102004037752A1 (en)
WO (1) WO2006015718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257223B2 (en) 2007-08-16 2012-09-04 Zf Friedrichshafen Ag Method for carrying out a shift during hybrid operation in a parallel hybrid vehicle

Families Citing this family (54)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006016907A1 (en) * 2006-04-11 2007-10-25 Cognis Ip Management Gmbh Insect repellent treated fibers and textile fabrics
FR2908427B1 (en) * 2006-11-15 2009-12-25 Skin Up PROCESS FOR IMPREGNATING FIBERS AND / OR TEXTILES WITH A COMPOUND OF INTEREST AND / OR AN ACTIVE INGREDIENT IN THE FORM OF NANOPARTICLES
WO2008059007A2 (en) * 2006-11-17 2008-05-22 Basf Se Aqueous formulations and use thereof
DE102007002658A1 (en) 2007-01-12 2008-07-17 Freie Universität Berlin Device for keeping away insects from outdoor area section e.g. at quiescent places, fodder or water places, comprises shielding element, which has insecticide, which is transmitted to insects touching shielding element
WO2008143792A1 (en) 2007-05-11 2008-11-27 Sdc Materials, Inc. Formation of catalytic regions within porous structures using supercritical phase processing
DE102007046550B4 (en) 2007-09-28 2020-07-23 BSH Hausgeräte GmbH Washer dryer for equipping laundry in a water-bearing household appliance
DE102007046549B4 (en) 2007-09-28 2022-06-09 BSH Hausgeräte GmbH Household appliance for laundry care and method for finishing items to be washed in a water-bearing household appliance
US8507401B1 (en) 2007-10-15 2013-08-13 SDCmaterials, Inc. Method and system for forming plug and play metal catalysts
DE102007054702B4 (en) * 2007-11-14 2018-10-18 Smartpolymer Gmbh Process for the preparation of cellulosic shaped bodies, cellulosic shaped bodies and their use
US8153834B2 (en) 2007-12-05 2012-04-10 E.I. Dupont De Nemours And Company Surface modified inorganic particles
ATE547555T1 (en) 2008-04-11 2012-03-15 Cognis Ip Man Gmbh LOADABLE FIBERS AND TEXTILE STRUCTURES
EP2108734A1 (en) 2008-04-11 2009-10-14 Cognis IP Management GmbH Method for equipping fibres and textile area-measured material
DE102008042264B4 (en) 2008-09-22 2016-11-10 BSH Hausgeräte GmbH Process for finishing laundry and suitable laundry treatment appliance
US8652286B2 (en) * 2009-01-09 2014-02-18 Reebok International Limited Stretchable applique and method for making the same
DE102009026773B4 (en) 2009-06-05 2019-07-18 BSH Hausgeräte GmbH Process for finishing laundry and suitable laundry treatment appliance
EP2319980A1 (en) * 2009-11-05 2011-05-11 Cognis IP Management GmbH Textile for repelling insects
US9149797B2 (en) 2009-12-15 2015-10-06 SDCmaterials, Inc. Catalyst production method and system
US9126191B2 (en) 2009-12-15 2015-09-08 SDCmaterials, Inc. Advanced catalysts for automotive applications
US8557727B2 (en) 2009-12-15 2013-10-15 SDCmaterials, Inc. Method of forming a catalyst with inhibited mobility of nano-active material
US9039916B1 (en) 2009-12-15 2015-05-26 SDCmaterials, Inc. In situ oxide removal, dispersal and drying for copper copper-oxide
US8652992B2 (en) 2009-12-15 2014-02-18 SDCmaterials, Inc. Pinning and affixing nano-active material
US8803025B2 (en) 2009-12-15 2014-08-12 SDCmaterials, Inc. Non-plugging D.C. plasma gun
DE202009016978U1 (en) 2009-12-16 2010-03-18 Cognis Ip Management Gmbh Sprühcontainer
DE102010028368A1 (en) 2010-04-29 2011-11-03 BSH Bosch und Siemens Hausgeräte GmbH Process for treating laundry in a washing machine
US8669202B2 (en) 2011-02-23 2014-03-11 SDCmaterials, Inc. Wet chemical and plasma methods of forming stable PtPd catalysts
BR112014003781A2 (en) 2011-08-19 2017-03-21 Sdcmaterials Inc coated substrates for use in catalysts and catalytic converters and methods for coating substrates with dip coating compositions
US8690964B2 (en) * 2011-10-11 2014-04-08 The Sweet Living Group, LLC Fabric having ultraviolet radiation protection
ITMI20111901A1 (en) * 2011-10-19 2013-04-20 Alfonso Saibene PROCEDURE FOR THE SUBMISSION OF FITNESS TO THE WEAVING OF A THIN AND / OR THIN ORDER
US9156025B2 (en) 2012-11-21 2015-10-13 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
US9511352B2 (en) 2012-11-21 2016-12-06 SDCmaterials, Inc. Three-way catalytic converter using nanoparticles
JP6446430B2 (en) * 2013-03-20 2018-12-26 グッドウェル シノ トレーディング リミテッド Artificial hair composition and method for producing the same
EP3024571B1 (en) 2013-07-25 2020-05-27 Umicore AG & Co. KG Washcoats and coated substrates for catalytic converters
CN103436982B (en) * 2013-09-03 2014-08-06 福建百宏聚纤科技实业有限公司 Modified polyester fiber and preparation method thereof
JP2016538350A (en) * 2013-09-23 2016-12-08 ザ プロクター アンド ギャンブル カンパニー particle
EP3068517A4 (en) 2013-10-22 2017-07-05 SDCMaterials, Inc. Compositions of lean nox trap
MX2016004991A (en) 2013-10-22 2016-08-01 Sdcmaterials Inc Catalyst design for heavy-duty diesel combustion engines.
KR101528051B1 (en) * 2013-11-11 2015-06-16 주식회사 포스코 Composite resin coating composition for excellent insect repellent and antifungal activity and steel sheet coated with the composition
DE102013226337A1 (en) * 2013-12-18 2015-06-18 Beiersdorf Ag Textile for drug-releasing clothing
DE102014003731A1 (en) * 2014-03-18 2015-09-24 Carl Freudenberg Kg Fabrics for the controlled release of active substances
EP3119500A4 (en) 2014-03-21 2017-12-13 SDC Materials, Inc. Compositions for passive nox adsorption (pna) systems
CN104313871A (en) * 2014-10-20 2015-01-28 湖州市菱湖石淙永盛丝织厂 Preparation method of lyophobic nano fiber fabric
CA3003397A1 (en) * 2014-10-30 2016-05-06 Textile-Based Delivery, Inc. Delivery systems
US11098444B2 (en) 2016-01-07 2021-08-24 Tommie Copper Ip, Inc. Cotton performance products and methods of their manufacture
CN109071750B (en) 2016-03-08 2022-08-02 生活实验公司 Long-lasting cosmetic composition
BR112020004127A2 (en) 2017-09-13 2020-09-01 Living Proof, Inc. protective color compositions
CN111133023B (en) 2017-09-13 2022-10-18 生活实验公司 Long-lasting cosmetic composition
CN111356501A (en) 2017-11-20 2020-06-30 生活实验公司 Properties to achieve durable cosmetic Performance
CA3097988A1 (en) 2018-04-27 2019-10-31 Living Proof, Inc. Long lasting cosmetic compositions
JP7128076B2 (en) * 2018-10-09 2022-08-30 グンゼ株式会社 Textile products with astaxanthin
US20220025574A1 (en) * 2020-07-22 2022-01-27 KD dance Retail LLC Method of wet finishing plant based fibers and fabrics made therefrom
TWI823151B (en) * 2021-10-01 2023-11-21 南亞塑膠工業股份有限公司 Double-layered medical membrane and method for manufacturing the same
CN114053965B (en) * 2021-12-08 2024-05-14 罗莱生活科技股份有限公司 Ceramide microcapsule, modified viscose fiber, and preparation method and application thereof
CN117815185A (en) * 2022-06-09 2024-04-05 张天平 Lipid nanofiber particle and preparation method thereof
CN117779355B (en) * 2024-02-28 2024-05-24 江苏青昀新材料有限公司 Flash spinning membrane material and manufacturing method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351893A1 (en) * 1973-02-15 1974-09-05 Hurka Wilhelm CARRIER IMPROVED WITH ACTIVE INGREDIENTS

