[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1656498A1 - Pilotventil gesteuertes brennstoffeinspritzventil - Google Patents

Pilotventil gesteuertes brennstoffeinspritzventil

Info

Publication number
EP1656498A1
EP1656498A1 EP04738118A EP04738118A EP1656498A1 EP 1656498 A1 EP1656498 A1 EP 1656498A1 EP 04738118 A EP04738118 A EP 04738118A EP 04738118 A EP04738118 A EP 04738118A EP 1656498 A1 EP1656498 A1 EP 1656498A1
Authority
EP
European Patent Office
Prior art keywords
pilot valve
injection valve
chamber
control
fuel injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04738118A
Other languages
English (en)
French (fr)
Other versions
EP1656498B1 (de
Inventor
Marco Ganser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ganser Hydromag AG
Original Assignee
Ganser Hydromag AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ganser Hydromag AG filed Critical Ganser Hydromag AG
Publication of EP1656498A1 publication Critical patent/EP1656498A1/de
Application granted granted Critical
Publication of EP1656498B1 publication Critical patent/EP1656498B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M63/00Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
    • F02M63/0012Valves
    • F02M63/0014Valves characterised by the valve actuating means
    • F02M63/0015Valves characterised by the valve actuating means electrical, e.g. using solenoid
    • F02M63/0026Valves characterised by the valve actuating means electrical, e.g. using solenoid using piezoelectric or magnetostrictive actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M45/00Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship
    • F02M45/02Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts
    • F02M45/04Fuel-injection apparatus characterised by having a cyclic delivery of specific time/pressure or time/quantity relationship with each cyclic delivery being separated into two or more parts with a small initial part, e.g. initial part for partial load and initial and main part for full load
    • F02M45/08Injectors peculiar thereto
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/025Hydraulically actuated valves draining the chamber to release the closing pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M47/00Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
    • F02M47/02Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
    • F02M47/027Electrically actuated valves draining the chamber to release the closing pressure

