EP1682592A1 - Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrol - Google Patents
Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrolInfo
- Publication number
- EP1682592A1 EP1682592A1 EP04790620A EP04790620A EP1682592A1 EP 1682592 A1 EP1682592 A1 EP 1682592A1 EP 04790620 A EP04790620 A EP 04790620A EP 04790620 A EP04790620 A EP 04790620A EP 1682592 A1 EP1682592 A1 EP 1682592A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- styrene
- polymerization
- monomers
- impact
- methylstyrene
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L51/00—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L51/04—Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F279/00—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
- C08F279/02—Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F287/00—Macromolecular compounds obtained by polymerising monomers on to block polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F293/00—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
- C08F293/005—Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F295/00—Macromolecular compounds obtained by polymerisation using successively different catalyst types without deactivating the intermediate polymer
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F297/00—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
- C08F297/02—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
- C08F297/04—Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L53/00—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
- C08L53/02—Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
Definitions
- the invention relates to a process for the preparation of impact-resistant polystyrene from diene monomers and styrene monomers by anionic or anionic and radical polymerization, characterized in that
- a rubber solution is prepared from the diene monomers, or from the diene monomers and the styrene monomers, by anionic polymerization in the presence of a solvent and an initiator composition, polymerizing at at least 20 ° C. and using ⁇ -methylstyrene as the sole solvent, and
- Styrene monomer is added to this rubber solution and the mixture obtained is polymerized anionically or radically in the presence of an initiator composition to give the impact-resistant polystyrene.
- the invention also relates to the impact-resistant polystyrene obtainable by the process mentioned, the use of impact-resistant polystyrene for the production of moldings, foils, fibers and foams, and the moldings, foils, fibers and foams made from the impact-resistant polystyrene.
- the polymers mentioned can be produced by various polymerization processes, for example by radical or anionic polymerization.
- the polymers obtained by anionic polymerization have a number of advantages over products obtained by radical means, including lower residual monomer and oligomer contents. Radical and anionic polymerization are fundamentally different. In the case of radical polymerization, the reaction proceeds via free radicals and, for example, peroxidic initiators are used, whereas the anionic polymerization proceeds via "living" carbanions and, for example, alkali metal organanyl compounds are used as initiators. After the monomers have been consumed, the anionic polymerization is preferably terminated with a chain terminator, for example a protic substance such as water or alcohols. The anionic polymerization proceeds much faster and leads to higher sales than the radical polymerization. The temperature control of the exothermic reaction is difficult due to the high speed.
- styrene monomer and further solvent are then added to the dilute rubber solution and the mixture is polymerized to give the end product.
- the anionic polymerization of styrene and / or butadiene is described for example in WO 98/07765 and WO 98/07766.
- the solvent used for the dilution increases the raw material costs and reduces the amount of polymer produced, since the reaction mixture obtained has comparatively low solids contents.
- the solvent must be removed again when working up the reaction mixture onto the impact-resistant polystyrene, for example by (usually several) degassing steps. This reduces the economics of the process.
- the task was to remedy the disadvantages described.
- the object was to provide an alternative method for producing impact-resistant polystyrene that has improved economy.
- the process should do without inert solvents.
- the process should be able to produce polymer solutions with a high solids content.
- a rubber solution is prepared from diene monomers, or from diene monomers and styrene monomers, by anionic polymerization in the presence of a solvent and an initiator composition.
- Suitable diene monomers are all polymerizable dienes, in particular 1,3-butadiene, 1,3-pentadiene, 1,3-hexadiene, 2,3-dimethylbutadiene, isoprene, piperylene or mixtures thereof.
- 1,3-Butadiene (short: butadiene) is preferred.
- All vinylaromatic monomers are suitable as styrene monomers, for example styrene, p-methylstyrene, ethylstyrene, tert-butylstyrene, vinylstyrene, vinyltoluene, 1,2-diphenylethylene, 1,1-diphenylethylene or mixtures thereof.
- Styrene is particularly preferably used.
- styrene is used as the styrene monomer and butadiene or isoprene is used as the diene monomer. Mixtures of these monomers can also be used.
- ⁇ -methylstyrene is used as the sole solvent in step a) of the process.
- no other inert solvents for example aliphatic, isocyclic or aromatic hydrocarbons or hydrocarbon mixtures, such as benzene, toluene, ethylbenzene, xylene, cumene, hexane, heptane, octane or cyclohexane, are used.
- the wording “as the only solvent” is not intended to exclude small amounts of solvents which may be present in the initiator composition or in other auxiliaries, ie the reaction mixture may, for example, contain small amounts of an initiator or retarder solvent. The amount of these solvents is considerably less than the amount of solvent required in anionic solution polymerization, and is far from sufficient as a solvent for the polymerization.
- the amount of the solvent ⁇ -methylstyrene is usually 5 to 95, preferably 20 to 90 and particularly preferably 60 to 80% by weight, based on the total amount of the monomers used.
- the initiator composition preferably contains an alkali metal organyl or an alkali metal hydride or mixtures thereof.
- the alkali metal compounds act as anionic polymerization initiators.
- Suitable alkali metal organyls are e.g. mono-, bi- or multifunctional alkali metal alkyls, aryls or aralkyls, in particular organolithium compounds such as ethyl, propyl, isopropyl, n-butyl, sec-butyl, tert-butyl, phenyl, diphenylhexyl , Hexamethylenedi-, Butadienyl-, Isoprenyl-, Polystyryl- lithium or the multifunctional compounds 1,4-Dilithiobutan, 1, 4-Dilithio-2-buten or 1,4-Dilithiobenzol. Sec-butyllithium is preferably used.
- Alkali metal hydrides as initiators are less preferred in step a) of the process according to the invention, but particularly preferred in step b). They are usually used together with retarders, e.g. aluminum organyls (see below). Suitable alkali metal hydrides are, for example, lithium hydride, sodium hydride or potassium hydride. To control the reaction rate, additives which reduce the rate of polymerization, so-called retarders as described in WO 98/07766, can be added. In rubber synthesis, ie in step a) of the process according to the invention, retarders can be dispensed with in some cases, for example if homopolybutadiene rubber is produced. In contrast, in step b), ie in the production of the impact-resistant polystyrene, the initiator composition additionally contains a retarder, particularly preferably an aluminum organyl.
- a retarder particularly preferably an aluminum organyl.
- Suitable retarders are, for example, metal organyles of an element of the second or third main group or of the second subgroup of the periodic table.
- the organyls of the elements Be, Mg, Ca, Sr, Ba, B, Al, Ga, In, TI, Zn, Cd, Hg can be used.
- Aluminum organyles, magnesium organyles or zinc organyls, or mixtures thereof, are preferably used as retarders.
- Organyls are understood to mean the organometallic compounds of the elements mentioned with at least one metal-carbon ⁇ bond, in particular the alkyl or aryl compounds.
- the metal organyls can also contain hydrogen, halogen or organic radicals bound via heteroatoms, such as alcoholates or phenolates, on the metal. The latter can be obtained, for example, by whole or partial hydrolysis, alcoholysis or aminolysis. Mixtures of different metal organyls can also be used.
- aluminum organyls those of the formula R3AI can be used, the radicals R independently of one another being hydrogen, halogen, C 1 -C 6 -alkyl or C 6 . 2 mean o-aryl.
- Preferred aluminum organyls are the aluminum trialkyls, such as triethyl aluminum, tri-iso-butyl aluminum, tri-n-butyl aluminum, tri-iso-propyl aluminum, tri-n-hexyl aluminum. Triisobutylaluminum (TIBA) or triethylaluminum (TEA) is particularly preferably used.
- Aluminum organyls which can be used are those which result from partial or complete hydrolysis, alcoholysis, aminolysis or oxidation of alkyl or arylaluminum compounds. Examples are diethyl aluminum ethoxide, diisobutyl aluminum ethoxide, diisobutyl (2,6-di-tert-butyl-4-methylphenoxy) aluminum (CAS No. 56252-56-3), methylaluminoxane, isobutylated Methylaluminoxane, isobutylaluminoxane, tetraisobutyldialuminoxane or bis (diisobutyl) alumina.
- Suitable magnesium organyls are those of the formula R 2 Mg, where the radicals R have the meaning given above.
- Dialkyl magnesium compounds in particular the ethyl, propyl, butyl, hexyl or octyl compounds available as commercial products, are preferably used.
- the (n-butyl) (s-butyl) magnesium which is soluble in hydrocarbons is particularly preferably used.
- Zinc organyls which can be used are those of the formula R 2 Zn, where the radicals R have the meaning indicated above.
- Preferred zinc organyls are dialkyl zinc compounds, in particular with ethyl, propyl, butyl, hexyl or octyl as the alkyl radical. Diethyl zinc is particularly preferred.
- the required amount of polymerization initiators depends, among other things. according to the desired molecular weight (molar mass) of the polymer to be produced, the type and amount of retarder used and the polymerization temperature. As a rule, 0.0001 to 10, preferably 0.001 to 1 and particularly preferably 0.01 to 0.2 mol% of alkali metal organyl are used, based on the total amount of the monomers used.
- the required amount is determined, among other things. depending on the type and amount of retarders used, and on the polymerization temperature. Usually 0.0001 to 10, preferably 0.001 to 5 and especially 0.01 to 2 mol% retarder compound are used, based on the total amount of the monomers used.
- the molar ratio of initiator to retarder can vary within wide limits. For example, according to the desired retardation effect, the polymerization temperature, the type and amount (concentration) of the monomers used, and the desired molecular weight of the polymer.
- the initiator composition is preferably prepared using a suspension or solvent (hereinafter referred to collectively as solvents).
- solvents are, in particular, inert hydrocarbons, more specifically aliphatic, cycloaliphatic or aromatic hydrocarbons, such as cyclohexane, methylcyclohexane, pentane, hexane, heptane, isooctane, benzene, toluene, xylene, ethylbenzene, decalin or paraffin oil, or mixtures thereof. Toluene is particularly preferred.
- the amount of solvents is small compared to the amount of ⁇ -methylstyrene used and is far from sufficient as a solvent for the polymerization, which is why the solvents are not among the solvents within the meaning of the claims.
- the initiator composition can be allowed to age (age) after the addition of the retarder.
- age age
- the ripening or aging of the freshly prepared initiator composition improves the reproducibility of the anionic polymerization.
- the observed aging process is presumably due to a complex formation of the metal compounds, which is slower than the mixing process.
- the ripening time is about 2 minutes, preferably at least 5 minutes, in particular at least 20 minutes, and up to several hours, for example 1 to 480 hours.
- Initiator components can be carried out in conventional mixing units, preferably in units which can be supplied with inert gas.
- the polymerization temperature in step a) of the process is at least 20 ° C.
- Polymerization is preferably carried out at 20 to 150, particularly preferably 40 to 100 and in particular 60 to 100 ° C. Temperatures of 60 to 80 ° C. are very particularly preferred.
