EP1696803B1 - Systèmes pour associer un implant médical a un dispositif de pose - Google Patents
Systèmes pour associer un implant médical a un dispositif de pose Download PDFInfo
- Publication number
- EP1696803B1 EP1696803B1 EP04811550.5A EP04811550A EP1696803B1 EP 1696803 B1 EP1696803 B1 EP 1696803B1 EP 04811550 A EP04811550 A EP 04811550A EP 1696803 B1 EP1696803 B1 EP 1696803B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- loop
- dilator
- assembly
- association loop
- association
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000007943 implant Substances 0.000 title description 42
- 239000000463 material Substances 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 5
- 229920000642 polymer Polymers 0.000 claims description 5
- 230000008859 change Effects 0.000 claims description 3
- 238000000034 method Methods 0.000 description 32
- 239000004033 plastic Substances 0.000 description 26
- 229920003023 plastic Polymers 0.000 description 26
- 210000001519 tissue Anatomy 0.000 description 15
- 210000002414 leg Anatomy 0.000 description 13
- 238000003780 insertion Methods 0.000 description 10
- 230000037431 insertion Effects 0.000 description 10
- 230000000712 assembly Effects 0.000 description 9
- 238000000429 assembly Methods 0.000 description 9
- 125000006850 spacer group Chemical group 0.000 description 9
- 238000000576 coating method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 7
- 230000013011 mating Effects 0.000 description 7
- 238000002574 cystoscopy Methods 0.000 description 6
- 238000007373 indentation Methods 0.000 description 6
- 230000014759 maintenance of location Effects 0.000 description 6
- -1 polypropylene Polymers 0.000 description 6
- 230000008569 process Effects 0.000 description 6
- 230000008901 benefit Effects 0.000 description 5
- 238000002513 implantation Methods 0.000 description 5
- 230000001681 protective effect Effects 0.000 description 5
- 206010046543 Urinary incontinence Diseases 0.000 description 4
- 230000000295 complement effect Effects 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 210000005224 forefinger Anatomy 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 3
- 206010066218 Stress Urinary Incontinence Diseases 0.000 description 3
- 210000001015 abdomen Anatomy 0.000 description 3
- 230000003187 abdominal effect Effects 0.000 description 3
- 238000004026 adhesive bonding Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 210000004872 soft tissue Anatomy 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 238000001356 surgical procedure Methods 0.000 description 3
- 210000003708 urethra Anatomy 0.000 description 3
- 210000001215 vagina Anatomy 0.000 description 3
- 239000004812 Fluorinated ethylene propylene Substances 0.000 description 2
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000560 biocompatible material Substances 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000000916 dilatatory effect Effects 0.000 description 2
- 238000002224 dissection Methods 0.000 description 2
- 210000003195 fascia Anatomy 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 229920001778 nylon Polymers 0.000 description 2
- 229920009441 perflouroethylene propylene Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 210000003689 pubic bone Anatomy 0.000 description 2
- 239000012858 resilient material Substances 0.000 description 2
- 210000005070 sphincter Anatomy 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 206010011224 Cough Diseases 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 206010021639 Incontinence Diseases 0.000 description 1
- 238000009502 compressed coating Methods 0.000 description 1
- 238000002788 crimping Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- QDOXWKRWXJOMAK-UHFFFAOYSA-N dichromium trioxide Chemical compound O=[Cr]O[Cr]=O QDOXWKRWXJOMAK-UHFFFAOYSA-N 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 206010041232 sneezing Diseases 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003356 suture material Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- 238000009966 trimming Methods 0.000 description 1
- 210000000689 upper leg Anatomy 0.000 description 1
- 230000002485 urinary effect Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/02—Prostheses implantable into the body
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/0469—Suturing instruments for use in minimally invasive surgery, e.g. endoscopic surgery
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06004—Means for attaching suture to needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B17/06109—Big needles, either gripped by hand or connectable to a handle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61F—FILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
- A61F2/00—Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
- A61F2/0004—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse
- A61F2/0031—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra
- A61F2/0036—Closure means for urethra or rectum, i.e. anti-incontinence devices or support slings against pelvic prolapse for constricting the lumen; Support slings for the urethra implantable
- A61F2/0045—Support slings
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/00234—Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
- A61B2017/00349—Needle-like instruments having hook or barb-like gripping means, e.g. for grasping suture or tissue
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B2017/00743—Type of operation; Specification of treatment sites
- A61B2017/00805—Treatment of female stress urinary incontinence
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06004—Means for attaching suture to needle
- A61B2017/06019—Means for attaching suture to needle by means of a suture-receiving lateral eyelet machined in the needle
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06004—Means for attaching suture to needle
- A61B2017/06042—Means for attaching suture to needle located close to needle tip
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/06076—Needles, e.g. needle tip configurations helically or spirally coiled
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/0608—J-shaped
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B17/00—Surgical instruments, devices or methods, e.g. tourniquets
- A61B17/04—Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
- A61B17/06—Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
- A61B17/06066—Needles, e.g. needle tip configurations
- A61B2017/06085—Needles, e.g. needle tip configurations having a blunt tip
Definitions
- the invention relates generally to structures located on medical implants and/or on implant delivery devices for associating the medical implant with the delivery device.
- Urinary incontinence occurs in both men and women.
- Various types of incontinence are caused by different conditions and call for different treatments.
- stress urinary incontinence (SUI) is known to be caused by at least two conditions, intrinsic sphincter deficiency (ISD) and hypermobility. These conditions may occur independently or in combination.
- ISD intrinsic sphincter deficiency
- hypermobility hypermobility
- Hypermobility is a condition in which the pelvis floor is distended, weakened or damaged, causing the bladder neck and proximal urethra to rotate and descend in response to increases in intra-abdominal pressure (for example, due to sneezing, coughing, straining, etc.). As a result, the patient's response time becomes insufficient to promote urethral closure and, consequently, the patient suffers from urine leakage and/or flow.
- a popular treatment of SUI uses a surgical sling placed under the bladder neck or the mid-urethra to provide a urethral platform. Placement of the sling limits the endopelvis fascia drop.
- One disadvantage of conventional medical implant systems is that they typically require attaching the implant to a delivery device of some sort. In some instances the making and/or breaking the interconnection requires significant mechanical force, which can be both inconvenient for a medical operator and can risk damage to patient tissue near the implantation site.
- Document US 2003/149440 A1 discloses a sling assembly comprising a sleeve having a first end and a second end, a sling residing, at least partially, within the sleeve, and an association loop located at a first end of the sling assembly and sized and shaped for associating the sling assembly with a shaft of a delivery device.
- the invention relates to cooperating structures for associating a medical implant with a delivery device or assembly (collectively a "delivery device").
- the medical implant includes an implantable sling and the delivery device is a device for delivering the implantable sling to an anatomical location in the body of a patient.
- the sling is configured for midurethral placement for treating urinary incontinence.
- the sling resides, at least partially, in a protective sheath, and is part of a sling assembly.
- a structure located on an end of the sling assembly cooperates with a mating structure on a distal portion of a delivery device shaft to associate the sling assembly with the delivery device.
- the structure located on the sling assembly includes an association loop.
- the association loop attaches to a dilator, also located at the end of the sling assembly.
- the sling assembly includes a dilator at each end, with an association loop extending out of an end of each dilator.
- the association loops may be oriented, for example, in substantially the same plane as a sling included in the sling assembly, or in a plane substantially orthogonal to the plane of the sling.
- the association loop may be formed from a substantially rigid material or may be formed from a deformable material.
- the association loop is formed from a deformable, yet generally resilient, shape-retaining material.
- the association loop is formed from a non-shape-retaining, suture-like material.
- a filament is embedded and secured along the length of a dilator, and extends from a conical tip of the dilator to form an association loop.
- the dilator has an axially extending channel, and the filament ends are affixed in the axially extending channel by crimping them within a crimp tube.
- the dilator includes a biasing member, such as a spring, interfitted with the crimp tube within a cavity of the dilator. According to one feature, pulling on the association loop compresses the spring and extends more of the loop filament out of the dilator to effectively increase the size of the association loop.
- the bias spring may also be configured to enable the association loop to rotate relative to the dilator to allow the medical operator to twist or untwist the sling while the loop is coupled to the delivery device.
- the loop may include features, such as one or more bends, to maintain the loop external to the dilator.
- association loop may be twisted to effectively reduce the size of the association loop.
- the twisted section may also be employed to position an open portion of the association loop a desired reference distance from the dilator.
- the association loop is placed a desired reference distance from the dilator by placing a tube of a desired length between the dilator and the loop. The tube may be separate from or part of the dilator.
- the association loop may be formed from a single or multi-stranded filament. Multiple strands of material may be twisted together to form a flexible and/or resilient loop filament. In another embodiment, the multiple strands may be woven together to form a braided filament. Alternatively, the multiple strands may be woven to form a tube-shaped filament having an inner and outer diameter. An association loop formed from a braided tube may change shape when a force is applied. For example, in response to pulling on the association loop, its length may increase while the inner and outer diameters of the filament decrease. In other embodiments, the loop may be coated with a polymer.
- the structure located in the distal portion of the delivery device saft may include an L- or T-shaped slot.
- an a L-slot is formed as a first section extending radially into the distal portion of the delivery device shaft, and a second section extending from an inner end of the first section axially in a distal direction along the delivery device shaft.
- the second section of the L-slot extends axially in a proximal direction.
- the slot may include additional structures, such as indentations, protuberances, coatings, and/or flaps for impeding, but not prohibiting, the association loop from disassociating with the L-slot.
- the radially extending first section may have the same or different dimensions as the axially extending second section.
- the radially and axially extending sections may have constant or varying widths.
- the radially extending section may taper inward from the radial opening on the delivery device shaft to its inner terminal end.
- the delivery device shaft may include a sheath for partially or substantially surrounding the axial opening to the L-slot.
- the sheath may partially extend over the axial opening L-slot or form a flap overhanging the axial opening to impede an association loop from unhooking/disassociating from the L-slot.
- Any delivery device may be modified to include an association structure as described above.
- any delivery device configured for suprapubic, pre-pubic, transvaginal, or transobtural delivery of an implant may employ an association structure of the invention.
- the invention relates to cooperating structures on one or more ends of a medical implant assembly and on an end of a delivery device to enable a medical operator to associate the medical implant assembly with the delivery device so that the medical operator may deliver the implant to an anatomical location in a patient's body.
- the implant assembly is a sling assembly including a sling for treating urinary incontinence
- the anatomical site is in the periurethral tissue of the patient (e.g. under a bladder neck or mid-urethral location).
- examples of features of various delivery systems that may be employed with illustrative embodiments of the invention include, without limitation, those delivery systems configured for supra-pubic, pre-pubic, transvaginal, and/or transobtural procedures.
- examples of features of dilators, slings, sling assemblies, delivery devices and implantation approaches that may be employed with illustrative embodiments of the invention are disclosed in U.S. Patent No. 6,666,817 , entitled “Expandable surgical implants and methods of using them," U.S. Patent No. 6,669,706 , entitled “Thin soft tissue surgical support mesh," U.S. Patent No. 6,375,662 , entitled “Thin soft tissue surgical support mesh,” U.S. Patent No.
- Fig. 1 depicts a sling assembly 10, which includes an association loop 1 attached via a dilator 5 to an end of a sleeve 9 holding an implantable sling 11. Another association loop 3 attaches via a dilator 7 to the other end of the sleeve 9.
- the association loop 1 is shown as substantially in the plane of the sleeve 9. It is to be understood that the association loop 1 may be configured at other angles relative to the plane of the sleeve 9. For example, the associate loop 3 may be in a plane substantially orthogonal to the plane of the sleeve 9. Furthermore, the association loops 1 and 3 may be substantially in the same plane or in different planes.
- association loops 1 and 3 may be fixed at a specific angle relative to the plane of the sleeve 9, for example, in a plane about 30, 45, 60 or 90 degrees to the plane of the sleeve 9. In other embodiments, the association loops 1 and 3 may be configured to rotate 360 degrees relative to the plane of the sleeve 9.
- the association loop 1 can be configured into any shape that allows it to cooperate with a complementary structure located on a delivery device.
- the association loop 1 can have an irregular shape or it can be, for example, substantially circular, teardrop, triangular, square, rectangular or a combination of these shapes.
- the association loop 1 is open, for example, forms a hook or forms an eyelet.
- the loop is closed.
- the loop can be resilient, rigid, semi-rigid, and/or flexible.
- the loop is flexible enough to deform as it is pushed/pulled through tissue, but rigid enough to maintain its integrity (i.e., not break) against the pushing/pulling force.
- the association loop 1 can be made from any suitable material, such as a wire or a suturing material.
- the loop is made of a biocompatible material that allows for the resiliency, flexibility and rigidity described above, for example, metal, plastic, polymers, etc.
- the association loop 1 can also be of any suitable size, for example, the association loop 1 can have a diameter that is just large enough to slide over an end of a delivery device or a delivery needle.
- the association loop 1 when it is configured to have such a diameter, helps to maintain the cooperation between the association loop 1 and the delivery device during placement of the sling.
- the association loop 1 may also be sized to be long enough such that when hooked on to a complementary structure near a distal end of a delivery device and pulled by a user with enough force away from the distal tip of a delivery device, the association loop 1 swings about the tip of the delivery device for removal.
- the association loop can be formed from a single stranded filament or can be formed from a multi-stranded filament.
- the multiple strands may be braided or twisted together.
- the use of multiple strands to form the association loop 1 is preferred because a multi-stranded loop may provided more structural flexibility than an association loop formed from a single strand.
- the sling assembly 10 employs the dilators 5 and 7 for attaching the association loops 1 and 3, respectively, to the ends of the plastic sleeve 9. More specifically, the knitted mesh 11 resides, at least partially, within the plastic sleeve 9. An opening 8, located at a midpoint of a top portion of the plastic sleeve 9, exposes the entire width of the knitted mesh 11.