Definitions

  • the present invention relates to a
  • Fuel injection valves of this type are generally known and are disclosed, for example, in EP-A-0 426 205, EP-A-0 603 616, EP-A-0 824 190, EP-A-1 273 791. They have a pilot valve pin which is controlled by means of an electromagnetic actuator and which, in the closed position, separates an outlet duct of a control chamber provided with a throttle restriction from a low-pressure outlet. When the pilot valve pin is lifted from the pilot valve seat, fuel flows from the outlet duct directly to the low-pressure outlet. An injection process is initiated by opening the pilot valve and the closing movement of the injection valve member is caused to end the injection process by closing the pilot valve.
  • a fuel injection valve When opening the pilot valve. of a fuel injection valve according to the invention, fuel flows into a relief chamber, from which it can only continue to flow through a throttle passage to the low-pressure outlet. A minimization of the fuel valve through the low pressure outlet is achieved during the injection process.
  • the throttle passage can be formed by a slide fit for the pilot valve pin, but preferably the pilot valve pin is guided in a narrow slide fit and is.
  • the relief chamber is connected to the low-pressure outlet via a separately designed throttle passage.
  • the pilot valve pin is moved into the relief chamber at high speed until it rests on the pilot valve seat. Since the throttle passage prevents the fuel from being quickly removed from the relief chamber, the movement of the pilot valve pin and the associated displacement of fuel result in a very rapid increase in pressure in the relief chamber and in a discharge chamber adjoining it upstream of the pilot valve seat, which results in a very fast closing movement of the Injector member caused. This can further support this closing movement that the movement of the pilot valve pin is mechanically exploited.
  • FIG. 1 shows a longitudinal section of a first embodiment of a fuel injector according to the invention, in which a relief chamber is formed on a retaining nut;
  • FIG. 2 likewise shows an enlarged detail of a section of the fuel injector shown in FIG. 1;
  • FIG. 3 shows, in the same representation as FIG. 2, a section from a second embodiment of a fuel injector according to the invention with a throttle passage in the pilot valve pin having two throttle constrictions;
  • FIG. 4 shows, in the same representation as FIG. 2, a section from a third embodiment of a fuel injector according to the invention, in which the relief chamber is arranged entirely in a drain chamber body on which the pilot valve pin is also mounted;
  • FIG. 5 in the same representation as FIG. 2, a section of a fourth embodiment of the fuel injector according to the invention, Similar to that of Figure 3, but with only a single throttle restriction in the throttle passage.
  • FIG. 7 a section of a sixth embodiment of the fuel injector according to the invention with a leaf spring valve, similar to that known from EP-A-1 273 791;
  • FIG. 8 shows, in the same representation as FIG. 2, a detail from a seventh embodiment of the fuel injection valve according to the invention, in which a control body is mushroom-shaped and is displaceably mounted in the injection valve member;
  • Fig. 9 in the same representation as Fig. 2, a section of a. eighth embodiment of the fuel injector according to the invention, in which a transmission pin transmits the movement of the pilot valve pin to a control body.
  • FIG. 1 shows in longitudinal section a fuel injection valve 10 according to the invention with an essentially cylindrical valve housing 14, which has a lateral high-pressure inlet 12.
  • This has a continuous, stepped bore 17 running in the direction of the longitudinal axis 16, in which an electrical Actuated actuator 18, a control device 20 actuated by the latter and a needle-shaped injection valve member 22 with a closing spring 24 are arranged.
  • the injection valve member 22 is held by means of the closing spring 24 on an injection valve seat 26, which is formed on an injection valve seat body 28.
  • This is essentially rotationally symmetrical with respect to the longitudinal axis 16, rests on the end face of the valve housing 14 and is held in a sealing manner on the valve housing 14 by means of a union nut 30.
  • injection valve nozzles 32 are formed in a known manner, through which fuel is injected under very high pressure into a combustion chamber (not shown) of an internal combustion engine when the injection valve member 22 is directed in the direction by means of the hydraulic control device 20 controlled by the actuator 18 the longitudinal axis 16 is lifted off the injection valve seat 26.
  • the injection valve seat 26 delimits a high-pressure space 34, in which the injection valve member 22 is arranged and which on the other hand is delimited by the control device 20 and on the circumferential side by the injection valve seat body 28 and valve housing 14.
  • High-pressure chamber 34 is connected to high-pressure inlet 12, through which fuel is fed to high-pressure chamber 34 for injection into the combustion chamber of the internal combustion engine and for controlling injection valve member 22 under very high pressure of up to 1000 bar or even 1800 bar or more.
  • the injection valve member 22 delimits a control chamber 36 with its end area facing away from the injection valve seat 26, which on the other hand is bounded by a control body 38 is limited in which an outlet passage 40 equipped with a throttle constriction 40 ′ is formed concentrically to the longitudinal axis 16; see in particular also FIG. 2, which shows a detail of the fuel injector 10 from FIG. 1 with the control device 20 enlarged.
  • the control body 38 With its end face 42 facing away from the control chamber 36, the control body 38, with the support of a compression spring 44, which is supported on the one hand on the control body 38 and on the other hand on the injection valve member 22, bears sealingly on an end face 46 'of a mushroom-shaped drain chamber body 46 facing it.
  • a relief chamber 48 is formed in the drain chamber body 46 through a longitudinal bore that is coaxial with the longitudinal axis 16 - without throttling constriction - which is aligned with the outlet passage 40 and is directly flow-connected to it.
  • the essentially circular cylindrical control body 38 is mounted with radial play of about 0.02 mm to 0.1 mm or 0.2 mm in a control sleeve 50 in the direction of the longitudinal axis 16 and forms as a valve member together with the drain chamber body 46, the end face 46 'acts as a valve seat, an intermediate valve 52.
  • the control sleeve 50 at whose end facing the injection valve seat 26, the closing spring 24 is supported, is from the. Force of this closing spring 24 on, drain chamber body 46 held in sealing contact.
  • the injection valve member 22 is guided in a close sliding fit with a play of approximately 2 ⁇ m to 10 ⁇ m.
  • the mushroom-shaped drain chamber body 46 is sealed against one with its hat part by means of a retaining nut 54 which is threaded into an internal thread on the valve housing 14 Contact shoulder 56 of the valve housing 14 pressed. Furthermore, the retaining nut 54 and the drain chamber body 46 lie against one another in a sealing manner. Distributed in the circumferential direction, at least 2 high-pressure channels 58 are formed in the trunk part of the mushroom-shaped drain chamber body 46, which are in flow connection on the one hand with an annular space 60 delimited by the valve housing 14, the trunk and the head part of the drain chamber body 46 and the control sleeve 50 and which are on the other of the end face 46 'forming the valve seat of the intermediate valve 52.
  • the annular space 60 is connected to the high-pressure space 34 and thus to the high-pressure inlet 12 by a longitudinal groove 62 which extends in the axial direction and is formed on the radially outer side of the control sleeve 50.
  • the high-pressure channels 58 can, as shown in FIGS. 1 and 2 on the right of the longitudinal axis 16, be produced by oblique bores in the drain space body 46 or, as shown in FIG. 2 on the left of the longitudinal axis 16, by angled bores.
  • the orifices of the high-pressure channels 58 on the end face 46 ′ are closed by the control body 38 when the latter lies against the drain chamber body 46.
  • a recess 64 can be formed on the drain chamber body 46, which ensures that the contact surface as a relatively narrow, band-shaped area along the outer circumference of the control body 38 and around the mouths of the high pressure channels 58 runs around. Corresponding recesses can of course be formed on the control body 38.
  • a pilot valve pin 66 is mounted on the retaining nut 54 concentrically to the longitudinal axis 16 and can be displaced in the direction of the longitudinal axis 16 in a close sliding fit of approximately 2 ⁇ m to 10 ⁇ m. In its closed position shown in FIGS. 1 and 2, the pilot valve pin 66 lies against the drain chamber body 46 and thereby closes the relief chamber 48.
  • the drain chamber body 46 forms an annular pilot valve seat 68 which, together with the pilot valve pin 66 as a valve member forms a pilot valve 70.
  • the pilot valve seat 68 is designed as a flat seat.
  • An annular relief chamber 72 is directly connected to the pilot valve seat 68 on the low pressure side and is formed on the retaining nut 54 serving as the relief chamber body as a recess extending around the pilot valve pin 66.
  • This otherwise closed relief chamber 72 is continuously flow-connected via a throttle passage 74 with a low-pressure outlet 76 of the valve housing 14. Fuel flowing out through the low-pressure outlet 76 is fed back to a fuel storage container in a known manner.
  • throttle passage 74 can be designed as an oblique bore in the pilot valve pin 66 or, as indicated by dashed lines, on the holding nut 54.
  • the diameter of the throttle point 74 'of the otherwise having a larger diameter • throttle passage 74th is, for example, about ten times smaller than the diameter of the pilot valve pin 66 and about five times smaller than the inside diameter of the drainage space 48. However, these ratios can be different. From Another advantage is that the pilot valve pin 66, when it is lifted from the pilot valve seat 68, very quickly releases a substantially larger flow cross-section than is defined by the throttle point 74 '.
  • the pilot valve pin 66 is held in contact with the pilot valve seat 68 by means of the actuator 18.
  • an actuator shaft 78 rests with its spherically shaped end on the front side of the pilot valve pin 66 facing away from the pilot valve seat 68.
  • the actuator 18 is preferably a piezoelectric or magnetostrictive actuator. Such actuators 18 allow only a relatively small stroke of the actuator shaft 78 and thus of the pilot valve pin 66, for example 0.03 mm. However, they have the advantage that they move the pilot valve pin 66 with great speed and great force.
  • the actuator 18 is arranged in an actuator housing 80 which projects into the valve housing 14 and is fastened to the latter by means of a fastening screw 82.
  • the game between the control body 38 and the control sleeve 50 ensures that through this game and the outlet passage 40, the control chamber 36 is filled with fuel very quickly as soon as - to end an injection process by closing the pilot valve 70, the control body 38 from its system on Drain chamber body 46 is moved away.
  • the possible stroke of the control body 38 is preferably less; a stroke limiting shoulder 84 on the control sleeve 50 limits the maximum possible distance between the outlet space body 46 and the control body 38 to, for example, approximately 0.05-0.2 mm or 0.02-0.2 mm.
  • the intermediate disk 86 can be exchanged in order to coordinate the behavior of the fuel injection valve 10 by selecting the desired thickness.
  • FIGS. 3 to 6 the same reference numerals are used for the embodiment according to FIGS. 1 and 2 as in FIGS. 1 and 2. Only the differences between the embodiment shown in the figure and that according to the figures are shown below 1 and 2 explained.
  • the high-pressure channel 58 In the embodiment shown in FIG. 3, only a single high-pressure channel 58 is provided, which is designed as an angular bore and opens coaxially to the longitudinal axis 16 from the drain chamber body 46.
  • the high-pressure duct 58 As in the embodiment shown in FIGS. 2 and 3, opens into the annular space 60, which is connected to the high-pressure space 34.
  • the recess 64 in the drain body 46 is annular formed so that a sealing surface running around the mouth of the high-pressure channel 58 and radially outside an annular sealing surface for cooperation with the control body 38 remains radially on the inside.
  • the outlet passage 40 runs obliquely with respect to the longitudinal axis 16, so that it opens into the annular space formed by the recess 64.
  • the drainage space 48 is also formed through a bore which is oblique with respect to the longitudinal axis 16 through the discharge space body 46, the drainage space 48 opening into the recess 64 on the one hand and the mouth of the drainage space 48 being arranged centrally on the side of the pilot valve 70 to the longitudinal axis 16.
  • the pilot valve pin 76 is in turn mounted in the holding nut 54, on which the discharge space 72 is excluded, in a close sliding fit.
  • the throttle passage 74 is formed on the pilot valve pin 66 by a blind hole made from the actuator side, which - instead of a single throttle point 9 '- by means of a radial first throttle bore 90 with the relief chamber 72 and a radial second throttle bore 90' with the low pressure outlet 76 in Flow connection is established.
  • the diameter of these two throttle bores 90, 90 'can compared to the single throttle constriction 74' in the throttle passage 74 according to FIGS. 1 and 2, be chosen somewhat larger and thus somewhat less precise in order to achieve a corresponding throttling effect .mu.m.
  • the cooperating with the pilot valve pin 66 end face of the Aktuatorschafts "78 is formed flat to to seal the blind hole in the pilot valve pin 68.
  • control body 38 is designed similarly to that according to FIG. 2, but the throttle restriction 40 ′ of the outlet passage 40 is located in the end region facing the drainage space 48.
  • the otherwise circular-cylindrical outlet passage 40 has a conical shape in its end area on the control chamber, in which the opposite end area of the injection valve member 22 engages when the injection valve member 22 is in the maximum open position. This leads to a very good sealing of the outlet passage 40 and, upon completion of the injection process, contributes to a very rapid lifting of the control body 38 from the injection valve body 28 and thus a very fast closing movement of the injection valve member 22.
  • 4 left and right of the longitudinal axis 16, two further possible embodiments for the high-pressure duct 58 are shown.
  • the drain chamber body 46 in this embodiment is no longer mushroom-shaped but pill-shaped and is pressed by means of the holding nut 54 in sealing contact against the contact shoulder 56 of the valve housing 14. Furthermore, the relief space 72 is arranged inside the drain space body 46, on which the pilot valve pin 66 is also guided in a close sliding fit. In this case, the drain space body 46 also serves as a relief space body.
  • the high-pressure chamber 34 is thus sealed off from the low-pressure outlet 76 by the sealing abutment of the discharge chamber body 46 against the contact shoulder 56.
  • only these two interacting surfaces are to be designed with high precision, in contrast to the forms of embodiment according to FIGS. 1-3 , where the abutting end faces of the drain body 46 and the retaining nut 54 are to be formed as sealing surfaces.
