[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1663246A2 - Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom - Google Patents

Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom

Info

Publication number
EP1663246A2
EP1663246A2 EP04708350A EP04708350A EP1663246A2 EP 1663246 A2 EP1663246 A2 EP 1663246A2 EP 04708350 A EP04708350 A EP 04708350A EP 04708350 A EP04708350 A EP 04708350A EP 1663246 A2 EP1663246 A2 EP 1663246A2
Authority
EP
European Patent Office
Prior art keywords
hsgkl
hsgk3
gene
glaucoma
diabetic neuropathy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04708350A
Other languages
English (en)
French (fr)
Inventor
Florian Lang
Andreas Busjahn
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP1663246A2 publication Critical patent/EP1663246A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/713Double-stranded nucleic acids or oligonucleotides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/4353Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems
    • A61K31/4355Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom ortho- or peri-condensed with heterocyclic ring systems the heterocyclic ring system containing a five-membered ring having oxygen as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof
    • A61K31/7088Compounds having three or more nucleosides or nucleotides
    • A61K31/711Natural deoxyribonucleic acids, i.e. containing only 2'-deoxyriboses attached to adenine, guanine, cytosine or thymine and having 3'-5' phosphodiester links
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P25/00Drugs for disorders of the nervous system
    • A61P25/02Drugs for disorders of the nervous system for peripheral neuropathies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/06Antiglaucoma agents or miotics
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P27/00Drugs for disorders of the senses
    • A61P27/02Ophthalmic agents
    • A61P27/12Ophthalmic agents for cataracts
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • G01N33/6893Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids related to diseases not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/166Cataract
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/16Ophthalmology
    • G01N2800/168Glaucoma