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT951409B (en) 1972-04-15 1973-06-30 Eurand Spa METHOD FOR THE APPLICATION OF MICROCAPSULES ON FABRICS AND PRODUCTS THUS OBTAINED
US4001140A (en) * 1974-07-10 1977-01-04 Ncr Corporation Capsule manufacture
JP2968297B2 (en) * 1989-02-17 1999-10-25 東レ株式会社 Clothing
US5064689A (en) * 1989-03-20 1991-11-12 Weyerhaeuser Company Method of treating discontinuous fibers
WO1991001801A1 (en) 1989-08-01 1991-02-21 Kanebo, Ltd. Microcapsule, treatment liquid containing microcapsules, and textile structure having microcapsules stuck thereto
JPH04333661A (en) * 1991-04-30 1992-11-20 Asahi Chem Ind Co Ltd Refreshing fabric
JPH09296367A (en) * 1996-04-26 1997-11-18 Toray Ind Inc Textile
FR2779637B1 (en) * 1998-06-15 2000-09-01 Oreal PHOTOPROTECTIVE COSMETIC COMPOSITIONS CONTAINING A METAL OXIDE NANOPIGMENT AND AN ACRYLIC TERPOLYMER AND USE OF SUCH COMPOSITIONS FOR PROTECTING KERATINIC MATERIALS FROM ULTRAVIOLET RADIATION
JP3022880B1 (en) * 1999-02-08 2000-03-21 岡本株式会社 Clothing for promoting metabolism of stratum corneum and method for attaching microcapsules
ES2213949T3 (en) * 1999-07-02 2004-09-01 Cognis Iberia, S.L. MICROCAPSULES I.
ES2247749T3 (en) * 1999-07-02 2006-03-01 Cognis Ip Management Gmbh MICROCAPSULES III.
ES2213948T3 (en) * 1999-07-02 2004-09-01 Cognis Iberia, S.L. MICROCAPSULES II.
EP1064910B1 (en) * 1999-07-02 2005-09-14 Cognis IP Management GmbH Microcapsules
EP1167618A1 (en) 2000-06-20 2002-01-02 Primacare S.A. Textile auxiliary
US6610214B2 (en) * 2001-07-20 2003-08-26 Goldenguard Technologies Ltd. UVR attenuation of fabrics and finished textiles
JP3749221B2 (en) * 2001-12-28 2006-02-22 花王株式会社 Textile treatment agent
EP1359247B1 (en) 2002-04-30 2005-10-12 Cognis IP Management GmbH Fibres and textile fabrics finished with microcapsules