  • the pilot valve seat 68 and, subsequently, the relief chamber 72 are formed by a conical enlargement - seen from the control body 38 - of the bore forming the drain chamber 48. Is accordingly opposite that part of the pilot valve pin 66 which cooperates with the pilot valve seat 68 is conical.
  • the relief space 72 in turn runs as an annular space around the pilot valve pin 66 and the throttle passage 74 is designed as an oblique bore in the pilot valve pin 66 with respect to the longitudinal axis 16, but now - in contrast to the embodiment according to FIGS. 1 and 2 - the throttle restriction 74 'is in the End region of the throttle passage 44 facing the low-pressure outlet 76. From a hydraulic point of view, the volume of the throttle passage 74 upstream of the throttle restriction 74 ′ is therefore part of the relief space 72.
  • the retaining nut 54 is designed to be tightened with a hexagon socket, which at the same time surrounds the pilot valve pin 66 at a distance in order to form the flow connection between the throttle passage 74 and the low-pressure outlet 76.
  • FIG. 5 shows an embodiment very similar to that of FIG. 3, the drain chamber body 46 no longer being mushroom-shaped but pill-shaped.
  • the annular space 60 extends around the upper end region of the control sleeve 50.
  • the high-pressure duct 58 is formed by two bores running obliquely to one another and to the longitudinal axis 16. One opens into the annular space 60 and the other into the center of the end face 46 'of the discharge space body 46.
  • the throttle restriction 40' of the outlet passage 40 is located at the recess 64, which is integrally formed on the control body 38 is.
  • Drain chamber body 46 is pill-shaped and does not have a high pressure channel 58 in the center of the drain chamber 48 running in the axial direction.
  • the pilot valve pin 66 which is designed as shown in FIGS. 1 and 2, interacts with the drain chamber body 46.
  • the control body 38 is in the form of a spool valve body 'in the control sleeve 50 microns in a close sliding fit of approximately 2 out microns to 10th
  • the annular space 60 which is recessed radially on the inside of the control sleeve 50 and which is connected to the high-pressure space 34 via a radial passage and the longitudinal groove 62, runs around its end region facing the drain space body 46.
  • the outlet passage 40 runs through the control body 38 concentrically to the longitudinal axis 16.
  • Throttle restriction 40 'at the end facing the control chamber 36. Parallel to this, but radially offset with respect to the longitudinal axis 16, a connecting channel 94 runs through the control body 38 and is closed when the control body 38 abuts the drain chamber body 46.
  • the connecting channel 94 connects the control chamber 36 to the high-pressure chamber 34.
  • the connecting channel 94 has the same function as the radial play between the control body 38 and the control sleeve 50 in the embodiments shown above formed on the control body 38, on its end face 42, inner and outer recesses 64, which serve to make the surface with which the control body 38 lies sealingly against the discharge chamber body 46, in order to achieve a high surface pressure. Furthermore, through a more or less large radially outer recess 64 the dynamic behavior of the control body 38 with respect to lifting off from contact with the discharge space body 46 can be varied.
  • FIG. 7 shows an embodiment of the fuel injection valve 10 according to the invention, in which the control body 38 is replaced by a leaf spring 96.
  • the leaf spring 96 is similar to that of the leaf spring known from EP-A-1 273 791.
  • a C or U-shaped slot is cut out of a spring steel disk and separates a radially inner leaf spring tongue 98 from a retaining ring 100.
  • the leaf spring 96 is held with its retaining ring 100 between the control sleeve 50 and the drain chamber body 46.
  • the retaining ring 100 and the control sleeve 50 are jointly encompassed by a centering ring 102.
  • the throttle constriction 40 ′ is formed on the leaf spring tongue 98, concentrically to the longitudinal axis 16, as a through hole.
  • the leaf spring tongue 98 when it bears against the drain chamber body 46, closes off both the high-pressure channel 58 formed therein and the drain chamber 48 running centrally to the longitudinal axis 16.
  • a throttle inlet 92 which connects the high-pressure chamber 34 to the outlet chamber 48, can be excluded on the leaf spring 96.
  • the effect of this throttle approval 92 is the same as that of the throttle passage 92 of the embodiment according to FIGS. 3 and 8, namely especially when using an electromagnetic
  • the drain chamber body 46, the holding nut 54 with the relief chamber 72 and the pilot valve pin 66 with the first and second throttle bores 90, 90 ', and the actuator 18 with its actuator shaft 78 are of the same design as in the embodiment 3.
  • the control body 38 is now mushroom-shaped and its trunk is guided in a blind hole-like recess of the injection valve member 22 in the direction of the longitudinal axis 16.
  • the compression spring 44 is supported on the one hand on the bottom of this blind hole and on the other hand on the stem of the control body 38.
  • the control sleeve 50 delimits the control chamber 36, engages around the hat of the control body 38 at a radial distance and lies with its end face sealingly against the end face 46 'of the drain chamber body 46.
  • the throttle restriction 40 ′ is formed on the hat of the mushroom-shaped control body 38. It communicates with the annular recess 64 on the discharge chamber body 46 and is thus in flow communication with the drain chamber 48. For the sake of completeness, it should be added that there is a radial play between the stem of the mushroom-shaped control body 38 and the injection valve member 22 in order to achieve rapid pressure equalization between the control chamber 36 and the space in which the compression spring 44 is arranged.
  • the actuator 18 pulls the actuator shaft 78 upward in the axial direction, that is to say in the direction away from the pilot valve seat 68. Since there is high pressure in the discharge space 48, the pilot valve pin .66 is lifted off the pilot valve seat 68 in accordance with the movement of the actuator shaft 78. This leads to a very rapid pressure increase in the relief space 72 and a correspondingly rapid pressure reduction in the discharge space 48 and in the outlet passage 40 downstream of the throttle restriction 40 '.
  • the fuel flows from the relief chamber 72 through the throttle passage 74 to the low-pressure outlet 76 in a damped manner.
  • the throttled constriction 40 ′ dampens the fuel from the control chamber 36. This leads to a pressure reduction in the control chamber 36, as a result of which the injection valve member 22 is known is lifted off the injection valve seat 26.
  • the pilot valve pin 66 is moved very quickly downward into contact with the pilot valve pin 66 by means of the actuator 18, and the pilot valve 70 is thereby closed. Since the pilot valve seat 68 dips very quickly into the relief space 72, there is an increase in pressure Generated, which propagates through the drain chamber 48 and leads to the lifting of the control body 38, or the leaf spring tongue 98, from the drain chamber body 46, since a rapid pressure equalization in the control chamber 36 can not take place because of the throttle restriction 40 '. By lifting the control body 38, the entire end face 42 of the control body 38 is immediately subjected to fuel under high pressure, since the high-pressure channel 58 or the high-pressure channels 58 are opened.
  • the fuel injection valve 10 according to the invention has a pilot valve 70, the losses in fuel caused thereby are small, since during the period in which the pilot valve 70 is open, in the embodiment according to FIGS. 1, 2, 4, 5 and 6 there is no hydraulic Connection between the drainage space 48 and the high pressure chamber 34.
  • a throttle passage 92 is present; however, because of the very small cross section, the throttle passage 92 prevents a large amount of fuel from being drained off quickly.
  • Piezoelectric and magnetostrictive actuators are therefore particularly suitable for fuel injection valves 10 according to the invention because they can exert very large forces, so that the pressure increase mentioned practically does not delay the movement of the pilot valve pin 66.
  • the aforementioned actuators 18 have a faster switching behavior than electromagnets, they can also be used. The desired pressure increase can thus be achieved by designing the diameter and the stroke of the pilot valve pin 66.
  • FIG. 9 has, in addition to the advantages shown in connection with the embodiments according to FIGS. 1 to 8, an increased ability for multiple injections in very short time intervals.
  • the same reference numerals are used for parts having the same effect in the description of FIG. 9 as in connection with FIGS. 1 to 8.
  • the pilot valve pin 66 is guided in the holding nut 54 in a close sliding fit.
  • the discharge space 72 is formed by a recess on the holding nut 54 and it is through the throttle point 74 'and the throttle passage 74 in the retaining nut 54 permanently connected to the low-pressure chamber, in the same way as indicated in dashed lines in FIG. 2.
  • the pill-shaped drain chamber body 46 lies sealingly. It has a central axial passage, which forms the discharge space 48.
  • the end face of the discharge space body 46 facing the retaining nut 54 forms the planar pilot valve seat 68 which interacts with the pilot valve pin 66.
  • the pilot valve pin 66 and the pilot valve seat 68 form the pilot valve controlled by an actuator 18 70, which separates the discharge space 48 from the discharge space 72 in the closed state.
  • the drainage space 48 is formed by a central bore which widens in a funnel shape in the direction of the control body 38.
  • This drain chamber 48 is penetrated by a transmission pin 104 whose diameter is smaller than the diameter of the cylindrical part of the drain chamber 48 and whose length is greater than the thickness of the drain chamber body 46 measured in the direction of the longitudinal axis 16.
  • the transmission pin 104 thus projects the drain chamber body 46 on the side facing away from the holding nut 54 and facing the control body 38.
  • the high-pressure channel 58 is formed on the drain chamber body 46, which has a radial blind hole and one from the end face 46 'of the drain chamber body 46 in Axial direction in the blind hole leading through hole is formed.
  • the high-pressure channel 58 opens at the end face 46 'at a distance from ⁇ brawraum 48 so that the control body 38, when in contact with the end face 46', closes the mouth of the high-pressure channel 58th
  • the drain chamber body 46, with its end face 46 ′ and the control body 38 in turn forms an intermediate valve 52.
  • the intermediate body 50' is cup-shaped, the bottom facing the drain chamber body 46, and a pressure spring 44 being located inside the control body 38, which holds the control body 38 in contact with the bottom of the transmission pin 104 when the pilot valve 70 is open.
  • the outlet passage 40 runs through the bottom of the control body 38 and is designed without a throttle restriction 40 ′ and communicates with the drainage space 48 when the control body 38 bears against the end face 46 ′. If the control body 38 rests on the end face 46 ', it closes the mouth of the high-pressure duct 58.
  • the bottom of the control body 38 is at a distance from the end face 46 ′, which is given by the difference in length between the transmission pin 104 and the thickness of the drain chamber body 46.
  • the stroke of the pilot valve pin. 66 is at least as large> • but preferably larger than this distance.
  • the compression spring 44 is supported with its end facing away from the bottom of the control body 38 on an end face of a control chamber body 50 ′′, which with its end face lies sealingly against the intermediate body 50 ′.
  • the control chamber body 50 ′′ delimits the control chamber 36 on the circumference, which is also delimited by the injection valve member 22, which is guided on the control chamber body 50 ′′ in a tight sliding fit.
  • the injection valve member 22 is desaxed with respect to the common longitudinal axis 16. However, the control chamber 36 is continuously in flow connection with the interior of the cup-shaped control body 38 and the drain chamber 48.
  • control chamber body 50 ′′ and the holding nut 54 are braced against one another so that the holding nut 54 bears tightly against the discharge chamber body 46, the latter on the other hand on the intermediate body 50 ′, and this in turn on the control chamber body 50 ′′.
  • the intermediate body 50 'and control chamber body 50' can, like the control sleeve 50 in the other exemplary embodiments, be formed in one piece together. It is also conceivable to form the control chamber body 50" together with the injection valve seat body 28 or the valve housing 14 in one piece.
  • An annular groove 106 open to the end face 46 ' can be formed in the drain chamber body 46, into which the high pressure channel 58 opens and which is closed by the latter when the control body 38 bears against the end face 46'.
  • control body 38 it is also conceivable to make the control body 38 shorter, as seen in the direction of the longitudinal axis 16, so that the
  • control body 38 is designed as a disk with an outlet passage 40 and the compression spring 44 designed as a helical spring is replaced by a plate spring or wave spring.
  • a coaxial arrangement of the injection valve member 22 with the longitudinal axis 16 is also conceivable, the compression spring 44 being supported, for example, on the end face of the control chamber body 50 ′′ or on a support shoulder formed thereon.
  • an annular gap is present between the transmission pin 104 and the drain space body 46.
  • mount the transmission pin 104 in a sliding fit on the drain chamber body 46 and to make grindings on the transmission pin 104 in order to ensure the flow connection between the drain chamber 48 and the relief chamber 72 when the pilot valve 70 is open.
  • pilot valve pin 66 can have a shoulder which interacts with the holding nut 54 in order to limit the stroke of the pilot valve pin 66 in the opening direction of the pilot valve 70.
  • the fuel injection valve 10 shown in FIG. 9 functions as follows.
  • the pilot valve 70 is closed.
  • the control body 38 is raised from the end face 46 ′ of the drain chamber body 46, as a result of which the drain chamber 48 and the control chamber 46 are connected to the high pressure inlet 12 via the high pressure channel 58.
  • the injection valve member 22 is in contact with the injection valve seat 26 in the closed position; see also FIG. 1.
  • the actuator 18 pulls back the actuator shaft 78, as a result of which the pilot valve pin 66 moves away from the pilot valve seat 68 and the drain chamber 48 and thus the control chamber 36 are connected to the discharge chamber 72.
  • the pilot valve pin 66 is made known by means of the actuator 18
  • the transmission pin 104 is moved in the direction against the control body 38, which inevitably lifts off from the end face 46 '.
  • the intermediate valve 52 opens and a connection is established between the control chamber 36 and the high pressure channel 58
  • Discharge space 72 is supported.
  • the injection valve member 22 is thus brought very quickly into contact with the injection valve seat 26, as a result of which the injection process is ended.
  • control body 38 moves with the transmission pin 104 and thus with the pilot valve pin 66, the high-pressure channel 58 is closed or opened very quickly by the control body 38, which is the case with several Injections in short to very short time intervals is of great advantage.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)