Definitions

  • the invention relates to the use of a functional inhibitor of the hsgkl or hsgk3 protein or a negative transcription regulator of the hsgkl or hsgk3 gene for the manufacture of a medicament for the therapy and / or prophylaxis of a cataract, glaucoma or diabetic neuropathy.
  • the invention relates to the use of a single- or double-stranded nucleic acid comprising the hsgkl sequence according to Acc No. NM_005627 or one of its fragments or comprising the hsgk3 sequence according to Acc. No. AF169035 or one of its fragments for diagnosing a predisposition to form cataract, glaucoma and / or diabetic neuropathy, and a kit for diagnosing a predisposition to form cataract, glaucoma and / or diabetic neuropathy, which comprises the above-mentioned nucleic acid.
  • Another object of the invention are various screening methods for the identification and characterization of therapeutically active substances from a large number of test substances for the therapy and / or prophylaxis of at least one disease selected from cataract, glaucoma and diabetic neuropathy.
  • the serum and glucocorticoid-inducible kinase hsgkl was originally cloned as a glucocorticoid-sensitive gene [Webster et al, Characterization of sgk, a novel member of the serine / threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 1993; 13: 2031-2040].
  • hsgkl is under the influence of a variety of stimuli [Lang F, Cohen P. Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Science STKE. 2001 Nov 13; 2001 (108): RE17], such as the mineralocorticoids [Chen et al, Epithelial sodium Channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sei USA 1999; 96: 2514-2519; Näray-Fejes-T ⁇ th et al, sgk is an aldosterone-induced kinase in the renal collecting duet. Effects on epithelial Na + channels.
  • sgk serum- and glucocorticoid-regulated kinase
  • the hsgkl is stimulated by the "insulin-like growth factor IGF1", by insulin and by oxidative stress via a signal cascade by phosphoinositol-3-kinase (PI3 kinase) and phosphoinositol-dependent kinase PDK1
  • PI3 kinase phosphoinositol-3-kinase
  • PDK1 phosphoinositol-dependent kinase
  • the hsgkl is a potent stimulator of the renal epithelial Na + channel [De la Rosa et al, The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium Channels in the plasma membrane of Xenopus oocytes. J Biol Chem 1999; 274: 37834-37839; Böhmer et al, The Shrinkage-activated Na + Conductance of Rat Hepatocytes and its Possible Correlation to rENaC. Cell Phys Biochem. 2000; 10: 187-194; Lang et al., Deranged transcriptional regulation of cell volume sensitive kinase hSGK in diabetic nephropathy.
  • the hsgkl and its human homologues should have considerable potential for the diagnosis of numerous diseases.
  • DE 197 08 173 AI shows in particular that the hsgkl for diagnosis in many diseases in which cell volume changes play a crucial pathophysiological role, such as hypernatremia, hyponatremia, diabetes mellitus, renal failure, hypercatabolism, hepatic encephalopathy and microbial or viral infections can be used.
  • WO 00/62781 has described that the hsgkl activates the endothelial Na + channel, which increases renal Na absorption. Since this increased renal Na absorption is associated with hypertension, it was assumed here that an increased expression of the hsgkl should lead to hypertension, a reduced expression of the hsgkl should ultimately lead to hypotension. -
  • DE 100 421 37 also describes a similar relationship between the overexpression or overactivity of the human homologues hsgk2 and hsgk3 with the overactivation of the ENaC, the resulting increased renal Na absorption and the hypertension that develops from this. Furthermore, the diagnostic potential of the kinases hsgk2 and hsgk3 regarding arterial hypertension has already been discussed.
  • WO02 / 074987 A2 the connection between the occurrence of two different polymorphisms (single nucleotide polymorphism (SNP)) of individual nucleotides in the hsgkl gene with a genetically determined predisposition to hypertension was disclosed. This is a polymorphism in intron 6 (T ⁇ C) and a polymorphism in exon 8 (C ⁇ T) in the hsgkl gene.
  • SNP single nucleotide polymorphism
  • nucleic acids containing polymorphic gene regions of the human homologues of the sgk family could be used to diagnose a predisposition for these further diseases . It was therefore an object of the invention to uncover further correlations between the function of the human homologs of the sgk family and new diseases and thus to provide new diagnostic uses for nucleic acids which contain polymorphic gene regions of the human homologues of the sgk family.
  • the glucose transporter Glutl provides, among other things, glucose uptake into different cells of the eye [Busik et al., Glucose-induced activation of glucose uptake in cells from the inner and outer blood-retinal barrier. luvest Ophthalmol Vis Be. 2002; 43: 2356-63; Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte / HepG2- type glucose transporter (GLUT1) in the ciliary body and iris of the rat eye.
  • Glutl for the development of cataracts [Gong et al., Development of cataractous macrophthalmia in mice expressing an active MEK1 in the lens. Invest Ophthalmol Vis Sei. 2001; 42: 539-48].
  • Glutl overexpression requires the formation and deposition of connective tissue proteins £ Ayo et al., Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. At the J Physiol.
  • the above-mentioned disorders would occur in all conditions in which the hsgkl has increased activity, that is to say in excess of all the above-mentioned hormones.
  • Certain polymorphisms of the hsgkl gene that correlate with increased blood pressure [Busjahn et al., Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 40 (3): 256-260, 2002], could at the same time increase Lead to occurrence of cataract and glaucoma.
  • the same modifications of the gene should also correlate with premature cataract and / or glaucoma.
  • the present findings reveal a completely new mechanism in the regulation of the glucose transporter Glutl.
  • An increased activity of the hsgkl should therefore lead to an increased uptake of glucose in the cells.
  • the transcription of the hsgkl is carried out by serum [Webster et al. 1993], by glucocorticoids [Brenan & Corder 2000, Webster et al. 1993], by mineralocorticoids [Chen et al. 1999, Naray-Fejes-Toth et al. 1999, Shigaev et al.
  • FSH Follicle-Stimulating hormone
  • PKA protein kinase B
  • Sgk serum and glucocorticoid-induced kinase
  • the hsgkl transcription is increased by cell shrinkage, as the Waldegger et al. from 1997 shows.
  • An increased glucose concentration as occurs in diabetes mellitus, stimulates the expression of hsgkl by cell shrinkage and / or by increased formation of TGF-ß [Lang et al. 2000].
  • the expressed hsgkl is activated by the "insulin like growth factor" IGF1, by insulin and by oxidative stress [Kobayashi & Cohen 1999, Park et al. 1999, Kobayashi et al. 1999].
  • the increased expression of the hsgkl increases the activity of the glucose transporter Glut-1. This means that more glucose is absorbed into the cells and the water that follows through osmosis causes cell swelling. In this way, there is increased water retention in the cornea and lens, which leads to cataracts by reducing transparency [Gong et al. 2001]. Glaucoma could also develop in a similar way and additionally through the incorporation of connective tissue [Fingert et al. 2001].
  • hsgkl plays a role in this mechanism and is therefore suitable as a target protein for the diagnosis and therapy of glaucoma.
  • One object of the invention thus relates to the use of a functional inhibitor of the hsgkl or hsgk3 protein or a negative transcription regulator of the hsgkl or hsgk3 gene to reduce cell swelling.
  • Another object of the invention relates to the use of a 'functional inhibitor of the hsgkl or hsgk3 protein or a negative transcription regulator of the hsgkl or hsgk3 gene for the production of a medicament for the therapy and / or prophylaxis of a cataract, a glaucoma or the diabetic neuropathy.
  • This functional inhibitor of the hsgkl protein or the hsgk3 protein can be a chemical substance of any kind which inhibits the normal physiological activity of the hsgkl protein or the hsgk3 protein.
  • the functional inhibitor of the hsgkl or hsgk3 protein is preferably a low-molecular chemical substance (a "small molecule") or a protein or peptide.
  • the functional inhibitor of the hsgkl protein or the hsgk3 protein can in particular be an antagonist of these enzymes, which blocks the substrate binding site of the hsgkl protein or the hsgk3 protein, but at the same time, no catalytic conversion is accessible through the hsgkl or hsgk3.
  • suitable antagonists are preferably those molecules which have structural similarity to the natural substrate of the hsgkl protein or the hsgk3 protein, that is to say in particular a structural similarity to the phosphorylatable amino acids serine and threonine.
  • Staurosporin and chele-rythrin are two known functional inhibitors of hsgkl.
  • either staurosporin or chelerythrine is therefore used as the functional inhibitor of the hsgkl or the hsgk3 for the therapy and / or prophylaxis of at least one of the diseases cataract, glaucoma or diabetic neuropathy.
  • a negative transcription regulator of the hsgkl gene or the hsgk3 gene is defined as a substance which activates the expression of the hsgkl gene or the hsgk3 gene at the transcription level.
  • the medicament according to the invention for the therapy and / or prophylaxis of a cataract, glaucoma or diabetic neuropathy can, in addition to the actual active substance, the functional inhibitor or the negative transcription regulator of the hsgkl or the hsgk3, additionally stabilizers and / or carrier substances, such as starch, lactose , Stearic acid, fats, waxes, alcohols or other additives such as preservatives, colors or flavors.
  • the drug can be administered in any way, in particular orally, in the form of tablets, granules, capsules or as a solution.
  • Other particularly suitable dosage forms relate to direct applications (e.g. on the skin or eye) in the form of ointments, tinctures, sprays or any type of injection (e.g. subcutaneous, intravenous) or infusion.
  • Another object of the invention is the use of a single or double-stranded nucleic acid comprising the hsgkl sequence according to Acc No. NM_005627 or one of its fragments to diagnose a predisposition to develop cataracts, glaucoma and / or diabetic neuropathy.