- the polymerization temperature is adjusted by conventional devices, e.g. Temperature control of the reactor via the outer wall or immersed heat exchangers, evaporative cooling, and / or by means of the heat of polymerization released.
- the other polymerization conditions for example pressure and polymerization time, are usually chosen to be similar to the anionic polymerization processes of styrene and diene monomers known to those skilled in the art.
- step a) is usually not followed by addition after the polymerization of a chain terminating agent such as water or alcohol.
- a chain terminating agent such as water or alcohol.
- the reaction can be "frozen” by adding a molar excess, based on the initiator, to the retarder, see below.
- Step a) of the process according to the invention can be carried out batchwise or continuously, in any pressure-resistant and temperature-resistant reactor, it being possible in principle to use backmixing or non-backmixing reactors (ie reactors with stirred tank or tubular reactor behavior).
- backmixing or non-backmixing reactors ie reactors with stirred tank or tubular reactor behavior.
- the process sequence used in particular, and other parameters, such as temperature and possibly temperature profile the process leads to polymers with high or low molecular weight.
- stirred tanks, tower reactors, loop reactors and tubular reactors or tube bundle reactors with or without internals are suitable. Internals can be static or movable internals.
- the polymerization can be carried out in one or more stages. It is preferably carried out batchwise, for example in a stirred tank. Further details on the design of the reactors and the operating conditions can be found in the documents WO 98/07765 and WO 98/07766, to which reference is expressly made here.
- step a) of the process a reaction mixture is obtained which contains the rubber polymer dissolved in ⁇ -methylstyrene.
- the solvent ⁇ -methylstyrene is not or only to a small extent incorporated as a monomer in the polymer.
- the rubber polymer preferably contains polymerized ⁇ -methylstyrene only in small amounts of 0 to 10, in particular 0 to 5% by weight of ⁇ -methylstyrene.
- Rubber polymers include, for example, homopolymers such as polybutadiene (PB) and polyisoprene (PI), and copolymers such as styrene-butadiene block copolymers (S-B polymers).
- the weight average molecular weights Mw for polybutadiene or polyisoprene are preferably 10,000 to 500,000, preferably 50,000 to 300,000 g / mol.
- the block structure is essentially created by first anionically polymerizing styrene alone, creating a styrene block. After the styrene monomers have been consumed, the monomer is changed by adding monomeric butadiene and anionically polymerizing to a butadiene block polymer (so-called sequential polymerization).
- the resulting two-block polymer S-B can be polymerized by renewed monomer change on styrene to a three-block polymer S-B-S, if desired.
- the two styrene blocks can be of the same size (same molecular weight, that is, symmetrical structure S 1 -BS 1 ) or different sizes (different molecular weight, that is, asymmetrical structure S BS 2 ).
- Block sequences SSB or SS 2 -B, or SBB or SB B 2 are of course also possible.
- the indices for the block sizes are given above. The block sizes depend, for example, on the amounts of monomers used and the polymerization conditions.
- the block copolymers mentioned can have a linear structure (described above). However, branched or star-shaped structures are also possible and preferred for some applications. Branched block copolymers are obtained in a known manner, e.g. by grafting polymer "side branches" onto a polymer backbone.
- Star-shaped block copolymers are formed, for example, by reacting the living anionic chain ends with an at least bifunctional coupling agent.
- an at least bifunctional coupling agent are described, for example, in U.S. Patent Nos. 3,985,830, 3,280,084, 3,675,554, and 4,091,053.
- Epoxidized glycerides eg epoxidized linseed oil or soybean oil
- silicon halides such as SiCl 4
- divinylbenzene divinylbenzene
- polyfunctional aldehydes, ketones, esters, anhydrides or epoxides are preferred.
- Dichlorodialkylsilanes, dialdehydes such as terephthalaldehyde and esters such as ethyl formate are also particularly suitable for the dimerization.
- dialdehydes such as terephthalaldehyde
- esters such as ethyl formate
- the individual star branches can be the same or different, in particular contain different blocks S, B, B / S or different block sequences. Further details on star-shaped block copolymers can be found, for example, in WO 00/58380.
- the monomer names styrene and butadiene used above are also examples of other vinyl aromatics and dienes.
- step b) of the process according to the invention styrene monomer is added to the rubber solution obtained in step a) and the mixture obtained is polymerized in the presence of an initiator composition anionically or radically to give the end product impact-resistant polystyrene.
- Suitable styrene monomers are the styrene monomers already mentioned above, and also ⁇ -methylstyrene. Styrene is preferably used.
- the initiator composition suitable for anionic polymerization has already been described in step a).
- the initiator compositions used in step a) or step b) may differ from one another.
- it preferably contains alkali metal organyls or (particularly preferred) alkali metal hydrides as the anionic polymerization initiator, and additionally a retarder, preferably an aluminum organyl.
- step b) - with styrene as the added styrene monomer - an impact-resistant polystyrene with a hard matrix of styrene- ⁇ -methylstyrene copolymer is obtained, since the initiator composition mentioned incorporates ⁇ -Methylstyrene favored as a comomomer in the hard matrix.
- a mixture of potassium hydride and TIBA is particularly preferably used in step b).
- the molar ratio of retarder to initiator is expediently stated as the molar ratio of retarder metal (for example Al, Mg or Zn) to initiator metal (for example Li) and is 0.5: 1 to 1.5: 1, preferably 0, for Al / Li. 8: 1 to 1: 1.
- retarder metals other than Al and initiator metals other than Li are expediently stated as the molar ratio of retarder metal (for example Al, Mg or Zn) to initiator metal (for example Li) and is 0.5: 1 to 1.5: 1, preferably 0, for Al / Li. 8: 1 to 1: 1.
- retarder metals other than Al and initiator metals other than Li for example by ripening the mixture.
- a retarder is added to the rubber solution before the styrene monomer is added, in order to prevent the premature polymerization of the styrene monomers.
- Suitable retarders are the retarder compounds already mentioned, in particular TEA or TIBA. It is preferred to add 0.001 to 2, in particular 0.01 to 1, mol% of the retarder, based on the styrene monomers.
- This retarder additive changes the molar ratio retarder / initiator such that the reaction rate drops to almost zero.
- the living polymer chains are "dormant", i.e. the reaction is "frozen” but not stopped. By adding initiator again for re-initiation, the molar ratio changes again and the stopped reaction starts again, it “thaws”.
- step b) If the polymerization in step b) is not anionic but free-radical, the polymerization is initiated either thermally or the usual free-radical polymerization initiators (in short: free-radical initiators), in particular peroxidic initiators, are used for this.
- free-radical initiators in particular peroxidic initiators
- An organic peroxide is preferably used which has a half-life of about 5 to 30 minutes at the respective reaction temperature. You can use alkyl or acyl peroxides, hydroperoxides, peresters or peroxy carbonates.
- a graft-active initiator such as dibenzoyl peroxide, t-butylperoxy-2-ethylhexanoate, t-butylperbenzoate, 1,1-di- (t-butylperoxy) cyclohexane or 1,1-di- (t-butylperoxy) -3 is preferably used , 3,5-trimethylcyclohexane.
- the radical initiator can be used as such or as a solution in an inert solvent, e.g. Toluene.
- the amount of free-radical initiators required depends, inter alia, on the desired molecular weight (molar mass) of the polymer to be prepared and on the polymerization temperature. As a rule, 20 to 1000 are used, in particular re 50 to 500 ppmw (parts per million by weight), based on the total amount of styrene monomers used in steps a) and b).
- the polymerization in step b) is preferably carried out in the absence or — less preferably — in the presence of a solvent.
- Suitable solvents are, for example, aliphatic, isocyclic or aromatic hydrocarbons or hydrocarbon mixtures, such as benzene, toluene, ethylbenzene, xylene, cumene, hexane, heptane, octane or cyclohexane. If solvents are used, those with a boiling point above 95 ° C, e.g. Toluene, preferred. The solvent is usually removed during degassing, then collected by condensation and reused after cleaning.
- the polymerization reaction is terminated by adding a chain terminator which irreversibly terminates the living polymer chain ends.
- chain terminator All proton-active substances and Lewis acids can be considered as chain terminators.
- water (preferred) and CrCio alcohols such as methanol, ethanol, isopropanol, n-propanol and the butanols are suitable.
- Aliphatic and aromatic carboxylic acids such as 2-ethylhexanoic acid and phenols are also suitable.
- Inorganic acids such as carbonic acid (solution of CO 2 in water) and boric acid can also be used.
- the reaction mixture is usually worked up, for example by means of degassing.
- the desired impact-resistant polystyrene contains, for example, the auxiliaries and accompanying substances used in the polymerization and demolition, and, if appropriate, unreacted monomers (so-called residual monomers), and, if appropriate, oligomers or low molecular weight polymers as undesired by-products of the polymerization.
- the degassing for example by means of conventional degassing devices such as degassing extruders, partial evaporators, continuous degassers or vacuum pots, removes residual monomers and oligomers and in particular the solvent ⁇ -methylstyrene.
- reaction mixtures (polymer solutions) with very high solids contents of over 80% by weight can be produced.
- the high solids content simplifies the degassing, reduces the time and cost of reprocessing, increases the product output and thus makes the product cheaper.
- Step b) of the process can be carried out batchwise or continuously in any pressure- and temperature-resistant reactor, as has already been described in step a). Polymerization is usually carried out in step b) at 50 to 200, preferably 75 to 175 and particularly preferably 80 to 160 ° C. The information on step a) applies to the pressure and duration of the polymerization.
- the polymerization can be carried out in one or more stages. In a preferred embodiment, at least one stage is carried out in a tower reactor or tubular reactor.
- the rubber solution in step a) of the process, can be prepared batchwise, retarders may be added to prevent premature polymerization, and then styrene as a further styrene monomer can be added in step b).
- a solution of the rubber is obtained in a mixture of ⁇ -methylstyrene (solvent from step a)) and styrene (styrene monomer from step b)).
- the solution can be temporarily stored in a buffer tank and then continuously anionically polymerized with the addition of a further initiator composition.
- the reaction mixture obtained in step b) has a solids content (FG) of at least 70, particularly preferably at least 80% by weight after the end of the polymerization.
- Impact-resistant polystyrene is obtained as the end product of the process according to the invention.
- the invention also relates to the impact-resistant polystyrene (HIPS) obtainable by the polymerization process.
- HIPS impact-resistant polystyrene
- the impact-resistant polystyrene contains polybutadiene or styrene-butadiene copolymers as the rubber.
- Impact-resistant polystyrenes containing as rubber are particularly preferred according to the invention
- styrene-butadiene two-block copolymer Si with a styrene content of 1 to 60, preferably 5 to 50% by weight, based on the two-block copolymer, or
- styrene-butadiene-styrene triblock copolymer SBS with a styrene content of 1 to 60, preferably 5 to 50 wt .-%, based on the triblock copolymer.