Description

Pilotventil gesteuertes Brennstoffeinspritzventil
Die vorliegende Erfindung betrifft ein
Brennstoffeinspritzventil zur intermittierenden
Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine gemäss dem Oberbegriff des Patentanspruchs 1.
Brennstoffeinspritzventile dieser Art sind allgemein bekannt und beispielsweise in EP-A-0 426 205, EP-A-0 603 616, EP-A-0 824 190, EP-A-1 273 791 offenbart. Sie weisen einen mittels eines elektromagnetischen Aktuators angesteuerten Pilotventilstift auf, der in Schliessstellung einen mit einer Drosselverengung versehenen Auslasskanal eines Steuerraumes von einem Niederdruckauslass trennt. Ist der Pilotventilstift vom Pilotventilsitz abgehoben fliesst Brennstoff aus dem Auslasskanal direkt zum Niederdruckauslass. Durch öffnen des Pilotventils wird ein Einspritzvorgang eingeleitet und durch schliessen des Pilotventils wird die Schliessbewegung des Einspritzventilgliedes zur Beendigung des Einspritzvorgangs verursacht.
Ausgehend von diesem Stand der Technik ist es eine Aufgabe der vorliegenden Erfindung, ein gattungsgemässes Brennstoffeinspritzventil derart weiterzubilden, dass die Schliessbewegung des Einspritzventilgliedes für die Beendigung eines Einspritzvorganges sehr rasch erfolgt, während die Öffnungsbewegung zu Beginn eines Einspritzvorgangs relativ langsam erfolgen kann. Diese Aufgabe wird mittels eines Brennstoffeinspritzventils gelöst, welches die Merkmale des Patentanspruchs 1 aufweist.
Beim Öffnen des Pilotventils . eines erfindungsgemässen Brennstoffeinspritzventils fliesst Brennstoff in einen Entlastungsraum, aus welchem er nur durch einen Drosseldurchlass zu Niederdruckauslass weiterströmen kann. Eine Minimierung des Brennstoffventils durch den Niederdruckauslass während des Einspritzvorganges wird erzielt. Der Drosseldurchlass kann durch eine Gleitpassung für den Pilotventilsstift gebildet sein, vorzugsweise ist der Pilotventilstift jedoch in einer engen Gleitpassung geführt und ist . der Entlastungsraum mit dem Niederdruckauslass über einen separat ausgebildeten Drosseldurchlass verbunden. Das Verhalten des Brennstoffeinspritzventils beim Öffnen, das heisst beim Beginn eines Einspritzvorgangs, kann sehr ähnlich jenem bekannter Brennstoffeinspritzventile sein, bei welchen der Auslasskanal mit einer Drosselverengung versehen ist. Zum Beenden eines Einspritzvorgangs wird jedoch bei einem erfindungsgemässen Brennstoffeinspritzventil der Pilotventilstift mit grosser Geschwindigkeit in den Entlastungsraum hinein bewegt, bis er am Pilotventilsitz anliegt. Da der Drosseldurchlass ein schnelles AbfHessen des Brennstoffs aus dem Entlastungsraum verhindert, erfolgt durch die genannte Bewegung des Pilotventilstifts und die damit verbundene Verdrängung von Brennstoff ein sehr rascher Druckanstieg im Entlastungsraum und in einem an diesen stromaufwärts des Pilotventilsitzes anschliessenden Abflussraum, was eine sehr schnelle Schliessbewegung des Einspritzventilgliedes verursacht. Diese Schliessbewegung kann weiter dadurch unterstützt werden, dass die Bewegung des Pilotventilstifts mechanisch ausgenützt wird.
Besonders bevorzugte Ausbildungsformen des erfindungsgemässen Brennstoffeinspritzventils sind in den abhängigen Patentansprüchen angegeben.
Die Erfindung wird anhand in der Zeichnung dargestellten Ausführungsbeispielen näher erläutert. Es zeigen rein schematisch:
Fig. 1 im Längsschnitt eine erste Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils, bei welchem ein Entlastungsraum an einer Haltemutter ausgebildet ist;
Fig. 2 ebenfalls im Längsschnitt einen Ausschnitt des in Fig. 1 gezeigten Brennstoffeinspritzventils vergrössert;
Fig. 3 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer zweiten Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils mit einem zwei Drosselverengungen aufweisenden Drosseldurchlass im Pilotventilstift;
Fig. 4 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer dritten Ausbildungsform eines erfindungsgemässen Brennstoffeinspritzventils, bei welchem der Entlastungsraum vollständig in einem Abflussraumkörper angeordnet ist, an welchem auch der Pilotventilstift gelagert ist;
Fig. 5 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer vierten Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, ähnlich jener gemäss Fig. 3, mit jedoch nur einer einzigen Drosselverengung im Drosseldurchlass;
Fig. 6 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer fünften Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils mit einem Schieberventil, wie es beispielsweise in EP- A-l 273 791 oder der PCT-Patentanmeldung PCT/CH/03/0005 offenbart ist;
Fig. 7 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer sechsten Ausbildungsform des erfindungsgemässen Brennstoffeinspritzventils mit einem Blattfederventil, ähnlich wie aus der EP-A-1 273 791 bekannt;
Fig. 8 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer siebten Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, bei welcher ein Steuerkörper pilzartig ausgebildet und im Einspritzventilglied verschiebbar gelagert ist; und
Fig. 9 in gleicher Darstellung wie Fig. 2, einen Ausschnitt aus einer . achten Ausführungsform des erfindungsgemässen Brennstoffeinspritzventils, bei welcher ein Übertragungsstift die Bewegung des Pilotventilstiftes an einen Steuerkörper überträgt.
Fig. 1 zeigt im Längsschnitt ein erfindungsgemässes Brennstoffeinspritzventil 10 mit einem im wesentlichen zylinderförmigen, einen seitlichen Hochdruckeinlass 12 aufweisenden Ventilgehäuse 14. Dieses weist eine in Richtung der Längsachse 16 verlaufende, durchgehende, abgestufte Bohrung 17 auf, in welcher ein elektrisch angesteuerter Aktuator 18, eine von diesem angesteuerte Steuereinrichtung 20 und ein nadeiförmiges Einspritzventilglied 22 mit einer Schliessfeder 24 angeordnet sind. Das Einspritzventilglied 22 ist mittels der Schliessfeder 24 an einem Einspritzventilsitz 26 in Anlage gehalten, welcher an einem Einspritzventilsitzkörper 28 ausgebildet ist. Dieser ist im wesentlichen zur Längsachse 16- rotationssymmetrisch ausgebildet, liegt stirnseitig am Ventilgehäuse 14 an und ist mittels einer Überwurfspannmutter 30 dichtend am Ventilgehäuse 14 gehalten. Im Endbereich der freiliegenden Spitze des Einspritzventilkörpers 28 sind in bekannter Art und Weise Einspritzventildüsen 32 ausgebildet, durch welche Brennstoff unter sehr hohem Druck in eine nicht dargestellte Brennkammer einer Verbrennungskraftmaschine eingespritzt wird, wenn das Einspritzventilglied 22 mittels der vom Aktuator 18 angesteuerten hydraulischen Steuereinrichtung 20 in Richtung der Längsachse 16 vom Einspritzventilsitz 26 abgehoben wird. Der Einspritzventilsitz 26 begrenzt einen Hochdruckraum 34, in welchem das Einspritzventilglied 22 angeordnet und welcher andererseits von der Steuereinrichtung 20 und umfangsseitig vom Einspritzventilsitzkörper 28 und Ventilgehäuse 14 begrenzt ist. Der. Hochdruckraum 34 ist mit dem Hochdruckeinlass 12 verbunden, durch welchen Brennstoff unter sehr hohem Druck von bis zu 1000 bar oder gar 1800 bar oder mehr dem Hochdruckraum 34 zur Einspritzung in den Verbrennungsraum der Verbrennungskraftmaschine und zur Steuerung des Einspritzventilglieds 22 zugeführt wird.
Das Einspritzventilglied 22 begrenzt mit seinem dem Einspritzventilsitz 26 abgewandten Endbereich einen Steuerraum 36, der andererseits von einem Steuerkörper 38 begrenzt ist, in welchem konzentrisch zur Längsachse 16 ein mit einer Drosselverengung 40' ausgestatteter Auslass- durchlass 40 ausgebildet ist; siehe dazu insbesondere auch Fig. 2, welche einen Ausschnitt des Brennstoffeinspritzventils 10 von Fig. 1 mit der Steuereinrichtung 20 vergrössert zeigt. Mit seiner dem Steuerraum 36 abgewandten Stirnseite 42 liegt der Steuerkörper 38, mit Unterstützung einer Druckfeder 44, welche sich einerseits am Steuerkörper 38 und andererseits am Einspritzventilglied 22 abstützt, an einer ihm zugewandten Stirnseite 46' eines pilzförmig ausgebildeten Abflussraumkörpers 46 dichtend an. Im Abflüssraumkörper 46 ist, durch eine zur Längsachse 16 koaxialen Längsbohrung, ein Entlastungsraum 48 ausgebildet - ohne Drosselverengung - welcher mit dem Auslassdurchlass 40 fluchtet und mit diesem unmittelbar strö ungsverbunden ist.
Der im wesentlichen kreiszylinderförmig ausgebildete Steuerkörper 38 ist mit radialem Spiel von etwa 0,02 mm bis 0,1 mm oder 0,2 mm in einer Steuerhülse 50 in Richtung der Längsachse 16 verschiebbar gelagert und bildet als Ventilglied zusammen mit dem Abflussraumkörper 46, dessen Stirnseite 46' als Ventilsitz wirkt, ein Zwischenventil 52. Die Steuerhülse 50, an deren dem Einspritzventilsitz 26 zugewandten Ende sich die Schliessfeder 24 abstützt, ist von der . Kraft dieser Schliessfeder 24 am, Abflussraumkörper 46 in dichtender Anlage gehalten. An der den Steuerraum 36 umfangsseitig begrenzenden Steuerhülse 50 ist das Einspritzventilglied 22 in enger Gleitpassung mit einem Spiel von etwa 2 μm bis 10 μm geführt.
Der pilzförmige Abflussraumkörper 46 ist mittels einer, in ein Innengewinde am Ventilgehäuse 14 eingewindeten Haltemutter 54 mit seinem Hutteil dichtend gegen eine Anlageschulter 56 des Ventilgehäuses 14 gedrückt. Weiter liegen die Haltemutter 54 und der Abflussraumkörper 46 flächig dichtend aneinander an. Im Stammteil des pilzförmigen Abflussraumkörpers 46 sind, in • Umfangsrichtung verteilt, mindestens 2 Hochdruckkanäle 58 ausgebildet, die einerseits mit einem vom Ventilgehäuse 14, dem Stamm- und dem Kopfteil des Abflussraumkörpers 46 sowie der Steuerhülse 50 begrenzten Ringraum 60 in Strömungsverbindung stehen und die andererseits an der den Ventilsitz des Zwischenventils 52 bildenden Stirnseite 46' münden. Der Ringraum 60 ist durch eine in axialer- Richtung verlaufende, an der radial aussenliegenden Seite der Steuerhülse 50 angeformte Längsnut 62 mit dem Hochdruckraum 34 und somit dem Hochdruckeinlass 12 verbunden. Die Hochdruckkanäle 58 können, wie in Fig. 1 und Fig. 2 rechts der Längsachse 16 gezeigt, durch Schrägbohrungen im Abflussraumkörper 46 oder, wie in der Fig. 2 links der Längsachse 16 dargestellt, durch Winkelbohrungen erzeugt sein. Die Mündungsöffnungen der Hochdruckkanäle 58 an der Stirnseite 46' sind durch den Steuerkörper 38 verschlossen, wenn dieser am Abflussraumkörper 46 anliegt. Um die Dichtwirkung des Zwischenventils 52 durch Erhöhen der Flächenpressung zu verbessern, kann, wie Fig. 2 zeigt, am Abflussraumkörper 46 eine Ausnehmung 64 angeformt sein, welche gewährleistet, dass die Berührungsfläche als relativ schmaler, bandförmiger Bereich entlang dem Aussenumfang des Steuerkörpers 38 und um die Mündungen der Hochdruckkanäle 58 herum verläuft. Selbstverständlich können entsprechende Ausnehmungen am Steuerkörper 38 ausgebildet sein. An der Haltemutter 54 ist konzentrisch zur Längsachse 16 ein Pilotventilsstift 66 in enger Gleitpassung von ca. 2 μm bis 10 μm in Richtung der Längsachse 16 verschiebbar gelagert. In seiner in den Figuren 1 und 2 gezeigten Schliessstellung liegt der Pilotventilstift 66 am Abflussraumkörper 46 an und verschliesst dabei den Entlastungsraum 48. Um die diesseitige Mündungsöffnung des Entlastungsraums 48 herum bildet der Abflussraumkörper 46 einen ringförmigen Pilotventilsitz 68, der zusammen mit dem Pilotventilstift 66 als Ventilglied ein Pilotventil 70 bildet. Der Pilotventilsitz 68 ist als Flachsitz ausgebildet.