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2351893A1 (en) * 1973-02-15 1974-09-05 Hurka Wilhelm CARRIER IMPROVED WITH ACTIVE INGREDIENTS

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8257223B2 (en) 2007-08-16 2012-09-04 Zf Friedrichshafen Ag Method for carrying out a shift during hybrid operation in a parallel hybrid vehicle

Also Published As

Publication number Publication date
WO2006015718A1 (en) 2006-02-16
CN100572651C (en) 2009-12-23
DE102004037752A1 (en) 2006-03-16
US20080248704A1 (en) 2008-10-09
JP2008508444A (en) 2008-03-21
CN101018904A (en) 2007-08-15
BRPI0514110A (en) 2008-05-27

Similar Documents

Publication Publication Date Title
EP1774083A1 (en) Finished fibers and textile construction
EP1845186B1 (en) Fibres and textile sheet prepared for repelling insects
EP1359247B1 (en) Fibres and textile fabrics finished with microcapsules
EP1358872B1 (en) Use of mixtures of active compounds comprising azelaic acid and glycyrrhetic acid in the treatment of acne
WO2007062761A1 (en) Finishing textiles
WO2002076604A1 (en) Microcapsules (viii)
WO2007033785A1 (en) Aqueous microcapsule dispersions
EP2262944B1 (en) Method for finishing fibres and textile fabrics with absorbent microspheres
WO2002076602A1 (en) Microcapsules (vii)
EP1600210A1 (en) Charged microspheres
WO2003092664A1 (en) Micro-capsules with anti-acne active ingredients
WO2004009095A1 (en) Use of compositions comprising benzoyl peroxide and glycyrrhetinic acid for the treatment of acne
DE202009016978U1 (en) Sprühcontainer
EP2108735B1 (en) Loadable fibres and textile sheets
EP1243322A1 (en) Microcapsules (X)
WO2003086428A1 (en) Active substance mixtures of extracts of the genus vaccinium and carotene compounds
EP1243324B1 (en) Microcapsules (XII)
EP1449515A1 (en) Anti-acne agents
EP1449847A1 (en) Glycyrrhetinic acid esters for the treatment of acne
EP1382342A1 (en) Use of compositiosn comprising glycyrrhetinic acid and salicylic acid for acne treatment
DE102004006405A1 (en) Microcapsule containing active ingredient for progressive release from textiles e.g. clothing
EP1243319A1 (en) Microcapsules (XI)
DE10307387A1 (en) New (omega-1)-hydroxy fatty acid esters useful for preparing cosmetic, pharmaceutical or dermatological compositions, especially anti-acne compositions
WO2004106621A2 (en) Textile finishing agent

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20070126

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080702

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: COGNIS IP MANAGEMENT GMBH

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110726