  • the fragment of hsgkl, which the single or double-stranded nucleic acid can comprise is at least 10 nucleotides / base pairs long, preferably at least 15 nucleotides / base pairs long and in particular at least 20 nucleotides / base pairs long.
  • the single- or double-stranded nucleic acid here preferably comprises at least one polymorphic nucleotide of the hsgkl gene, in particular a “single nucleotide polymorphism (SNP)” of the hsgkl gene.
  • the single- or double-stranded nucleic acid comprises at least one of the following SNPs of the hsgkl gene: a G insertion at position 732/733 in intron 2 of the hsgkl gene,
  • the above SNPs of the hsgkl gene in the patient's genomic DNA or cDNA can preferably be detected using the abovementioned single or double-stranded nucleic acids by the following methods: by direct sequencing of the genomic DNA or cDNA with the above nucleic acids, by specific hybridization the genomic DNA or cDNA with the above nucleic acids, by a PCR oligonucleotide elongation assay or by a ligation assay.
  • the patient's genomic DNA or cDNA is preferably isolated from a patient's body sample, in particular from saliva, blood, tissue or cells.
  • the activity of the expressed hsgkl gene depends on the version of this polymorphism in the patient's hsgkl gene and that nucleic acids which contain at least one of these polymorphisms are therefore particularly good for diagnosing a predisposition to the development of cataracts, glaucoma and / or diabetic neuropathy.
  • the invention further relates to the use of a single- or double-stranded nucleic acid comprising the hsgk3 sequence according to Acc No. AF169035 or one of its fragments to diagnose a predisposition to develop cataract, glaucoma and / or diabetic neuropathy.
  • the fragment of hsgk3, which the single or double-stranded nucleic acid can comprise, is at least 10 nucleotides / base pairs long, preferably at least 15 nucleotides / base pairs long and in particular at least 20 nucleotides / base pairs long.
  • the single- or double-stranded nucleic acid preferably comprises at least one polymorphic nucleotide of the hsgk3 gene, in particular a “single nucleotide polymorphism (SNP)” of the hsgk3 gene.
  • SNP single nucleotide polymorphism
  • certain antibodies which are directed against substrates of the human homologues of the sgk family, in particular against substrates of the hsgkl and hsgk3 are also suitable for diagnosing a predisposition to the formation of at least one of the diseases cataract, Glaucoma, diabetic neuropathy.
  • diagnostic antibodies are preferably directed against such an epitope of the human homologues of the sgk family (in particular the hsgkl and the hsgk3) which contains the phosphorylation site of the substrate either in phosphorylated form or in nonphosphorylated form.
  • an overexpression of the hsgkl protein that occurs due to the individual genetic makeup of the hsgkl gene could lead to an increased implementation of
  • Hsgk substrates i.e. to an increased enzymatic phosphorylation of the
  • Glutl glucose transporter
  • the ubiquitin protein ligase Nedd4-2 (Acc No. BAA23711) is used as the substrate of the human homologue of the sgk family.
  • This ubiquitin protein ligase is a protein which is specifically phosphorylated by the human homologues of the sgk family [Debonneville et al., Phosphorylation of Nedd4-2 by Sgkl regulates epithelial Na (+) channel cell surface expression. EMBO J., 2001; 20: 7052-7059; Snyder et al., Serum and glucocorticoid-regulated kinase modulates Nedd4-2-mediated inhibition of the epithelial Na (+) channel. J. Biol.
  • Phosphorylation sites for the hsgkl have the consensus sequence (R X R X X S / T), where R is arginine, S is serine, T is threonine and X is any amino acid.
  • R is arginine
  • S is serine
  • T is threonine
  • X is any amino acid.
  • Nedd4-2 2 Acc No. BAA23711
  • the abovementioned antibodies for diagnosing a predisposition to develop at least one of the diseases cataract, glaucoma, diabetic neuropathy are therefore preferably directed against the substrate Nedd4-2 and particularly preferably against directed a protein region of Nedd4-2 with the sequence of the potential phosphorylation site for the hsgkl, the consensus sequence (RXRXXS / T).
  • these antibodies are directed against those Nedd4-2 protein regions which comprise at least one of the two potential phosphorylation sites serine at amino acid position 382 and / or serine at amino acid position 468.
  • kits for the diagnosis of one of the diseases cataract, glaucoma and diabetic neuropathy comprising at least one of the following components: " - Antibodies which are directed against hsgkl or hsgk3, single or double-stranded nucleic acids which with the hsgkl - Gene according to Acc No. NM_005627 or with the hsgk3 gene according to Acc No. AF169035 can hybridize under stringent conditions; in particular those single- or double-stranded nucleic acids which comprise polymorphic nucleotides, in particular “SNPs” of the hsgkl gene or the hsgk3 gene,
  • Antibodies directed against a substrate of a human homologue of the sgk family preferably antibodies directed against the phosphorylation site of this substrate in the phosphorylated or non-phosphorylated form; especially antibodies directed against the phosphorylation site of Nedd4 or Nedd4-2 in the phosphorylated or non-phosphorylated form.
  • the invention further relates to a screening method for identifying and characterizing therapeutically active substances from a large number of test substances for therapy and / or prophylaxis of at least one disease selected from the group consisting of cataract, glaucoma and diabetic neuropathy, comprising the following steps: a) heterologous coexpression of i) the glucose transporter Glutl and ii) the hsgkl and / or the hsgk3 in cells, b) cultivation of at least one cell portion Ai to A in the presence of at least one test substance, wherein the at least one test substance differs depending on the index 1 to X of the Zeil portion and Cultivation of a control cell part B in the absence of any test substance, c) determination of the activity of the glucose transporter Glutl in the Zeil fractions Ai to Ax compared to the activity of the glucose transporter Glutl in the control cell part B.
  • suitable cells preferably mammalian cells or cell lines, in particular human cells or cell lines with suitable expression vectors, contain suitable expression cassettes for the expression of Glutl and of hsgkl and / or hsgk3 according to standard methods, such as electroporation, CaPO4 precipitation, lipofection or the like, transfected.
  • the expression cassettes contain the genomic DNA or the cDNA of the target gene in question (Glutl, hsgkl, hsgk3) under the control of suitable promoters which are active in the cell type in question and can express the target gene in a suitable amount.
  • the expression vectors can also contain selection markers.
  • the transfected cells are then cultivated under conditions which allow expression of the target genes i) and ii).
  • step b) the transfected cells from a) are divided into different Zeil parts (aliquots) Ai to Ax and a control cell part B.
  • the Zeil parts Ai to Ax are each in the presence of at least one test Cultivated substance.
  • the test substance (s) added to the Zeil fractions Ai to Ax differ from one another (depending on the index 1 to X of the respective Zeil fractions A ⁇ to Ax).
  • the control cell portion B is cultivated in the absence of any test substance.
  • step c) the activity of the glucose transporter Glutl in the Zeil fractions Ai to Ax is quantitatively determined in comparison to the activity of the glucose transporter Glutl in the control cell fraction B.
  • a test substance that can functionally inhibit the hsgkl or the hsgk3 should have been added to the Zeil portions Ai to Ax, in which a significantly lower value of the Glutl activity is measured compared to the control Zeil portion B. or reduces their expression.
  • Such a substance could be suitable for the therapy of at least one of the diseases cataract, glaucoma or diabetic neuropathy.
  • Fig. 1 The invention is illustrated by the following Fig. 1.
  • the ordinate A in Fig. 1 shows the uptake of 2-deoxyglucose (in pmol 1/10 min / oocyte) (arithmetic mean ⁇ SEM).
  • Xenopus laevis oocytes were injected with cRNA from Glut-1 with or without cRNA from SGK1, SGK2, SGK3 or protein kinase B (PKB) (see Example 1).
  • PKA protein kinase B
  • Fig. 1 shows the increased uptake of 2-deoxyglucose in those oocytes which, in addition to glut 1, express the hsgkl or the hsgk3 in comparison to those oocytes which express glut 1 alone. This shows that the function of the hsgkl and the hsgk3 efficiently stimulate the activity of the glucose transporter Glutl. A similar effect is not found for those oocytes which express the hsgk2 or PKBmut instead of hsgkl or hsgk3.
  • the invention is illustrated by the following example.
  • Example 1 Expression in Xenopus laevis oocytes and two-electrode voltage clamp cRNA of normal SGKl [Waldegger S, Barth P, Raber G, Lang F: Cloning and characterization of a putative human serine / threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume.
  • Xenopus laevis ovaries The dissection of Xenopus laevis ovaries and the collection and treatment of oocytes have already been described in detail [Wagner CA, Friedrich B, Setiawan I, Lang F, Bröer S: The use of Xenopus laevis ooeytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol Biochem 2000; 10: 1-12].
  • the oocytes were injected with 5 ng of human glutl, 7.5 ng of human SGKl and / or with 5 ng of Xenopus Nedd4-2. ControUocytes were injected with water. The uptake of radioactively labeled glucose was measured at room temperature 2 days after injection of the respective cRNAs.
  • the control bath solution contained 96 mM NaCl, 2 mM KC1, 1.8 mM CaCl 2 , 1 mM MgCl 2 and 5 mM HEPES, pH 7.4. All substances were used in the specified concentrations. The final solutions were nitrated to pH 7.4 with HC1 or NaOH.
  • n is the number of oocytes examined. All experiments were carried out in at least three different groups of oocytes. The results were tested for significant differences using the Student t-test. Only results with P ⁇ 0.05 were considered to be statistically significant.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Epidemiology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Hematology (AREA)
  • Biotechnology (AREA)
  • Neurology (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Neurosurgery (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