- SBS styrene-butadiene-styrene triblock copolymer
- Mw weight average molecular weight
- the butadiene block B has an Mw of 30,000 to 300,000, preferably 50,000 to 200,000
- the styrene block S 2 has an Mw of 1,000 to 100,000, preferably 5,000 to 30,000, or
- copolymers b) to e) can each contain up to 10, preferably up to 5% by weight of ⁇ -methylstyrene, in particular in their styrene blocks.
- the hard matrix of the impact-resistant polystyrene consists of a styrene- ⁇ -methylstyrene copolymer. That Part of the solvent used in rubber synthesis, ⁇ -methylstyrene, is incorporated into the hard matrix as a comonomer in HIPS synthesis.
- Hard matrix 10 to 90 in particular 20 to 60 wt .-%, based on the hard matrix.
- the weight average molecular weight Mw of the hard matrix is e.g. 50,000 to 300,000, preferably 100,000 to 250,000 g / mol.
- a mineral oil e.g. White oil
- a mineral oil e.g. 0.1 to 10
- a 0.5 to 5 wt .-% added, whereby the mechanical properties are improved, in particular the elongation at break increases.
- an antioxidant or a stabilizer against exposure to light is used as a further additive in amounts of, for example, 0.01 to 0.3, preferably 0.02 to 0.2, by weight. -% used.
- light stabilizer a stabilizer against exposure to light
- these additives increase the resistance of the polymer to air and oxygen, or to UV radiation, and thus increase the weathering and aging resistance of the polymer.
- the amounts given relate to the polymer obtained.
- the polymers can contain other additives or processing aids, for example lubricants or degreasers. Molding agents, colorants such as pigments or dyes, flame retardants, fibrous and powdery fillers or reinforcing agents or antistatic agents, as well as other additives or their mixtures.
- the individual additives are used in the usual amounts, so that further details are not necessary.
- the additives can be added, for example, during the processing of the polymer melt, and / or the solid polymer (for example polymer granules) by mixing processes known per se, for example by melting in an extruder, Banbury mixer, kneader, roller mill or calender.
- Shaped articles including semifinished products, films, fibers and foams of all kinds can be produced from the impact-resistant polystyrenes according to the invention.
- the invention accordingly also relates to the use of the impact-resistant polystyrene according to the invention for the production of moldings, films, fibers and foams, and to the moldings, films, fibers and foams obtainable from the impact-resistant polystyrene.
- the process according to the invention manages without inert solvents and has improved economy.
- polymer solutions with high solids contents of over 80% by weight can be produced, which considerably reduces the time and cost of degassing.
- the rubber solution obtained had a solids content (FG) of x9% by weight.
- FG solids content
- GPC analysis gel permeation chromatography in tetrahydrofuran, calibration with polybutadiene standards
- the polymer had a monomodal distribution.
- the residual monomer content of butadiene determined by gas chromatography was less than 10 ppm (w).
- the weight average molecular weight Mw was determined by GPC as described above and was x10 kg / mol.
- Table 1 summarizes the individual values of the variables x1 to x10.
- Table 1 Rubber production: Variables x1 to x10 (FG solids content)
- the polymerization was carried out continuously in a double-walled 50 l stirred kettle with a standard anchor stirrer.
- the reactor was designed for an absolute pressure of 25 bar and was tempered with a heat transfer medium and by means of evaporative cooling for isothermal reaction control.
- X13 kg / h of styrene, x14 kg / h of the rubber solution (see item 2 and Table 1 above) and x15 g / h of the initiator solution (initiator solution see item 1) were metered into the stirred kettle continuously at 115 rpm and the kettle kept at a constant reactor wall temperature of 130 to 140 ° C.
- the solids content was x16% by weight;
- the reaction mixture was then metered in x17 kg / h of styrene.
- the reaction mixture was conveyed in a stirred 29 l tower reactor which was provided with two heating zones of the same size, the first zone being kept at x18 ° C. and the second zone x19 ° C. reactor wall temperature.
- the solids content at the outlet of the tower reactor was x20% by weight.
- the discharge from the tower reactor was mixed with x21 g / h of water, then passed through a mixer and finally passed through a pipe section heated to 250 ° C. Afterwards, the reaction mixture was degassed into a pressure control valve Pumped at x22 ° C operated partial evaporator and relaxed in a vacuum pot operated at 10 mbar absolute pressure and x23 ° C. The ⁇ -methylstyrene solvent removed in the degassing was condensed and reused after distillation.
- the polymer melt obtained was discharged using a screw conveyor and then mixed with x24 g / h of an additive mixture of x25 g Irganox® 1076 and x26 g mineral oil Winog®70, passed through a mixer and granulated. The turnover was quantitative.
- the HIPS obtained had the following residual monomer contents, which were determined as already described: styrene less than 5 ppm (w), ethylbenzene less than 5 ppm (w).
- Table 2 summarizes the individual values of the variables x11 to x26.
- Example HIPS3 The procedure was as described in Example HIPS3, with the following differences: I) a tubular reactor was used instead of the tower reactor.
- the tubular reactor had a volume of 20 l, a diameter D of 50 mm and three heating zones with the following temperatures and volumes: first zone 130 ° C. and 6 l, second zone 140 ° C. and 6 l, third zone 160 ° C. and 8 l .
- x17 4 kg / h of styrene (instead of 8 kg / h) were metered in at the outlet of the stirred tank, and
- the solids content at the discharge from the tubular reactor (corresponds to variable x20) was 92.1% by weight.
- butadiene rubbers can be produced with the process according to the invention without the use of inert solvents such as toluene or cyclohexane.
- the rubber solutions obtained could be used directly for the production of impact-resistant polystyrene.
- the HIPS solutions obtained had very high solids contents of well over 80% by weight; through process optimization (example HIPS4) even solids contents of over 90% could be achieved.
- the high solids content made the degassing considerably easier and the economy of the process improved.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Graft Or Block Polymers (AREA)
Abstract
Verfahren zur Herstellung von schlagzähem Polystyrol aus Dienmonomeren und Styrolmonomeren durch anionische oder anionische und radikalische Polymerisation, dadurch gekennzeichnet, dass man a) zunächst aus den Dienmonomeren, oder aus den Dienmonomeren und den Styrolmonomeren, durch anionische Polymerisation in Gegenwart eines Lösungsmittels und einer Initiatorzusammensetzung, eine Kautschuklösung herstellt, wobei man bei mindestens 20°C polymerisiert, und als einziges Lösungsmittel α-Methylstyrol verwendet, und b) dieser Kautschuklösung Styrolmonomer zufügt und die erhaltene Mischung in Gegenwart einer Initiatorzusammensetzung anionisch oder radikalisch zum schlagzähen Polystyrol polymerisiert.
Description
Verfahren zur anionischen Polymerisation von Monomeren in α-Methylstyrol
Beschreibung
Die Erfindung betrifft ein Verfahren zur Herstellung von schlagzähem Polystyrol aus Dienmonomeren und Styrolmonomeren durch anionische oder anionische und radikalische Polymerisation, dadurch gekennzeichnet, dass man
a) zunächst aus den Dienmonomeren, oder aus den Dienmonomeren und den Sty- rolmonomeren, durch anionische Polymerisation in Gegenwart eines Lösungsmittels und einer Initiatorzusammensetzung, eine Kautschuklösung herstellt, wobei man bei mindestens 20°C polymerisiert, und als einziges Lösungsmittel α- Methylstyrol verwendet, und
b) dieser Kautschuklösung Styrolmonomer zufügt und die erhaltene Mischung in Gegenwart einer Initiatorzusammensetzung anionisch oder radikalisch zum schlagzähen Polystyrol polymerisiert.
Die Erfindung betrifft außerdem das nach dem genannten Verfahren erhältliche schlagzähe Polystyrol, die Verwendung des schlagzähen Polystyrols zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, sowie die Formkörper, Folien, Fasern und Schäume aus dem schlagzähen Polystyrol.
Polymere aus Styrolmonomeren und Dienmonomeren sind beispielsweise die Homo- polymere Polystyrol (PS oder auch GPPS, General Purpose Polystyrene = Standard- Polystyrol), Polybutadien (PB) und Polyisopren (Pl), sowie die Copolymere Styrol- - Methylstyrol-Copolymer, schlagzähes Polystyrol (HIPS, High Impact Polystyrene, z.B. Polybutadien-Kautschuk dispergiert in einer Polystyrol-Hartmatix oder Styrol- Methylstyrol-Copolymer-Hartmatrix) und Styrol-Butadien-Blockcopolymere. Die ge- nannten Polymere können durch verschiedene Polymerisationsverfahren hergestellt werden, etwa durch radikalische oder anionische Polymerisation.
Die durch anionische Polymerisation erhaltenen Polymere weisen gegenüber den auf radikalischem Wege erhaltene Produkten einige Vorteile auf, u.a. geringere Restmo- nomeren- und Oligomerengehalte. Radikalische und anionische Polymerisation sind grundverschieden. Bei der radikalischen Polymerisation verläuft die Reaktion über freie Radikale und es werden z.B. peroxidische Initiatoren verwendet, wogegen die anionische Polymerisation über "lebende" Carbanionen ablauft und beispielsweise Alkalime- tallorganylverbindungen als Initiatoren verwendet werden. Die anionische Polymerisa- tion wird nach Verbrauch der Monomeren bevorzugt mit einem Kettenabbruchmittel, z.B. einer protischen Substanz wie Wasser oder Alkoholen, abgebrochen.
Die anionische Polymerisation verläuft wesentlich schneller und führt zu höheren Umsätzen, als die radikalische Polymerisation. Die Temperaturkontrolle der exothermen Reaktion ist aufgrund der hohen Geschwindigkeit schwierig. Dem kann man Verwendung von sogenannten Retardem (etwa AI-, Zn- oder Mg-Organylverbiridungen) be- gegnen, welche die Reaktionsgeschwindigkeit senken. Die Viskosität der Reaktionsmischung nimmt bei der anionischen Kautschukherstellung in der Regel schnell zu, wodurch sich unerwünschte „hot spots" im Reaktor bilden können und sich die Lösung schlecht handhaben lässt. Um den Viskositätsanstieg zu begrenzen, ist eine Verdünnung der Reaktionsmischung unumgänglich. Dazu verwenden die Verfahren des Stan- des der Technik ein inertes Lösungsmittel, z.B. Kohlenwasserstoffe wie Toluol oder Cyclohexan.
Zur Herstellung von schlagzähem Polystyrol wird der verdünnten Kautschuklösung anschließend Styrolmonomer und weiteres Lösungsmittel zugefügt und die Mischung zum Endprodukt polymerisiert. Die anionische Polymerisation von Styrol und/oder Butadien ist beispielsweise in der WO 98/07765 und WO 98/07766 beschrieben.