- the knitted mesh 11 may be made entirely of polypropylene, may be approximately 1 cm in width and 45 cm in length, and terminates at free ends. The knitted mesh 11, including both free ends, does not connect to the plastic sleeve 9 or anything else.
- This feature enables a medical operator to pull on the ends of the plastic sleeve 9 during sling placement, for example, via the dilators 5 and 7, the association loops 1 and 3, and/or the delivery devices, without risk of stretching, curling or otherwise deforming the knitted mesh 11.
- a tabbed spacer (not shown) is located at a midpoint of a bottom side of the plastic sleeve 9, and encloses a looped portion of the bottom side of the plastic sleeve 9.
- the tabbed spacer can be used during implantation as a visual aid to placement of the implant assembly.
- the tabbed spacer also engages the looped portion of the bottom side of the plastic sleeve 9 and prohibits the plastic sleeve 9 from sliding off, or otherwise being removed from, the knitted mesh 11 during implant assembly placement.
- the tabbed spacer must be cut to enable the plastic sleeve 9 to slide off the knitted mesh 11.
- Fig. 2 depicts dilator assembly 20 including an association loop 22 according to an illustrative embodiment of the invention.
- the association loop 22 is formed from a multi-stranded twisted filament.
- a pin 29 is used to size and shape the association loop 22.
- the filament ends 22a and 22b are inserted through an axially extending channel 26 into a crimp tube 24.
- a second crimp tube is depicted in outline to demonstrate that the crimp tube 24 may be placed at any location along the filament ends 22a and 22b.
- the filament ends 22a and 22b, including the crimp tube 24 may affixed into the dilator 28 in any suitable manner.
- the dilator 28 may be injection molded around the filament ends 22a and 22b, and/or the crimp tube 24.
- the filament ends 22a and 22b and the crimp tube 24 can be permanently or removably positioned within the dilator 28.
- the filament ends 22a and 22b may be permanently attached to the dilator 28 by, for example, molding or gluing the dilator 28 over the filament ends 22a and 22b and the crimp tube 24.
- the loop ends 22a and 22b are shown to be entirely inside the dilator 28 and a portion of the crimp tube 24 is located external to the dilator 28. As depicted in Fig. 2 , the loop 22 extends from the tapered end 28a of the dilator 28.
- the length of a dilator is preferred to be greater than about 0,76 cm about (0.3 inches) long to aid in passage through a patient's body. However, in other embodiments, it may be less than about 0,76 cm (0.3 inches). In other embodiments, the dilator length is between about 0,51 cm (0.2 inches) and about 25,4 cm (10.0 inches). In preferred embodiments, the dilator length is between about 0,76 cm (0.3 inches) and about 5,08 cm (2.0 inches).
- One advantage of the longer dilators, for example, dilators having a length greater than about 5,08 cm (2.0 inches), is that the dilators can be used to untwist the sling assembly before pulling the plastic sleeve and knitted mesh into the body.
- a dilator may include a conical portion and a straight portion.
- the straight portion has a constant diameter.
- the conical portion has a diameter that varies and decrease from the diameter of the straight portion.
- the diameter of the straight portion of a dilator will be about 0,64 cm (0.25 inches).
- the diameter of the straight portion of a dilator may be from about to 0,25 cm (0.1) about 2,03 cm (0.8 inches).
- Fig. 3 depicts an alternate embodiment of a dilator assembly 30 including a tissue dilator 38 and an association loop 32 according to another illustrative embodiment of the invention.
- the filament ends 32a and 32b of the association loop 32 pass through a crimp tube 34.
- the crimp tube 34 includes a ball section 34b and a shank section 34a. The shank section 34a is crimped to ensure filament retention, while the ball section 34b creates further resistance against the association loop 32 being inadvertently pulled out of the dilator 38.
- the association loop 32 and the crimp tube 34 may be insert-molded into the dilator 38.
- a pin 39 is used to size and shape the association loop 32.
- Fig. 4 shows an alternative illustrative embodiment of a dilator assembly 40 having an extendable association loop 46 according to the invention.
- the dilator assembly 40 includes a tissue dilator 41 having a leading end 42 and a trailing end 43.
- the leading end 42 is the end of the dilator that is first inserted into a patient's tissues, and is tapered to increase the size of a tunnel formed initially by a shaft of a delivery device.
- the increased tunnel size eases the passage of a sling assembly or other medical implant.
- an association loop 46 extends out of the leading end 42 of the dilator 41.
- the dilator 41 includes a channel 44 extending axially through the dilator 41 from the leading end 42 to an intermediate shoulder 47, and a channel 45 extending axially through the dilator 41 from the intermediate shoulder 47 to the trailing end 43.
- the channels 44 and 45 are in fluid communication with each other, with the channel 44 having a reduced diameter relative to the channel 45, and with the reduced diameter being delineated by the intermediate shoulder 47.
- a biasing element, such as the spring 48 is seated within the channel 45, with a leading end 48a abutting the shoulder 47.
- the association loop 46 is formed from a filament having two terminal ends 46a and 46b.
- the terminal ends 46a and 46b thread through the channel 44 and the spring 48.
- a crimp tube 49 interfits over the filament ends 46a and 46b and is crimped for retention.
- the crimp tube 49 then concentrically interfits into the spring 48.
- the crimp tube 49 includes a radially extending rim 49a.
- the radially extending rim 49a is wider than the inner diameter of the spring 48 and abuts the trailing spring end 48b.
- Fig. 4 shows the spring 48 in an uncompressed state.
- the radially extending rim 49a of the crimp tube 49 engages the trailing end 48b of the spring 48 and causes the spring 48 to compress, also causing an additional length of the filament forming the association loop 46 to extend out of the leading end 42 of the dilator 41. Extending additional filament out of the dilator 41 effectively increases the size of the association loop 46.
- This type of spring biasirig enables the association loop 46 to expand over a particular delivery device feature during association with the delivery device, and then to retract to impede the association loop 46 from becoming disassociated with the delivery device during implantation.
- a crimp tube as depicted in Figs. 2 , 3 , and 4 may have an outer diameter of about 0.5 mm, 1 mm, or about 2 mm larger than the association loop ends.
- the crimp tube may have a constant or varying diameter and may include other structural features, such as a shoulder, a ledge, an indent, and/or a slot.
- the crimp tube and spring are sized such that at least a portion of the crimp tube is larger than the inner diameter of the spring to enable the crimp tube to engage and compress the spring in response to a pulling force on the association loop.
- Fig. 5 depicts another embodiment of an association loop and dilator assembly 50 including a crimp tube 54, a spring 56, a dilator 52, and an association loop 58 where the association loop 58 include bends 58a and 58b just distal and external to the dilator 52.
- the dilator assembly 50 operates in a substantially similar fashion to the previously discussed dilator assembly 40, the difference being primarily in the configuration of the crimp tube 54 and the inclusion of bends 58a and 58b in the association loop 58.
- the crimp tube 54 Rather than engaging the biasing spring 48 with a radially extending rim 49a, the crimp tube 54 has an increased diameter along its entire length.
- the crimp tube 54 has a diameter wider than the inner diameter of the spring 56 and, thus, enables it to be positioned with its leading end 54a abutting the trailing end 56b of the spring 56.
- pulling on the association loop 58 causes the leading end 54a of the crimp tube 54 to engage with the trailing end 56b of the spring 56 also causing the spring 56 to compress.
- the compression of the spring 56 allows an additional length of loop filament to extend out of the dilator 52.
- the bends 58a and 58b inhibit the association loop 58 itself from being retracted back into the dilator 52.
- the bends 58a and 58b may also maintain the spring 56 and the crimp tube 54 within a channel 51 of the dilator 52 during assembly, as the trailing end of the dilator 52 may be left open.
- the trailing end of the dilator 52 may be closed and the dilator 52 may enclose the crimp tube 54 within the cavity 51. It is to be understood that the configuration of the crimp tube 54 and the spring 56 may be employed in combination with an association loop having any of the various shapes as described herein.
- Fig. 6 depicts another embodiment of a dilator assembly 60.
- the filament forming an association loop 66 twists around itself subsequent to extending out of the dilator 62 to form a twisted section 64.
- the illustrative twisted section 64 has a length X, which may be increased by additional twisting or decreased by reduced twisting. As can be seen, increased twisting also reduces the size of the association loop 66, while reduced twisting increases the size of the association loop 66. Additionally, the twisting can be used to change the orientation of the association loop 66 relative to the orientation of the sleeve 61 and the sling 63 contained within the sleeve 61.
- the twisted section 64 of distance X can be bent to position the dilator 62 in front of a shaft tip of a delivery device to provide a smooth pull-through due to the inline profile of the shaft and dilator.
- This embodiment provides an easily used mechanism for forming an association loop 66 having a predetermined size and a predetermined distance X from the leading end of the dilator 62.
- the twisted section 64 may add a distance X between the sleeve 61 and the association loop 66, without the need for changing the length of the dilator 62.
- Fig. 7 depicts another illustrative embodiment of an association loop 74 formed into a dilator 72.
- the dilator 72 has three sections, a trailing section 72a, an intermediate conical section 72b, and a leading section 72c.
- the intermediate conical section 72b extends from the trailing section 72a.
- the leading section 72c terminates in a conical tip 72d and extends from the intermediate section 72b.
- the association loop 74 extends from the conical tip 72d of the leading section 72c much in the same way as the association loop 66 extends from the dilator 62 in Fig. 6 .
- One function of the leading section 72c is to space the association loop 74 a distance X from the end of the intermediate conical section 72b, without the need for any filament twisting.
- the filament ends 74a and 74b are embedded in the dilator 72 in any suitable fashion, including any of those described herein.
- the leading section 72c may be substantially hollow or solid, and may be substantially rigid or deformable.
- the leading section 72c may be formed integral with the intermediate section 72b or may be a separate component that interfits over the association loop 74 to adjust the size of the association loop 74 and/or space it a distance X from the end of the intermediate section 72b.
- Fig. 8 depicts another dilator assembly 80 having an association loop 84 affixed at a leading end of a dilator 82.
- the association loop 84 is formed from a multi-stranded filament.
- the multiple strands are braided to form a hollow tube.
- the association loop 84 and dilator 82 may be associated with any complementary structure on a delivery device, such as any of those described herein.
- association loop 84 may be tensioned during insertion into a suitable slot or notch. Such tensioning causes the diameter of the loop filament to decrease and more easily fit into the notch or slot. Another advantage is that once tensioning is removed, the loop filament tends to expand back to its steady state diameter, thus impeding it from easily sliding out of a suitably sized notch or slot in a delivery device.
- Fig. 9 depicts another illustrative embodiment of dilator assembly 90 including an association loop 94 according to an illustrative embodiment of the invention.
- the association loop 94 is affixed in some suitable fashion within the dilator 92.
- the association loop filament may be single or multi-stranded. If multi-stranded, it may be configured in any suitable manner, including the above described twisted, braided, and/or hollow tubular manner.
- the loop filament of Fig. 9 includes a coating 96.
- the coating 96 may be formed, for example, from a suitable elastic material, such as silicone.
- the diameter of the coated loop 94 is sized to be smaller than the outer diameter of a shaft of a delivery device.
- the compressible coating 96 on the association loop 94 contracts to allow the association loop 94 to interfit over the distal end of a delivery device shaft.
- the coated association loop 94 has a cross-sectional diameter that is larger than the width of a slot on a delivery device shaft.
- the association loop filament can compress to interfit into the slot. Then, the tendency for the compressed coating to return to its normal uncompressed state acts to impede, and in some configurations prohibit, the association loop 94 from falling out of the slot and becoming disassociated with the delivery device.
- Fig. 10 shows a dilator assembly 102, including an association loop 104 of the type described above, affixed to an end of a sling assembly 106 according to an illustrative embodiment of the invention.
- the exemplary sling assembly 106 includes a mesh sling 108 and a protective sleeve 110.
- the mesh sling 108 is free floating in that it does not attach to anything, including the protective sleeve 110 or the dilator assembly 102.
- the end 114 of the sleeve 110 wraps around and is heat-bonded to a substantially cylindrical trailing portion 112 of the dilator assembly 102.
- the plane of the association loop 104 is first oriented to the plane of the sleeve 110, for example, either substantially parallel, perpendicular, or any other any angle, to the sleeve 110.
- the sleeve end 114 is flattened and the dilator portion 112 is placed on top of the sleeve end 114.
- the sleeve end 110 is then wrapped around the dilator portion 112 to form a "U" or "C" shape, and heat is applied to bond the sleeve end 114 onto the surface of the dilator portion 112.
- a piece of heat shrink tubing can be placed over the sleeve end 114 and the dilator portion 112 prior to the application of heat to bond the sleeve 110 to the dilator assembly 102. It should be noted that any suitable method may be used to attach the sleeve to the dilator assembly, for example, heat bonding, gluing, stapling, stitching, etc.
- the sleeve end may have a width larger than the circumference of the dilator.
- the sleeve end may be wrapped around the dilator and the sides of the sleeve end may overlap each other.
- the width of the sleeve end may also be reduced, for example, by folding or trimming, such that the sleeve end encircles the dilator fully at most once, and without overlap. It is preferred that the attachment of the sleeve end to the dilator not substantially add to the size or profile of the dilator as a smaller profile is perceived to be safer during delivery of an implantable sling assembly.
- Fig. 11 depicts another method of bonding a sleeve end 115 to a dilator assembly 116.
- the dilator trailing portion 113 is first inserted into the sleeve end 115. More specifically, the plane of the association loop 118 is first oriented to the plane of the sleeve 119, for example, either substantially parallel, perpendicular, or any other any angle, to the sleeve 119.
- the trailing portion 113 of the dilator assembly 116 is then inserted into the sleeve end 115.
- the sleeve end 115 is then pulled tightly around the dilator trailing portion 113, and heat is applied to bond the sleeve end 115 to the surface of the dilator trailing portion 113.