An den Pilotventilsitz 68 schliesst niederdruckseitig unmittelbar ein ringförmiger Entlastungsraum 72 an, der an der als Entlastungsraumkörper dienenden Haltemutter 54 als ein um den Pilotventilstift 66 herum verlaufende Ausnehmung ausgebildet ist. 'Dieser ansonsten verschlossene Entlastungsraum 72 ist über einen Drosseldurchlass 74 mit einem Niederdruckauslass 76 des Ventilgehäuses 14 dauernd strömungs erbunden. Durch den Niederdruckauslass 76 ausströmender Brennstoff wird in bekannter Art und Weise wieder einem Brennstoff orratsbehälter zugeführt.
In Fig. 2 ist mit ausgezogenen Linien dargestellt, dass der Drosseldurchlass 74 als Schrägbohrung im Pilotventilstift 66 oder, wie gestrichelt angedeutet, an der Haltemutter 54 ausgebildet sein kann. Der Durchmesser der Drosselstelle 74' des ansonsten einen grösseren Durchmesser aufweisenden Drosseldurchlasses 74 . ist beispielsweise etwa zehnmal kleiner als der Durchmesser des Pilotventilstifts 66 und etwa fünfmal kleiner als der lichte Durchmesser des Abflussraums 48. Diese Verhältniszahlen können jedoch unterschiedlich sein. Von Vorteil ist ferner, dass der Pilotventilstift 66, bei dessen Abheben vom Pilotventilsitz 68, sehr schnell einen wesentlich grösseren Strömungsquerschnitt freigibt, als er durch die Drosselstelle 74' definiert ist.
Der Pilotventilstift 66 wird mittels des Aktuators 18 am Pilotventilsitz 68 in Anlage gehalten. Dabei liegt ein Aktuatorschaft 78 mit seinem ballig ausgeformten Ende auf der dem Pilotventilsitz 68 abgewandten Stirnseite des Pilotventilstifts 66 an diesem an. In bevorzugter Weise handelt es sich beim Aktuator 18 um einen piezoelektrischen oder magnetostriktiven Aktuator. Derartige Aktuatoren 18 ermöglichen einen nur relativ kleinen Hub des Aktuatorschafts 78 und somit des Pilotventilstifts 66 von beispielsweise 0,03 mm. Sie haben jedoch den Vorteil, dass sie den Pilotventilstift 66 mit grosser Geschwindigkeit und grosser Kraft bewegen.
Der Aktuator 18 ist in einem Aktuatorgehäuse 80 angeordnet, das in das Ventilgehäuse 14 hineinragt und mittels einer Befestigungsschraube 82 an diesem befestigt ist.
Das Spiel zwischen dem Steuerkörper 38 und der Steuerhülse 50 gewährleistet, dass durch dieses Spiel hindurch und den Auslassdurchlass 40 der Steuerraum 36 sehr schnell mit Brennstoff gefüllt wird, sobald - zum Beenden eines Einspritzvorgangs durch das Schliessen des Pilotventils 70 der Steuerkörper 38 aus seiner Anlage am Abflussraumkörper 46 weg bewegt ist.
Mit "H" ist in Figur 1 der maximale Hub des
Einspritzventilgliedes 22 angegeben, den es zwischen einerseits der Anlage am Einspritzventilsitz 26 und andererseits dem Anliegen am Steuerkörper 38 ausführen kann. Der mögliche Hub des Steuerkörpers 38 ist jedoch vorzugsweise geringer; eine Hubbegrenzungsschulter 84 an der Steuerhülse 50 begrenzt den maximal möglichen Abstand zwischen Abflussraumkörper 46 und Steuerkörper 38 auf beispielsweise ca. 0,05 - 0,2 mm oder 0,02 - 0,2 mm.
Auf der der Steuerhülse 50 abgewandten Seite liegt die
Schliessfeder 24 an einer Zwischenscheibe 86 an, die ihrerseits an einer sich an einer Schulter des
Einspritzventilglieds 22 abstützenden Stützscheibe 86' anliegt. Die Zwischenscheibe 86 ist auswechselbar, um durch die Auswahl der gewünschten Dicke das Verhalten des Brennstόffeinspritzventils 10 abzustimmen.
Mittels am Einspritzventilglied 22 ausgebildeten, sternartig vorstehenden Führungsrippen 88 ist dieses am Einspritzventilkörper 28 verschiebbar gelagert, wobei das Zuströmen des Brennstoffs zum Einspritzventilsitz 26 gewährleistet ist.
In den Figuren 3 bis 6 werden für der Ausbildungsform gemäss den Figuren 1 und 2 entsprechende Teile dieselben Bezugszeichen verwendet wie in Figur 1 und Figur 2. Es werden im Folgenden nur noch die Unterschiede zwischen der in der betreffenden Figur gezeigten Ausbildungsform und jener gemäss den Figuren 1 und 2 erläutert.
Bei der in der Fig. 3 gezeigten Ausbildungsform ist nur ein einziger Hochdruckkanal 58 vorgesehen der als Winkelbohrung ausgebildet ist und koaxial zur Längsachse 16 aus dem Abflussraumkörper 46 mündet. Andererseits mündet der Hochdruckkanal 58, wie bei der in der Fig. 2 und 3 gezeigten Ausbildungsform, in den Ringraum 60, welcher mit dem Hochdruckraum 34 verbunden ist. Die Ausnehmung 64 im Abflussraumkörper 46 ist ringförmig ausgebildet, sodass radial innen eine um die Mündung des Hochdruckkanals 58 verlaufende Dichtfläche und radial aussen eine ringförmige Dichtfläche zum Zusammenwirken mit dem Steuerkörper 38 verbleibt.
Anschliessend an die koaxial zur Längsachse 16 am Steuerkörper 38 ausgebildete Drosselverengung 40' verläuft der Auslassdurchlass 40 bezüglich der Längsachse 16 schräg, sodass er in den durch die Ausnehmung 64 gebildeten Ringraum mündet. Entsprechend ist auch der Abflussraum 48 durch eine bezüglich der Längsachse 16 schräge Bohrung durch den Entlassungsraumkörper 46 hindurch gebildet, wobei der Abflussraum 48 einerseits in die Ausnehmung 64 mündet und die Mündung des Abflussraum 48 auf der Seite des Pilotventils 70 zentrisch zur Längsachse 16 angeordnet ist.
Der Pilotventilstift 76 ist wiederum in der Haltemutter 54, an welcher der Entlassungsraum 72 ausgenommen ist, in enger Gleitpassung gelagert. Der Drosseldurchlass 74 ist am Pilotventilstift 66 durch eine von der Aktuatorseite her vorgenommene, sacklochartige Bohrung gebildet, welche - anstelle einer einzigen Drosselstelle 9 ' - mittels einer radialen ersten Drosselbohrung 90 mit dem Entlastungsraum 72 und einer radiale zweiten Drosselbohrung 90' mit dem Niederdruckauslass 76 in Strömungsverbindung steht. Der Durchmesser dieser beiden Drosselbohrungen 90, 90' kann, im Vergleich zur einzigen Drosselverengung 74' im Drosseldurchlass 74 gemäss Figur 1 und 2, etwas grosser und somit etwas ungenauer gewählt werden, μm eine entsprechende Drosselwirkung zu erzielen. Die mit dem Pilotventilstift 66 zusammenwirkende Stirnseite des Aktuatorschafts" 78 ist eben ausgebildet, um die sacklochartige Bohrung im Pilotventilstift 68 abzudichten.
Auch bei der in der Fig. 3 gezeigten Ausbildungsform empfiehlt es sich, einen elektrischen angesteuerten piezoelektrischen oder magnetostriktiven Aktuator 18 zu verwenden; solche Aktuatoren 18 weisen ein ca. 3 - 8 Mal schnelleres Verhalten als bekannte Elektromagnete auf. Es ist jedoch auch denkbar, für Brennstoffeinspritzventile 10 gemäss der vorliegenden Erfindung Elektromagnete als Aktuator 18 zu verwenden. In diesem Fall empfiehlt es sich, den Abflussraum 48 mittels eines Drosselzulasses 92 - wie auch in Fig. 8 gezeigt - mit dem Hochdruckraum 34 zu verbinden. Ein solcher Drosselzulass 92 beschleunigt die Schliessbewegung des Einspritzventilglieds 22 zur Beendigung des Einspritzvorgangs.
Bei der in der Fig. 4 gezeigten Ausbildungsform ist der Steuerkörper 38 ähnlich jenem gemäss Fig. 2 ausgebildet, wobei jedoch sich die Drosselverengung 40' des Auslassdurchlasses 40 im dem Abflussraum 48 zugewandten Endbereich befindet.
Der ansonsten kreiszylinderförmige Auslassdurchlass 40 weist in seinem steuerraumseitigen Endbereich eine konische Form auf, in welche der gegengleich geformte Endbereich des Einspritzventilgliedes 22 eingreift, wenn sich das Einspritzventilglied 22 in maximalen Offenstellung befindet. Dies führt dabei zu einer sehr guten Abdichtung des Auslassdurchlasses 40 und trägt bei Beendigung des Einspritzvorgangs einem sehr schnellen Abheben des Steuerkörpers 38 ab dem Einspritzventilkörper 28 und somit einer sehr schnellen Schliessbewegung des Einspritzventilgliedes 22 bei. Weiter sind in Fig. 4, links beziehungsweise rechts der Längsachse 16, zwei weitere mögliche Ausführungsformen für den Hochdruckkanal 58 gezeigt. Diese sind durch Bohrungen in den Abflussraumkörper 46 gebildet, welche schräg zur Längsachse 16 verlaufen und mit dem Ringraum 60 kommunizieren, und durch Bohrungen, die mit den erstgenannten in Strömungsverbindung stehen und parallel oder schräg zur Längsachse 16 verlaufen, jedoch in jenem Bereich an der Stirnseite 46' münden, welcher als Ventilsitz des Zwischenventils 52 wirkt.
Der Abflussraumkörper 46 ist bei dieser Ausbildungsform nicht mehr pilzförmig sondern pillenförmig ausgebildet und mittels der Haltemutter 54 in dichtender Anlage an die Anlageschulter 56 des Ventilgehäuses 14 gepresst. Weiter ist der Entlastungsraum 72 im Innern des Abflussraumkörpers 46 angeordnet, an welchem ebenfalls der Pilotventilstift 66 in enger Gleitpassung geführt ist. In diesem Fall dient der Abflussraumkörper 46 auch als Entlastungsraumkörper. Das Abdichten des Hochdruckraums 34 gegenüber dem Niederdruckauslass 76 erfolgt somit durch das dichtende Anliegen des Abflussraumkörpers 46 an der Anlageschulter 56. Es sind - neben den Ventilsitzen - nur diese beiden zusammenwirkenden Flächen hoch präzis auszubilden, im Gegensatz zu den Ausbildungsformen gemäss den Figuren 1 - 3, wo auch die aneinander anliegenden Stirnseiten des Abflussraumkörpers 46 und der Haltemutter 54 als Dichtflächen auszubilden sind.