Das zur Verdünnung verwendete Lösungsmittel erhöht die Einsatzstoffkosten und vermindert die produzierte Polymermenge, da die erhaltene Reaktionsmischung ver- gleichsweise geringe Feststoffgehalte aufweist. Außerdem muss das Lösungsmittel bei der Aufarbeitung der Reaktionsmischung auf das schlagzähe Polystyrol wieder entfernt werden, beispielsweise durch (meist mehrere) Entgasungsschritte. Dies vermindert die Wirtschaftlichkeit des Verfahrens.
Es bestand die Aufgabe, den geschilderten Nachteilen abzuhelfen. Insbesondere bestand die Aufgabe, ein alternatives Verfahren zur Herstellung von schlagzähem Polystyrol bereitzustellen, dass eine verbesserte Wirtschaftlichkeit aufweist. Insbesondere sollte das Verfahren ohne inerte Lösungsmittel auskommen. Mit dem Verfahren sollten sich Polymerlösungen mit hohem Feststoffgehalt herstellen lassen.
Demgemäß wurde das eingangs definierten Verfahren, das genannte schlagzähe Polystyrol, dessen Verwendung, sowie die Formkörper, Folien, Fasern und Schäume gefunden. Bevorzugte Ausführungsformen der Erfindung sind den Unteransprüchen zu entnehmen.
Bei dem erfindungsgemäßen Verfahren wird in Schritt a) aus Dienmonomeren, oder aus Dienmonomeren und Styrolmonomeren, durch anionische Polymerisation in Gegenwart eines Lösungsmittels und einer Initiatorzusammensetzung, eine Kautschuklösung hergestellt.
Als Dienmonomere kommen alle polymerisierbaren Diene in Betracht, insbesondere 1 ,3-Butadien, 1 ,3-Pentadien, 1,3-Hexadien, 2,3-Dimethylbutadien, Isopren, Piperylen oder Mischungen davon. Bevorzugt ist 1,3-Butadien (kurz: Butadien).
Als Styrolmonomere sind alle vinylaromatischen Monomere geeignet, beispielsweise Styrol, p-Methylstyrol, Ethylstyrol, tert.-Butylstyrol, Vinylstyrol, Vinyltoluol, 1,2- Diphenylethylen, 1,1-Diphenylethylen oder deren Mischungen. Besonders bevorzugt wird Styrol eingesetzt.
In einer bevorzugten Ausführungsform verwendet man als Styrolmonomer Styrol, und als Dienmonomer Butadien oder Isopren. Es können auch Mischungen dieser Monomere verwendet werden.
Erfindungsgemäß verwendet man in Schritt a) des Verfahrens α-Methylstyrol als einzi- ges Lösungsmittel. Insbesondere werden keine sonstigen inerten Lösungsmittel, beispielsweise aliphatische, isocyclische oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, wie Benzol, Toluol, Ethylbenzol, Xylol, Cumol, Hexan, Hep- tan, Octan oder Cyclohexan, verwendet. Der Wortlaut „als einziges Lösungsmittel" soll allerdings geringe Mengen an Solventien, die in der Initiatorzusammensetzung oder in anderen Hilfsstoffen enthalten sein können, nicht ausschließen, d.h. die Reaktionsmischung kann z.B. geringe Mengen eines Initiator- oder Retarderlösungsmittels enthalten. Die Menge dieser Solventien ist wesentlich geringer als die bei der anionischen Lösungspolymerisation erforderliche Lösungsmittelmenge, und reicht als Lösungsmittel für die Polymerisation bei weitem nicht aus.
Die Menge des Lösungsmittels α-Methylstyrol beträgt in der Regel 5 bis 95, bevorzugt 20 bis 90 und besonders bevorzugt 60 bis 80 Gew.-%, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
Die Initiatorzusammensetzung enthält bevorzugt ein Alkalimetallorganyl oder ein Alkalimetallhydrid oder deren Mischungen. Die Alkalimetallverbindungen wirken als anionische Polymerisationsinitiatoren. Geeignete Alkalimetallorganyle sind z.B. mono-, bi- oder multifunktionellen Alkalimetallalkyle, -aryle oder -aralkyle, insbesondere lithiumorganische Verbindungen wie Ethyl-, Propyl-, Isopropyl-, n-Butyl-, sec.-Butyl-, tert.- Butyl-, Phenyl-, Diphenylhexyl-, Hexamethylendi-, Butadienyl-, Isoprenyl-, Polystyryl- lithium oder die multifunktionellen Verbindungen 1,4-Dilithiobutan, 1 ,4-Dilithio-2-buten oder 1,4-Dilithiobenzol. Bevorzugt verwendet man sec.-Butyllithium.
Alkalimetallhydride als Initiatoren sind in Schritt a) des erfindungsgemäßen Verfahrens weniger bevorzugt, dagegen in Schritt b) besonders bevorzugt. Sie werden in der Regel zusammen mit Retardem, z.B. Aluminiumorganylen (siehe unten), verwendet. Geeignete Alkalimetallhydride sind z.B. Lithiumhydrid, Natriumhydrid oder Kaliumhydrid.
Zur Kontrolle der Reaktionsgeschwindigkeit können polymerisationsgeschwindigkeits- vermindernde Zusätze, sogenannte Retarder wie in WO 98/07766 beschrieben, zugegeben werden. Bei der Kautschuksynthese, also in Schritt a) des erfindungsgemäßen Verfahrens, kann in manchen Fällen auf Retarder verzichtet werden, beispielsweise falls Homopolybutadienkautschuk hergestellt wird. Hingegen enthält bevorzugt in Schritt b), also bei der Herstellung des schlagzähen Polystyrols, die Initiatorzusammensetzung zusätzlich einen Retarder, besonders bevorzugt ein Aluminiumorganyl.
Als Retarder eignen sich beispielsweise Metallorganyle eines Elementes der zweiten oder dritten Hauptgruppe oder der zweiten Nebengruppe des Periodensystems. Beispielsweise können die Organyle der Elemente Be, Mg, Ca, Sr, Ba, B, AI, Ga, In, TI, Zn, Cd, Hg verwendet werden. Bevorzugt verwendet man Aluminiumorganyle, Magne- siumorganyle oder Zinkorganyle, bzw. deren Mischungen, als Retarder.
Als Organyle werden die metallorganischen Verbindungen der genannten Elemente mit mindestens einer Metall-Kohlenstoff α-Bindung verstanden, insbesondere die Alkyl- oder Arylverbindungen. Daneben können die Metallorganyle noch Wasserstoff, Halogen oder über Heteroatome gebundene organische Reste, wie Alkoholate oder Pheno- late, am Metall enthalten. Letztere sind beispielsweise durch ganze oder teilweise Hyd- rolyse, Alkoholyse oder Aminolyse erhältlich. Es können auch Mischungen verschiedener Metallorganyle verwendet werden.
Als Aluminiumorganyle können solche der Formel R3AI verwendet werden, wobei die Reste R unabhängig voneinander Wasserstoff, Halogen, Cι- o-Alkyl oder C6.2o-Aryl be- deuten. Bevorzugte Aluminiumorganyle sind die Aluminiumtrialkyle wie Triethyl- aluminium, Tri-iso-butylaluminium, Tri-n-butylaluminium, Tri-iso-propylaluminium, Tri-n- hexylaluminium. Besonders bevorzugt wird Triisobutylaluminium (TIBA) oder Triethyla- luminium (TEA) eingesetzt. Als Aluminiumorganyle können auch solche verwendet werden, die durch teilweise oder vollständige Hydrolyse, Alkoholyse, Aminolyse oder Oxidation von Alkyl- oder Arylaluminiumverbindungen entstehen. Beispiele sind Diethy- laluminium-ethoxid, Diisobutyl-aluminium-ethoxid, Diisobutyl-(2,6-di-tert.-butyl-4- methyl-phenoxy)aluminium (CAS-Nr. 56252-56-3), Methylaluminoxan, isobutyliertes Methylaluminoxan, Isobutylaluminoxan, Tetraisobutyldialuminoxan oder Bis(diisobutyl)aluminiumoxid.
Geeignete Magnesiumorganyle sind solche der Formel R2Mg, wobei die Reste R die zuvor angegebene Bedeutung haben. Bevorzugt werden Dialkylmagnesiumverbindun- gen, insbesondere die als Handelsprodukte verfügbaren Ethyl-, Propyl-, Butyl-, Hexyl- oder Octylverbindungen eingesetzt. Besonders bevorzugt wird das in Kohlenwasser- Stoffen lösliche (n-Butyl)(s-butyl)magnesium eingesetzt.
Als Zinkorganyle können solche der Formel R2Zn verwendet werden, wobei die Reste R die zuvor angegebene Bedeutung haben. Bevorzugte Zinkorganyle sind Dialkylzink- verbindungen, insbesondere mit Ethyl, Propyl, Butyl, Hexyl oder Octyl als Alkylrest. Besonders bevorzugt ist Diethylzink.
Es versteht sich, dass auch mehrere Polymerisationsinitiatoren bzw. Retarder, verwendet werden können.
Die benötigte Menge an Polymerisationsinitiatoren richtet sich u.a. nach dem ge- wünschten Molekulargewicht (Molmasse) des Polymeren, das hergestellt werden soll, nach Art und Menge des verwendeten Retarders und nach der Polymerisationstemperatur. In der Regel verwendet man 0,0001 bis 10, bevorzugt 0,001 bis 1 und besonders bevorzugt 0,01 bis 0,2 Mol-% Alkalimetallorganyl, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
Falls ein Retarder mitverwendet wird, richtet sich die benötigte Menge u.a. nach Art und Menge der verwendeten Retarder, und nach der Polymerisationstemperatur. Üblicherweise verwendet man 0,0001 bis 10, bevorzugt 0,001 bis 5 und besondere 0,01 bis 2 Mol-% Retarderverbindung, bezogen auf die Gesamtmenge der eingesetzten Monomeren.
Das molare Verhältnis von Initiator zu Retarder kann in weiten Grenzen variieren. Es richtet sich z.B. nach der gewünschten Retardierungswirkung, der Polymerisationstemperatur, der Art und Menge (Konzentration) der eingesetzten Monomeren, und dem gewünschten Molekulargewicht des Polymeren.
Die Herstellung der Initiatorzusammensetzung erfolgt bevorzugt unter Mitverwendung eines Suspendierungs- oder Lösungsmittels (nachfolgend zusammenfassend als Solventien bezeichnet). Als Solventien eignen sich insbesondere inerte Kohlenwasserstof- fe, genauer aliphatische, cycloaliphatische oder aromatische Kohlenwasserstoffe, wie etwa Cyclohexan, Methylcyclohexan, Pentan, Hexan, Heptan, Isooctan, Benzol, Toluol, Xylol, Ethylbenzol, Dekalin oder Paraffinöl, oder deren Gemische. Toluol ist besonders bevorzugt. Die Menge der Solventien ist gering im Vergleich zur verwendeten Menge α-Methylstyrol und reicht als Lösungsmittel für die Polymerisation bei weitem nicht aus, weshalb die Solventien nicht zu den Lösungmitteln im Sinne der Ansprüche zählen.