Die Erfindung betrifft die Verwendung eines funktionalen Inhibitors des hsgk1- oder des hsgk3-Proteins oder eines negativen Transkriptionsregulators des hsgk1- oder hsgk3-Gens zur Herstellung eines Arzneimittels zur Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie. In einem weiteren Aspekt betrifft die Erfindung die Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgk1-Sequenz nach Acc No. NM_005627 oder eines ihrer Fragmente oder umfassend die hsgk3-Sequenz nach Acc. No. AF169035 oder eines ihrer Fragmente zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie, sowie einen Kit zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie, welcher die oben genannte Nukleinsäure umfasst. Ein weiterer Gegenstand der Erfindung sind verschiedene Screening-Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus Katarakt, Glaukom und der diabetischen Neuropathie.

Description

Verwendung der sgk-Genfamilie zur Diagnose und zur Therapie von Katarakt und
Glaukom
Die Erfindung betrifft die Verwendung eines funktionalen Inhibitors des hsgkl- oder des hsgk3 -Proteins oder eines negativen Transkriptionsregulators des hsgkl- oder hsgk3-Gens zur Herstellung eines Arzneimittels zur Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie.
In einem weiteren Aspekt betrifft die Erfindung die Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgkl -Sequenz nach Acc No. NM_005627 oder eines ihrer Fragmente oder umfassend die hsgk3-Sequenz nach Acc. No. AF169035 oder eines ihrer Fragmente zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie, sowie einen Kit zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie, welcher die oben genannte Nukleinsäure umfaßt.
Ein weiterer Gegenstand der Erfindung sind verschiedene Screening-Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus Katarakt, Glaukom und der diabetischen Neuropathie.
Die Serum- und Glucocorticoid-induzierbare Kinase hsgkl wurde ursprünglich als Glucocorticoid-sensitives Gen cloniert [Webster et al, Characterization of sgk, a novel member of the serine/threonine protein kinase gene family which is transcriptionally induced by glucocorticoids and serum. Mol Cell Biol 1993;13:2031-2040].
Folgende Untersuchungen deckten auf, daß die hsgkl unter dem Einfluß einer Vielzahl von Stimuli steht [Lang F, Cohen P. Regulation and physiological roles of serum- and glucocorticoid-induced protein kinase isoforms. Science STKE. 2001 Nov 13;2001(108):RE17], wie unter anderem der Mineralocorticoide [Chen et al, Epithelial sodium Channel regulated by aldosterone-induced protein sgk. Proc Natl Acad Sei USA 1999;96:2514-2519; Näray-Fejes-Tόth et al, sgk is an aldosterone-induced kinase in the renal collecting duet. Effects on epithelial Na+ Channels. J Biol Chem 1999;274:16973-16978; Shigaev et al, Regulation of sgk by aldosterone and its effects on the epithelial Na(+) Channel. Am J Physiol 2000;278:F613-F619; Brenan FE, Füller PJ. Rapid upregulation of serum and glucocorticoid-regulated kinase (sgk) gene expression by corticosteroids in vivo. Mol Cell Endocrinol. 2000;30;166:129-36; Cowling RT, Birnboim HC. Expression of serum- and glucocorticoid-regulated kinase (sgk) mRNA is up-regulated by GM-CSF and other proinflammatory mediators in human granulocytes. J Leukoc Biol. 2000;67:240- 248].
Die hsgkl wird durch den „insulin like growth factor IGF1", durch Insulin und durch oxidativen Stress über eine Signalkaskade durch Phosphoinositol-3-kinase (PI3 kinase) und Phosphoinositol-abhängige Kinase PDK1 stimuliert [Park et al., Serum and glucocorticoid- inducible kinase (SGK) is a target of the PI 3-kinase-stimulated signaling pathway. EMBO J 1999;18:3024-3033; Kobayashi et al., Characterization of the structure and regulation of two novel isoforms of serum- and glucocorticoid-induced protein kinase. Biochem. J.1999;344:189-197]. Die Aktivierung der hsgkl durch die PDK1 involviert eine Phosphorylierung am Serin der Position 422. Die Mutation dieses Serins in ein Aspartat (S422DSGK1) führt zu einer konstitutiv aktiven Kinase [Kobayashi T, Cohen P: Activation of serum- and glucocorticoid-regulated protein kinase by agonists that activate phosphatidylinositide 3-kinase is mediated by 3-phosphoinositide-dependent protein kinase-1 (PDK1) and PDK2. Biochem J. 1999;339:319-328].
Wie frühere Untersuchungen gezeigt haben, ist die hsgkl ein potenter Stimulator des renalen epithelialen Na+-Kanales [De la Rosa et al, The serum and glucocorticoid kinase sgk increases the abundance of epithelial sodium Channels in the plasma membrane of Xenopus oocytes. J Biol Chem 1999;274:37834-37839; Böhmer et al, The Shrinkage-activated Na+ Conductance of Rat Hepatocytes and its Possible Correlation to rENaC. Cell Phys Biochem. 2000;10:187-194 ; Lang et al., Deranged transcriptional regulation of cell volume sensitive kinase hSGK in diabetic nephropathy. Proc Natl Acad Sei USA 2000;97:8157- 8162]. Nachdem die hsgkl in einer Vielzahl von Geweben gefunden wird, welche den epithelialen Na+-Kanal ENaC nicht exprimieren, sollte die Funktion der hsgkl nicht auf die Regulation des Na+-Kanales beschränkt sein [Klingel et al, Expression of the cell volume regulated kinase h-sgk in pancreatic tissue. Am J Physiol (Gastroint. Liver-Physiol.) 2000;279:G998-G1002; Waldegger et al, Cloning and characterization of a putative human serme/ti-ureonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sei USA 1997;94:4440-4445; Waldegger et al, h- sgk Serine-Threonine protein kinase gene as early transcriptional target of TGF-ß in human intestine. Gastroenterology 1999;116:1081-1088]. Aufgrund der vermutlich zahlreichen, bisher noch unaufgeklärten Regulationen weiterer Signaltransduktionswege bzw. ihrer Komponenten durch die hsgkl dürften die hsgkl und ihre humanen Homologen ein beträchtliches Potential zur Diagnose zahlreicher Erkrankungen besitzen. Aus der DE 197 08 173 AI geht insbesondere hervor, daß die hsgkl bei vielen Krankheiten, bei denen Zellvolumenänderungen eine entscheidende pathophysiologische Rolle spielen, wie beispielsweise Hypernatriämie, Hyponatriämie, Diabetes mellitus, Niereninsuffizienz, Hyperkatabolismus, hepatische Encephalopathie und mikrobielle oder virale Infektionen, zur Diagnose einsetzbar ist.
In der WO 00/62781 wurde beschrieben, daß die hsgkl den endothelialen Na+-Kanal aktiviert, wodurch die renale Na -Resorption erhöht wird. Da diese gesteigerte renale Na - Resorption mit Hypertonie einhergeht, wurde hier vermutet, daß eine gesteigerte Expression der hsgkl zur Hypertonie, eine verminderte Expression der hsgkl letztlich zur Hypotonie fuhren sollte. -
Auch in DE 100 421 37 wurde ein ähnlicher Zusammenhang zwischen der Überexpression bzw. Überaktivität der humanen Homologen hsgk2 und hsgk3 mit der Überaktivierung des ENaCs, der daraus resultierenden verstärkten renalen Na -Resorption und der sich daraus entwickelnden Hypertonie beschrieben. Weiterhin wurde bereits das diagnostische Potential der Kinasen hsgk2 und hsgk3 bezüglich der arteriellen Hypertonie diskutiert.
In WO02/074987 A2 wurde der Zusammenhang zwischen dem Auftreten zweier verschiedener Polymorphismen (single nucleotide polymorphism (SNP)) einzelner Nukleotide im hsgkl -Gen mit einer genetisch bedingten Prädisposition zur Hypertonie offenbart. Hierbei handelt es sich um einen Polymorphismus in Intron 6 (T→C) und um einen Polymorphismus in Exon 8 (C→T) im hsgkl -Gen.
Aufgrund der Expression der sgkl in zahlreichen Geweben und aufgrund der vermutlich großen Anzahl von noch unbekannten Substraten der sgkl ist damit zu rechnen, daß es weitere Korrelationen zwischen der Funktion der humanen Homologen der sgk-Familie, insbesondere des hsgkl-Gens (NM_005627), des hsgk2-Gens, und des hsgk3-Gens (AF 169035) und der Ausbildung weiterer Er-kxarikungen geben wird. Die Aufdeckung solcher weiteren spezifischen -Krankheits-Korrelationen der sgkl könnten diazu führen, daß Nukleinsäuren enthaltend polymorphe Genregionen der humanen Homologen der sgk- Familie, die die Funktion oder Expression der entsprechenden sgk-Proteine beeinflussen, zur Diagnose einer Prädispostion dieser weiteren Erkrankungen verwendet werden könnten. Es war daher Aufgabe der Erfindung, weitere Korrelationen zwischen der- Funktion der humanen Homologen der sgk-Familie und neuen Erkrankungen aufzudecken und so neue diagnostische Einsatzmöglichkeiten für Nukleinsäuren, die polymorphe Genregionen der humanen Homologen der sgk-Familie enthalten, bereitzustellen.
Diese Aufgabe wurde durch die überraschende Erkenntnis gelöst, daß die hsgkl und hsgk3 den Glucosetransporter Glutl stark stimulieren (siehe Abb. 1). Der Glucosetransporter Glutl vermittelt u.a. die Glucoseaufhahme u.a. in verschiedene Zellen des Auges [Busik et al., Glucose-induced activation of glucose uptake in cells from the inner and outer blood- retinal barrier. luvest Ophthalmol Vis Sei. 2002;43:2356-63; Takata K, Kasahara T, Kasahara M, Ezaki O, Hirano H. Ultracytochemical localization of the erythrocyte/HepG2- type glucose transporter (GLUT1) in the ciliary body and iris of the rat eye. Invest Ophthalmol Vis Sei. 1991;32:1659-66]. Osmotisch folgt der Glucose Wasser, so daß eine gesteigerte Aktivität von Glutl zu einer Zellschwellung führt. Somit könnte eine gesteigerte Aktivität von Glutl zur Entwicklung von Katarakt [Gong et al., Development of cataractous macrophthalmia in mice expressing an active MEK1 in the lens. Invest Ophthalmol Vis Sei. 2001;42:539-48] führen. Darüber hinaus wurde gezeigt, daß eine Glutl -Überexpression die Bildung und Ablagerung von Bindegewebsproteinen fordert £Ayo et al., Increased extracellular matrix synthesis and mRNA in mesangial cells grown in high-glucose medium. Am J Physiol. 1991 ;260:F185-191; Heilig et al., Overexpression of glucose transporters in rat mesangial cells cultured in a normal glucose milieu mimics the diabetic phenotype. J Clin Invest. 1995;96:1802-1814]. Eine solche Ablagerung von Bindegewebsproteinen hindert den Abfluß von Augenflüssigkeit und führt zu Drucksteigerungen im Auge und damit Schädigung der Netzhaut [Fingert et al., Evaluation of the myocilin (MYOC) glaucoma gene in monkey and human steroid-induced ocular hypertension. Invest Ophthalmol Vis Sei. 2001 ;42(1): 145-52, Ueda et al., Distribution of myocilin and extracellular matrix components in the juxtacanalicular tissue of human eyes. Invest Ophthalmol Vis Sei. 2002;43:1068-76]. Glucocorticoide, welche die Expression der SGK1 stimulieren (s.o.), führen tatsächlich gleichzeitig zur Entwicklung von Glaukom [Fingert et al. 2001]. Eine kausale Rolle der hsgkl wurde bisher jedoch noch nie vermutet.