Bei der in der Fig. 4 gezeigten Ausbildungsform ist der Pilotventilsitz 68 und, daran anschliessend, der Entlastungsraum 72 durch eine konische Erweiterung - vom Steuerkörper 38 her gesehen - der den Abflussraum 48 bildendem Bohrung gebildet. Entsprechend gegengleich ist der mit dem Pilotventilsitz 68 zusammenwirkende Teil des Pilotventilstifts 66 kegelförmig ausgebildet. Der Entlastungsraum 72 verläuft wiederum als Ringraum um den Pilotventilstift 66 herum und der Drosseldurchlass 74 ist als bezüglich der Längsachse 16 schräge Bohrung im Pilotventilstift 66 ausgebildet, wobei nun jedoch - im Gegensatz zur Ausbildungsform gemäss den Figuren 1 und 2 - die Drosselengstelle 74' sich im dem Niederdruckauslass 76 zugewandten Endbereich des Drosseldurchlasses 44 befindet. Hydraulisch gesehen ist somit das stromaufwärts der Drosselengstelle 74' vorhandene Volumen des Drosseldurchlasses 74 Teil des Entlastungsraums 72.
In diesem Fall ist die Haltemutter 54 zu deren Anziehen mit einem Innensechskant ausgebildet, welcher zugleich den Pilotventilstift 66 mit Abstand umgreift um die Strömungsverbindung zwischen dem Drosseldurchlass 74 und dem Niederdruckauslass 76 zu bilden.
Fig. 5 zeigt eine der Fig. 3 sehr ähnliche Ausbildungsform, wobei der Abflussraumkörper 46 nicht mehr pilz- sondern pillenförmig ausgebildet ist. Wie bei der Ausbildungsform gemäss der Fig. 3 verläuft der Ringraum 60 um den Obenliegenden Endbereich der Steuerhülse 50. Der Hochdruckkanal 58 ist durch zwei zueinander und zur Längsachse 16 schrägverlaufende Bohrungen gebildet. Die eine mündet zum Ringraum 60 und die andere in die Mitte der Stirnseite 46' des Abflussraumkörpers 46. Weiter befindet sich - im Gegensatz zur Ausbildungsform gemäss Fig. 3 - die Drosselverengung 40' des Auslassdurchlasses 40 bei der Ausnehmung 64, welche am Steuerkörper 38 angeformt ist.
Bei der in Fig. 6 gezeigten Ausbildungsform des erfindungsgemässen Brennstoffeinspritzventils 10 ist der Abflussraumkörper 46 pillenförmig ausgebildet und weist zentral den in axialer Richtung verlaufenden Abflussraum 48 jedoch keinen Hochdruckkanal 58 auf. Mit dem Abflussraumkörper 46 wirkt der Pilotventilstift 66 zusammen, welcher wie in Fig. 1 und Fig. 2 gezeigt ausgebildet ist.
Der Steuerkörper 38 ist in der Art eines Schieberventilkörpers ' in der Steuerhülse 50 in enger Gleitpassung von ca. 2 μm bis 10 μm geführt. Um seinen dem Abflussraumkörper 46 zugewandten Endbereich herum verläuft der an der Steuerhülse 50 radial innen ausgenommene Ringraum 60, der über einen Radialdruchlass und die Längsnut 62 mit dem Hochdruckraum 34 verbunden ist. Konzentrisch zur Längsachse 16 verläuft durch den Steuerkörper 38 hindurch der Auslassdurchlass 40 mit seiner. Drosselverengung 40' beim dem Steuerraum 36 zugewandten Ende. Parallel dazu, jedoch bezüglich der Längsachse 16 radial versetzt, verläuft durch den Steuerkörper 38 hindurch ein Verbindungskanal 94, der bei am Abflussraumkörper 46 anliegendem Steuerkörper 38 verschlossen ist. Liegt der Steuerkörper 38 nicht am Abflussraumkörper 46 an, verbindet der Verbindungskanal 94 den Steuerraum 36 mit dem Hochdruckraum 34. Funktionsmässig hat der Verbindungskanal 94 dieselbe Aufgabe wie bei den weiter oben gezeigten Ausbildungsformen das radiale Spiel zwischen dem Steuerkörper 38 und der Steuerhülse 50. Weiter sind am Steuerkörper 38, an dessen Stirnseite 42, innere und äussere Ausnehmungen 64 angeformt, die dazu dienen, die Fläche, mit welcher der Steuerkörper 38 dichtend am Entlassungsraumkörper 46 anliegt, klein auszubilden, um eine hohe Flächenpressung zu erreichen. Weiter kann durch eine mehr oder weniger grosse radial äussere Ausnehmung 64 das dynamische Verhalten des Steuerkörpers 38 bezüglich Abheben von der Anlage am Entlassungsraumkörper 46 variiert werden.
Fig. 7 zeigt eine Ausbildungsform des erfindungsgemässen Brennstoffeinspritzventils 10, bei welcher der Steuerkörper 38 durch eine Blattfeder 96 ersetzt ist. Die Blattfeder 96 ist ähnlich jener aus der EP-A-1 273 791 bekannten Blattfeder ausgebildet. Aus einer Scheibe aus Federstahl ist ein C- oder U-förmiger Schlitz ausgenommen, welcher eine radial innenliegende Blattfederzunge 98 von einem Haltering 100 abtrennt. Die Blattfeder 96 ist mit ihrem Haltering 100 zwischen de'r Steuerhülse 50 und dem Abflussraumkörper 46 eingeklemmt gehalten. Zur radialen Ausrichtung sind der Haltering 100 und die Steuerhülse 50 gemeinsam von einem Zentrierring 102 umgriffen. Anstelle des Zentrierrings 102 könnten selbstverständlich auch Zentrierstifte verwendet werden oder der Zentrierring 102 könnte an der Steuerhülse 50 angeformt sein. Weiter ist an der Blattfederzunge 98, kozentrisch zur Längsachse 16 als durchgehendes Loch die Drosselverengung 40' ausgebildet. Die Blattfederzunge 98 schliesst bei ihrem Anliegen am Abflussraumkörper 46 sowohl den in diesem ausgebildeten Hochdruckkanal 58 als auch den zentrisch zur Längsachse 16 verlaufenden Abflussraum 48 ab. Bei vom Entlassungsraumkörper 46 abgehobener Blattfederzunge 98 sind der Hochdruckraum 34 und, mit grösserem Strömungsquerschnitt als die Drosselverengung 40', der Abflussraum 48 mit dem Steuerraum 36 strömungs erbunden. An der Blattfeder 96 kann ein Drosselzulass 92 ausgenommen sein, welcher den Hochdruckraum 34 mit dem Abflussraum 48 verbindet. Die Wirkung dieses Drosselzulasses 92 ist dieselbe wie jene des Drosseldurchlasses 92 der Ausbildungsformen gemäss Fig. 3 und 8, nämlich insbesondere bei der Verwendung eines elektromagnetischen
Aktuators 18 das schnelle Schliessen des
Einspritzventilglieds für die Beendigung des Einspritzvorgangs zu unterstützen.
Bei der in der Fig. 8 gezeigten Ausbildungsform sind der Abflussraumkörper 46, die Haltemutter 54 mit dem Entlastungsraum 72 und der Pilotventilstift 66 mit der ersten und zweiten Drosselbohrung 90, 90', sowie der Aktuator 18 mit seinem Aktuatorschaft 78 gleich ausgebildet wie bei der Ausführungsform gemäss der Fig. 3. Der Steuerkörper 38 ist nun jedoch pilzförmig ausgebildet und sein Stamm ist in einer sacklochartigen Ausnehmung des Einspritzventilgliedes 22 in Richtung der Längsachse 16 verschiebbar geführt. Die Druckfeder 44 stützt sich einerseits am Boden dieser Sacklochbohrung und andererseits am Stamm des Steuerkörpers 38 ab. Die Steuerhülse 50 begrenzt den Steuerraum 36, umgreift den Hut des Steuerkörpers 38 mit radialem Abstand und liegt mit ihrer Stirnseite dichtend an der Stirnseite 46' des Abflussraumkörpers 46 an. Am Hut des pilzförmigen Steuerkörpers 38 ist die Drosselverengung 40' ausgebildet. Sie kommuniziert mit der ringförmigen Ausnehmung 64 am Entlassungsraumkörper 46 und steht somit mit dem Abflussraum 48 in StrömungsVerbindung. Der Vollständigkeit halber sei ergänzt, dass zwischen dem Stamm des pilzförmigen Steuerkörpers 38 und dem Einspritzventilsglied 22 ein radiales Spiel vorhanden ist, um einen schnellen Druckausgleich zwischen dem Steuerraum 36 und dem Raum, in welchem die Druckfeder 44 angeordnet ist, zu erzielen.
Alle in ' den Figuren 1 - 8 gezeigten Brennstoffeinspritzventile 10 funktionieren nach demselben Prinzip. In dem in allen Figuren gezeigten Betriebszustand sind das vom Einspritzventilglied 22 und Einspritzventilsitz 26 gebildete Einspritzventil, das vom Steuerkörper 38 beziehungsweise der Blattfeder 96 und dem Entlassungsraumkörper 46 gebildeter Zwischenventil 52 und das vom Pilotventilstift 66 und dem Pilötventilsitz 68 gebildete Pilotventil 70 in Schliessstellung. Im Steuerraum 36, Auslassdurchlass 40 und Abflussraum 48 steht der Brennstoff unter Hochdruck.
Zum Auslösen eines Einspritzvorgangs zieht der Aktuator 18 den Aktuatorschaft 78 in axialer Richtung nach oben, das heisst in Richtung vom Pilotventilsitz 68 weg. Da im Abflussraum 48 Hochdruck herrscht, wird der Pilotventilstift .66 nach Massgabe der Bewegung des Aktuatorschafts 78 vom Pilotventilsitz 68 abgehoben. Dies führt zu einem sehr schnellen Druckanstieg im Entlastungsraum 72 und einer entsprechend rascher Druckreduktion im Abflussraum 48 und im Auslassdurchlass 40 stromabwärts der Drosselverengung 40'. Aus dem Entlastungsraum 72 fliesst der Brennstoff durch den Drosseldurchlass 74 gedämpft zum Niederdruckauslass 76. Durch die Drosselverengung 40' gedämpft erfolgt das AusfHessen von Brennstoff aus dem Steuerraum 36. Dies führt zu einer Druckreduktion im Steuerraum 36, wodurch das Einspritzventilglied 22 in bekannter Art und Weise vom Einspritzventilsitz 26 abgehoben wird.
Zur Beendigung des Einspritzvorgangs wird der Pilotventilstift 66 sehr schnell mittels des Aktuators 18 nach unten in Anlage an den Pilotventilstift 66 bewegt und dadurch das Pilotventil 70 geschlossen. Da dabei der Pilotventilsitz 68 sehr rasch tiefer in den Entlastungsraum 72 eintaucht, wird eine Druckerhöhung erzeugt, die sich durch den Abflussraum 48 fortpflanzt und zum Abheben des Steuerkörpers 38, beziehungsweise der Blattfederzunge 98, ab dem Abflussraumkörper 46 führt, da ein schneller Druckausgleich in den Steuerraum 36 wegen der Drosselverengung 40' nicht erfolgen kann. Durch das Abheben des Steuerkörpers 38 wird sofort die gesamte Stirnseite 42 des Steuerkörpers 38 mit unter Hochdruck stehendem Brennstoff beaufschlagt, da der Hochdruckkanal 58 beziehungsweise die Hochdruckkanäle 58 freigegeben werden. Dies führt zu einer sehr raschen Bewegung des Steuerkörpers 38 vom Abflussraumkörper 46 weg und zu einer schnellen Druckerhöhung im Steuerraum 36, was eine schnelle Schliessbewegung des Einspritzventilgliedes 22 zur Beendigung des Einspritzvorgangs verursacht. Mit Hilfe der Kraft der Druckfeder 44 beziehungsweise der Federkraft der Blattfederzunge 98 legt sich der Steuerkörper 38 beziehungsweise die Blattfederzunge 98 wieder am Einspritzventilsitzkörper 28 an. Damit diese Bewegung nicht zu stark verzögert wird, kann Brennstoff durch die Drosselverengung 40' und relativ rasch durch den Radialspalt zwischen dem Steuerkörper 38 und der Steuerhülse 50 beziehungsweise durch den Verbindungskanal 94, und bei der Ausbildungsform gemäss Fig. 7 durch den Spalt zwischen Blattfederzunge 98 und Haltering 100, in den Steuerraum 36 einfliessen. Wonach wieder der eingangs der Funktionsbeschreibung dargelegte Ausgangszustand erreicht ist.