- a piece of heat shrink tubing is then inserted over the sleeve end 115 and heated to bond the sleeve end 115 to the surface of the dilator trailing portion 113.
- Figs. 10 and 11 depict the sling assembly including a protective sleeve and the sling as being free floating, this need not be the case. In other illustrative embodiments, the sling may be attached to the protective sleeve in any suitable fashion.
- any suitable sleeve and sling assemblies or slings known in the art can be used with the invention.
- a sling mesh having tangs or projections that extend laterally from the edges of the sling along at least a portion of the length of the sling can be used. It is preferred that when the sling is placed in the body, the sling can lie somewhat flat to allow tissue ingrowth and the tanged portion of the sling to grip the tissue.
- the dilator and the sling or sleeve are preferably made of a material which is compatible for thermobonding to achieve the maximum bond strength.
- thermobonding material is polyethylene.
- the sleeve is glued to the dilator, for example, using cyanoacrylate.
- the dilator and the sleeve are preferably made of a plastic material such as nylon.
- Fig. 12 depicts another illustrative dilator assembly 120 including an association loop 122 formed into a tissue dilating structure 124.
- this illustrative configuration also bends the terminal ends 122a and 122b of the association loop filament at an angle to a longitudinal axis of the crimp tube 126.
- the dilator 124 includes two axially extending channels 127 and 129 in fluid communication with each other and interfacing at an intermediate shoulder 128.
- the association loop is flatted and interfitted through the crimp tube 126 as shown in Fig. 12 .
- the leading end 123 of the flatted association loop 122 is then inserted into the channel 127 via the channel 129 at the trailing end 124a of the dilator 124.
- the leading end 123 of the association loop 122 extends through an opening at the leading end 124b of the dilator 124, the leading end 126a of the crimp tube 126 abuts the shoulder 128, which stops the crimp tube 126 from passing into the channel 127.
- the excess ends 122a and 122b may be trimmed or cut off all together. Leaving some remnant of the ends 122a and 122b may be desirable to provide additional protection against the association loop 122 pulling out of the dilator 124.
- the association loop 122 can be expanded and shaped as desired.
- the loop is shaped such that it cannot slip back into the dilator 124.
- neither the crimp tube 126 nor the association loop filament is affixed rotationally in the dilator 124. This feature enables the association loop 122 to rotate relative to the dilator 124, allowing the medical operator to twist and untwist a sling assembly while the loop 122 is associated with a delivery device.
- the invention provides an association loop expansion tool of the type depicted at 129.
- the tip 129a of the loop expansion tool 129 is passed through the flatted association loop 122 to open it to a desired degree.
- the expansion tool 129 is conical in shape
- an oval like association loop 122 is produced.
- the tool 129 can have any preferred profile or cross-section of choice, for example, triangular or rectangular to provided association loops of various shapes.
- One advantage of the conical design of the tool 129 is that it enables the association loop 122 to be opened to whatever degree is desired by the medical operator.
- an association loop 122 and dilator assembly 120 can also be produced by inserting the two ends 122a and 122b of a flatted loop filament into the leading end 124b of the dilator 124.
- a crimp tube 126 can then be inserted onto the filament ends 122a and 122b and crimped at a given length.
- the filament ends 124a and 124b extend in a trailing direction and are not bend to form aT.
- the flatted association loop 122 and the dilator tube 126 are then pulled back towards the leading end 124b of the dilator 124 where the loop is formed to a preferred shape.
- a cavity of a dilator can be shaped to a desired configuration such as an oval cross-sectional configuration to prevent the crimped filament from rotating within the dilator and, thus, preventing the association loop from rotating outside the dilator.
- a cavity can be tapered such that when the crimp tube is pulled into the cavity, the cavity interferes with the crimp tube to prevent rotation of the association loop relative to the dilator.
- association loops and dilator assemblies depicted in Figs. 1-12 have been described as having a generally oval shape. However, this need not be the case and the association loops of the invention may have any suitable shape, including without limitation, circular, rectangular, triangular, or any other suitable polygonal or curved shape. Additionally, the association loops described herein may be used in combination with any suitable complimentary mating structure located on a delivery device, for example, such as an appropriately sized and shaped slot in a distal end of a shaft of a delivery device. In the following illustrative description and accompanying drawings, the association loop 1 is used to illustrate the interaction of an association loop with a suitable mating structure located on a delivery device.
- association loop 1 Only the portion of the association loop 1 within the mating structure is depicted, e.g., a cross-sectional view of the association loop 1.
- the association loop 1 may be shown contacting the walls of the channels of the delivery devices, it is understood that the association loop may be sized smaller or larger than the width of the channels of the delivery devices, and that any suitable association loop may be employed, including without limitation, any of the illustrative association loops described herein.
- a delivery device may be configured with a mating structure, such as a slot, which can cooperate with an association loop as described above.
- the slot can be positioned at any location along the delivery device, but is preferably located close to the distal tip of the delivery device.
- the delivery device includes a shaft that can be used to penetrate tissue or fascia.
- the shaft can be made of rigid material or malleable material.
- the shaft can be pre-bent such that it defines a configuration that has one or more curves in a plane or the shaft can have one or more curves on multiple planes.
- the delivery device has an opening into which the association loop can be inserted.
- the opening is a slot defined by a channel having radially disposed and longitudinally disposed sections/legs.
- the slot can have any shape and can be substantially smooth or can include one or more dimples, grooves, protuberances and/or indentations or other irregularities, formed either during the manufacture of the slot or by attaching an implant to the slot wall.
- the slot is shaped such that it impedes, and in some cases prohibits, the loop from easily unhooking and disassociating from the slot.
- Fig. 13 depicts an L-shaped slot 132 positioned near a distal end 130 of a delivery device shaft 134.
- the L-shaped slot 132 is formed from a first channel 133 extending radially into the shaft 134, and a second channel 135 extending distally along the axis 136 of the shaft 134 from an inner terminal end 133a of the first channel 133.
- An association loop such as the associate loop 1 of Fig. 1 , can slide radially into the opening 133b of the first channel 133 and along the first channel 133 to the inner terminal end 133a.
- the association loop 1 can then slide distally along the second channel 135 to the most distal end 135a of the second channel 135 to hook one end of the implant assembly 10 of Fig. 1 onto the distal end 130 of the shaft 134. During a sling placement procedure, this process may be repeated with the second association loop 3 and the same or a second similar delivery device.
- the first radially extending channel 133 maybe about 1mm, 1.5 mm, 2 mm, or about 2.5 mm in length and about 0.5 mm, 0.75 mm, 1 mm, or about 1.5 mm in width
- the second axially extending channel 135 may be about 3 mm, 4 mm, 5 mm or about 6 mm in length and about 0.5 mm, 0.75 mm, 1 mm, or about 1.5 mm in width.
- the shape and/or dimensions (e.g., width, length or diameter) of the slot 132 may be varied to suit the dimensions or intended orientation of the association loop on the implant assembly.
- an advantageous feature of the L-shaped slot 132 is that the association loop 1 slides easily into the first channel 133 and remains free to slide along the second channel 135. When slid to a proximal most position 133a in the second channel 135, the association loop 1 may be slid radially out of the first channel 133 to unhook the association loop 1 and thus, the implant assembly 10, from the shaft 134 with a minimum of effort.
- the distally extending orientation of the second channel 135 causes the association loop 1 to slide to the distal most position 135a in the L-shaped slot 132. This tends to maintain the association loop 1, and thus the implant assembly 10, hooked onto the L-shaped slot 132 during withdrawal of the shaft 134 in a proximal direction.
- Fig. 14 depicts an alternate L-shaped slot 142 formed in a distal end 144 of a shaft 146 of a delivery device.
- the L-shaped slot 142 is similar to the L-shaped slot 132 in that it includes a first radially extending channel 143 and a second axially extending channel 145.
- the radially extending channel 143 includes an indentation 147 extending axially in a proximal direction. The indentation is sized and shaped to seat the association loop 1 to impede, and in some cases prohibit, it from sliding radially out of the channel 143.
- the axially extending channel 145 includes a width narrowing protuberance 149 located at its proximal most end.
- the protuberance 149 is sized to impede, and in some configurations to prohibit, the association loop 1, subsequent to insertion into the channel 145, from sliding in a proximal direction along the channel 145 sufficiently far to enable it to enter the radially extending channel 143. In this way, the protuberance 149 also impedes, and in some configurations prohibits, the association loop 1 from becoming unhooked from the shaft 146.
- Fig. 15 depicts another illustrative L-shaped slot 150 in a distal end 154 of a shaft 156.
- the slot 150 includes a radially extending channel 151 and an axially extending channel 152.
- a feature of the illustrative device of Fig. 15 is that the axially extending channel 152 has a width that is both smaller than the width of the radially extending channel 151 and less than a normal uncompressed diameter of the filament forming the association loop 1.
- the association loop 1 slides freely into the radially extending channel 151, but is compressed when slid into the axially extending channel 152. This compression causes an increased friction between the association loop 1 and the axially extending channel 152, which tends to maintain the association loop 1 within the axially extending channel 152.
- Fig. 16 depicts a further alternative L-shaped slot 160 located at the distal end 162 of a delivery device shaft 164.
- a feature of this device is that the axially extending channel 168 tapers inward as it extends distally. The taper reduces the width of the channel 168 sufficiently near its distal end 168a to compress the filament of the association loop 1 when the association loop 1 is pulled distally toward the tapered distal end 168a of the second channel 168. This tends to inhibit the association loop 1 from sliding proximally along the channel 168 and becoming unhooked from the shaft 164.
- association loop 1 contributes to the force holding the association loop 1 in place near the distal end 168a of the tapered second channel 168.
- an association loop 1 formed from a strand of metal wire may not easily compress and become lodged in the tapered second channel 168.
- an association loop 1 formed from multiple strands of wire and/or coated with a flexible or resilient material, such as a polymer may compress and lodge more securely in the tapered second channel 168. This type of association loop may require more force to pull the association loop out of the channel 168.
- Fig. 17 depicts another alternative L-shaped slot 170 formed in a distal end 176 of a delivery device shaft 178.
- the slot 170 includes a radially extending channel 172 and an axially extending channel 174.
- the opening 173 to the radially extending channel 172 is enlarged for easy insertion of the association loop 1. More specifically, the wall 172a of the radially extending channel 172 tapers outward to create to the enlarged opening 173.
- the width of the radially extending channel 172 at all locations is larger than the outside diameter of the association loop filament.
- the axially extending channel 174 has a width less than the outside diameter of the association loop filament.
- the combination of the enlarged opening 173 of the channel 172 and the reduced width of the channel 174 facilitates hooking the association loop 1 into the L-slot 170 and, at the same time, impedes, and in some configuration prohibits, the association loop 1 from becoming unhooked.
- Fig. 18 depicts another alternative slot structure 180 in a distal end 186 of a delivery device shaft 188.
- the slot structure 180 of Fig. 18 is T-shaped, including a radially extending channel 182 and an axially extending channel 184.
- the axially extending channel 184 includes a distally extending channel portion 184a.
- the axially extending channel 184 also includes a proximally extending channel portion 184b.
- T-shaped structure 180 tends to cause the association loop 1 to remain within channel 184 regardless of whether the shaft 188 is moved in the proximal direction or the distal direction. More specifically, in response to the delivery device shaft 188 being inserted into a patient's body and moved in a distal direction, the association loop 1 tends to slide into the channel portion 184b. Alternatively, in response to moving the shaft in the proximal direction, the association loop tends to slide into the channel portion 184a. In either case, the association loop 1 tends to stay hooked within the structure 180. It should be noted that any of the previously described modifications to the dimensions of the L-shaped slot may also be applied to the T-shaped slot of Fig. 18 .
- the association loop 1 is may be unhooked from the T-shaped slot 180 by positioning the association loop 1 at the inner terminal end of the radially extending channel 182 and sliding the association loop 1 radially out of the slot 180.
- the delivery device shaft also may include a structure that overhangs the entrance to the L- or T-shaped slot to further reduce the likelihood of the association loop inadvertently coming unhooked from the delivery device shaft.
- such structures are deformable to the degree that they do not prohibit the association loop from coming unhooked, but instead impedes its exit from the L- or T-shaped slot.
- such structures may be sufficiently rigid to prohibit the association loop from coming unhooked.
- the overhanging structure takes the form of a sheath or tube having a portion placed over a portion of the radially extending channel opening.
- the below discussed structures are formed as a coating on the delivery device shaft.
- they may be formed from a heat-shrink tubing cut to a suitable shape and interfitted over the delivery device shaft.
- the overhanging structures may be formed from a variety of flexible and/or resilient materials, such as a polymer plastic.
- they are fixedly attached to the delivery device shaft, and may in some embodiments, be colored to increase visibility and/or can be made lubricious to aid the delivery device shaft in traversing tissue in the body.
- Fig. 19 is a longitudinal cross-sectional view of a delivery device shaft 194 having an L-shaped slot 192 of the type described above formed in a distal portion 195.
- a sheath 196 interfits over a portion of the delivery device shaft 194 and extends partially over the opening to the radially extending channel 192a.
- the sheath is flexible enough to deflect sufficiently to allow the association loop 1 to enter the channel 192a, but rigid enough to impede, and in some configurations prohibit, the association loop 1 from sliding out of the channel 192a once inserted.
- the sheath structure of Fig. 19 maybe employed with any of the above described slot structures.
- Fig. 20 depicts a cross-sectional view of another L-shaped slot structure 212 formed in a distal end 215 of a delivery device shaft 214.
- the L-shaped slot 212 includes both a radially extending channel 212a and an axially extending channel 212b.
- the illustrative device of Fig. 20 also includes a sheath 216 interfitted over the shaft 214 and located on the proximal side of the channel 212a.
- the illustrative sheath 216 includes a flap 216a, which extends axially in a distal direction to at least partially overlap with the opening to the radially extending channel 212a.