Die oben genannten Störungen würden bei bei allen Zuständen auftreten, bei denen die hsgkl gesteigerte Aktivität aufweist, also unter Überschuß an allen oben genannten Hormonen. Bestimmte Polymorphismen des hsgkl -Gens, die mit gesteigertem Blutdruck korrelieren [Busjahn et al., Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 40(3): 256-260, 2002], könnten gleichzeitig zu gesteigertem Auftreten von Katarakt und Glaukom führen. Die gleichen Modifikationen des Gens sollten auch mit verfrüht auftretendem Katarakt und/oder Glaukom korrelieren.
Die vorliegenden Befunde decken einen völlig neuen Mechanismus in der Regulation des Glucosetransporters Glutl auf. Eine gesteigerte Aktvitität der hsgkl sollte daher zu gesteigerter Aufnahme von Glucose in die Zellen führen. Die Transcription der hsgkl wird durch Serum [Webster et al. 1993], durch Glucocorticoide [Brenan & Füller 2000, Webster et al. 1993], durch Mineralocorticoide [Chen et al. 1999, Naray-Fejes-Toth et al. 1999, Shigaev et al. 2000, Brennan and Füller 2000, Cowling and Birnboim 2000], durch Gonadotropine [Alliston et al, Follicle stimulating hormone-regulated expression of serum/glucocorticoid-inducible kinase in rat ovarian granulosa cells: a functional role for the Spl family in promoter activity. Mol Endocrinol. 1997;11:1934-1949; Alliston et al, Expression and localization of serum/glucocorticoid-induced kinase in the rat ovary: relation to follicular growth and differentiation. Endocrinology. 2000;141:385-395; Gonzalez-Robayna et al, Follicle-Stimulating hormone (FSH) stimulates phosphorylation and activation of protein kinase B (PKB/Akt) and serum and glucocorticoid-induced kinase (Sgk): evidence for A kinase-independent signaling by FSH in granulosa cells. Mol Endocrinol. 2000;14:1283-1300, Richards et al, Ovarian cell differentiation: a cascade of multiple hormones, cellular signals, and regulated genes. Recent Prog Horm Res. 1995;50:223-254], und durch eine Reihe von Cytokinen [Lang & Cohen 2001], insbesondere durch TGF-ß [Fillon S. et al., Expression of the Serine/Threonine kinase hSGKl in chronic viral hepatitis. Cell Physiol Biochem 2002;12:47-54; Lang et al. 2000, Waldegger et al. 1999, Wärntges S et al, Excessive transcription of the human serum and glucocorticoid dependent kinase hSGKl in hing fibrosis. Cell Physiol Biochem 2002,12:135-142] stimuliert. Darüberhinaus wird die hsgkl -Transcription durch Zellschrumpfung gesteigert, wie die bereits zitierte Schrift Waldegger et al. von 1997 zeigt. Eine gesteigerte Glucosekonzentration, wie sie bei Diabetes mellitus vorkommt, stimuliert die Expression der hsgkl durch Zellschrumpfung und/oder durch gesteigerte Bildung von TGF-ß [Lang et al. 2000]. Die exprimierte hsgkl wird durch den „insulin like growth factor" IGF1, durch Insulin und durch oxidativen Stress aktiviert [Kobayashi & Cohen 1999, Park et al. 1999, Kobayashi et al. 1999].
Die gesteigerte Expression der hsgkl steigert nach den erfindungsgemäßen Erkenntnissen die Aktivität des Glucosetransporters Glut-1. Damit wird mehr Glucose in die Zellen aufgenommen und das durch Osmose nachfolgende Wasser bewirkt eine Zellschwellung. Auf diese Weise erfolgt die gesteigerte Wassereinlagerung in Hornhaut und Linse, die über Minderung der Transparenz zum Katarakt führt [Gong et al.2001]. In ähnlicher Weise und zusätzlich durch Einlagerung von Bindegewebe könnte auch ein Glaukom entstehen [Fingert et al.2001].
Auch bei der diabetischen Neuropathie wird als Ursache eine Zellschwellung vermutet [Burg et al., Sorbitol, osmoregulation, and the complications of diabetes. J Clin Invest 1988;81:635- 40]. Doch nicht nur bei Diabetes mellitus, sondern auch unter dem Einfluß von Glucocorticoiden oder bei Patienten mit einer genetisch bedingten Überaktivität der hsgkl [Busjahn et al., Serum- and glucocorticoid-regulated kinase (SGK1) gene and blood pressure. Hypertension 40(3): 256-260, 2002] ist mit gesteigerter Glutl -Aktivität zu rechnen. Glucocorticoide führen tatsächlich zum Glaukom [Fingert et al. 2001]. Der Mechanismus, der für die Glaukom-Bildung bei Glucocorticoid-Gabe verantwortlich ist, war bislang nicht bekannt. Irisbesondere war bislang nicht bekannt, daß die hsgkl bei diesem Mechanismus eine Rolle spielt und sich daher als Target-Protein für die Diagnose und Therapie eines Glaukoms eignet.
Die erfindungsgemäßen Beobachtungen zeigen somit überraschenderweise, daß die hsgkl und die hsgk3 nicht nur den epithelialen Na+-Kanal, sondern auch den nicht-epithelialen Glucosetransport steigern. Damit sind völlig neue pathophysiologische Bedeutungen der hsgkl und der hsgk3 aufgedeckt worden, welche wichtige diagnostische und therapeutische/prophylaktische Konsequenzen nach sich ziehen sollten.
Ein Gegenstand der Erfindung betrifft somit die Verwendung eines funktionalen Inhibitors des hsgkl- oder des hsgk3 -Proteins oder eines negativen Transkriptionsregulators des hsgkl- oder hsgk3-Gens zur Verringerung der Zellschwellung.
Ein weiterer Gegenstand der Erfindung betrifft die Verwendung eines' funktionalen Inhibitors des hsgkl- oder des hsgk3 -Proteins oder eines negativen Transkriptionsregulators des hsgkl- oder hsgk3-Gens zur Herstellung eines Arzneimittels zur Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie.
Dieser funktionale Inhibitor des hsgkl -Proteins oder des hsgk3 -Proteins kann eine chemische Substanz jeglicher Art sein, die die normale physiologische Aktivität des hsgkl - Proteins oder des hsgk3 -Proteins inhibiert. Vorzugsweise ist der funktionale Inhibitor des hsgkl- oder des hsgk3 -Proteins eine niedermolekulare chemische Substanz (ein „small molecule") oder ein Protein oder Peptid. Der funktionale Inhibitor des hsgkl -Proteins oder des hsgk3 -Proteins kann insbesondere ein Antagonist dieser Enzyme sein, welcher die Substratbindungsstelle des hsgkl -Proteins oder des hsgk3 -Proteins blockiert, aber gleichzeitig keinerlei katalytischen Umsetzung durch die hsgkl oder hsgk3 zugänglich ist. Als Antagonist eignen sich in diesem Fall vorzugweise solche Moleküle, die strukturelle Ähnlichkeit mit dem natürlichen Substrat des hsgkl -Proteins oder des hsgk3 -Proteins, also insbesondere eine strukturelle -Ähnlichkeit mit den phosphorylierbaren Aminosäuren Serin und Threonin, haben.
Staurosporin und Chele-rythrin sind zwei bekannte funktionale Inhibitoren der hsgkl . Als funktionaler Inhibitor der hsgkl oder der hsgk3 zur Therapie und/oder zur Prophylaxe mindestens einer der Erkrankungen Katarakt, Glaukom oder diabetische Neuropathie wird daher in einer besonders bevorzugten Ausführungsform entweder Staurosporin oder Chelerythrin eingesetzt.
Ein negativer Transkriptionsregulator des hsgkl -Gens oder des hsgk3-Gens ist als eine Substanz definiert, die die Expression des hsgkl -Gens bzw. des hsgk3-Gens auf Transkriptionsebene aktiviert.
Das erfindungsgemäße Arzneimittel zur Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie kann neben dem eigentlichen Wirkstoff, dem funktionalen Inhibitor oder dem negativen Transkriptionsregulator der hsgkl oder der hsgk3, zusätzlich Stabilisatoren und/oder Trägersubstanzen, wie beispielsweise Stärke, Laktose, Stearinsäure, Fette, Wachse, Alkohole oder andere Additiva wie Konservierungsstoffe, Farbstoffe oder Geschmacksstoffe enthalten. Die Verabreichung des Arzneimittels kann auf jede Art, insbesondere oral, in Form von Tabletten, Granulaten, Kapseln oder als Lösung erfolgen. Andere besonders geeignete Darreichungsformen betreffen direkte Applizierungen (z.B. auf Haut oder Auge) in Form von Salben, Tinkturen, Sprays oder jegliche Art von Injektion (z.B. subkutan, intravenös) oder die Infusion.
Ein weiterer Gegenstand der Erfindung ist die Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgkl -Sequenz nach Acc No. NM_005627 oder eines ihrer Fragmente zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie. Das Fragment der hsgkl, das die einzel- oder doppelsträngige Nukleinsäure hierbei umfassen kann, ist mindestens 10 Nukleotide/Basenpaare lang, vorzugsweise mindestens 15 Nukleotide/Basenpaare lang und insbesondere mindestens 20 Nukleotide/Basenpaare lang.
Die einzel- oder doppelsträngige Nukleinsäure umfaßt hierbei vorzugsweise mindestens ein polymorphes Nukleotid des hsgkl -Gens, insbesondere einen „Single nucleotide polymorphism (SNP)" des hsgkl -Gens. In einer besonders bevorzugten Ausführungsform umfaßt die einzel- oder doppelsträngige Nukleinsäure hierbei mindestens einen der folgenden SNPs des hsgkl -Gens: eine G-Insertion an Position 732/733 in Intron 2 des hsgkl -Gens,
der T/C- Austausch an Position 2071 in Intron 6 des hsgkl -Gens (WO02/074987 A2), der T/C- Austausch an Position 2617 in Exon 8 des hsgkl -Gens (WO02/074987 A2).
Die obigen SNPs des hsgkl -Gens in der genomischen DNA oder cDNA des Patienten können mit Hilfe der oben genannten einzel- oder doppelsträngigen Nukleinsäuren vorzugsweise durch die nachfolgenden Verfahren nachgewiesen werden: durch direkte Sequenzierung der genomischen DNA oder cDNA mit den obigen Nukleinsäuren, durch spezifische Hybridisierung der genomischen DNA oder cDNA mit den obigen Nukleinsäuren, durch einen PCR-Oligonukleotid-Elongationsassay oder durch einen Ligations-Assay.
Die genomische DNA oder cDNA des Patienten wird hierbei vorzugsweise aus einer Körperprobe des Patienten, insbesondere aus Speichel, Blut, Gewebe oder Zellen, isoliert.
Es ist anzunehmen, daß die Aktivität des exprimierten hsgkl -Gens von der Version dieses Polymorphismus im hsgkl -Gen des Patienten abhängt und daß sich folglich Nukleinsäuren, die mindestens einen dieser Polymorphismen enthalten, besonders gut zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie eignen.
Die Erfindung betrifft weiterhin die Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgk3-Sequenz nach Acc No. AF169035 oder eines ihrer Fragmente zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie. Das Fragment der hsgk3, das die einzel- oder doppelsträngige Nukleinsäure hierbei umfassen kann, ist mindestens 10 Nukleotide/Basenpaare lang, vorzugsweise mindestens 15 Nukleotide/Basenpaare lang und insbesondere mindestens 20 Nukleotide/Basenpaare lang.
Die einzel- oder doppelsträngige Nukleinsäure umfaßt hierbei vorzugsweise mindestens ein polymorphes Nukleotid des hsgk3-Gens, insbesondere einen „Single nucleotide polymorphism (SNP)" des hsgk3-Gens. Neben den oben genannten einzel- oder doppelsträngigen Nukleinsäuren eignen sich auch bestimmte Antikörper, die gegen Substrate der humanen Homologen der sgk-Familie, insbesondere gegen Substrate der hsgkl und der hsgk3, gerichtet sind, zur Diagnose einer Prädisposition zur Ausbildung mindestens einer der Erkrankungen Katarakt, Glaukom, diabetische Neuropathie. Diese diagnostischen Antikörper sind vorzugsweise gegen ein solches Epitop der humanen Homologen der sgk-Familie (insbesondere der hsgkl und der hsgk3) gerichtet, welches die Phosphorylierungsstelle des Substrates entweder in phosphorylierter Form oder in nicht phosphorylierter Form enthält.