Falls ein Retarder mitverwendet wird, kann man die Initiatorzusammensetzung nach der Zugabe des Retarders eine gewisse Zeit reifen (altern) lassen. Die Reifung oder Alterung der frisch hergestellten Initiatorzusammensetzung verbessert in manchen Fällen die Reproduzierbarkeit der anionischen Polymerisation. Initiatorkomponenten, die getrennt voneinander verwendet oder nur kurz vor der Polymerisationsinitiierung vermischt werden, ergeben in manchen Fällen weniger gut reproduzierbare Polymeri-
sationsbedingungen und Polymereigenschaften. Der beobachtete Alterungsprozess ist vermutlich auf eine Komplexbildung der Metallverbindungen zurückzuführen, die langsamer als der Mischungsvorgang abläuft. In der Regel beträgt die Reifungszeit etwa 2 Minuten, bevorzugt mindestens 5 Minuten, insbesondere mindestens 20 Minuten, und bis zu mehreren Stunden, z.B. 1 bis 480 Stunden. Die Mischung der
Initiatorkomponenten kann in üblichen Mischaggregaten durchgeführt werden, vorzugsweise in solchen, die mit Inertgas beaufschlagt werden können.
Erfindungsgemäß beträgt die Polymerisationstemperatur in Schritt a) des Verfahrens mindestens 20°C. Bevorzugt polymerisiert man bei 20 bis 150, besonders bevorzugt 40 bis 100 und insbesondere 60 bis 100°C. Ganz besonders bevorzugt sind Temperaturen von 60 bis 80°C. Die Polymerisationstemperatur wird durch übliche Vorrichtungen eingestellt, z.B. Temperieren des Reaktors über die Außenwand oder eintauchende Wärmetauscher, Siedekühlung, und/oder mittels der freiwerdenden Polymerisations- wärme.
Die sonstigen Polymerisationsbedingungen, beispielsweise Druck und Polymerisationsdauer, werden üblicherweise ähnlich gewählt wie bei den dem Fachmann bekannten anionischen Polymerisationsverfahren von Styrol- und Dienmonomeren.
Während und auch nach Beendigung der Polymerisation, d.h. auch nachdem die Mo- nomere verbraucht sind, liegen in der Reaktionsmischung (Kautschuklösung) „lebende" Polymerketten vor, d.h. bei erneuter Monomerzugabe springt die Polymerisationsreaktion ohne erneute Zugabe von Polymerisationsinitiator sofort wieder an. Demnach wird Schritt a) nach der Polymerisation üblicherweise nicht durch Zugabe eines Kettenabbruchmittels wie Wasser oder Alkohol, abgebrochen. Jedoch kann man die Reaktion durch Zugabe eines molaren Überschusses, bezogen auf den Initiator, an Retarder „einfrieren", siehe weiter unten.
Schritt a) des erfindungsgemäßen Verfahrens kann diskontinuierlich oder kontinuierlich, in jedem druck- und temperaturfesten Reaktor durchgeführt werden, wobei es grundsätzlich möglich ist, rückvermischende oder nicht rückvermischende Reaktoren (d.h. Reaktoren mit Rührkessel- oder Rohrreaktor-Verhalten) zu verwenden. Das Verfahren führt je nach Wahl der Initiatorkonzentration und -Zusammensetzung, des spe- ziell angewandten Verfahrensablaufs und anderer Parameter, wie Temperatur und evtl. Temperaturverlauf, zu Polymerisaten mit hohem oder niedrigem Molekulargewicht. Geeignet sind zum Beispiel Rührkessel, Turmreaktoren, Schlaufenreaktoren sowie Rohrreaktoren oder Rohrbündelreaktoren mit oder ohne Einbauten. Einbauten können statische oder bewegliche Einbauten sein. Die Polymerisation kann einstufig oder mehrstufig durchgeführt werden. Bevorzugt wird sie diskontinuierlich vorgenommen, beispielsweise in einem Rührkessel.
Weitere Details zur Ausgestaltung der Reaktoren und den Betriebsbedingungen sind den Schriften WO 98/07765 und WO 98/07766 zu entnehmen, auf die hier ausdrücklich verwiesen wird.
Man erhält in Schritt a) des Verfahrens eine Reaktionsmischung, die das Kautschukpolymere gelöst in α-Methylstyrol enthält. Das Lösungsmittel α-Methylstyrol wird nicht oder nur in geringem Ausmaß als Monomer in das Polymere eingebaut. Bevorzugt enthält das Kautschukpolymer einpolymerisiertes α-Methylstyrol nur in geringen Mengen von 0 bis 10, insbesondere 0 bis 5 Gew.-% α-Methylstyrol.
Als Kautschukpolymere sind beispielsweise Homopolymere wie Polybutadien (PB) und Polyisopren (Pl), sowie Copolymere wie Styrol-Butadien-Blockcopolymere (S-B- Polymere) zu nennen. Bevorzugt betragen die gewichtsmittleren Molekulargewichte Mw für Polybutadien bzw. Polyisopren 10.000 bis 500.000, bevorzugt 50.000 bis 300.000 g/mol.
Die Styrol-Butadien-Blockcopolymere können z.B. lineare Zweiblock-Copolymere S-B oder Dreiblock-Copolymere S-B-S bzw. B-S-B oder sonstige Mehrblockcopolymere sein (S = Styrolblock, B = Butadienblock), wie man sie durch anionische Polymerisation nach dem erfindungsgemäßen Verfahren erhält. Die Blockstruktur entsteht im wesentlichen dadurch, dass man zunächst Styrol alleine anionisch polymerisiert, wodurch ein Styrolblock entsteht. Nach Verbrauch der Styrolmonomere wechselt man das Monome- re, indem man monomeres Butadien zufügt und anionisch zu einem Butadienblockpo- lymerisiert (sog. sequentielle Polymerisation). Das erhaltene Zweiblockpolymere S-B kann durch erneuten Monomerenwechsel auf Styrol zu einem Dreiblockpolymeren S-B- S polymerisiert werden, falls gewünscht. Entsprechendes gilt sinngemäß für Dreiblock- copolymere B-S-B.
Bei den Dreiblockcopolymeren können die beiden Styrol-Blöcke gleich groß (gleiches Molekulargewicht, also symmetrischer Aufbau S1-B-S1) oder verschieden groß (unterschiedliches Molekulargewicht also asymmetrischer Aufbau S B-S2) sein. Gleiches gilt sinngemäß für die beiden Butadien-Blöcke der Blockcopolymere B-S-B. Selbstverständlich sind auch Blockabfolgen S-S-B bzw. S S2-B, oder S-B-B bzw. S-B B2, möglich. Vorstehend stehen die Indices für die Blockgrößen (Blocklängen bzw. Molekular- gewichte). Die Blockgrößen hängen beispielsweise ab von den verwendeten Mono- mermengen und den Polymerisationsbedingungen.
Anstelle der kautschukelastischen "weichen" Butadienblöcke B oder zusätzlich zu den Blöcken B können auch Blöcke B/S stehen. Sie sind ebenfalls weich und enthalten Butadien und Styrol, beispielsweise statistisch verteilt oder als tapered-Struktur (tape- red = Gradient von Styrol-reich nach Styrol-arm oder umgekehrt). Falls das Blockcopolymere mehrere B/S-Blöcke enthält, können die Absolutmengen, und die relativen An-
teile, an Styrol und Butadien in den einzelnen B/S-Blöcken gleich oder verschieden sein, ergebend unterschiedliche Blöcke (B/S)!, (B/S)2, etc.
Die genannten Blockcopolymere können, ebenso wie in der Regel die Homopolymere, eine (vorstehend beschriebene) lineare Struktur aufweisen. Jedoch sind auch verzweigte oder sternförmige Strukturen möglich und für manche Anwendungen bevorzugt. Verzweigte Blockcopolymere erhält man in bekannter Weise, z.B. durch Pfropfreaktionen von polymeren "Seitenästen" auf eine Polymer-Hauptkette.
Sternförmige Blockcopolymere sind z.B. durch Umsetzung der lebenden anionischen Kettenenden mit einem mindestens bifunktionellen Kopplungsmittel gebildet. Solche Kopplungsmittel werden etwa in den US-PS 3 985 830, 3 280 084, 3 637554 und 4 091 053 beschrieben. Bevorzugt sind epoxidierte Glyceride (z. B. epoxidiertes Leinsa- menöl oder Sojaöl), Siliciumhalogenide wie SiCI4, oder auch Divinylbenzol, außerdem polyfunktionelle Aldehyde, Ketone, Ester, Anhydride oder Epoxide. Speziell für die Di- merisierung eignen sich auch Dichlordialkylsilane, Dialdehyde wie Terephthalaldehyd und Ester wie Ethylformiat. Durch Kopplung gleicher oder verschiedener Polymerketten kann man symmetrische oder asymmetrische Sternstrukturen herstellen, d.h. die einzelnen Sternäste können gleich oder verschieden sein, insbesondere verschiedene Blöcke S, B, B/S bzw. unterschiedliche Blockabfolgen enthalten. Weitere Einzelheiten zu sternförmigen Blockcopolymeren sind beispielsweise der WO 00/58380 zu entnehmen.
Die vorstehend gebrauchten Monomerbezeichnungen Styrol bzw. Butadien stehen beispielhaft auch für andere Vinylaromaten bzw. Diene.
In Schritt b) des erfindungsgemäßen Verfahrens fügt man der in Schritt a) erhaltenen Kautschuklösung Styrolmonomer hinzu und polymerisiert die erhaltene Mischung in Gegenwart einer Initiatorzusammensetzung anionisch oder radikalisch zum Endpro- dukt schlagzähes Polystyrol.
Als Styrolmonomer sind die weiter oben bereits genannten Styrolmonomere geeignet, außerdem α-Methylstyrol. Bevorzugt verwendet man Styrol.
Die für die anionische Polymerisation geeignete Initiatorzusammensetzung wurde bei Schritt a) bereits beschrieben. Dabei können die in Schritt a) bzw. Schritt b) verwendeten Initiatorzusammensetzungen voneinander verschieden sein. Bevorzugt enthält sie in Schritt b) als anionischen Polymerisationsinitiator Alkalimetallorganyle oder (besonders bevorzugt) Alkalimetallhydride, und zusätzlich einen Retarder, bevorzugt ein Alu- miniumorganyl.
Verwendet man eine solche Initiatorzusammensetzung aus Alkalimetallhydrid oder - organyl, und Aluminiumorganyl, so erhält man in Schritt b) - mit Styrol als zugefügtem Styrolmonomer - ein schlagzähes Polystyrol mit einer Hartmatrix aus Styrol-α- Methylstyrol-Copolymer, da die genannte Initiatorzusammensetzung den Einbau von α-Methylstyrol als Comomomer in die Hartmatrix begünstigt. Besonders bevorzugt verwendet man in Schritt b) eine Mischung von Kaliumhydrid und TIBA.