- the extension flap 216a is flexible enough to deflect inward toward the axially extending channel 212b to enable a medical operator to insert the association loop 1 into the radially extending channel 212a. However, the extension flap 216a is also rigid enough to impede, and in some configurations prohibit, the association loop 1 from sliding out of the first channel 212a subsequent to insertion. As in the case of the structure 196 of Fig. 19 , the structure 216a may be sized and shaped to be employed with any suitable slot structure, including any of those described herein. Additionally, the extension flap 216a need not be supported with the sleeve 216, but instead may be supported in place with any suitable structure.
- Fig. 21 depicts another illustrative L-shaped slot structure 232 formed in a distal end 234 of a delivery device shaft 236.
- the illustrative delivery device shaft of Fig. 21 also includes a sheath 238 interfitted over the delivery device shaft 236.
- the sheath 238 includes a slotted portion 240 that aligns with the radially extending channel 232a.
- the slotted portion 240 is defined by the sheath walls 240a and 240b, and is narrower than the radially extending channel 232a, and preferably narrower than the diameter of the filament forming the association loop 1.
- the sheath walls 240a and 240b are sufficiently resilient to deflect outward to enable expansion of the slot 240 and insertion of the association loop 1. Subsequent to association loop 1 insertion, the sheath walls 240a and 240b expand back to a normal position to impede, and in some configurations prohibit, the association loop 1 from sliding back out the radially extending channel 232a.
- the sheath 238 also includes an axially extending slotted portion 239 for enabling the association loop 1 to slide distally into the axially extending channel 232b.
- the axially extending slotted portion 239 is depicted as having the same width as the channel 232b, this need not be the case.
- the axially extending slotted portion 239 of the sheath 238 may have a larger width or, in some configurations, a smaller width to further impede the association loop 1 from unhooking from the slot 232.
- a sheath interfitted over a delivery device shaft as described above may have other configurations.
- a hood portion 240c of the sheath 238, including sheath wall 240a need not be present. Instead, the sheath wall 240b may act alone to impede, and in some configurations prohibit, the association loop 1 from sliding back out the radially extending channel 232a.
- Fig. 22 depicts another illustrative slot and sheath combination 242.
- the illustrative device 242 is substantially the same as the illustrative device of Fig. 21 , except that the sheath 246 includes a curved slotted section 248.
- the curved slotted section 248 preferably aligns with the radially extending channel 244a.
- the curved nature of the slotted section 248 acts both to ease the insertion of the association loop 1 into the L-shaped slot 244 and to reduce the likelihood of the association loop 1 sliding back out of the radially extending channel 244a.
- the sheath portions 248a and 248b that form the curved slotted section 248 accomplish this by cooperating to constrain the association loop 1, when inserted into the slot 244, from re-entering the radially extending channel 244a. More specifically, in this device, the sheath portion 248b extends across the inner terminal end of the channel 244a into the channel 244b. The sheath portion 248b thus acts as a flap. For example, when the association loop 1 is slid into the channel 244a, the sheath portion 248b deflects downward to allow the association loop 1 to slide into the channel 244b.
- the sheath portion 248b then prevents the association loop 1 from exiting the channel 244b because, as the association loop 1 is pulled into the channel 244a, the sheath portion 248b deflects against the wall of the channel 244b to block the entrance to the channel 244a.
- association loop and dilator assemblies of Figs. 1-9 and L- or T-shaped slots of Figs. 13-22 may be used in combination and coordinated to ease insertion of an association loop into a slot, restrict or allow freedom of movement of the association loop within the slot, and impede the association loop from becoming unhooked from the slot.
- the dimensions of an association loop and a slot may be coordinated to facilitate the above.
- Figs. 23A and 23B illustrate the interaction between an association loop on an end of a sling assembly and a slot near a distal end of a delivery device. Specifically, Figs. 23A and 23B use the loop and dilator structure of Fig. 10 and a shaft 134 of the delivery device of Fig. 13 for demonstrating the coordination of the dimensions of an association loop and a slot on a delivery device.
- Fig. 23A depicts the loop and dilator structure of the implant assembly of Fig. 10 and a slot 132 near the distal end 130 of the shaft 134 of Fig. 13 before the mating structures, e.g., the association loop 104 and the slot 132, are associated.
- the association loop 104 may be sized such that it has a diameter larger than or equal to the diameter I of the shaft 134 such that the association loop 104 may be slid over the distal end 130 of the delivery device shaft 134.
- the association loop 104 and thus, one end of a sling assembly, is hooked onto the shaft 134 by radially sliding the association loop 104 into channel 133 and axially sliding the association loop 104 to a distal end 135a of the channel 135.
- Fig. 23B depicts the association loop 104 hooked onto the second channel 135 of the L-shaped slot 132.
- the loop 104 when positioned at the distal end 135a of the second channel 135, is constrained in the slot 132.
- the loop 104 has a length sufficiently large to slide over the delivery device 134 and sufficiently short that a portion 134c of the delivery device 134 (from the distal end 135a of the axial channel 135 to the distal tip 130 of the shaft 134) prevents the dilator 112 from crossing the axis 136 around the distal tip 130 of the shaft 134.
- the length H of the portion 134c of the shaft 134 is longer that the association loop 104 and keeps the dilator 112 on a side 134a of the shaft 134.
- the diameter I and the length H of the portion 134c of the shaft 134 and the length of the association loop 104 all may vary yet still be selected relative to each other to maintain the dilator 112 on one side, e.g., side 134a of the shaft 134. This feature allows the loop 104 to be removed in specific directions.
- the loop 104 is slid towards the proximal most position in the second channel 135, is rotated 180 degrees around the axis 136 of the shaft 134 to remove the association loop 104 from the L-shaped slot 132, and slid back off the distal tip 130 of the shaft 134.
- the association loop 104 is rotated 180 degrees around the delivery device shaft 134, the association loop 104 encircles the shaft 134 and the distal tip of the dilator 112 points towards the opening of the L-shaped slot 132.
- the diameter I and the length H of the portion 134c of the shaft 134 and the length of the association loop 104 may be varied so that the dilator 112 may crossing the axis 136 around the distal tip 130 of the delivery device shaft 134 to a side 134b.
- the length of the association loop 104 may be selected to be long enough to that portion 134c does not prevent the dilator 112 from crossing the axis 136 around the distal tip 130.
- the length of the association loop 104 may be selected to be long enough to that portion 134c prevents the dilator 112 from crossing the axis 136 around the distal tip 130 of the shaft 134 when the association loop 104 is not fully extended.
- association loop 104 becomes longer than the length H of the portion 134c of the shaft 134 and allows the dilator 112 to cross the axis 136 around the distal tip 130 of the delivery device shaft 134 from side 134a to side 134b.
- Fig. 24 shows an exemplary structure, a ball anchor-dilator assembly 280, that can be attached to an end of a sling assembly.
- a wire 282 extends from a dilator 284 and terminates in a ball anchor 286.
- the ball anchor 286 can be attached to the end of the wire 282 or it can be molded to the end of a wire 282.
- the ball anchor 286 can be rigid or elastic.
- the anchor is depicted in the shape of a ball, it is understood that the anchor may be any regular or irregular shape, such as crescent, square, rectangular, bar, star, etc.
- Fig. 25 depicts the ball-dilator assembly 280 and a complementary structure near the distal end of the shaft 290.
- the shaft 290 can be constructed such that it has a ball receiving slot 291 located near the distal tip of the delivery device 290.
- the ball anchor may be snapped or otherwise inserted into the proximal end 291 a of the slot 291.
- the proximal end 291a of the slot 291 for receiving the ball anchor 286 has a size smaller than the size of the ball anchor 286.
- the ball anchor 286 is compressed as it is inserted into the proximal end 291a of the slot 291 and expands in the ball-shaped proximal end 291 a of the slot 291 when inserted to prevent the ball anchor 286 from inadvertently separating from the proximal end 291a of the slot 291.
- the proximal end 291a of the slot 291 in the delivery device 290 may be made to the size of the ball anchor 286 and the ball anchor 286 is made to snap into the proximal end 291a of the slot 291 of the delivery device 290.
- any of the slots described herein such as slot/sheath combinations, slots of varying dimensions, and slots including indentations and/or protuberances may be employed in combination with any of the associations loops described herein.
- the above described illustrative structures may be employed with any of the described delivery devices, or others known in the art, including the suprapubic, transobtural, and transvaginal delivery devices described below.
- Fig. 26 depicts a delivery device 270 for delivering a sling assembly, such as the sling assembly 10 depicted in Fig. 1 , to an anatomical location in the body of a patient.
- the delivery device 270 includes a handle 271 and, extending from the handle 271, a needle shaft 272 which is composed of a first straight section 272a, a curved section 272b, and a second straight section 272c.
- the first straight section 272a of the shaft 272 is permanently affixed to and extends distally from a distal end of the handle 271.
- the curved section 272b of the shaft 272 extends distally from the first straight section 272a.
- the second straight section 272c extends distally from the curved section 272b, and terminates at a distal end to form a conical tip 272d.
- the shaft 272 of the delivery device 270 is formed of surgical grade stainless steel and, excluding the conical tip 272d, has a constant diameter along its length.
- An L-shaped slot 279 which may be any of the slot structures described herein, is positioned on the second straight section 272c near the distal end of the delivery device 270.
- the shaft 272 is employed to create a passage through body tissue, namely, from the abdomen to the vagina. An incision is made on each side of the midline of the body in the lower abdomen and an incision is made in the vaginal wall.
- the shaft 272 of the delivery device 270 is inserted through one abdominal incision down along the posterior surface of the pubic bone through the vaginal incision.
- An association loop which may be any of the association loops described herein, slides into the L-shaped slot 279 to hook one end of a sling assembly onto the distal end of the shaft 272. This process may be repeated with a second association loop and the delivery device 270 or a second delivery device similar to or the same as delivery device 270 on the contralateral side of the body.
- cystoscopy may be performed to ensure bladder integrity.
- the two delivery devices 270 may be withdrawn from the abdominal incisions, drawing each end of the sling assembly through the respective passages created by the shafts of the delivery devices. The association loops are then unhooked from the respective delivery devices.
- the dilators may be used as handles to adjust the position of the sling assembly to achieve desired placement. Once desired placement of the sling assembly is achieved, the tabbed spacer, and thus the looped portion of the bottom side of the plastic sleeve, is cut. Then, by pulling upward on the dilators, the medical operator slides the plastic sleeve off the knitted mesh and removes it from the body. The delivery devices and the plastic sleeve, including the dilators, are then discarded.
- the exemplary devices includes coloring the shaft of the delivery device so that that the needle shaft of the delivery device is visible.
- the shaft can be colored by either attaching a colored tubing or sheath, or by chemically coloring the shaft of the delivery device.
- a heat-shrink tubing 277 may be thermobonded to the needle shaft 272. As depicted, the heat-shrink tubing 277 can extend the length of the needle shaft 272 to act as a visible coating to aid the physician during cystoscopy.
- the colored heat-shrink tubing 277 can be configured to terminate at a location on the needle shaft 272 of the delivery device 270 that corresponds to the opening of the slot 279 and can thus serve to prevent the association loop from disengaging freely from the needle shaft 272.
- the heat-shrink tubing 277 can extend just partially along the length of the needle shaft 272.
- the colored needle shaft aids the user during cystoscopy.
- an electrochemical process can be used to provide a colored finish on the needle shaft 272 of the delivery device 270 to facilitate needle visibility during cystoscopy. Any color can be used such as green, blue, yellow or orange.
- the finish includes a blue chrome oxide finish.
- the delivery device 270 of Fig. 26 may be configured for a transvaginal or a prepubic procedure.
- the slot 279 may be oriented such that the axially extending channel of the slot 279 extends proximally towards the handle 271, instead of distally toward the distal end of the shaft 272.
- the delivery device may be shaped and sized the same as or differently from the delivery device 270 of Fig. 26 .
- the shaft 272 may be configured shorter than for a suprapubic procedure or incorporate a different curve radius.
- a transvaginal or a prepubic procedure is similar to suprapubic procedure described above, however, a sling assembly is hooked onto a delivery device via an association loop and then is inserted from a vaginal incision to an abdominal incision over or under the pubic bone.
- Figure 27 shows another illustrative delivery device 300 particularly sized and shaped for transobtural placement of an implantable sling, and employable with any of the illustrative embodiments of Figures 1-12 .
- Figure 30 depicts a side view of a delivery device 300.
- the delivery device 300 includes a handle 312, a shaft 314, and a transitional portion 317 extending distally between a distal end 312a of the handle 312 and a proximal end of the shaft 314.
- the transitional portion 317 includes a first straight section 317a, a curved section 317b and a second straight section 317c, all lying substantially in a single plane, and may be formed as either part of the shaft 314 or as part of the handle 312.
- the shaft 314 includes a curved section 314a, a straight section 314b and a conical tip 314c, all lying substantially in the same plane as the transitional portion 317.
- the first straight section 317a of the transitional portion 317 attaches to the distal end 312a of the handle 312, extends distally along a first axis 311, and preferably has a substantially constant diameter.
- the curved section 317b of the transitional portion 317 extends from a distal end of the first straight section 317a, curves away from the first axis 311, and also preferably has a substantially constant diameter.
- the second straight section 317c extends from a distal end of the curved section 317b along a second axis 313, and preferably has a diameter that decreases from its proximal end to its distal end to provide increased structural stability to the shaft 314.
- the curved section 314a preferably, has a substantially constant diameter, smaller than the diameter of the curved section 317b of the transitional portion 317, and extends from the distal end of the second straight section 317c of the transitional portion 317, curves back toward the first axis 311, and terminates at a distal end approximately at an intersection with the first axis 311.
- the straight section 314b preferably, has a substantially constant diameter and extends from the distal end of the curved section 314a along a third axis 315, which crosses the first axis 311.
- a conical tip 314c extends distally from the straight section 314b.
- the distal portion 319 of the delivery device 300 may include a structure or feature 320 for associating the delivery device 300 with a sling and/or sling assembly or an end of a sling and/or sling assembly, such as any of the slot structures described herein.