Beispielsweise könnte eine aufgrund der individuellen genetischen Ausstattung des hsgkl - Gens auftretende Überexpression des hsgkl -Proteins zu einer verstärkten Umsetzung von
Substraten der hsgk, d.h. zu einer verstärkten enzymatischen Phosphorylierung der
Substrate durch die hsgkl führen. Gleichzeitig würde die Überexpression des hsgkl -
Proteins zu einer Stimulierung des Glucosetransporters Glutl führen, welche letztlich eine starke Glucoseaufhahme in die Zellen des Auges, anschließend eine starke Wasseraufhahme durch Osmose und dadurch letztlich die Prädisposition zur Ausbildung von Katarakt, Glaukom und diabetischer Neuropathie bewirkt. Der Nachweis der häufigeren Phosphorylierung von Substraten der hsgkl mit Hilfe eines Antikörpers, der gegen eine Region des betreffenden Substrates gerichtet ist, welche die
Phosphorylierungsstelle der hsgkl in phosphorylierter Form oder in nicht phosphorylierter Form enthält, könnte somit ein Verfahren zur Diagnose einer Prädisposition zur
Ausbildung von Katarakt, Glaukom und diabetischer Neuropathie darstellen.
In einer bevorzugten Ausfuhrungsform wird als Substrat des humanen Homologen der sgk- Familie die Ubiquitin-Protein-Ligase Nedd4-2 (Acc No. BAA23711) eingesetzt. Diese Ubiquitin-Protein-Ligase stellt ein Protein dar, welches von den humanen Homologen der sgk-Familie spezifisch phophoryliert wird [Debonneville et al., Phosphorylation of Nedd4- 2 by Sgkl regulates epithelial Na(+) Channel cell surface expression. EMBO J., 2001; 20: 7052-7059; Snyder et al., Serum and glucocorticoid-regulated kinase modulates Nedd4-2- mediated inhibition of the epithelial Na(+) Channel. J. Biol. Chem., 2002, 277: 5-8]. Phosphorylierungsstellen für die hsgkl besitzen die Konsensus-Sequenz (R X R X X S/T), wobei R für Arginin, S für Serin, T für Threonin und X für eine beliebige Aminosäure steht. In Nedd4-2 2 (Acc No. BAA23711) gibt es zwei potentielle Phosphorylierungsstellen für die hsgkl, auf die die oben genannte Konsensus-Sequenz paßt: das Serin an Aminosäure-Position 382 und das Serin an Aminosäure-Position 468.
Die oben genannten Antikörper zur Diagnose einer Prädisposition zur Ausbildung mindestens einer der Erkrankungen Katarakt, Glaukom, diabetische Neuropathie sind daher vorzugsweise gegen das Substrat Nedd4-2 gerichtet und besonders bevorzugt gegen eine Proteinregion von Nedd4-2 mit der Sequenz der potentiellen Phosphorylierungsstelle für die hsgkl, der Konsensus-Sequenz (R X R X X S/T), gerichtet. Insbesondere sind diese Antikörper gegen solche Nedd4-2-Protein-Regionen gerichtet, die mindestens eine der beiden potentiellen Phosphorylierungsstellen Serin an Aminosäure-Position 382 und/oder Serin an Aminosäure-Position 468 umfassen.
Ein weiterer Gegenstand der Erfindung ist ein Kit zur Diagnose einer der Erkrankungen Katarakt, Glaukom und diabetische Neuropathie, enthaltend mindestens eine der folgenden Komponenten: " - Antikörper, die gegen hsgkl oder hsgk3 gerichtet sind, einzel- oder doppelsträngige Nukleinsäuren, die mit dem hsgkl -Gen nach Acc No. NM_005627 oder mit dem hsgk3-Gen nach Acc No. AF169035 unter stringenten Bedingungen hybridisieren können; insbesondere solche einzel- oder doppelsträngigen Nukleinsäuren, die polymorphe Nukleotide, insbesondere „SNPs" des hsgkl -Gens oder des hsgk3-Gens umfassen,
Antikörper, die gegen ein Substrat eines humanen Homologen der sgk-Familie gerichtet sind; vorzugsweise Antikörper, die gegen die Phosphorylierungsstelle dieses Substrates in der phosphorylierten oder nicht phosphorylierten Form gerichtet sind; insbesondere Antikörper, die gegen die Phosphorylierungsstelle von Nedd4 oder Nedd4-2 in der phosphorylierten oder nicht phosphorylierten Form gerichtet sind.
Ein weiterer Gegenstand der Erfindung betrifft ein Screening- Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus der Gruppe bestehend aus Katarakt, Glaukom und der diabetischen Neuropathie, umfassend die folgenden Schritte: a) Heterologe Koexpression von i) dem Glucosetransporter Glutl und ii) der hsgkl und/oder der hsgk3 in Zellen, b) Kultivierung mindestens eines Zeil-Anteils Ai bis A in Gegenwart von jeweils mindestens einer Test-Substanz, wobei sich die mindestens eine Test-Substanz in Abhängigkeit vom Index 1 bis X des Zeil-Anteils jeweils unterscheidet und Kultivierung von einem Kontroll-Zell-Anteil B in Abwesenheit jeglicher Test- Substanz, c) Bestimmung der Aktivität des Glucosetransporters Glutl in den Zeil-Anteilen Ai bis Ax im Vergleich zur Aktivität des Glucosetransporters Glutl im Kontroll-Zell-Anteil B.
Als „Vielzahl von Test-Substanzen" kann eine Substanz-Bibliothek, vorzugsweise eine „small molecule-library", aber auch eine Protein-Bibliothek oder ähnliches eingesetzt werden.
In Schritt a) werden geeignete Zellen, vorzugsweise Säugetier-Zellen oder Zellinien, insbesondere humane Zellen oder Zellinien mit geeigneten Expressionsvektoren, enthaltend geeignete Expressionskassetten zur Expression von Glutl und von hsgkl und/oder hsgk3 nach Standardmethoden, wie beispielsweise Elektroporation, CaPO4- Präzipitation, Lipofektion oder ähnliches, transfiziert. Die Expressionskassetten enthalten die genomische DNA oder die cDNA des fraglichen Zielgens (Glutl, hsgkl, hsgk3) unter der Kontrolle geeigneter Promotoren, die in dem fraglichen Zelltyp aktiv sind und das Zielgen in einer geeigneten Menge exprimieren können. Die Expressionsvektoren können weiterhin Selektionsmarker enthalten.
Anschließend werden die transfizierten Zellen unter solchen Bedingungen kultiviert, die die Expression der Zielgene i) und ii) erlauben. In Schritt b) erfolgt die Aufteilung der transfizierten Zellen aus a) in verschiedene Zeil- Anteile (Aliquots) Ai bis Ax und in einen Kontroll-Zell-Anteil B. Die Zeil- Anteile Ai bis Ax werden in Gegenwart von jeweils mindestens einer Test-Substanz kultiviert. Die jeweils in die Zeil-Anteile Ai bis Ax zugegebene(n) Test-Substanz(en) unterscheiden sich untereinander (in Abhängigkeit von dem Index 1 bis X des jeweiligen Zeil- Anteils A\ bis Ax). Der Kontroll-Zell-Anteil B hingegen wird in Abwesenheit jeglicher Test-Substanz kultiviert.
In Schritt c) wird die Aktivität des Glucosetransporters Glutl in den Zeil- Anteilen Ai bis Ax im Vergleich zur Aktivität des Glucosetransporters Glutl im Kontroll-Zell-Anteil B quantitativ bestimmt. In den Zeil- Anteilen Ai bis Ax , in denen im Vergleich zum Kontroll- Zeil- Anteil B ein deutlich geringerer Wert der Glutl -Aktivität gemessen wird, sollte eine Test-Substanz zugegeben worden sein, die die hsgkl bzw. die hsgk3 funktional inhibieren kann oder deren Expression mindert. Eine solche Substanz könnte sich zur Therapie mindestens einer der Erkrankungen Katarakt, Glaukom oder diabetische Neuropathie eignen. In einer alternativen Ausführungsform umfaßt das erfindungsgemäße Screening- Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus der Gruppe bestehend aus Katarakt, Glaukom und der diabetischen Neuropathie die folgenden Schritte: d) Heterologe Koexpression von i) dem Glucosetransporter Glutl und ii) der hsgkl und/oder der hsgk3 in mindestens einem Anteil Ai bis Ax von Zellen und heterologe Expression von i) dem Glucosetransporter Glutl in mindestens einem Anteil Bt bis Bx von Zellen e) Kultivierung der Zeil- Anteile A\ bis Ax und Bi bis Bx in Gegenwart von jeweils mindestens einer Test-Substanz, wobei die mindestens eine Test-Substanz sich in Abhängigkeit von dem Index 1 bis X der Zeil- Anteile jeweils unterscheidet, f) vergleichende Bestimmung der Aktivität des Glucosetransporters Glutl in den Zeil- Anteilen Ai bis Ax und in den Zeil- Anteilen Bi bis B .
Die oben genannten Erläuterungen der einzelnen Verfahrensschritte a) bis c) gelten für die Verfährensschritte d) bis fj der alternativen erfindungsgemäßen Screening-Verfahrens entsprechend.
Die Erfindung wird durch die nachfolgende Abb. 1 näher erläutert.
Auf der Ordinate A der Abb. 1 ist die Aufnahme von 2-Desoxyglucose (in pmol 1/10 min/oocyte) aufgetragen (Arithmetische Mittelwerte ± SEM). Xenopus laevis Oocyten wurden mit cRNA von Glut-1 mit oder ohne cRNA von SGK1, SGK2, SGK3 oder der Protein Kinase B (PKB) injeziert (siehe Beispiel 1).
Abb. 1 zeigt die erhöhte Aufnahme von 2-Desoxyglucose in solche Oocyten, die zusätzlich zu Glut 1 die hsgkl oder die hsgk3 exprimieren im Vergleich zu solchen Oocyten, die Glut 1 allein exprimieren. Damit zeigt sich, daß die Funktion der hsgkl und der hsgk3 die Aktivität des Glucosetransporters Glutl effizient stimulieren. Ein ähnlicher Effekt zeigt sich nicht für solche Oocyten, die die hsgk2 oder PKBmut anstelle von hsgkl oder hsgk3 exprimieren. Die Erfindung wird durch das nachfolgende Beispiel näher erläutert.
Beispiel 1: Expression in Xenopus laevis Oocyten und Zwei-Elektroden- Spannungsklemme cRNA der normalen SGKl [Waldegger S, Barth P, Raber G, Lang F: Cloning and characterization of a putative human serine/threonine protein kinase transcriptionally modified during anisotonic and isotonic alterations of cell volume. Proc Natl Acad Sei USA 1997;94:4440-4445] und der konstitutiv aktiven SGKl (S422DSGK1) [Kobayashi & Cohen 1999], sowie von normalem Glutl [Iserovich P, Wang D, Ma L, Yang H, Zuniga FA, Pascual JM, Kuang K, De Vivo DC, Fischbarg J. Changes in glucose transport and water permeability resulting from the T310I pathogenic mutation in Glutl are consistent with two transport Channels per monomer. J Biol Chem. 2002;277:30991-7] wurden in vitro synthetisiert. Die Dissektion der Xenopus laevis Ovarien und die Kollektion und Behandlung der Oocyten wurden bereits detailliert beschrieben [Wagner CA, Friedrich B, Setiawan I, Lang F, Bröer S: The use of Xenopus laevis ooeytes for the functional characterization of heterologously expressed membrane proteins. Cell Physiol Biochem 2000;10:1-12]. Die Oocyten wurden mit 5 ng von humanem Glutl, 7.5 ng von humaner SGKl und/oder mit 5 ng von Xenopus Nedd4-2 injeziert. KontroUoocyten wurden mit Wasser injeziert. Die Aufnahme radioaktiv markierter Glucose wurde bei Raumtemperatur 2 Tage nach Injektion der jeweiligen cRNA's gemessen. Die Kontrollbadlösung enthielt 96 mM NaCl, 2 mM KC1, 1.8 mM CaCl2, 1 mM MgCl2 and 5 mM HEPES, pH 7.4. Alle Substanzen wurden in den angegebenen Konzentrationen eingesetzt. Die endgültigen Lösungen wurden mit HC1 bzw. NaOH auf pH 7.4 nitriert.
Berechnungen
Die Daten werden als arithmetische Mittelwerte ± SEM angegeben, n ist die Zahl der untersuchten Oocyten. Alle Experimente wurden in mindestens drei verschiedenen Gruppen von Oocyten durchgeführt. Die Ergebnisse wurden mit dem Student t-test auf significante Unterschiede getestet. Nur Ergebnisse mit P < 0.05 wurden als statistisch significant angesehen.