Die weiter oben gemachten Angaben zu den Mengen an Initiator und Retarder, und zur Herstellung der initiatorzusammensetzung beispielsweise durch Reifenlassen der Mi- schung, gelten auch hier. Das molare Verhältnis von Retarder zu Initiator wird zweckmäßigerweise als Molverhältnis Retardermetall (also z.B. AI, Mg oder Zn) zu Initiatormetall (also z.B. Li) angegeben und beträgt für Al/Li 0,5 : 1 bis 1,5 : 1, bevorzugt 0,8 : 1 bis 1 : 1. Gleiches gilt sinngemäß für andere Retardermetalle als AI und andere Initiatormetalle als Li.
In einer bevorzugten Ausführungsform gibt man der Kautschuklösung vor dem Zufügen des Styrolmonomers einen Retarder zu, um die vorzeitige Polymerisation der Styrolmonomeren zu verhindern. Geeignete Retarder sind die bereits genannten Retarder- Verbindungen, insbesondere TEA oder TIBA. Bevorzugt setzt man 0,001 bis 2, insbe- sondere 0,01 bis 1 mol-% des Retarders zu, bezogen auf die Styrolmonomere. Durch diesen Retarderzusatz ändert sich das Molverhältnis Retarder/Initiator derart, dass die Reaktionsgeschwindigkeit auf nahe null absinkt. Die lebenden Polymerketten sind „schlafend", d.h. die Reaktion ist „eingefroren", jedoch nicht abgebrochen. Indem man danach zur Re-Initiierung erneut Initiator zufügt, ändert sich das Molverhältnis erneut und die abgestoppte Reaktion läuft wieder an, sie „taut auf.
Sofern in Schritt b) nicht anionisch, sondern radikalisch polymerisiert wird, initiiert man die Polymerisation entweder thermisch, oder man verwendet dazu die üblichen radikalischen Polymerisationsinitiatoren (kurz: radikalische Initiatoren), insbesondere peroxi- dische Initiatoren. Bevorzugt wird ein organisches Peroxid verwendet, das bei der jeweiligen Reaktionstemperatur eine Halbwertszeit von etwa 5 bis 30 Minuten aufweist. Man kann Alkyl- oder Acylperoxide, Hydroperoxide, Perester oder Peroxicarbonate einsetzen. Vorzugsweise verwendet man einen pfropfaktiven Initiator wie Dibenzoylpe- roxid, t-Butylperoxi-2-ethylhexanoat, t-Butylperbenzoat, 1,1-Di-(t-butylperoxy)- cyclohexan oder 1,1-Di-(t-butylperoxy)-3,3,5-trimethylcyclohexan. Der radikalische Initiator kann als solcher, oder auch als Lösung in einem inerten Solvens, z.B. Toluol, zugegeben werden.
Die benötigte Menge an radikalischen Initiatoren richtet sich u.a. nach dem gewünsch- ten Molekulargewicht (Molmasse) des Polymeren, das hergestellt werden soll und nach der Polymerisationstemperatur. In der Regel verwendet man 20 bis 1000, insbesonde-
re 50 bis 500 ppmw (parts per million by weight), bezogen auf die Gesamtmenge der in den Schritten a) und b) eingesetzten Styrolmonomeren.
Die Polymerisation in Schritt b) wird bevorzugt in Abwesenheit oder - weniger bevor- zugt - in Gegenwart eines Lösungsmittels durchgeführt. Geeignete Lösungsmittel sind beispielsweise aliphatische, isocyclische oder aromatische Kohlenwasserstoffe oder Kohlenwasserstoffgemische, wie Benzol, Toluol, Ethylbenzol, Xylol, Cumol, Hexan, Heptan, Octan oder Cyclohexan. Falls man Lösungsmittel verwendet, sind solche mit einem Siedepunkt oberhalb 95°C, z.B. Toluol, bevorzugt. Das Lösungsmittel wird in der Regel bei der Entgasung entfernt, danach durch Kondensation aufgefangen und nach Reinigung wiederverwendet.
Nach Beendigung der Polymerisation wird die Polymerisationsreaktion durch Zugabe eines Kettenabbruchmittels abgebrochen, das die lebenden Polymerkettenenden irre- versibel terminiert. Als Kettenabbruchmittel kommen alle protonenaktiven Substanzen, und Lewis-Säuren, in Betracht. Geeignet sind beispielsweise Wasser (bevorzugt), sowie CrCio-Alkohole wie Methanol, Ethanol, Isopropanol, n-Propanol und die Butanole. Ebenfalls geeignet sind aliphatische und aromatische Carbonsäuren wie 2- Ethylhexansäure, sowie Phenole. Auch anorganische Säuren wie Kohlensäure (Lö- sung von CO2 in Wasser) und Borsäure können verwendet werden.
Die Reaktionsmischung wird nach dem Abbrechen der Reaktion üblicherweise aufgearbeitet, beispielsweise mittels Entgasung. Sie enthält neben dem gewünschten schlagzähen Polystyrol beispielsweise die bei Polymerisation und Abbruch verwende- ten Hilfs- und Begleitstoffe sowie ggf. nicht umgesetzte Monomere (sog. Restmonome- re), und ggf. Oligomere bzw. niedermolekulare Polymere als unerwünschte Nebenprodukte der Polymerisation. Durch die Entgasung, beispielsweise mittels üblicher Entgasungsvorrichtungen wie Entgasungsextruder, Teilverdampfer, Strangentgaser oder Vakuumtöpfe, werden Restmonomere und -oligomere sowie insbesondere das Lö- sungsmittel α-Methylstyrol entfernt.
Dabei ist es ein wesentlicher Vorteil des erfindungsgemäßen Verfahrens, dass sich Reaktionsmischungen (Polymerlösungen) mit sehr hohen Feststoffgehalten von über 80 Gew.-% herstellen lassen. Der hohe Feststoffgehalt vereinfacht die Entgasung, re- duziert den Zeit- und Kostenaufwand der Aufarbeitung, erhöht den Produktausstoß und verbilligt damit das Produkt.
Das Lösungsmittel α-Methylstyrol kann z.B. durch Kondensation abgetrennt, gereinigt und wiederverwendet werden (Kreisfahrweise). Während der Aufarbeitung können üb- liehe Zusatzstoffe und Verarbeitungshilfsmittel in den üblichen Mengen zugefügt werden, siehe weiter unten.
Schritt b) des Verfahrens kann diskontinuierlich oder kontinuierlich in jedem druck- und temperaturfesten Reaktor durchgeführt werden, wie es bei Schritt a) bereits beschrieben wurde. Üblicherweise polymerisiert man in Schritt b) bei 50 bis 200, bevorzugt 75 bis 175 und besonders bevorzugt 80 bis 160°C. Zu Druck und Polymerisationsdauer gelten die Angaben zu Schritt a).
Die Polymerisation kann einstufig oder mehrstufig durchgeführt werden. In einer bevorzugten Ausführungsform wird mindestens eine Stufe in einem Turmreaktor oder Rohrreaktor vorgenommen.
Beispielsweise kann man in Schritt a) des Verfahrens die Kautschuklösung absatzweise herstellen, ggf. Retarder zur Verhinderung einer vorzeitigen Polymerisation zusetzen und danach in Schritt b) Styrol als weiteres Styrolmonomer zufügen. Man erhält auf diese Weise eine Lösung des Kautschuks in einer Mischung aus α-Methylstyrol (Lösungsmittel aus Schritt a)) und Styrol (Styrolmonomer aus Schritt b)). Die Lösung kann in einem Puffertank zwischengelagert und dann kontinuierlich unter Zusatz von weiterer Initiatorzusammensetzung anionisch polymerisiert werden.
In einer bevorzugten Ausführungsform weist die in Schritt b) erhaltene Reaktionsmi- schung nach Beendigung der Polymerisation einen Feststoffgehalt (FG) von mindestens 70, besonders bevorzugt mindestens 80 Gew.-% auf.
Man erhält als Endprodukt des erfindungsgemäßen Verfahrens schlagzähes Polystyrol. Neben dem vorstehend beschriebenen Verfahren betrifft die Erfindung ebenso die das nach dem Polymerisationsverfahren erhältliche schlagzähe Polystyrol (HIPS).
Je nach der in Schritt a) des Verfahrens verwendeten Kautschuklösung enthält das schlagzähe Polystyrol als Kautschuk Polybutadien oder Styrol-Butadien-Copolymere. Erfindungsgemäß besonders bevorzugt sind schlagzähe Polystyrole, enthaltend als Kautschuk
a) Homopolybutadien, oder ein Copolymer aus Butadien und maximal 10, bevorzugt maximal 5 Gew.-% α-Methylstyrol, oder
b) ein Styrol-Butadien-Zweiblockcopolymer Si-^ mit einem Styrolanteil von 1 bis 60, bevorzugt 5 bis 50 Gew.-%, bezogen auf das Zweiblockcopolymer, oder
c) ein Styrol-Butadien-Styrol-Dreiblockcopolymer S-B-S mit einem Styrolanteil von 1 bis 60, bevorzugt 5 bis 50 Gew.-%, bezogen auf das Dreiblockcopolymer. Besonders bevorzugt verwendet man ein Polymer S^B-Sa, bei dem der Styrolblock St ein gewichtmittleres Molekulargewicht Mw von 1000 bis 200.000, bevorzugt 10.000 bis 120.000, der Butadienblock B ein Mw von 30.000 bis
300.000, bevorzugt 50.000 bis 200.000, und der Styrolblock S2 ein Mw von 1.000 bis 100.000, bevorzugt 5.000 bis 30.000, aufweist, oder
d) eine Mischung aus dem unter b) beschriebenen Zweiblockcopolymer mit einem zweiten Styrol-Butadien-Zweiblockcopolymer S2-B2 mit einem Styrolanteil von 1 bis 60, bevorzugt 5 bis 50 Gew.-%, bezogen auf das Zweiblockcopolymer, oder
e) eine Mischung aus dem unter b) beschriebenen Zweiblockcopolymer mit dem unter c) genannten Dreiblockcopolymer,
oder Mischungen enthaltend die vorstehenden Komponenten a) bis e), wobei die Co- polymere b) bis e) jeweils bis zu 10, bevorzugt bis zu 5 Gew.-% α-Methylstyrol enthalten können, insbesondere in ihren Styrolblöcken.