- the delivery device of Figure 30 may be employed with any of the above described loop and dilator assemblies described herein.
- the shaft 314 is employed to create a passage through body tissue, namely, from just lateral to the inferior pubic ramus through the obturator foramen to the vagina.
- Three incisions are made to the body of the patient.
- a first incision is made just lateral to the inferior pubic ramus at the junction where the inferior pubic ramus and the adductor longus muscle meet.
- a second incision, corresponding to the first incision, is made on the contralateral side.
- a third incision is made in the anterior vaginal wall and dissected bilaterally to the interior portion of the inferior pubic ramus.
- the handle 312 is grasped in one hand, and the shaft 314 of the delivery device 300 is inserted through one ischiopubic incision in a downward motion, piercing the obturator muscle and obturator membrane. Then the handle 312 is turned to a position 45 degrees to the midline of the patient's body.
- a forefinger of the opposite hand is placed in the lateral dissection of the vaginal incision and on the distal end of the delivery device 300. The forefinger is used to guide the distal end of the shaft 314 around the inferior pubic ranius through the vaginal incision.
- a first association loop is slid over the distal end of the shaft 314 and into a slot 320 to hook one end of a sling assembly onto the delivery device 300.
- the delivery device 300 is then withdrawn from the ischiopubic incision, drawing one end of the sling assembly through the passage created by the shaft 314 of the delivery device 300.
- the association loop is then unhooked from the delivery device 300.
- This process is repeated with a second association loop and the delivery device 300, or a second delivery device the same as or similar to the delivery device 300, on the contralateral side of the body.
- a single cystoscopy may be performed at this time to ensure bladder integrity.
- the dilators may be used as handles to adjust the position of the sling assembly to achieve desired placement.
- the tabbed spacer and thus the looped portion of the bottom side of the plastic sleeve, is cut. Then, by pulling upward on the dilators, the medical operator slides the plastic sleeve off the knitted mesh and removes it from the body. The delivery devices and the plastic sleeve, including the dilators, are then discarded.
- FIGS 28A, 28B and 28C show another illustrative delivery device 340 also particularly sized and shaped for transobtural placement of an implantable sling, and employable with any of the above described loop and dilator assemblies described herein, including those of Figures 2-9 .
- the delivery device 340 includes a handle 342 with a first substantially straight section 342a, a curved section 342b, and a second substantially straight section 342c located substantially in a first plane, a transitional portion 345 extending out of a distal end 343 of the handle 342, and a shaft 344 extending from a distal end of the transitional portion 345.
- the shaft includes curved section 344a, a straight section 344b, and in one configuration, terminates in a conical tip 344c.
- the distal portion 349 of the delivery device 340 may include a structure or feature 348, for example, a slot structure as depicted in figures 13-25 , for associating the delivery device 340 with a sling and/or sling assembly or an end of a sling and/or sling assembly.
- the delivery device of Figures 28A, 28B and 28C may be employed with any of the above described loop and dilator assemblies described herein, including those of Figures 2-9 .
- the transitional portion 345 interfits and extends axially out of the distal end 343 of the second handle section 342c to affix the shaft 344 to the handle 342.
- the transitional portion 345 is substantially co-planar with the handle 342 in the first plane.
- the curved section 344a of the shaft 344 extends from a distal end of the transitional portion 345.
- the straight section 344b of the shaft 344 extends from a distal end of the curved section 344a.
- the curved section 344a and the straight section 344b are substantially coplanar in a second plane.
- the first and second planes are substantially orthogonal to each other. However, the first and second planes may be at any suitable angle (e.g., about 10, 20, 30, 45, 60, 70 or 80 degrees) to each other.
- sections 342b and 342c have cross sectional diameters that taper to be smaller at the distal end 343 of the handle 342. Additionally, rather than having the tapered section 317c of the transitional portion 317 being formed as part of the shaft 314, as shown in Figure 27 , the tapered portions 342b and 342c of the devices of Figures 28A, 28B and 28C are formed as part of the handle 342. According to one feature, this configuration reduces the length of the transitional portion 345 and thus, provides improved structural support for the curved section 344a. Preferably, in operation, neither the handle 342 nor the intermediate/transitional portion 345 extends into the body of the patient, and provides a positive stop against this occurring.
- the shaft 344 is employed to create a passage through body tissue, namely, from just lateral to the inferior pubic ramus through the obturator foramen to the vagina.
- Three incisions are made to the body of the patient.
- a first incision is made just lateral to the inferior pubic ramus at the junction where the inferior pubic ramus and the adductor longus muscle meet.
- a second incision, corresponding to the first incision, is made on the contralateral side.
- a third incision is made and dissected bilaterally in the anterior vaginal wall.
- the handle 342 of the delivery device 340 is grasped in one hand, and the shaft 344 is inserted into the ischiopubic incision perpendicular to the skin with the first section 342a of the handle 342 at a 45-degree angle parallel with the thigh.
- a forefinger of the opposite hand is placed in the lateral dissection of the vaginal incision.
- the thumb of the opposite hand is placed on the outside of the curve of the shaft 344, and a downward force is applied, allowing the shaft 344 to pierce through the obturator foramen.
- the shaft 344 is then rotated medially around the inferior pubic ramus to meet the forefinger of the opposite hand, which guides the conical tip 349 of the shaft 344 through the vaginal incision. It is our understanding that during this procedure, the transition portion 345 does not extend into the ischiopubic incision.
- a first association loop is slid over the distal end of the shaft 344 and into a slot 348 to hook one end of a sling assembly onto the delivery device 340.
- the delivery device 340 is then withdrawn from the ischiopubic incision, drawing one end of the sling assembly through the passage created by the shaft 344 of the delivery device 340.
- the association loop is then unhooked from the delivery device 340.
- This process is repeated with a second association loop and the delivery device 340, or a second delivery device the same as or similar to the delivery device 340, on the contralateral side of the body.
- a single cystoscopy may be performed at this time to ensure bladder integrity.
- the dilators may be used as handles to adjust the position of the sling assembly to achieve desired placement.
- the tabbed spacer, and thus the looped portion of the bottom side of the plastic sleeve is cut.
- the medical operator slides the plastic sleeve off the knitted mesh and removes it from the body.
- the delivery devices and the plastic sleeve, including the dilators, are then discarded.
- the delivery devices and/or delivery assemblies of the invention are made of biocompatible materials, which can include, for example, polyethylene/ethylene vinyl acetate (EVA) blend, polyethylene, polyester, nylon, polypropylene, thermoplastic fluorinated ethylene propylene (FEP), TFP, stainless steel, malleable metal or any combination of these materials.
- EVA polyethylene/ethylene vinyl acetate
- FEP thermoplastic fluorinated ethylene propylene
- stainless steel malleable metal or any combination of these materials.
- a shaft of a delivery device of the invention is formed of surgical grade stainless steel.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Surgery (AREA)
- Biomedical Technology (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Medical Informatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Molecular Biology (AREA)
- Urology & Nephrology (AREA)
- Transplantation (AREA)
- Vascular Medicine (AREA)
- Oral & Maxillofacial Surgery (AREA)
- Cardiology (AREA)
- Prostheses (AREA)
Claims (16)
- Assemblage de sangle (10 ; 106) comprenant :une gaine (9 ; 61 ; 110 ; 119) comportant une première extrémité et une seconde extrémité ;une sangle (11 ; 63 ; 108) qui réside, au moins partiellement, à l'intérieur de la gaine (9 ; 61 ; 110 ; 119) ;une boucle d'association (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) située au niveau d'une première extrémité de l'assemblage de sangle (10 ; 106) et dimensionnée et conformée pour associer l'assemblage de sangle (10 ; 106) avec un arbre d'un dispositif de pose ;un dilatateur (5 ; 7; 28; 41 ; 52; 62; 72; 82; 92; 102; 112) comportant une première extrémité et une seconde extrémité, et fixé à une première extrémité de la gaine (9 ; 61 ; 110 ; 119), dans lequel :un matériau qui forme la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) s'étend axialement à l'intérieur de la seconde extrémité du dilatateur (5 ; 7 ; 28 ; 41 ; 52 ; 62 ; 72 ; 82 ; 92 ; 102 ; 112).
- Assemblage (10 ; 106) selon la revendication 1, dans lequel la boucle d'association (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) peut être orientée, par exemple, suivant sensiblement le même plan qu'une sangle (11 ; 63 ; 108) incluse dans l'assemblage de sangle (10 ; 106) ou suivant un plan sensiblement orthogonal au plan de la sangle (11 ; 63 ; 108).
- Assemblage (10 ; 106) selon la revendication 1, dans lequel la boucle d'association (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) peut être formée à partir d'un matériau sensiblement rigide.
- Assemblage selon la revendication 1, dans lequel la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) est formée à partir d'un unique toron de matériau ou à partir de multiples torons de matériau.
- Assemblage selon la revendication 4, dans lequel la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) est formée à partir de multiples torons de matériau et les multiples torons sont tressés.
- Assemblage selon la revendication 5, dans lequel les multiples torons forment un tube creux.
- Assemblage selon la revendication 1, dans lequel la boucle est revêtue d'un matériau de conservation de forme.
- Assemblage selon la revendication 4, dans lequel la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) est formée à partir de multiples torons de matériau et les torons de la pluralité de torons sont vrillés ensemble.
- Assemblage selon la revendication 1, dans lequel la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) est formée à partir d'un métal ou à partir d'un polymère.
- Assemblage selon la revendication 1, dans lequel la boucle (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) comporte deux extrémités noyées suivant la longueur du dilatateur (5 ; 7 ; 28 ; 41 ; 52 ; 62 ; 72 ; 82 ; 92 ; 102 ; 112).
- Assemblage selon la revendication 1, comprenant un agencement de montage chargé par ressort (48 ; 56) pour permettre que la boucle (46 ; 58) soit étendue et rétractée axialement par rapport au dilatateur (41 ; 52).
- Assemblage selon la revendication 1, comprenant un agencement de montage fixe (72c) entre le dilatateur (72) et le matériau de boucle à l'intérieur du dilatateur (72).
- Assemblage de sangle (10 ; 106) selon la revendication 1, dans lequel la boucle d'association (22 ; 32) est insérée à l'intérieur de la seconde extrémité du dilatateur (28 ; 38) au travers d'un canal s'étendant axialement (26) à l'intérieur d'un tube de sertissage (24 ; 34), de façon préférable dans lequel le tube de sertissage (34) inclut une section de bille (34b) et une section de tige (34a).
- Assemblage de sangle (10 ; 106) selon la revendication 1, dans lequel une partie de la boucle d'association (66) externe au dilatateur (64) est configurée de manière à être vrillée afin de réduire la dimension de la boucle d'association (66) et/ou de modifier une orientation de la boucle d'association (66).
- Assemblage de sangle (10 ; 106) selon la revendication 1, dans lequel la gaine (9; 61 ; 110; 119) est enroulée autour d'une partie de queue sensiblement cylindrique (112) du dilatateur (5 ; 7 ; 28 ; 41 ; 52 ; 62 ; 72 ; 82 ; 92 ; 102 ; 112) et est fixée à cette même partie et dans lequel la boucle d'association (1 ; 3 ; 22 ; 32 ; 46 ; 58 ; 66 ; 74 ; 84 ; 94 ; 104 ; 122) s'étend depuis une pointe conique du dilatateur (5 ; 7 ; 28 ; 41 ; 52 ; 62 ; 72 ; 82 ; 92 ; 102 ; 112).