Obwohl das erfindungsgemässe Brennstoffeinspritzventil 10 ein Pilotventil 70 aufweist, sind die dadurch verursachten Verluste am Brennstoff gering, da während der Zeitspanne, in welcher das Pilotventil 70 offen ist, bei dem Ausbildungsformen gemäss den Fig, 1, 2, 4, 5 und 6 keine hydraulische Verbindung zwischen dem Abflussraum 48 und dem Hochdruckraum 34 besteht. Bei den Ausführungsformen gemäss den Fig. 3, 7 und 8 ist ein Drosseldurchlass 92 vorhanden; wegen des sehr kleinen Querschnitts verhindert jedoch der Drosseldurchlass 92 ein schnelles AbfHessen einer grösseren Menge von Brennstoff.
Je schneller der Pilotventilstift 66 zum Schliessen des Pilotventils 70 bewegt wird, um so schneller erfolgt eine Druckerhöhung und somit ein sehr rasches Schliessen des Einspritzventils. Diese rasche und grosse Druckerhöhung hat eine Rückwirkung auf den Aktuator 18 zur Folge. Piezoelektrische und magnetostriktive Aktuatoren sind deshalb für erfindungsgemässe Brennstoffeinspritzventile 10 besonders geeignet, weil sie sehr grosse Kräfte aufbringen können, sodass der genannte Druckanstieg die Bewegung des Pilotventilstifts 66 praktisch nicht verzögert. Obwohl die genannten Aktuatoren 18 ein schnelleres Schaltverhalten als Elektromagnete aufweisen, können auch solche eingesetzt werden. Durch die Auslegung des Durchmessers und des Hubes des Pilotventilstifts 66 kann somit die gewünschte Druckerhöhung erzielt werden.
Die in Fig. 9 gezeigte Ausbildungsform besitzt, neben den im Zusammenhang mit den Ausführungsformen gemäss Fig. 1 bis 8 gezeigten Vorteilen, eine verstärkte Fähigkeit für Mehrfacheinspritzungen in sehr kurzen Zeitabständen. Für gleichwirkende Teile werden in der Beschreibung zu Fig. 9 die selben Bezugszeichen verwendet wie im Zusammenhang mit den Fig. 1 bis 8.
In der Haltemutter 54 ist der Pilotventilstift 66 in enger Gleitpassung geführt. Der Entlassungsraum 72 ist durch eine Ausnehmung an der Haltemutter 54 gebildet und er ist durch die Drosselstelle 74' und den Drosseldurchlass 74 in der Haltemutter 54 dauernd mit dem Niederdruckraum verbunden, in gleicher Art und Weise wie in der Fig. 2 gestrichelt angedeutet.
An der Stirnseite der Haltemutter 54 liegt der pillenförmig ausgebildete Abflussraumkörper 46 dichtend an. Er weist zentral einen axialen Durchlass auf, welcher den Abflussraum 48 bildet. In gleicher Art und Weise wie. im Zusammenhang mit den Fig. 1 bis 3 und 5 bis 8 erläutert, bildet die der Haltemutter 54 zugewandte Stirnseite des Abflussraumkörpers 46 den mit dem Pilotventilstift 66 zusammenwirkenden ebenen Pilotventilsitz 68. Der Pilotventilstift 66 und der Pilotventilsitz 68 bilden das mittels eines Aktuators 18 angesteuerte Pilotventil 70, welches im geschlossenen Zustand den Abflussraum 48 vom Entlassungsraum 72 abtrennt .
Der Abflussraum 48 ist durch eine zentrale Bohrung gebildet welche sich in Richtung zum Steuerkörper 38 hin trichterförmig erweitert. Dieser Abflussraum 48 ist von einem Übertragungsstift 104 durchgriffen dessen Durchmesser kleiner ist als der Durchmesser des zylindrischen Teils des Abflussraums 48 und dessen Länge grosser ist als die in Richtung der Längsachse 16 gemessene Dicke des Abflussraumkörpers 46. Bei geschlossenem Pilotventil 70 steht somit der Übertragungsstift 104 über den Abflussraumkörper 46 auf der der Haltemutter 54 abgewandten und dem Steuerkörper 38 zugewandten Seite vor.
Weiter ist am Abflussraumkörper 46 der Hochdruckkanal 58 ausgeformt welcher durch eine radiale Sacklochbohrung und eine von der Stirnseite 46' des Abflussraumkörpers 46 in axialer Richtung in die Sacklochbohrung führende Durchgangsbohrung gebildet ist. Der Hochdruckkanal 58 mündet an der Stirnseite 46' in einem Abstand zum ^ bflussraum 48 sodass der Steuerkörper 38, bei Anlage an der Stirnseite 46', die Mündung des Hochdruckkanals 58 verschliesst. Der Abflussraumkörper 46 bildet mit seiner Stirnseite 46' und dem Steuerkörper 38 wiederum ein Zwischenventil 52.
An der Stirnseite 46' des Abflussraumkörpers 46 liegt dichtend ein Zwischenkörper 50' an in dessen zentralem Durchlass der Steuerkörper 38 in Richtung der Längsachse 16 verschiebbar angeordnet ist. Zwischen dem Steuerkörper 48 und dem Zwischenkörper 50' ist ein Ringspalt vorhanden. Der Zwischenkörper 50' ist becherförmig ausgebildet, wobei der Boden dem Abflussraumkörper 46 zugewandt ist, und sich im Innern des Steuerkörpers 38 eine Druckfeder 44 befindet, die den Steuerkörper 38 - bei geöffnetem Pilotventil 70 - mit dessen Boden am Übertragungsstift 104 in Anlage hält. Durch den Boden des Steuerkörpers 38 hindurch verläuft der Auslassdurchlass 40, welcher ohne Drosselverengung 40' ausgebildet ist und bei an der Stirnseite 46' anliegendem Steuerkörper 38 mit dem Abflussraum 48 kommuniziert. Liegt der Steuerkörper 38 an der Stirnseite 46' an, verschliesst er die Mündung des Hochdruckkanals 58.
Bei geschlossenem Pilotventil 70, wie in der Fig. 9 dargestellt, befindet sich der Boden des Steuerkörpers 38 in einem Abstand zur Stirnseite 46' welcher durch die Differenz der Länge zwischen dem Übertragungsstift 104 und der Dicke des Abflussraumkörpers 46 gegeben ist. Der Hub des Pilotventilstifts . 66 ist mindestens so gross> • vorzugsweise jedoch grosser als dieser Abstand. Die Druckfeder 44 stützt sich mit ihrem dem Boden des Steuerkörpers 38 abgewandten Ende an einer Stirnseite eines Steuerraumkörpers 50'' ab, welcher mit seiner Stirnseite dichtend am Zwischenkörper 50' anliegt. Der Steuerraumkörper 50'' begrenzt umfangsseitig den Steuerraum 36, welcher auch vom Einspritzventilglied 22 begrenzt ist, welches am Steuerraumkörper 50'' in enger Gleitpassung geführt ist. Das Einspritzventilglied 22 ist bezüglich der gemeinsamen Längsachse 16 desaxsiert. Der Steuerraum 36 ist jedoch drossellos dauernd in Strömungsverbindung mit dem Innern des becherförmigen Steuerkörpers 38 sowie dem Abflussraum 48.
In allgemein bekannter Art und Weise sind der Steuerraumkörper 50'' und die Haltemutter 54 gegeneinander verspannt sodass die Haltemutter 54 am Äbflussraumkörper 46, dieser andererseits am Zwischenkörper 50', und dieser wiederum andererseits am Steuerraumkörper 50'' dichtend anliegen. Der Zwischenkörper 50' und Steuerraumkörper 50'" können, ähnlich der Steuerhülse 50 in den andern Ausführungsbeispielen, gemeinsam einstückig ausgebildet sein. Es ist auch denkbar, den Steuerraumkörper 50' ' zusammen mit dem Einspritzventilsitzkörper 28 oder dem Ventilgehäuse 14 einstückig auszubilden.
Im Abflussraumkörper 46 kann eine zur Stirnseite 46' hin offene Ringnut 106 ausgebildet sein, in welche der Hockdruckkanal 58 mündet und welche bei an der Stirnseite 46' anliegendem Steuerkörper 38 von diesem verschlossen ist.
Es ist auch denkbar den Steuerkörper 38, in Richtung der Längsachse 16 gesehen, kürzer auszubilden, sodass der
Mantelteil des Bechers nur geringfügig über dem Boden des Steuerkörpers 38 vorsteht, um den Endbereich der Druckfeder 44 aufzunehmen. Bei einer in axialer Richtung besonders Platz sparender Ausbildungsform ist der Steuerkörper 38 als Scheibe mit einem Auslassdurchlass 40 ausgebildet und die als Schraubenfeder ausgebildete Druckfeder 44 durch eine Tellerfeder oder Wellenfeder ersetzt.
Auch eine koaxiale Anordnung des Einspritzventilgliedes 22 mit der Längsachse 16 ist denkbar, wobei sich die Druckfeder 44 beispielsweise an der Stirnseite des Steuerraumkörpers 50'' oder an einer daran angeformten Stützschulter abstützt.
Im in der Fig. 9 gezeigten Beispiel ist zwischen dem Übertragungsstift 104 und dem Abflussraumkörper 46 ein Ringspalt vorhanden. Es ist jedoch auch denkbar, den Übertragungsstift 104 in Gleitpassung am Abflussraumkörper 46 zu lagern und am Übertragungsstift 104 Anschliffe vorzunehmen, um die Strömungsverbindung zwischen dem Abflussraum 48 und dem Entlastungsraum 72 bei geöffnetem Pilotventil 70 zu gewährleisten.
Schlussendlich sei erwähnt, dass der Pilotventilstift 66 eine mit der Haltemutter 54 zusammenwirkende Schulter aufweisen kann um den Hub des Pilotventilstifts 66 in Öffnungsrichtung des Pilotventils 70 zu begrenzen.
Das in der Fig. 9 gezeigte Brennstoffeinspritzventil 10 funktioniert wie folgt. In der gezeigten Ausgangsposition ist das Pilotventil 70 geschlossen. Der Steuerkörper 38 ist von der Stirnseite 46' des Abflussraumkörpers 46 abgehoben, wodurch der Abflussraum 48 und der Steuerraum 46 über den Hochdruckkanal 58 mit dem Hochdruckeinlass 12 verbunden sind. Das Einspritzventilglied 22 befindet sich in Anlage am Einspritzventilsitz 26 in Schliessstellung; siehe auch Fig. 1. Zum Auslösen eines Einspritzvorgangs zieht der Aktuator 18 den Aktuatorschaft 78 zurück, wodurch sich der Pilotventilstift 66 vom Pilotventilsitz 68 weg bewegt und der Abflussraum 48 und somit der Steuerraum 36 mit dem Entlassungsraum 72 verbunden wird. Der äusserst schnellen Bewegung des Pilotventilstifts 66 folgt der Übertragungsstift 104 und der Steuerkörper 38, was zur Folge hat, dass das Zwischenventil 52 sehr rasch geschlossen und ein Nachfliessen von Brennstoff durch den Hochdruckkanal 58 unterbunden wird. Der Druckabfall im Steuerraum 36 und somit ein Abheben des Einspritzventilglieds 22 vom Einspritzventilsitz 26 erfolgen sehr rasch.
Für die Beendigung des Einspritzvorgangs wird der Pilotventilstift 66 mittels des Aktuators 18 in bekannter
Art und Weise in Anlage an den Pilotventilsitz 68 gebracht. Dabei wird der Übertragungsstift 104 in Richtung gegen den Steuerkörper 38 bewegt welcher sich zwangsläufig von der Stirnseite 46' abhebt. Dabei öffnet das Zwischenventil 52 und entsteht durch den Hochdruckkanal 58 eine Verbindung zwischen dem Steuerraum 36 und dem
Hochdruckeinlass 12. Weiter wird dieser Druckanstieg durch die Bewegung des Pilotventilstifts 66 in den
Entlassungsraum 72 hinein unterstützt. Das Einspritzventilglied 22 wird somit sehr rasch in Anlage an den Einspritzventilsitz 26 gebracht wodurch der Einspritzvorgang beendet ist.
Da sich der Steuerkörper 38 mit dem Übertragungsstift 104 und somit mit dem Pilotventilstift 66 bewegt, wird der Hochdruckkanal 58 durch den Steuerkörper 38 sehr schnell verschlossen beziehungsweise geöffnet, was bei mehreren Einspritzungen in kurzen bis sehr kurzen Zeitintervallen von grossem Vorteil ist.