Verwendet man in Schritt b) Styrol als Styrolmonomer, und eine geeignete Initiatorzusammensetzung, beispielsweise eine solche aus Alkalimetallhydrid oder -organyl und Aluminiumorganyl, so besteht die Hartmatrix des schlagzähen Polystyrols aus einem Styrol-α-Methylstyrol-Copolymer. D.h. ein Teil des Lösungsmittels bei der Kautschuksynthese, α-Methylstyrol, wird bei der HIPS-Synthese als Comonomer in die Hartmatrix eingebaut. Bevorzugt beträgt der Anteil des α-Methylstyrols an der
Hartmatrix 10 bis 90, insbesondere 20 bis 60 Gew.-%, bezogen auf die Hartmatrix.
Das gewichtsmittlere Molekulargewicht Mw der Hartmatrix beträgt z.B. 50.000 bis 300.000, bevorzugt 100.000 bis 250.000 g/mol.
Dem erfindungsgemäßen schlagzähen Polystyrol können verschiedenste Zusatzstoffe und/oder Verarbeitungshilfsmittel zugegeben werden, um ihm bestimmte Eigenschaften zu verleihen. In einer bevorzugten Ausführungsform fügt man ein Mineralöl, z.B. Weißöl, in Mengen von z.B. 0,1 bis 10, bevorzugt 0,5 bis 5 Gew.-% hinzu, wodurch die mechanischen Eigenschaften verbessert werden, insbesondere sich die Reißdehnung erhöht.
In einer weiteren bevorzugten Ausführungsform wird als weiterer Zusatzstoff ein Anti- oxidans oder ein Stabilisator gegen Lichteinwirkung (kurz: Lichtstabilisator), oder deren Mischungen, in Mengen von beispielsweise 0,01 bis 0,3, bevorzugt 0,02 bis 0,2 Gew.- % verwendet. Diese Zusatzstoffe erhöhen die Beständigkeit des Polymere gegen Luft und Sauerstoff, bzw. gegen UV-Strahlung, und erhöhen so die Witterungs- und Alterungsbeständigkeit des Polymeren. Die Mengenangaben beziehen sich auf das erhaltene Polymere.
Zusätzlich zu den Mineralölen, Antioxidantien und Lichtstabilisatoren können die Polymere weitere Zusatzstoffe bzw. Verarbeitungshilfsmittel enthalten, z.B. Gleit- oder Ent-
formungsmittel, Farbmittel wie z.B. Pigmente oder Farbstoffe, Flammschutzmittel, fa- ser- und pulverförmige Füll- oder Verstärkungsmittel oder Antistatika, sowie andere Zusatzstoffe, oder deren Mischungen. Die einzelnen Zusatzstoffe werden in den jeweils üblichen Mengen verwendet, so dass sich nähere Angaben hierzu erübrigen. Man kann die Zusatzstoffe beispielsweise während der Aufarbeitung der Polymerschmelze zufügen, und/oder dem festen Polymeren (z.B. Polymergranulat) nach an sich bekannten Mischverfahren, beispielsweise unter Aufschmelzen in einem Extruder, Banbury-Mischer, Kneter, Walzenstuhl oder Kalander.
Aus den erfindungsgemäßen schlagzähen Polystyrolen, lassen sich Formkörper (auch Halbzeuge) Folien, Fasern und Schäume aller Art herstellen.
Gegenstand der Erfindungen sind demnach auch die Verwendung des erfindungsgemäßen schlagzähen Polystyrols zur Herstellung von Formkörpern, Folien, Fasern und Schäumen, sowie die aus dem schlagzähen Polystyrol erhältlichen Formkörper, Folien, Fasern und Schäume.
Das erfindungsgemäße Verfahren kommt ohne inerte Lösungsmittel aus und weist eine verbesserte Wirtschaftlichkeit auf. Insbesondere lassen sich Polymerlösungen mit ho- hen Feststoffgehalten von über 80 Gew.-% herstellen, was den Zeit- und Kostenaufwand für die Entgasung erheblich vermindert.
Beispiele:
Es wurden folgende Verbindungen verwendet, wobei „gereinigt" bedeutet, dass mit Aluminoxan gereinigt und getrocknet wurde. Alle Umsetzungen wurden unter Feuchtig- keitsausschluss durchgeführt. α-Methylstyrol, gereinigt, von BASF - Styrol, gereinigt, von BASF Butadien, gereinigt, von BASF sec.-Butyllithium (s-BuLi) als 12 gew.-%ige Lösung in Cyclohexan, fertige Lösung von Fa. Chemetall Kaliumhydrid, als 35 gew.-%ige Suspension in Mineralöl, fertige Suspension von Fa. Aldrich Triisobutylaluminium (TIBA) als 20 gew.-%ige Lösung in Toluol, fertige Lösung von Fa. Crompton Triethylaluminium (TEA) als 20 gew.-%ige Lösung in Toluol, fertige Lösung von Fa. Akzo - Toluol, gereinigt, von BASF lrganox®1076 = Octadecyl-3-(3,5-di-tert-butyl-4-hydroxyphenyl)-propionat (CAS 2082-79-3), von Fa. Ciba Specialty Chemicals
Mineralöl Winog® 70, ein medizinisches Weißöl von Fa. Wintershall Wasser als Kettenabbruchmittel.
Die nachfolgend unter Punkt 2 und 3 angegebenen Vorschriften sind allgemeine Vor- Schriften. Die Einzelwerte der Variablen x1 bis x26 sind in den Tabellen 1 und 2 zu- sammengefasst.
1. Herstellung der Initiatorzusammensetzung für die HIPS-Herstellung
Bei 50CC wurden in einem 15 I-Rührkessel 2225 ml Toluol vorgelegt und unter Rühren soviel der Kaliumhydrid-Suspension, dass die Kaliumhydrid-Menge 73 g betrug, und 675 ml der 20 gew.-%igen Lösung von TIBA in Toluol, hinzugegeben. Man hielt 3 Stunden bei 50°C. In der erhaltene Mischung betrug die Kaliumhydrid-Konzentration 0,22 mol/l und das Molverhältnis Al/K 0,9.
2. Herstellung der Polybutadien-Kautschuke K1 bis K3, gelöst in α-Methylstyrol
In einem 1500 I fassenden Rührkessel wurden unter Rühren x1 kg α-Methylstyrol vorgelegt die Mischung auf x2 °C temperiert. Es wurden x3 g der 12 gew-%igen Lösung von sec-Butyllithium in Cyclohexan zugefügt. Danach gab man x4 kg Butadien hinzu. Nach 20 min wurde auf x2 °C gekühlt und x5 kg Butadien zugegeben. Nach weiteren 25 min kühlte man erneut auf x2 °C und gab x6 kg Butadien hinzu. Nach weiteren 25 min wurde erneut auf x2 °C gekühlt und x7 kg Butadien zugegeben. Nach weiteren 30 min kühlte man erneut auf x2 CC und gab x8 g der 20 gew.-%igen TEA-Lösung in Tolu- ol hinzu. Die vorgenannten Kühlungen erfolgten jeweils mittels Siedekühlung.
Die erhaltene Kautschuklösung hatte einen Feststoffgehalt (FG) von x9 Gew.-%. Das Polymere besaß nach GPC-Analyse (Gelpermeationschromatographie in Tetrahydrofu- ran, Kalibration mit Polybutadienstandards) eine monomodale Verteilung. Der gaschromatographisch bestimmte Restmonomergehalt an Butadien war kleiner 10 ppm(w). Das gewichtsmittlere Molekulargewicht Mw wurde ermittelt per GPC wie vorstehend beschrieben und betrug x10 kg/mol.
Tabelle 1 fasst die Einzelwerte der Variablen x1 bis x10 zusammen.
Tabelle 1: Kautschukherstellung: Variablen x1 bis x10 (FG Feststoffgehalt)
Zugabe von Styrol und Herstellung der schlagzähen Polystyrole HIPS1 bis HIPS3 mit Rührkessel/Turmreaktor
Der wie vorstehend unter Punkt 2 beschrieben, diskontinuierlich hergestellten Kautschuklösung wurden x11 kg Styrol zugefügt. Die erhaltene Mischung hatte einen Fest- stoffgehalt von x12 Gew.-%. Die Mischung wurde in einem Puffertank zwischengelagert. Die HIPS-Herstellung erfolgte kontinuierlich wie nachfolgend beschrieben, wozu die Kautschuklösung dem Puffertank kontinuierlich entnommen wurde.
Die Polymerisation wurde kontinuierlich in einem doppelwandigen 50 I-Rührkessel mit Standard-Ankerrührer durchgeführt. Der Reaktor war für 25 bar Absolutdruck ausgelegt sowie mit einem Wärmeträgermedium und per Siedekühlung für isotherme Reaktionsführung temperiert. In den Rührkessel wurden unter Rühren mit 115 Upm kontinuierlich x13 kg/h Styrol, x14 kg/h der Kautschuklösung (siehe vorstehend Punkt 2 sowie Tabelle 1) und x15 g/h der Initiatorlösung (Initiatorlösung siehe vorstehend Punkt 1), eindosiert und der Kessel bei einer konstanten Reaktorwandtemperatur von 130 bis 140°C gehalten. Am Ausgang des Rührkessels betrug der Feststoffgehalt x16 Gew.-%; danach wurden der Reaktionsmischung x17 kg/h Styrol zudosiert.
Die Reaktionsmischung wurde in einem gerührten 29 I-Turmreaktor gefördert, der mit zwei gleichgroßen Heizzonen versehen war, wobei die erste Zone bei x18 °C und die zweite Zone x19 °C Reaktorwandtemperatur gehalten wurde. Am Ausgang des Turmreaktors betrug der Feststoffgehalt x20 Gew.-%.
Der Austrag des Turmreaktors wurde mit x21 g/h Wasser versetzt, danach durch einen Mischer geführt und schließlich durch ein auf 250°C beheiztes Rohrstück geleitet. Da- nach wurde die Reaktionsmischung zur Entgasung über ein Druckregelventil in einen
bei x22 °C betriebenen Teilverdampfer gefördert und in einen bei 10 mbar Absolutdruck und x23 °C betriebenen Vakuumtopf entspannt. Das bei der Entgasung entfernte Lösungsmittel α-Methylstyrol wurde kondensiert und nach Destillation wiederverwendet.
Die erhaltene Polymerschmelze wurde mit einer Förderschnecke ausgetragen, und danach mit x24 g/h einer Zusatzstoff-Mischung aus x25 g Irganox® 1076 und x26 g Mineralöl Winog®70, versetzt, durch einen Mischer geführt und granuliert. Der Umsatz war quantitativ.
Das erhaltene HIPS wies folgende Restmonomergehalte auf, die wie bereits beschrieben bestimmt wurden: Styrol kleiner als 5 ppm(w), Ethylbenzol kleiner als 5 ppm(w).
Tabelle 2 fasst die Einzelwerte der Variablen x11 bis x26 zusammen.