- Kit de pose d'assemblage de sangle comprenant :un assemblage de sangle (10 ; 106) selon l'une quelconque des revendications 1 à 15 ; etun dispositif de pose (270 ; 300 ; 340) sur lequel la première boucle d'association (1) peut être crochetée.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP12175656A EP2510884A1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical à un dispositif de pose |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US52320803P | 2003-11-17 | 2003-11-17 | |
PCT/US2004/038847 WO2005048850A2 (fr) | 2003-11-17 | 2004-11-17 | Systemes et procedes pour associer un implant medical a un dispositif de pose |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12175656A Division EP2510884A1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical à un dispositif de pose |
EP12175656A Division-Into EP2510884A1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical à un dispositif de pose |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1696803A2 EP1696803A2 (fr) | 2006-09-06 |
EP1696803B1 true EP1696803B1 (fr) | 2016-09-28 |
Family
ID=34619586
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04811550.5A Expired - Lifetime EP1696803B1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical a un dispositif de pose |
EP12175656A Withdrawn EP2510884A1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical à un dispositif de pose |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP12175656A Withdrawn EP2510884A1 (fr) | 2003-11-17 | 2004-11-17 | Systèmes pour associer un implant médical à un dispositif de pose |
Country Status (5)
Country | Link |
---|---|
US (3) | US7524281B2 (fr) |
EP (2) | EP1696803B1 (fr) |
AU (1) | AU2004290596B2 (fr) |
CA (1) | CA2546376C (fr) |
WO (1) | WO2005048850A2 (fr) |
Families Citing this family (133)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1682009B1 (fr) * | 2003-10-03 | 2014-03-05 | Boston Scientific Limited, an Irish company | Systemes et procedes de pose d'implant medical dans une zone anatomique d'un patient |
CA2546376C (fr) * | 2003-11-17 | 2013-04-16 | Scimed Life Systems, Inc. | Systemes et procedes pour associer un implant medical a un dispositif de pose |
US8439820B2 (en) * | 2004-05-06 | 2013-05-14 | Boston Scientific Scimed, Inc. | Systems and methods for sling delivery and placement |
DE602005005056T2 (de) * | 2004-05-06 | 2009-06-04 | Boston Scientific Ltd., St. Michael | Systeme mit einem schubrohr zur abgabe einer harnröhrenschlinge |
FR2883758B1 (fr) * | 2005-04-01 | 2007-06-15 | Capital Safety Group Emea Sa | Dispositif d'absorption d'energie |
FR2886165B1 (fr) * | 2005-05-24 | 2007-07-13 | Capital Safety Group Emea Sa | Procede de montage d'un cable de ligne de securite sur un tendeur |
FR2886166B1 (fr) * | 2005-05-24 | 2007-08-03 | Capital Safety Group Emea Sa | Tendeur pour ligne de securite avec dispositif d'absorption d'energie |
WO2007002071A1 (fr) | 2005-06-21 | 2007-01-04 | Ams Research Corporation | Appareil pour fixer une attelle urétrale à l'os pubien |
WO2007002012A1 (fr) | 2005-06-21 | 2007-01-04 | Ams Research Corporation | Dispositif destine a la fixation d'une bandelette sous-uretrale a l'os pubien |
CA2615130A1 (fr) | 2005-07-26 | 2007-02-08 | Ams Research Corporation | Procedes et systemes pour le traitement du prolapsus |
WO2007018532A1 (fr) * | 2005-08-03 | 2007-02-15 | Boston Scientific Scimed, Inc. | Systèmes, appareils et méthodes concernant un support résistant en forme de fronde pour traiter l'incontinence urinaire |
CA2617437A1 (fr) | 2005-08-04 | 2007-02-08 | C.R. Bard, Inc. | Systemes d'implants pelviens et procedes associes |
US7878970B2 (en) | 2005-09-28 | 2011-02-01 | Boston Scientific Scimed, Inc. | Apparatus and method for suspending a uterus |
WO2007059368A1 (fr) * | 2005-11-11 | 2007-05-24 | Ams Research Corporation | Systeme integre et procede de raccord de bretelle |
ES2470338T3 (es) | 2005-11-14 | 2014-06-23 | C.R. Bard, Inc. | Sistema de anclaje de eslinga |
US9144483B2 (en) | 2006-01-13 | 2015-09-29 | Boston Scientific Scimed, Inc. | Placing fixation devices |
JP5317954B2 (ja) | 2006-03-16 | 2013-10-16 | ボストン サイエンティフィック リミテッド | 組織壁脱出症を治療するためのシステムおよび方法 |
AU2007253683B2 (en) | 2006-05-19 | 2012-12-06 | Boston Scientific Scimed, Inc. | Method and articles for treatment of stress urinary incontinence |
CA2654966A1 (fr) | 2006-06-16 | 2007-12-27 | Ams Research Corporation | Implants chirurgicaux et methodes pour traiter des affections pelviennes |
US8460169B2 (en) | 2006-06-22 | 2013-06-11 | Ams Research Corporation | Adjustable tension incontinence sling assemblies |
US8480559B2 (en) | 2006-09-13 | 2013-07-09 | C. R. Bard, Inc. | Urethral support system |
EP2097013B1 (fr) * | 2006-10-03 | 2017-03-29 | Boston Scientific Limited | Systèmes et dispositifs destinés au traitement de troubles du plancher pelvien |
WO2008042434A2 (fr) * | 2006-10-03 | 2008-04-10 | Boston Scientific Scimed, Inc. | Systèmes, dispositifs et procédés destinés à la mise en place d'un implant |
EP2063790B1 (fr) | 2006-10-26 | 2016-01-27 | AMS Research Corporation | Instruments chirurgicaux et procédés de traitement de troubles pelviens |
US8951185B2 (en) | 2007-10-26 | 2015-02-10 | Ams Research Corporation | Surgical articles and methods for treating pelvic conditions |
CA2829730C (fr) | 2006-11-06 | 2016-07-12 | Caldera Medical, Inc. | Implants et procedures de traitement de troubles du plancher pelvien |
US20110184441A1 (en) * | 2007-01-10 | 2011-07-28 | Pascal St-Germain | Prosthetic repair patch with integrated sutures and method therefor |
US7655004B2 (en) | 2007-02-15 | 2010-02-02 | Ethicon Endo-Surgery, Inc. | Electroporation ablation apparatus, system, and method |
US7815662B2 (en) * | 2007-03-08 | 2010-10-19 | Ethicon Endo-Surgery, Inc. | Surgical suture anchors and deployment device |
US8075572B2 (en) | 2007-04-26 | 2011-12-13 | Ethicon Endo-Surgery, Inc. | Surgical suturing apparatus |
US8100922B2 (en) | 2007-04-27 | 2012-01-24 | Ethicon Endo-Surgery, Inc. | Curved needle suturing tool |
US20080287731A1 (en) * | 2007-05-15 | 2008-11-20 | Generic Medical Devices, Inc. | Needle instruments and implantable sling assembly; kits comprising these components; and methods for use |
US8579897B2 (en) | 2007-11-21 | 2013-11-12 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8262655B2 (en) | 2007-11-21 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Bipolar forceps |
US8568410B2 (en) | 2007-08-31 | 2013-10-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation surgical instruments |
CN101842060B (zh) | 2007-09-21 | 2014-07-16 | Ams研究公司 | 骨盆底治疗以及相关的工具和植入物 |
US8480657B2 (en) | 2007-10-31 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Detachable distal overtube section and methods for forming a sealable opening in the wall of an organ |
US20090112059A1 (en) | 2007-10-31 | 2009-04-30 | Nobis Rudolph H | Apparatus and methods for closing a gastrotomy |
US8206280B2 (en) | 2007-11-13 | 2012-06-26 | C. R. Bard, Inc. | Adjustable tissue support member |
US10517617B2 (en) | 2007-12-20 | 2019-12-31 | Angiodynamics, Inc. | Systems and methods for removing undesirable material within a circulatory system utilizing a balloon catheter |
US11589880B2 (en) | 2007-12-20 | 2023-02-28 | Angiodynamics, Inc. | System and methods for removing undesirable material within a circulatory system utilizing during a surgical procedure |
US9282958B2 (en) | 2007-12-28 | 2016-03-15 | Boston Scientific Scimed, Inc. | Devices and method for treating pelvic dysfunctions |
US8920306B2 (en) | 2007-12-28 | 2014-12-30 | Boston Scientific Scimed, Inc. | Devices and methods for delivering a pelvic implant |
US9078728B2 (en) * | 2007-12-28 | 2015-07-14 | Boston Scientific Scimed, Inc. | Devices and methods for delivering female pelvic floor implants |
US8430807B2 (en) | 2007-12-28 | 2013-04-30 | Boston Scientific Scimed, Inc. | Devices and methods for treating pelvic floor dysfunctions |
US20090177219A1 (en) * | 2008-01-03 | 2009-07-09 | Conlon Sean P | Flexible tissue-penetration instrument with blunt tip assembly and methods for penetrating tissue |
US8262680B2 (en) | 2008-03-10 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Anastomotic device |
US8070759B2 (en) | 2008-05-30 | 2011-12-06 | Ethicon Endo-Surgery, Inc. | Surgical fastening device |
US8771260B2 (en) | 2008-05-30 | 2014-07-08 | Ethicon Endo-Surgery, Inc. | Actuating and articulating surgical device |
US8652150B2 (en) | 2008-05-30 | 2014-02-18 | Ethicon Endo-Surgery, Inc. | Multifunction surgical device |
US8317806B2 (en) | 2008-05-30 | 2012-11-27 | Ethicon Endo-Surgery, Inc. | Endoscopic suturing tension controlling and indication devices |
US8679003B2 (en) | 2008-05-30 | 2014-03-25 | Ethicon Endo-Surgery, Inc. | Surgical device and endoscope including same |
US8114072B2 (en) | 2008-05-30 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Electrical ablation device |
US8906035B2 (en) | 2008-06-04 | 2014-12-09 | Ethicon Endo-Surgery, Inc. | Endoscopic drop off bag |
US8403926B2 (en) | 2008-06-05 | 2013-03-26 | Ethicon Endo-Surgery, Inc. | Manually articulating devices |
US8361112B2 (en) | 2008-06-27 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Surgical suture arrangement |
US8262563B2 (en) | 2008-07-14 | 2012-09-11 | Ethicon Endo-Surgery, Inc. | Endoscopic translumenal articulatable steerable overtube |
US8888792B2 (en) | 2008-07-14 | 2014-11-18 | Ethicon Endo-Surgery, Inc. | Tissue apposition clip application devices and methods |
US8211125B2 (en) | 2008-08-15 | 2012-07-03 | Ethicon Endo-Surgery, Inc. | Sterile appliance delivery device for endoscopic procedures |
US8529563B2 (en) | 2008-08-25 | 2013-09-10 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8241204B2 (en) | 2008-08-29 | 2012-08-14 | Ethicon Endo-Surgery, Inc. | Articulating end cap |
US8480689B2 (en) | 2008-09-02 | 2013-07-09 | Ethicon Endo-Surgery, Inc. | Suturing device |
US8409200B2 (en) | 2008-09-03 | 2013-04-02 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8114119B2 (en) | 2008-09-09 | 2012-02-14 | Ethicon Endo-Surgery, Inc. | Surgical grasping device |
US8337394B2 (en) | 2008-10-01 | 2012-12-25 | Ethicon Endo-Surgery, Inc. | Overtube with expandable tip |
AU2009308934B2 (en) | 2008-10-27 | 2015-03-19 | Boston Scientific Scimed, Inc. | Surgical needle and anchor system with retractable features |
US8157834B2 (en) | 2008-11-25 | 2012-04-17 | Ethicon Endo-Surgery, Inc. | Rotational coupling device for surgical instrument with flexible actuators |
US8449573B2 (en) | 2008-12-05 | 2013-05-28 | Boston Scientific Scimed, Inc. | Insertion device and method for delivery of a mesh carrier |
US8172772B2 (en) | 2008-12-11 | 2012-05-08 | Ethicon Endo-Surgery, Inc. | Specimen retrieval device |
EP2381888A4 (fr) * | 2009-01-05 | 2014-01-22 | Caldera Medical Inc | Implants et procédés de soutien de structures anatomiques |
US8361066B2 (en) | 2009-01-12 | 2013-01-29 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
US8828031B2 (en) | 2009-01-12 | 2014-09-09 | Ethicon Endo-Surgery, Inc. | Apparatus for forming an anastomosis |
US20100191038A1 (en) * | 2009-01-27 | 2010-07-29 | Coloplast A/S | Devices and tools for treatment of urinary incontinence |
US9226772B2 (en) | 2009-01-30 | 2016-01-05 | Ethicon Endo-Surgery, Inc. | Surgical device |
US8252057B2 (en) | 2009-01-30 | 2012-08-28 | Ethicon Endo-Surgery, Inc. | Surgical access device |
US8037591B2 (en) | 2009-02-02 | 2011-10-18 | Ethicon Endo-Surgery, Inc. | Surgical scissors |
US9226809B2 (en) | 2009-02-10 | 2016-01-05 | Ams Research Corporation | Surgical articles and methods for treating urinary incontinence |
US20100249700A1 (en) * | 2009-03-27 | 2010-09-30 | Ethicon Endo-Surgery, Inc. | Surgical instruments for in vivo assembly |
US9125716B2 (en) | 2009-04-17 | 2015-09-08 | Boston Scientific Scimed, Inc. | Delivery sleeve for pelvic floor implants |
US8968334B2 (en) | 2009-04-17 | 2015-03-03 | Boston Scientific Scimed, Inc. | Apparatus for delivering and anchoring implantable medical devices |
US9220523B2 (en) | 2009-09-14 | 2015-12-29 | The Spectranetics Corporation | Snaring systems and methods |
US20110098704A1 (en) | 2009-10-28 | 2011-04-28 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices |
CN102639068B (zh) * | 2009-10-30 | 2015-07-08 | 库克医学技术有限责任公司 | 利用环圈构件在组织上维持力的装置 |
US9301750B2 (en) | 2009-11-03 | 2016-04-05 | Boston Scientific Scimed, Inc. | Device and method for delivery of mesh-based devices |
US8608652B2 (en) | 2009-11-05 | 2013-12-17 | Ethicon Endo-Surgery, Inc. | Vaginal entry surgical devices, kit, system, and method |
US8353487B2 (en) | 2009-12-17 | 2013-01-15 | Ethicon Endo-Surgery, Inc. | User interface support devices for endoscopic surgical instruments |
US8496574B2 (en) | 2009-12-17 | 2013-07-30 | Ethicon Endo-Surgery, Inc. | Selectively positionable camera for surgical guide tube assembly |