Claims

Patentansprüche
1. Verwendung eines funktionalen Inhibitors des hsgkl- oder des hsgk3 -Proteins oder eines negativen Transkriptionsregulators des hsgkl- oder hsgk3-Gens zur Veringerung der Zellschwellung.
2. Verwendung eines funktionalen Inhibitors des hsgkl- oder des hsgk3 -Proteins oder eines negativen Transkriptionsregulators des hsgkl- oder hsgk3-Gens zur Herstellung eines Arzneimittels zur Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie.
3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der funktionale Inhibitor des hsgkl -Proteins oder des hsgk3 -Proteins Staurosporin oder Chelerythrin ist.
4. Arzneimittel enthaltend einen funktionalen Inhibitor des hsgkl- oder des hsgk3- Proteins oder einen negativen Transkriptionsregulator des hsgkl- oder hsgk3-Gens zur
Therapie und/oder zur Prophylaxe eines Katarakts, eines Glaukoms oder der diabetischen Neuropathie.
5. Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgkl - Sequenz nach Acc No. NM_005627 oder eines ihrer Fragmente zur Diagnose einer Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer
Neuropathie.
6. Verwendung nach Anspruch 5, dadurch gekennzeichnet, daß die einzel- oder doppelsträngige Nukleinsäure mindestens ein polymorphes Nukleotid des hsgkl -Gens, insbesondere einen „SNP" des hsgkl -Gens, umfaßt. 7. Verwendung nach Anspruch 6, dadurch gekennzeichnet, daß der SNP des hsgkl -Gens ausgewählt ist aus der Gruppe der SNPs bestehend aus der G-Insertion an Position 732/733 in Intron 2 des hsgkl -Gens, dem T/C- Austausch an Position 2071 in Intron 6 des hsgkl-Gens und dem T/C-Austausch an Position 2617 in Exon 8 des hsgkl-Gens.
8. Verwendung einer einzel- oder doppelsträngigen Nukleinsäure umfassend die hsgk3- Sequenz nach Acc No. AF169035 oder eines ihrer Fragmente zur Diagnose einer
Prädisposition zur Ausbildung von Katarakt, Glaukom und/oder diabetischer Neuropathie.
. Verwendung nach Anspruch 8, dadurch gekennzeichnet, daß die einzel- oder doppelsträngige Nukleinsäure mindestens ein polymorphes Nukleotid des hsgk3-Gens, insbesondere einen „SNP" des hsgkl-Gens, umfaßt.
10. Verwendung eines Antikörpers gegen ein Substrat eines humanen Homologen der sgk- Familie zur Diagnose einer Prädisposition zur Ausbildung mindestens einer der
Erkrankungen Katarakt, Glaukom, diabetische Neuropathie, wobei der Antikörper gegen ein solches Epitop des humanen Homologen gerichtet ist, welches die Phosphorylierungsstelle entweder in phosphorylierter Form oder in nicht phosphorylierter Form enthält. 11. Verwendung nach Anspruch 10, dadurch gekennzeichnet, daß das Substrat des humanen Homologen der sgk-Familie Nedd4-2 mit der Acc No. BAA23711 ist.
12. Kit zur Diagnose einer der Erkrankungen Katarakt, Glaukom und diabetische Neuropathie, enthaltend Antikörper, die gegen hsgkl oder hsgk3 gerichtet sind oder enthaltend Nukleinsäuren, die mit dem hsgkl -Gen nach Acc No. NM_005627 oder mit dem hsgk3-Gen nach Acc No. AF 169035 unter stringenten Bedingungen hybridisieren können, oder diese Antikörper und Nukleinsäuren gemeinsam.
13. Kit nach Anspruch 12, dadurch gekennzeichnet, daß die Nukleinsäuren mit solchen DNA-Regionen des hsgkl-Gens nach Acc No. NM_005627 oder des hsgk3-Gens nach Acc No. AF169035 unter stringenten Bedingungen hybridisieren können, die polymorphe Nukleotide, insbesondere „SNPs" des hsgkl-Gens oder des hsgk3-Gens umfassen.
14. Screening- Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus der Gruppe bestehend aus Katarakt, Glaukom und der diabetischen Neuropathie, umfassend die folgenden Schritte: a) Heterologe Koexpression von i) dem Glucosetransporter Glutl und ii) der hsgkl und/oder der hsgk3 in Zellen, b) Kultivierung mindestens eines Zeil-Anteils At bis Ax in Gegenwart von jeweils mindestens einer Test-Substanz, wobei sich die mindestens eine Test-Substanz in Abhängigkeit vom Index 1 bis X des Zeil- Anteils jeweils unterscheidet und Kultivierung von einem Kontroll-Zell-Anteil B in Abwesenheit jeglicher Test- Substanz, c) Bestimmung der Aktivität des Glucosetransporters Glutl in den Zeil-Anteilen Ai bis Ax im Vergleich zur Aktivität des Glucosetransporters Glutl im Kontroll-Zell- Anteil B.
15. Screening- Verfahren zur Identifizierung und Charakterisierung von therapeutisch wirksamen Substanzen aus einer Vielzahl von Test-Substanzen zur Therapie und/oder zur Prophylaxe von mindestens einer Erkrankung ausgewählt aus der Gruppe bestehend aus Katarakt, Glaukom und der diabetischen Neuropathie, umfassend die folgenden Schritte: d) Heterologe Koexpression von i) dem Glucosetransporter Glutl und ii) der hsgkl und/oder der hsgk3 in mindestens einem Anteil A bis Ax von Zellen und heterologe Expression von i) dem Glucosetransporter Glutl in mindestens einem Anteil Bi bis Bx von Zellen e) Kultivierung der Zeil- Anteile Ai bis A und Bi bis Bx in Gegenwart von jeweils mindestens einer Test-Substanz, wobei die mindestens eine Test-Substanz sich in Abhängigkeit von dem Index 1 bis X der Zeil- Anteile jeweils unterscheidet, f) vergleichende Bestimmung der Aktivität des Glucosetransporters Glutl in den Zeil- Anteilen At bis Ax und in den Zeil-Anteilen Bi bis Bx.
EP04708350A 2003-02-07 2004-02-05 Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom Withdrawn EP1663246A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10305212A DE10305212A1 (de) 2003-02-07 2003-02-07 Verwendung der sgk-Genfamilie zur Diagnose und zur Therapie von Katarakt und Glaukom
PCT/EP2004/001048 WO2004069258A2 (de) 2003-02-07 2004-02-05 Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom

Publications (1)

Publication Number Publication Date
EP1663246A2 true EP1663246A2 (de) 2006-06-07

Family

ID=32730900

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04708350A Withdrawn EP1663246A2 (de) 2003-02-07 2004-02-05 Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom

Country Status (13)

Country Link
EP (1) EP1663246A2 (de)
JP (1) JP2006519189A (de)
KR (1) KR20050114214A (de)
CN (1) CN1771039A (de)
AU (1) AU2004210416A1 (de)
BR (1) BRPI0407300A (de)
CA (1) CA2514703A1 (de)
DE (1) DE10305212A1 (de)
MX (1) MXPA05008394A (de)
PL (1) PL378399A1 (de)
RU (1) RU2005127808A (de)
WO (1) WO2004069258A2 (de)
ZA (1) ZA200506280B (de)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005094796A2 (en) * 2004-03-11 2005-10-13 Merck Patent Gmbh Methods for interfering with fibrosis
BRPI0508574A (pt) * 2004-03-11 2007-08-14 Merck Patent Gmbh métodos para modular receptores de glutamato para tratar distúrbios neuropsiquiátricos compreendendo o uso de moduladores de quinases séricas e induzidas por glicocorticóides
DE102004059781A1 (de) * 2004-12-10 2006-06-22 Sanofi-Aventis Deutschland Gmbh Verwendung der Serum-/Glucocorticoid regulierten Kinase
US20060293378A1 (en) * 2005-06-28 2006-12-28 Mcintire Gregory Method of lowering intraocular pressure
WO2007037560A1 (ja) * 2005-09-30 2007-04-05 Link Genomics, Inc. Sgk2遺伝子の治療的又は診断的用途
CN101360999B (zh) * 2005-11-22 2013-07-17 麦吉尔大学 眼内压调节早期基因及其用途
WO2008079980A1 (en) * 2006-12-22 2008-07-03 Alcon Research, Ltd. Inhibitors of protein kinase c-delta for the treatment of glaucoma
DE102008029072A1 (de) * 2008-06-10 2009-12-17 Lang, Florian, Prof. Dr.med. Sgk3 als therapeutisches und diagnostisches Target für Alterserkrankungen
AU2012209455B2 (en) * 2011-01-25 2017-05-04 Monell Chemical Senses Center Compositions and methods for providing or modulating sweet taste and methods of screening therefor
KR102357260B1 (ko) * 2020-12-10 2022-02-08 주식회사 레피겐엠디 마이크로rna를 이용한 당뇨병성 신경병증의 예측 및 진단 방법 및 이를 위한 키트

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0778848B1 (de) * 1994-08-30 2007-12-26 University of Dundee Mittel zur induktion von apoptosis und zur therapieanwendung
WO1996041013A1 (en) * 1995-06-07 1996-12-19 Ligand Pharmaceuticals Incorporated Method for screening for receptor agonists and antagonists
US5925523A (en) * 1996-08-23 1999-07-20 President & Fellows Of Harvard College Intraction trap assay, reagents and uses thereof
DE19708173A1 (de) * 1997-02-28 1998-09-03 Dade Behring Marburg Gmbh Zellvolumenregulierte humane Kinase h-sgk
AU3991499A (en) * 1998-05-15 1999-12-06 Joslin Diabetes Center Independent regulation of basal and insulin-stimulated glucose transport
DE69937159T2 (de) * 1998-12-14 2008-06-26 University Of Dundee, Dundee Verfahren zur Aktivierung von SGK durch Phosphorylierung.
US6399655B1 (en) * 1998-12-22 2002-06-04 Johns Hopkins University, School Of Medicine Method for the prophylactic treatment of cataracts
DE19917990A1 (de) * 1999-04-20 2000-11-02 Florian Lang Arzneimittel enthaltend Hemmstoffe der zellvolumenregulierten humanen Kinase h-sgk
AU5840300A (en) * 1999-07-14 2001-01-30 University Of Lausanne Glutx polypeptide family and nucleic acids encoding same
US6416759B1 (en) * 1999-09-30 2002-07-09 The Regents Of The University Of California Antiproliferative Sgk reagents and methods
US20030236246A1 (en) * 2002-04-30 2003-12-25 Brazzell Romulus Kimbro Method for decreasing capillary permeability in the retina
DE10225844A1 (de) * 2002-06-04 2003-12-18 Lang Florian sgk und nedd als diagnostische und therapeutische targets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004069258A2 *

Also Published As

Publication number Publication date
JP2006519189A (ja) 2006-08-24
PL378399A1 (pl) 2006-04-03
MXPA05008394A (es) 2005-10-05
WO2004069258A2 (de) 2004-08-19
DE10305212A1 (de) 2004-08-19
WO2004069258A3 (de) 2005-02-24
AU2004210416A1 (en) 2004-08-19
KR20050114214A (ko) 2005-12-05
BRPI0407300A (pt) 2006-02-07
CN1771039A (zh) 2006-05-10
RU2005127808A (ru) 2006-05-27
CA2514703A1 (en) 2004-08-19
ZA200506280B (en) 2006-05-31

Similar Documents

Publication Publication Date Title
DE19917990A1 (de) Arzneimittel enthaltend Hemmstoffe der zellvolumenregulierten humanen Kinase h-sgk
EP1663246A2 (de) Verwendung der sgk-genfamilie zur diagnose und zur therapie von katarakt und glaukom
EP1523571B1 (de) Sgk und nedd als diagnostische und therapeutische targets
EP1313476B1 (de) SGK3 ALS DIAGNOSTISCHEs UND THERAPEUTISCHEs TARGET
Etheredge et al. Functional compensation by other voltage-gated Ca2+ channels in mouse basal forebrain neurons with CaV2. 1 mutations
DE10305213A1 (de) Verwendung eines neuen Polymorphismus im hsgk1-Gen zur Diagnose der Hypertonie und Verwendung der sgk-Genfamilie zur Diagnose und Therapie des Long-Q/T-Syndroms
Chao et al. The effects of aging and hormonal manipulation on amyloid precursor protein APP695 mRNA expression in the rat hippocampus
Tao et al. Expression of urocortin 2 and its inhibitory effects on intracellular ca2+ via L-type voltage-gated calcium channels in rat pheochromocytoma (PC12) cells
WO2004005540A2 (de) Verwendungen von an ngal bindenden substanzen zur diagnose und behandlung von krebserkrankungen
EP1386615B1 (de) EG-VEGF/Prokineticin 2 Rezeptor Antagonisten
DE10252806A1 (de) Verwendung von Fischlarven als Screening-Modell
Kroumpouzou et al. Common pathways for primary hypertrophic and dilated cardiomyopathy
DE102004059781A1 (de) Verwendung der Serum-/Glucocorticoid regulierten Kinase
DE10234901A1 (de) Verwendung von am Mrp4 bindenden Substanzen zur Diagnose und Behandlung von Krebserkrankungen
DE69813677T2 (de) Humäne Serumglucocorticoidregulierte Kinase, ein Ziel für chronischer Nierenerkrankung und diabetische Nephropathie
DE10120834A1 (de) Neue Schmerzmittel, die Inhibitoren von TRP-Kanälen sind
DE19856301C1 (de) Regulatorisches Protein pKe#83 aus humanen Keratinozyten
DE19811326C1 (de) Verfahren zur Herstellung von Mitteln zur Behandlung von Tumorerkrankungen und zur Immunsuppression
Deng et al. Delayed development of dendritic spines in Fxr2 knockout mouse
EP0816848A1 (de) Verfahren zum vergleichenden Screenen von Substanzen mit pharmakologischer Wirkung
Lee et al. Changes in inward rectifier K+ channels in hepatic stellate cells during primary culture
DE10360956A1 (de) System und Verfahren zum Nachweis von diabetischer Nephropatie oder einer Prädisposition dafür
EP1877803A2 (de) Verfahren zur charakterisierung der transaktivierungs- und transrespressionsaktivität von glukokortikoidrezeptor-liganden in primären immunzellen
DE102007017433A1 (de) PIKfyve als pharmakologisches Target zur Behandlung von glucosestoffwechselassoziierten Krankheiten
EP1517146A2 (de) Flamingo (Ant)agonisten zur Diagnose und Behandlung von Krebs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050829

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: LT LV

17Q First examination report despatched

Effective date: 20061130

17Q First examination report despatched

Effective date: 20061130

17Q First examination report despatched

Effective date: 20061130

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RIC1 Information provided on ipc code assigned before grant

Ipc: G01N 33/50 20060101AFI20090407BHEP

RTI1 Title (correction)

Free format text: SREENING METHOD BASED ON THE SGK GENE FAMILY AND GLUT1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: SCREENING METHOD BASED ON THE SGK GENE FAMILY AND GLUT1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20090901