Tabelle 2: HIPS-Herstellung: Variablen x11 bis x26 (FG Feststoffgehalt)
Herstellung eines schlagzähen Polystyrols HIPS4 mit Rührkessel/Rohrreaktor
Es wurde vorgegangen wie in Beispiel HIPS3 beschrieben, mit folgenden Unterschieden:
I) anstelle des Turmreaktors wurde ein Rohrrekator verwendet. Der Rohrreaktor hatte ein Volumen von 20 I, einen Durchmesser D von 50 mm und drei Heizzonen mit folgenden Temperaturen und Volumina: erste Zone 130°C und 6 I, zweite Zone 140°C und 6 I, dritte Zone 160°C und 8 I,
II) am Ausgang des Rührkessels wurden x17 = 4 kg/h Styrol zudosiert (statt 8 kg/h), und
III) zwischen der ersten und der zweiten Heizzone des Rohrreaktors wurden zusätzlich 4 kg/h Styrol zudosiert.
Der Feststoffgehalt am Austrag des Rohrreaktors (entspricht Variable x20) betrug 92,1 Gew.-%.
Die Beispiele zeigen, dass sich mit dem erfindungsgemäßen Verfahren ohne Mitverwendung inerter Lösungsmittel wie Toluol oder Cyclohexan Butadienkautschuke herstellen ließen. Die erhaltenen Kautschuklösungen konnten unmittelbar zur Herstellung von schlagzähem Polystyrol verwendet werden. Die erhaltenen HIPS-Lösungen wiesen sehr hohe Feststoffgehalte von weit über 80 Gew.-% auf; durch Verfahrensoptimierung (Beispiel HIPS4) konnten sogar Feststoffgehalte von über 90 % erreicht werden. Durch die hohen Feststoffgehalte wurde die Entgasung wesentlich erleichtert und die Wirtschaftlichkeit des Verfahrens verbessert.
Claims
1. Verfahren zur Herstellung von schlagzähem Polystyrol aus Dienmonomeren und Styrolmonomeren durch anionische oder anionische und radikalische Polymeri- sation, dadurch gekennzeichnet, dass man a) zunächst aus den Dienmonomeren, oder aus den Dienmonomeren und den Styrolmonomeren, durch anionische Polymerisation in Gegenwart eines Lösungsmittels und einer Initiatorzusammensetzung, eine Kautschuk- lösung herstellt, wobei man bei mindestens 20°C polymerisiert, und als einziges Lösungsmittel α-Methylstyrol verwendet, und b) dieser Kautschuklösung Styrolmonomer zufügt und die erhaltene Mischung in Gegenwart einer Initiatorzusammensetzung anionisch oder radi- kaiisch zum schlagzähen Polystyrol polymerisiert.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, dass man als Styrolmonomer Styrol, und als Dienmonomer Butadien oder Isopren, oder deren Mischungen, verwendet
3. Verfahren nach den Ansprüchen 1 bis 2, dadurch gekennzeichnet, dass die Initiatorzusammensetzung ein Alkalimetallorganyl oder ein Alkalimetallhydrid oder deren Mischungen enthält.
4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass in Schritt b) die Initiatorzusammensetzung zusätzlich ein Aluminiumorganyl enthält.
5. Verfahren nach den Ansprüchen 1 bis 4, dadurch gekennzeichnet, dass die in Schritt b) erhaltene Reaktionsmischung nach Beendigung der Polymerisation ei- nen Feststoffgehalt (FG) von mindestens 70 Gew.-% aufweist.
6. Schlagzähes Polystyrol, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 bis 5.
7. Verwendung des schlagzähen Polystyrols gemäß Anspruch 6 zur Herstellung von Formkörpern, Folien, Fasern und Schäumen.
8. Formkörper, Folien, Fasern und Schäume aus dem schlagzähen Polystyrol gemäß Anspruch 6.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE2003150998 DE10350998A1 (de) | 2003-10-30 | 2003-10-30 | Verfahren zur anionischen Polymerisation von Monomeren in α-Methylstyrol |
PCT/EP2004/011796 WO2005047353A1 (de) | 2003-10-30 | 2004-10-19 | VERFAHREN ZUR ANIONISCHEN POLYMERISATION VON MONOMEREN IN α-METHYLSTYROL |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1682592A1 true EP1682592A1 (de) | 2006-07-26 |
Family
ID=34529998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04790620A Withdrawn EP1682592A1 (de) | 2003-10-30 | 2004-10-19 | Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrol |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP1682592A1 (de) |
DE (1) | DE10350998A1 (de) |
WO (1) | WO2005047353A1 (de) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7212110B1 (en) | 2004-04-19 | 2007-05-01 | Advanced Neuromodulation Systems, Inc. | Implantable device and system and method for wireless communication |
JP4852040B2 (ja) | 2005-06-15 | 2012-01-11 | 日本曹達株式会社 | アクリル酸系重合体及びその製造方法 |
EP1999208B1 (de) | 2006-03-24 | 2012-10-17 | Kraton Polymers U.S. LLC | Hochtemperatur-blockcopolymere und herstellungsverfahren dafür |
ITMI20072324A1 (it) | 2007-12-12 | 2009-06-13 | Polimeri Europa Spa | Procedimento semi-continuo integrato per la produzione di (co)polimeri vinilaromatici antiurto mediante polimerizzazione in sequenza anionica/radicalica |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1025573A (en) * | 1962-12-24 | 1966-04-14 | Foster Grant Co Inc | Improvements in or relating to polymer processes and compositions |
DE1770392B2 (de) * | 1968-05-11 | 1980-07-03 | Basf Ag, 6700 Ludwigshafen | Verfahren zur Herstellung von schlagfesten kautschukhaltigen Polymerisaten |
BE792704A (nl) * | 1972-01-21 | 1973-06-14 | Shell Int Research | Werkwijze ter bereiding van een polymeer uit een geconjugeerd dieen door polymerisatie in oplossing met trihydrocarbylborium in hetkatalysatorsysteem |
FR2295972A1 (fr) * | 1974-12-23 | 1976-07-23 | Michelin & Cie | Polymerisation ou copolymerisation en solution d'un ou plusieurs dienes conjugues avec eventuellement un ou plusieurs composes vinylaromatiques |
US4362849A (en) * | 1979-07-18 | 1982-12-07 | The Dow Chemical Company | Preparation of alkenyl aromatic monomer butadiene rubber and preparation of impact resistant resin therefrom |
DE19731419A1 (de) * | 1997-07-22 | 1999-01-28 | Basf Ag | Verfahren zur anionischen Polymerisation |
US6303721B1 (en) * | 1996-08-19 | 2001-10-16 | Basf Aktiengesellschaft | Process for producing diene polymer solutions in vinyl aromatic monomers |
JP3838668B2 (ja) * | 1996-08-19 | 2006-10-25 | ビーエーエスエフ アクチェンゲゼルシャフト | アニオン重合 |
BR9907648A (pt) * | 1998-02-07 | 2002-04-30 | Basf Ag | Processo para preparar composições de moldagem termoplásticas modificadas por impacto |
DE19936566A1 (de) * | 1999-08-04 | 2001-02-08 | Basf Ag | Verfahren zum Herstellen einer Lösung von Dienpolymerisaten in vinylaromatischen Verbindungen sowie zum Herstellen von schlagzähen vinylaromatischen Polymeren durch Polymerisation dieser Lösung |
DE19954818A1 (de) * | 1999-11-13 | 2001-05-17 | Basf Ag | Verfahren zur anionischen Polymerisation von vinylaromatischen Monomeren |
-
2003
- 2003-10-30 DE DE2003150998 patent/DE10350998A1/de not_active Withdrawn
-
2004
- 2004-10-19 EP EP04790620A patent/EP1682592A1/de not_active Withdrawn
- 2004-10-19 WO PCT/EP2004/011796 patent/WO2005047353A1/de active Search and Examination
Non-Patent Citations (1)
Title |
---|
See references of WO2005047353A1 * |
Also Published As
Publication number | Publication date |
---|---|
WO2005047353A1 (de) | 2005-05-26 |
DE10350998A1 (de) | 2005-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0918805B1 (de) | Verfahren zur anionischen polymerisation | |
EP0918806B1 (de) | Verfahren zur herstellung von dienpolymerisatlösungen in vinylaromatischen monomeren | |
EP1054912B1 (de) | Verfahren zur retardierten anionischen polymerisation | |
EP1501879B1 (de) | Verfahren zur anionischen polymerisation | |
DE2460009A1 (de) | Polymerisationsverfahren und dadurch hergestelltes polymerisat | |
EP1056793B1 (de) | Verfahren zur herstellung von blockcopolymeren durch retardierte anionische polymerisation | |
EP1560860A1 (de) | Verfahren zur anionischen polymerisation von schlagzähem polystyrol | |
EP0993477B1 (de) | Glycidylether aliphatischer polyalkohole als kopplungsmittel in der anionischen polymerisation | |
EP1597291B1 (de) | Verfahren zur anionischen polymerisation von alpha-methylstyrol | |
EP1095078B1 (de) | Schlagzähes polystyrol mit hoher steifigkeit und zähigkeit | |
EP1682592A1 (de) | Verfahren zur anionischen polymerisation von monomeren in alpha-methylstyrol | |
WO2005082959A1 (de) | Verbessertes verfahren zur herstellung von schlagzähem polystyrol | |
DE19806772A1 (de) | Verfahren zur Herstellung einer Initiatorzusammensetzung zur retardierten anionischen Polymerisation | |
WO2001085816A1 (de) | Anionisch polymerisiertes, schlagzähes polystyrol mit kapselteilchenmorphologie | |
WO2005082958A1 (de) | Vereinfachtes verfahren zur herstellung von schlagzähem polystyrol | |
DE19623415A1 (de) | Blockcopolymerisate und diese enthaltende thermoplastische Formmassen | |
WO1999001487A1 (de) | Thermoplastische elastomere auf basis 1,1-diphenylethylen | |
DE19701868A1 (de) | Schlagzäh thermoplastische Formmasse | |
DE102005029019A1 (de) | Verfahren zur Herstellung von Copolymeren aus Styrolmonomeren und Dienmonomeren | |
DE10312508A1 (de) | Verfahren zur anionischen Polymerisation von Styrol- und Dienmonomeren mit verbesserter Reproduzierbarkeit | |
DE102004053836A1 (de) | Verfahren zur Herstellung von Mineralöl und Füllstoff enthaltenden, polymeren Zusammensetzungen | |
DE102005042393A1 (de) | Verfahren zur Herstellung von Mineralöl und Füllstoff enthaltenden, polymeren Zusammensetzungen | |
EP1809698A1 (de) | Verfahren zur herstellung von mineralöl und füllstoff enthaltenden, polymeren zusammensetzungen | |
DE10206213A1 (de) | Kontinuierliches Verfahren zur Herstellung thermoplastischer Formmassen mit verbesserter Eigenfarbe | |
DE102005012210A1 (de) | Verfahren zur Herstellung von Polymeren aus Styrolmonomeren und Dienmonomeren |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060530 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: BASF SE |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20110503 |