US9028483B2 (en) | 2009-12-18 | 2015-05-12 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US8506564B2 (en) | 2009-12-18 | 2013-08-13 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
WO2011079222A2 (fr) | 2009-12-23 | 2011-06-30 | Boston Scientific Scimed, Inc. | Méthode moins traumatique de pose de dispositifs à maillage dans le corps humain |
EP2519186B1 (fr) | 2009-12-30 | 2018-10-24 | Boston Scientific Scimed, Inc. | Systèmes de bandelettes implantables |
US9005198B2 (en) | 2010-01-29 | 2015-04-14 | Ethicon Endo-Surgery, Inc. | Surgical instrument comprising an electrode |
US9445881B2 (en) | 2010-02-23 | 2016-09-20 | Boston Scientific Scimed, Inc. | Surgical articles and methods |
EP2538849B1 (fr) | 2010-02-23 | 2020-07-15 | Boston Scientific Scimed, Inc. | Articles chirurgicaux pour le traitement de l'incontinence |
US8622886B2 (en) * | 2010-03-16 | 2014-01-07 | Ethicon, Inc. | Surgical instrument and method for the treatment of urinary incontinence |
EP2563239B1 (fr) | 2010-04-30 | 2018-01-31 | Boston Scientific Scimed, Inc. | Pose d'implants de réparation de plancher pelvien |
US10085742B2 (en) * | 2010-07-29 | 2018-10-02 | Boston Scientific Scimed, Inc. | Adjustable device for delivering implants and methods of delivering implants |
US8911348B2 (en) | 2010-09-02 | 2014-12-16 | Boston Scientific Scimed, Inc. | Pelvic implants and methods of implanting the same |
US8480597B2 (en) * | 2010-09-13 | 2013-07-09 | Abbott Laboratories | Color coded guide wire and methods of making same |
US10092291B2 (en) | 2011-01-25 | 2018-10-09 | Ethicon Endo-Surgery, Inc. | Surgical instrument with selectively rigidizable features |
US9125717B2 (en) | 2011-02-23 | 2015-09-08 | Ams Research Corporation | Implant tension adjustment system and method |
US9254169B2 (en) | 2011-02-28 | 2016-02-09 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9314620B2 (en) | 2011-02-28 | 2016-04-19 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9233241B2 (en) | 2011-02-28 | 2016-01-12 | Ethicon Endo-Surgery, Inc. | Electrical ablation devices and methods |
US9049987B2 (en) | 2011-03-17 | 2015-06-09 | Ethicon Endo-Surgery, Inc. | Hand held surgical device for manipulating an internal magnet assembly within a patient |
US20130006049A1 (en) | 2011-06-30 | 2013-01-03 | Alexander James A | Implants, tools, and methods for treatments of pelvic conditions |
USD736382S1 (en) | 2011-09-08 | 2015-08-11 | Ams Research Corporation | Surgical indicator with backers |
USD721807S1 (en) | 2011-09-08 | 2015-01-27 | Ams Research Corporation | Surgical indicators |
USD721175S1 (en) | 2011-09-08 | 2015-01-13 | Ams Research Corporation | Backers for surgical indicators |
US9168120B2 (en) | 2011-09-09 | 2015-10-27 | Boston Scientific Scimed, Inc. | Medical device and methods of delivering the medical device |
US9737390B2 (en) | 2011-11-17 | 2017-08-22 | Boston Scientific Scimed, Inc. | Medical assembly for delivering an implant |
US8986199B2 (en) | 2012-02-17 | 2015-03-24 | Ethicon Endo-Surgery, Inc. | Apparatus and methods for cleaning the lens of an endoscope |
US9554886B2 (en) | 2012-04-23 | 2017-01-31 | Boston Scientific Scimed, Inc. | Medical assembly with tactile feedback |
US9427255B2 (en) | 2012-05-14 | 2016-08-30 | Ethicon Endo-Surgery, Inc. | Apparatus for introducing a steerable camera assembly into a patient |
US9044223B2 (en) | 2012-06-05 | 2015-06-02 | Ethicon, Inc. | Implant insertion systems and methods of use |
US9078662B2 (en) | 2012-07-03 | 2015-07-14 | Ethicon Endo-Surgery, Inc. | Endoscopic cap electrode and method for using the same |
US9545290B2 (en) | 2012-07-30 | 2017-01-17 | Ethicon Endo-Surgery, Inc. | Needle probe guide |
US10314649B2 (en) | 2012-08-02 | 2019-06-11 | Ethicon Endo-Surgery, Inc. | Flexible expandable electrode and method of intraluminal delivery of pulsed power |
US9572623B2 (en) | 2012-08-02 | 2017-02-21 | Ethicon Endo-Surgery, Inc. | Reusable electrode and disposable sheath |
US9277957B2 (en) | 2012-08-15 | 2016-03-08 | Ethicon Endo-Surgery, Inc. | Electrosurgical devices and methods |
US10098527B2 (en) | 2013-02-27 | 2018-10-16 | Ethidcon Endo-Surgery, Inc. | System for performing a minimally invasive surgical procedure |
US9949813B2 (en) * | 2013-03-08 | 2018-04-24 | Boston Scientific Scimed, Inc. | Incontinence implant assembly |
US9814555B2 (en) | 2013-03-12 | 2017-11-14 | Boston Scientific Scimed, Inc. | Medical device for pelvic floor repair and method of delivering the medical device |
US9522057B2 (en) | 2013-03-14 | 2016-12-20 | Ethicon, Inc. | Delivery systems for the placement of surgical implants and methods of use |
US9962251B2 (en) | 2013-10-17 | 2018-05-08 | Boston Scientific Scimed, Inc. | Devices and methods for delivering implants |
US9884184B2 (en) | 2014-12-30 | 2018-02-06 | The Spectranetics Corporation | Wire hook coupling for lead extension and extraction |
US9731113B2 (en) | 2014-12-30 | 2017-08-15 | The Spectranetics Corporation | Collapsing coil coupling for lead extension and extraction |
US10576274B2 (en) | 2014-12-30 | 2020-03-03 | Spectranetics Llc | Expanding coil coupling for lead extension and extraction |
US10105533B2 (en) | 2014-12-30 | 2018-10-23 | The Spectranetics Corporation | Multi-loop coupling for lead extension and extraction |
BR112017019504B1 (pt) * | 2015-03-26 | 2023-01-24 | Honda Motor Co., Ltd. | Dispositivo de controle de válvula e sistema de válvula |
WO2019166998A1 (fr) | 2018-03-02 | 2019-09-06 | Thermo Electron Led Gmbh | Récipients de centrifugeuse à usage unique pour séparer des suspensions biologiques et procédés d'utilisation |
WO2020051552A1 (fr) | 2018-09-07 | 2020-03-12 | Caldera Medical, Inc. | Écharpe et son procédé de formation |
US11648020B2 (en) | 2020-02-07 | 2023-05-16 | Angiodynamics, Inc. | Device and method for manual aspiration and removal of an undesirable material |
Family Cites Families (125)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US649173A (en) * | 1899-11-03 | 1900-05-08 | Henry Mueller | Tapping-machine. |
US1511401A (en) | 1921-05-16 | 1924-10-14 | Vaughn Camp | Feeding mechanism |
US3565073A (en) | 1968-04-15 | 1971-02-23 | Jerry D Giesy | Method and means for attaching a body appendage |
US3704712A (en) | 1970-04-10 | 1972-12-05 | Medidyne Corp | Dilator device |
SU1225547A1 (ru) | 1984-08-03 | 1986-04-23 | Московский Городской Ордена Ленина И Ордена Трудового Красного Знамени Научно-Исследовательский Институт Скорой Помощи Им.Н.В.Склифосовского | Хирургический инструмент |
US4872451A (en) | 1987-02-02 | 1989-10-10 | Moore Robert R | Glenohumeral ligament repair |
SU1443873A1 (ru) | 1987-03-23 | 1988-12-15 | Киевский государственный институт усовершенствования врачей | Устройство А.Л.Косаковского дл наложени швов |
US4824435A (en) | 1987-05-18 | 1989-04-25 | Thomas J. Fogarty | Instrument guidance system |
US4798193A (en) | 1987-05-18 | 1989-01-17 | Thomas J. Fogarty | Protective sheath instrument carrier |
JPH0431072Y2 (fr) | 1988-03-14 | 1992-07-27 | ||
EP0437481B1 (fr) | 1988-10-04 | 1995-03-15 | PETROS Peter Emmanuel | Instrument chirurgical, prothese |
US5002550A (en) | 1989-06-06 | 1991-03-26 | Mitek Surgical Products, Inc. | Suture anchor installation tool |
US4946468A (en) | 1989-06-06 | 1990-08-07 | Mitek Surgical Products, Inc. | Suture anchor and suture anchor installation tool |
US5084058A (en) | 1990-04-25 | 1992-01-28 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5163946A (en) | 1990-04-25 | 1992-11-17 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5087263A (en) | 1990-04-25 | 1992-02-11 | Mitek Surgical Products, Inc. | Suture throw holder and rundown system |
US5133723A (en) | 1990-04-25 | 1992-07-28 | Mitek Surgical Products, Inc. | Suture rundown tool and cutter system |
US5064435A (en) | 1990-06-28 | 1991-11-12 | Schneider (Usa) Inc. | Self-expanding prosthesis having stable axial length |
US5368595A (en) | 1990-09-06 | 1994-11-29 | United States Surgical Corporation | Implant assist apparatus |
US5078730A (en) | 1990-11-06 | 1992-01-07 | Mitek Surgical Products, Inc. | Holder for suture anchor assembly |
US5149329A (en) * | 1990-12-12 | 1992-09-22 | Wayne State University | Surgical suture carrier and method for urinary bladder neck suspension |
US5334185A (en) | 1991-06-28 | 1994-08-02 | Giesy Consultants, Inc. | End-to-end instrument placement apparatus |
US5152749A (en) | 1991-06-28 | 1992-10-06 | American Medical Systems, Inc. | Instrument placement apparatus |
US5207679A (en) | 1991-09-26 | 1993-05-04 | Mitek Surgical Products, Inc. | Suture anchor and installation tool |
WO1993010715A2 (fr) | 1991-12-03 | 1993-06-10 | Vesitec Medical, Inc. | Traitement chirurgical de l'incontinence d'urine a l'effort |
US5766221A (en) | 1991-12-03 | 1998-06-16 | Boston Scientific Technology, Inc. | Bone anchor implantation device |
ATE163528T1 (de) | 1991-12-03 | 1998-03-15 | Boston Scient Ireland Ltd | Implantationsvorrichtung für einen knochenanker |
US5439467A (en) | 1991-12-03 | 1995-08-08 | Vesica Medical, Inc. | Suture passer |
US6001104A (en) | 1991-12-03 | 1999-12-14 | Boston Scientific Technology, Inc. | Bone anchor implantation device |
US5395349A (en) | 1991-12-13 | 1995-03-07 | Endovascular Technologies, Inc. | Dual valve reinforced sheath and method |
US5935122A (en) | 1991-12-13 | 1999-08-10 | Endovascular Technologies, Inc. | Dual valve, flexible expandable sheath and method |
US5256150A (en) | 1991-12-13 | 1993-10-26 | Endovascular Technologies, Inc. | Large-diameter expandable sheath and method |
US5637112A (en) | 1992-06-08 | 1997-06-10 | Orthopedic Systems, Inc. | Apparatus for attaching suture to bone |
US5337736A (en) | 1992-09-30 | 1994-08-16 | Reddy Pratap K | Method of using a laparoscopic retractor |
US5383904A (en) | 1992-10-13 | 1995-01-24 | United States Surgical Corporation | Stiffened surgical device |
US5250033A (en) | 1992-10-28 | 1993-10-05 | Interventional Thermodynamics, Inc. | Peel-away introducer sheath having proximal fitting |
US5456722A (en) | 1993-01-06 | 1995-10-10 | Smith & Nephew Richards Inc. | Load bearing polymeric cable |
US5540703A (en) | 1993-01-06 | 1996-07-30 | Smith & Nephew Richards Inc. | Knotted cable attachment apparatus formed of braided polymeric fibers |
US5505735A (en) | 1993-06-10 | 1996-04-09 | Mitek Surgical Products, Inc. | Surgical anchor and method for using the same |
US5683418A (en) | 1994-04-29 | 1997-11-04 | Mitek Surgical Products, Inc. | Wedge shaped suture anchor and method of implantation |
US5645589A (en) | 1994-08-22 | 1997-07-08 | Li Medical Technologies, Inc. | Anchor and method for securement into a bore |
US5899909A (en) | 1994-08-30 | 1999-05-04 | Medscand Medical Ab | Surgical instrument for treating female urinary incontinence |
SE506164C2 (sv) | 1995-10-09 | 1997-11-17 | Medscand Medical Ab | Instrumentarium för behandling av urininkontinens hos kvinnor |
SE503271C2 (sv) | 1994-08-30 | 1996-04-29 | Medscand Ab | Instrumentarium för behandling av urininkontinens hos kvinnor samt sätt för sådan behandling |
US5702215A (en) | 1995-06-05 | 1997-12-30 | Li Medical Technologies, Inc. | Retractable fixation device |
DE19544162C1 (de) | 1995-11-17 | 1997-04-24 | Ethicon Gmbh | Implantat zur Suspension der Harnblase bei Harninkontinenz der Frau |
US5690649A (en) | 1995-12-05 | 1997-11-25 | Li Medical Technologies, Inc. | Anchor and anchor installation tool and method |
US5899906A (en) | 1996-01-18 | 1999-05-04 | Synthes (U.S.A.) | Threaded washer |
US5742943A (en) | 1996-06-28 | 1998-04-28 | Johnson & Johnson Medical, Inc. | Slip-coated elastomeric flexible articles and their method of manufacture |
US5860993A (en) | 1996-09-25 | 1999-01-19 | Medworks Corp. | Suture cutter |
US6053935A (en) | 1996-11-08 | 2000-04-25 | Boston Scientific Corporation | Transvaginal anchor implantation device |
US6264676B1 (en) | 1996-11-08 | 2001-07-24 | Scimed Life Systems, Inc. | Protective sheath for transvaginal anchor implantation devices |
DE19704580C2 (de) | 1997-02-07 | 1999-04-01 | Storz Karl Gmbh & Co | Chirurgischer Fadenschneider |
US5954057A (en) | 1997-02-12 | 1999-09-21 | Li Medical Technologies, Inc. | Soft tissue suspension clip, clip assembly, emplacement tool and method |
EP1017321B1 (fr) | 1997-02-13 | 2004-01-14 | Boston Scientific Limited | Dispositifs percutanes et hiataux pour utilisation en chirurgie pelvienne peu vulnerante |
JP2001511685A (ja) | 1997-02-13 | 2001-08-14 | ボストン サイエンティフィック リミテッド | 低侵襲骨盤手術で使用するための安定化スリング |
US6099547A (en) | 1997-02-13 | 2000-08-08 | Scimed Life Systems, Inc. | Method and apparatus for minimally invasive pelvic surgery |
US6039686A (en) | 1997-03-18 | 2000-03-21 | Kovac; S. Robert | System and a method for the long term cure of recurrent urinary female incontinence |
US6599235B2 (en) | 1997-03-18 | 2003-07-29 | American Medical Systems Inc. | Transvaginal bone anchor implantation device |
US5934283A (en) | 1997-04-15 | 1999-08-10 | Uroplasty, Inc. | Pubovaginal sling device |
FR2764072B1 (fr) * | 1997-05-30 | 1999-09-17 | Sextant Avionique | Procede et dispositif de test pour equipements electroniques |
US6042592A (en) | 1997-08-04 | 2000-03-28 | Meadox Medicals, Inc. | Thin soft tissue support mesh |
US6096041A (en) | 1998-01-27 | 2000-08-01 | Scimed Life Systems, Inc. | Bone anchors for bone anchor implantation device |
US6382214B1 (en) | 1998-04-24 | 2002-05-07 | American Medical Systems, Inc. | Methods and apparatus for correction of urinary and gynecological pathologies including treatment of male incontinence and female cystocele |
DE19837144A1 (de) * | 1998-08-17 | 2000-02-24 | Juergen Buerger | Nähnadel |
US6050937A (en) | 1998-09-21 | 2000-04-18 | Benderev; Theodore V. | Surgical tension/pressure monitor |
US6200330B1 (en) | 1998-11-23 | 2001-03-13 | Theodore V. Benderev | Systems for securing sutures, grafts and soft tissue to bone and periosteum |
US6221084B1 (en) * | 1999-01-15 | 2001-04-24 | Pare Surgical, Inc. | Knot tying apparatus having a notched thread cover and method for using same |
US6391333B1 (en) | 1999-04-14 | 2002-05-21 | Collagen Matrix, Inc. | Oriented biopolymeric membrane |
US6312378B1 (en) * | 1999-06-03 | 2001-11-06 | Cardiac Intelligence Corporation | System and method for automated collection and analysis of patient information retrieved from an implantable medical device for remote patient care |
US6932759B2 (en) * | 1999-06-09 | 2005-08-23 | Gene W. Kammerer | Surgical instrument and method for treating female urinary incontinence |
US6273852B1 (en) | 1999-06-09 | 2001-08-14 | Ethicon, Inc. | Surgical instrument and method for treating female urinary incontinence |
US7226407B2 (en) | 1999-06-09 | 2007-06-05 | Ethicon, Inc. | Surgical instrument and method for treating female urinary incontinence |
US7121997B2 (en) | 1999-06-09 | 2006-10-17 | Ethicon, Inc. | Surgical instrument and method for treating female urinary incontinence |
US6475139B1 (en) * | 1999-06-09 | 2002-11-05 | Ethicon, Inc. | Visually-directed surgical instrument and method for treating female urinary incontinence |
AUPQ362199A0 (en) | 1999-10-22 | 1999-11-18 | Kaladelfos, George | Intra-vaginal sling placement device |
DE19961218A1 (de) | 1999-12-15 | 2001-07-05 | Ethicon Gmbh | Chirurgische Nadel zur Implantation eines Bandes |
DE19964081B4 (de) | 1999-12-29 | 2005-06-30 | Ethicon Gmbh | Streifenartiges Implantat und chirurgisches Greifinstrument |
US6406423B1 (en) | 2000-01-21 | 2002-06-18 | Sofradim Production | Method for surgical treatment of urinary incontinence and device for carrying out said method |
GB2359256B (en) | 2000-01-21 | 2004-03-03 | Sofradim Production | Percutaneous device for treating urinary stress incontinence in women using a sub-urethral tape |
DE10004832A1 (de) | 2000-01-31 | 2001-08-16 | Ethicon Gmbh | Flächiges Implantat mit röntgensichtbaren Elementen |
GB0002627D0 (en) * | 2000-02-05 | 2000-03-29 | Eastman Kodak Co | Nonionic surface active oligomers as coating aids for the manufacture of photographic products |
US7131943B2 (en) | 2000-03-09 | 2006-11-07 | Ethicon, Inc. | Surgical instrument and method for treating organ prolapse conditions |
JP5010792B2 (ja) * | 2000-04-18 | 2012-08-29 | オルソペディック バイオシステムズ リミテッド インコーポレーテッド | 縫合の方法および装置 |
DE10019604C2 (de) | 2000-04-20 | 2002-06-27 | Ethicon Gmbh | Implantat |
FR2807936B1 (fr) | 2000-04-20 | 2002-08-02 | Sofradim Production | Renfort de paroi abdominale pour le traitement des hernies inguinales par voie anterieure sans tension |
US6596001B2 (en) | 2000-05-01 | 2003-07-22 | Ethicon, Inc. | Aiming device for surgical instrument and method for use for treating female urinary incontinence |
EP1665991B1 (fr) * | 2000-06-05 | 2017-12-13 | Boston Scientific Limited | Dispositifs pour le traitment de l'incontinence urinaire |
US6638211B2 (en) | 2000-07-05 | 2003-10-28 | Mentor Corporation | Method for treating urinary incontinence in women and implantable device intended to correct urinary incontinence |
US7025063B2 (en) | 2000-09-07 | 2006-04-11 | Ams Research Corporation | Coated sling material |
ATE452595T1 (de) | 2000-09-26 | 2010-01-15 | Ethicon Inc | Chirurgisches gerät zur abgabe einer schlinge bei der behandlung von harninkontinenz bei frauen |
FR2814939B1 (fr) | 2000-10-05 | 2002-12-20 | Sofradim Production | Ensemble de soutenement sous-uretral dans le traitement de l'incontinence urinaire d'effort de la femme |
US6605097B1 (en) | 2000-10-18 | 2003-08-12 | Jorn Lehe | Apparatus and method for treating female urinary incontinence |
US6638209B2 (en) | 2000-10-20 | 2003-10-28 | Ethicon Gmbh | System with a surgical needle and a handle |
US20020128670A1 (en) | 2000-11-22 | 2002-09-12 | Ulf Ulmsten | Surgical instrument and method for treating female urinary incontinence |
FR2817731B1 (fr) | 2000-12-12 | 2003-06-13 | Johnson & Johnson Internat | Instrument de simulation de l'effet, sur l'incontinence urinaire, d'un soutenement sous urethro cervical |
US6582443B2 (en) | 2000-12-27 | 2003-06-24 | Ams Research Corporation | Apparatus and methods for enhancing the functional longevity and for facilitating the implantation of medical devices |
US7229453B2 (en) | 2001-01-23 | 2007-06-12 | Ams Research Corporation | Pelvic floor implant system and method of assembly |
US6612977B2 (en) | 2001-01-23 | 2003-09-02 | American Medical Systems Inc. | Sling delivery system and method of use |
US20020161382A1 (en) | 2001-03-29 | 2002-10-31 | Neisz Johann J. | Implant inserted without bone anchors |
US7070556B2 (en) | 2002-03-07 | 2006-07-04 | Ams Research Corporation | Transobturator surgical articles and methods |
US20020147382A1 (en) | 2001-01-23 | 2002-10-10 | Neisz Johann J. | Surgical articles and methods |
US6652450B2 (en) | 2001-01-23 | 2003-11-25 | American Medical Systems, Inc. | Implantable article and method for treating urinary incontinence using means for repositioning the implantable article |
US6641525B2 (en) | 2001-01-23 | 2003-11-04 | Ams Research Corporation | Sling assembly with secure and convenient attachment |
AU2002254157B2 (en) * | 2001-03-09 | 2006-07-27 | Boston Scientific Limited | Medical slings |
WO2002071953A2 (fr) | 2001-03-09 | 2002-09-19 | Scimed Life Systems, Inc. | Systeme d'implantation d'un implant et methode associee |
USD466213S1 (en) | 2001-11-09 | 2002-11-26 | Ams Research Corporation | Surgical instrument |
JP2004531341A (ja) | 2001-06-29 | 2004-10-14 | エシコン・インコーポレイテッド | 排尿機能を評価するためのシステム |
US6755781B2 (en) | 2001-07-27 | 2004-06-29 | Scimed Life Systems, Inc. | Medical slings |
US7037255B2 (en) | 2001-07-27 | 2006-05-02 | Ams Research Corporation | Surgical instruments for addressing pelvic disorders |
US6648921B2 (en) | 2001-10-03 | 2003-11-18 | Ams Research Corporation | Implantable article |
US6830052B2 (en) | 2001-10-03 | 2004-12-14 | Solarant Medical, Inc. | Urethral support for incontinence |
US7087065B2 (en) | 2001-10-04 | 2006-08-08 | Ethicon, Inc. | Mesh for pelvic floor repair |
US6666817B2 (en) | 2001-10-05 | 2003-12-23 | Scimed Life Systems, Inc. | Expandable surgical implants and methods of using them |
US6911003B2 (en) | 2002-03-07 | 2005-06-28 | Ams Research Corporation | Transobturator surgical articles and methods |
US6936054B2 (en) * | 2002-07-22 | 2005-08-30 | Boston Scientific Scimed, Inc. | Placing sutures |
EP1682009B1 (fr) * | 2003-10-03 | 2014-03-05 | Boston Scientific Limited, an Irish company | Systemes et procedes de pose d'implant medical dans une zone anatomique d'un patient |
CA2546376C (fr) * | 2003-11-17 | 2013-04-16 | Scimed Life Systems, Inc. | Systemes et procedes pour associer un implant medical a un dispositif de pose |
JP5089184B2 (ja) | 2007-01-30 | 2012-12-05 | ローム株式会社 | 樹脂封止型半導体装置およびその製造方法 |
US9435202B2 (en) | 2007-09-07 | 2016-09-06 | St. Mary Technology Llc | Compressed fluid motor, and compressed fluid powered vehicle |
CA2825185A1 (fr) | 2011-01-26 | 2012-08-02 | Shell Internationale Research Maarschappij B.V. | Catalyseur d'aromatisation du methane contenant du zinc, son procede de preparation et d'utilisation |
CN103297974B (zh) | 2012-02-27 | 2018-09-25 | 中兴通讯股份有限公司 | 一种基于信道管理的动态频谱分配方法及装置 |
KR102140148B1 (ko) | 2013-11-29 | 2020-07-31 | 삼성전자주식회사 | 이차원 물질을 포함하는 메모리소자와 그 제조방법 및 동작방법 |
US9342402B1 (en) | 2014-01-28 | 2016-05-17 | Altera Corporation | Memory interface with hybrid error detection circuitry for modular designs |
CN105470135B (zh) | 2014-09-11 | 2018-11-06 | 中国科学院微电子研究所 | 半导体器件制造方法 |
-
2004
- 2004-11-17 CA CA2546376A patent/CA2546376C/fr not_active Expired - Fee Related
- 2004-11-17 EP EP04811550.5A patent/EP1696803B1/fr not_active Expired - Lifetime
- 2004-11-17 US US10/991,906 patent/US7524281B2/en not_active Expired - Fee Related
- 2004-11-17 WO PCT/US2004/038847 patent/WO2005048850A2/fr active Application Filing
- 2004-11-17 EP EP12175656A patent/EP2510884A1/fr not_active Withdrawn
- 2004-11-17 AU AU2004290596A patent/AU2004290596B2/en not_active Ceased
-
2009
- 2009-04-06 US US12/419,186 patent/US8323179B2/en active Active
-
2012
- 2012-12-03 US US13/692,058 patent/US8747295B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
AU2004290596B2 (en) | 2010-12-02 |
US8323179B2 (en) | 2012-12-04 |
WO2005048850A2 (fr) | 2005-06-02 |
US20050177022A1 (en) | 2005-08-11 |
US7524281B2 (en) | 2009-04-28 |
US20090192540A1 (en) | 2009-07-30 |
EP1696803A2 (fr) | 2006-09-06 |
US8747295B2 (en) | 2014-06-10 |
EP2510884A1 (fr) | 2012-10-17 |
AU2004290596A1 (en) | 2005-06-02 |
CA2546376A1 (fr) | 2005-06-02 |
US20130096372A1 (en) | 2013-04-18 |
WO2005048850A3 (fr) | 2005-09-22 |
CA2546376C (fr) | 2013-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1696803B1 (fr) | Systèmes pour associer un implant médical a un dispositif de pose | |
US10117733B2 (en) | Systems, methods and devices relating to delivery of medical implants | |
US7364541B2 (en) | Systems, methods and devices relating to delivery of medical implants | |
US8602965B2 (en) | System, methods and devices relating to delivery of medical implants | |
US8500624B2 (en) | Systems and methods for sling delivery and placement | |
US9655708B2 (en) | Systems and methods employing a push tube for delivering a urethral sling | |
US8915927B2 (en) | Systems, methods and devices relating to delivery of medical implants | |
AU2004233885B2 (en) | Systems and method for treating urinary incontinence | |
EP2381887B1 (fr) | Implants permettant de supporter des structures anatomiques pour le traitement de conditions comme le prolapsus d'organe pelvien | |
US20050131393A1 (en) | Systems, methods and devices relating to delivery of medical implants | |
WO2006096406A2 (fr) | Bandelette pour supporter et obturer un tissu et son procede d'utilisation | |
AU2005203654B2 (en) | Surgical sling delivery system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060615 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IE NL |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IE NL |
|
17Q | First examination report despatched |
Effective date: 20100712 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20160418 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BOSTON SCIENTIFIC LIMITED |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: INTOCCIA, ALFRED Inventor name: HANLEY, BRIAN M. Inventor name: CHU, MICHAEL S. H. Inventor name: TAH, RICHARD C. |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IE NL |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602004050027 Country of ref document: DE Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED, IE Free format text: FORMER OWNER: BOSTON SCIENTIFIC LTD. (AN IRISH COMPANY, ST. MICHAEL, BB |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004050027 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20160928 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20160928 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004050027 Country of ref document: DE |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20170629 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20171012 Year of fee payment: 14 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20181130 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 602004050027 Country of ref document: DE Owner name: BOSTON SCIENTIFIC MEDICAL DEVICE LIMITED, IE Free format text: FORMER OWNER: BOSTON SCIENTIFIC LIMITED, ST. MICHAEL, BB |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IE Payment date: 20221024 Year of fee payment: 19 Ref country code: GB Payment date: 20221021 Year of fee payment: 19 Ref country code: DE Payment date: 20221020 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20231116 AND 20231122 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004050027 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20231117 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231117 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231117 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231117 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20231117 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20240601 |