Claims

Patentansprüche
1. Brennstoffeinspritzventil zur intermittierenden Brennstoffeinspritzung in den Brennraum einer Verbrennungskraftmaschine, mit einer ein Pilotventil (70) aufweisenden hydraulischen Steuereinrichtung (20) für die Steuerung der Bewegung eines mit einem Einspritzventilsitz (26) zusammenwirkenden Einspritzventilgliedes (22) , wobei das Pilotventil (70) einen einerseits mit einem elektrisch angesteuerten Aktuator (18) und andererseits mit einem Pilotventilsitz (68) zusammenwirkenden Pilotventilstift (66) aufweist, der in Schiessstellung einen Steuerraum (36) der Steuereinrichtung (20) von einem Niederdruckauslass (76) trennt, dadurch gekennzeichnet, dass an den Pilotventilsitz (68), auf dessen dem Niederdruckauslass (76) zugewandten Seite, ein geschlossener Entlastungsraum (72) anschliesst, der mittels eines Drosseldurchlasses (74) mit dem Niederdruckauslass (76) dauernd verbunden ist und in den der Pilotventilstift (66) hineinragt.
2. Brennstoffeinspritzventil nach Anspruch 1, dadurch gekennzeichnet, dass der Pilotventilstift (66) in einer Gleitpassung, vorzugsweise in einer engen Gleitpassung geführt ist.
3. Brennstoffeinspritzventil nach Anspruch 2, dadurch gekennzeichnet, dass der Pilotventilstift (66) in einem Begrenzungskörper (46, 54) für den Entlastungsraum (72) gleitend geführt ist.
. Brennstoffeinspritzventil nach einem der Ansprüche 1 oder 3, dadurch gekennzeichnet, dass der Drosseldurchlass (74) im Pilotventilstift (66) angeordnet ist.
5. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der Drosseldurchlass (74) im Begrenzungskörper (46, 54) angeordnet ist.
6. Brennstoffeinspritzventil nach Anspruch 3 oder 5, dadurch gekennzeichnet, dass der Pilotventilsitz (68) an einem, einen mit dem Steuerraum (36) in Verbindung stehenden und zum Pilotventilsitz (68) führenden Abflussraum (48) aufweisenden Abflussraumkörper (46) angeordnet ist, an dem der Begrenzungskörper (54) dichtend anliegt.
7. Brennstoffeinspritzventil nach Anspruch 3 oder 5, dadurch gekennzeichnet, dass der Pilotventilsitz (68) am Begrenzungskörper (54) ausgebildet ist.
8. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass im Begrenzungskörper (54) oder Ab lussraumkörper (46) mindestens ein mit dem Hochdruckeinlass (12) verbundener Hochdruckkanal (58) angeordnet ist, der wie der Abflussraum (48) zu einer Stirnseite hin verläuft, welche mit einem Steuerkörper (38, 98) zusammenwirkt, der bei Anliegen an der Stirnseite den Hochdruckkanal (58) verschliesst.
9. Brennstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, dass der Steuerkörper (38) durch eine Blattfederzunge (98) einer Blattfeder (96) gebildet ist .
10. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen Drosselzulass (92), welcher einen zwischen dem Steuerraum (36) und dem Pilotventil (70) angeordneten Abflussraum (48) mit dem Hochdruckeinlass (12) verbindet.
11. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 10, gekennzeichnet durch einen mit radialem Spiel verschiebbar geführten, zylinderförmigen Steuerkörper (38), der den Steuerraum (36) begrenzt und eine Drosselverengung (40') aufweist, durch welche der Steuerraum (36) mit dem Pilotventil (70) verbunden ist, und wobei das radiale Spiel eine Strömungsverbindung zwischen dem Hochdruckeinlass (12) und dem Steuerraum (36) bildet.
12. Brennstoffeinspritzventil nach einem der Ansprüche 1 bis 9, gekennzeichnet durch einen in enger Gleitpassung verschiebbar geführten, zylinderförmigen Steuerkörper (38), der den Steuerraum (36) begrenzt und eine Drosselverengung (40') aufweist, durch, welche der Steuerraum (36) mit dem Pilotventil (70) verbunden ist, und wobei der Steuerkörper (38) einen Verbindungskanal (94) aufweist, um eine Strömungsverbindung zwischen dem Hochdruckeinlass (12) und dem Steuerraum (36) zu bilden.
13. Brennstoffeinspritzventil nach Anspruch 8, dadurch gekennzeichnet, dass im Abflussraum (48) ein Übertragungsstift (104) angeordnet ist, der einerseits mit dem Pilotventilstift (66) und andererseits mit dem Steuerkörper (38) zusammenwirkt, um diesen beim Schliessen des Pilotventils (70) von der Stirnseite (46' ) abzuheben.
EP04738118A 2003-08-22 2004-07-30 Pilotventil gesteuertes brennstoffeinspritzventil Expired - Lifetime EP1656498B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CH14422003 2003-08-22
PCT/CH2004/000478 WO2005019637A1 (de) 2003-08-22 2004-07-30 Pilotventil gesteuertes brennstoffeinspritzventil

Publications (2)

Publication Number Publication Date
EP1656498A1 true EP1656498A1 (de) 2006-05-17
EP1656498B1 EP1656498B1 (de) 2008-11-26

Family

ID=34200992

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04738118A Expired - Lifetime EP1656498B1 (de) 2003-08-22 2004-07-30 Pilotventil gesteuertes brennstoffeinspritzventil

Country Status (4)

Country Link
EP (1) EP1656498B1 (de)
AT (1) ATE415554T1 (de)
DE (1) DE502004008540D1 (de)
WO (1) WO2005019637A1 (de)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE112011101121T5 (de) 2010-03-31 2013-03-14 Denso Corp. Kraftstoffeinspritzvorrichtung
US8573507B2 (en) 2010-03-31 2013-11-05 Denso Corporation Fuel injection device
US8695892B2 (en) 2010-02-18 2014-04-15 Denso Corporation Fuel injection device
US8708250B2 (en) 2011-01-07 2014-04-29 Denso Corporation Fuel injection device
US9109556B2 (en) 2010-12-17 2015-08-18 Denso Corporation Fuel injection device

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005026967B4 (de) * 2005-06-10 2014-09-25 Siemens Aktiengesellschaft Ventil, insbesondere Servoventil
CH697562B1 (de) * 2005-08-09 2008-11-28 Ganser Hydromag Brennstoffeinspritzventil.
ZA200807310B (en) 2006-03-03 2009-11-25 Ganser Hydromag Fuel injection valve for internal combustion engines
JP5493966B2 (ja) * 2009-06-02 2014-05-14 株式会社デンソー 燃料噴射装置
DE102009039609A1 (de) * 2009-09-01 2011-03-03 Continental Automotive Gmbh Injektorbaugruppe mit Drosselelement
JP5327117B2 (ja) * 2010-03-24 2013-10-30 株式会社デンソー 燃料噴射装置
JP5760427B2 (ja) * 2010-12-17 2015-08-12 株式会社デンソー 燃料噴射装置
DE102011078399A1 (de) * 2011-06-30 2013-01-03 Robert Bosch Gmbh Kraftstoffinjektor
DE102012202546A1 (de) * 2012-02-20 2013-08-22 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102012202549A1 (de) * 2012-02-20 2013-08-22 Robert Bosch Gmbh Brennstoffeinspritzventil
DE102012010614B4 (de) * 2012-05-30 2014-07-03 L'orange Gmbh Injektor
DE102012212614A1 (de) 2012-07-18 2014-01-23 Continental Automotive Gmbh Piezoinjektor mit hydraulisch gekoppelter Düsennadelbewegung
DE102012222509A1 (de) 2012-12-07 2014-06-12 Continental Automotive Gmbh Piezoinjektor
DE102012223934B4 (de) 2012-12-20 2015-10-15 Continental Automotive Gmbh Piezoinjektor
US9803603B2 (en) 2013-03-01 2017-10-31 Ganser-Hydromag Ag Device for injecting fuel into the combustion chamber of an internal combustion engine
WO2016208130A1 (ja) * 2015-06-26 2016-12-29 株式会社デンソー インジェクタ
JP6256440B2 (ja) * 2015-06-26 2018-01-10 株式会社デンソー インジェクタ
DE112017007931T5 (de) 2017-10-20 2020-06-04 Cummins Inc. Kraftstoffinjektor mit flexiblem bauteil
DE102018107238A1 (de) * 2018-03-27 2019-10-02 Liebherr-Components Deggendorf Gmbh Injektor zum Einspritzen von Kraftstoff
DE102018109206A1 (de) * 2018-04-18 2019-10-24 Liebherr-Components Deggendorf Gmbh Injektor zum Einspritzen von Kraftstoff
EP3990770A1 (de) 2019-06-25 2022-05-04 Ganser-Hydromag AG Brennstoffeinspritzventil für verbrennungskraftmaschinen
JP2023504727A (ja) * 2019-12-03 2023-02-06 ガンサー-ハイドロマグ アーゲー 内燃機関用スライド弁を有する燃料噴射弁
DE102023000400A1 (de) * 2023-02-09 2024-08-29 Hydac Fluidtechnik Gmbh Ventil

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19516565C2 (de) * 1995-05-05 1998-07-30 Orange Gmbh Einspritzventil einer Brennkraftmaschine
DE10100390A1 (de) * 2001-01-05 2002-07-25 Bosch Gmbh Robert Einspritzventil
EP1273791A3 (de) * 2001-07-03 2003-03-12 CRT Common Rail Technologies AG Brennstoffeinspritzventil für Verbrennungskraftmaschinen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005019637A1 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8695892B2 (en) 2010-02-18 2014-04-15 Denso Corporation Fuel injection device
DE112011101121T5 (de) 2010-03-31 2013-03-14 Denso Corp. Kraftstoffeinspritzvorrichtung
US8573507B2 (en) 2010-03-31 2013-11-05 Denso Corporation Fuel injection device
DE102011001563A1 (de) 2010-03-31 2014-03-06 Denso Corporation Kraftstoffeinspritzvorrichtung
US9127629B2 (en) 2010-03-31 2015-09-08 Denso Corporation Fuel injection device
US9109556B2 (en) 2010-12-17 2015-08-18 Denso Corporation Fuel injection device
US8708250B2 (en) 2011-01-07 2014-04-29 Denso Corporation Fuel injection device

Also Published As

Publication number Publication date
EP1656498B1 (de) 2008-11-26
ATE415554T1 (de) 2008-12-15
WO2005019637A1 (de) 2005-03-03
DE502004008540D1 (de) 2009-01-08

Similar Documents

Publication Publication Date Title
EP1656498B1 (de) Pilotventil gesteuertes brennstoffeinspritzventil
DE60126380T2 (de) Kraftstoffeinspritzventil
EP2394049B1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
AT502260B1 (de) Brennstoffeinspritzventil
EP2183476B1 (de) Kraftstoffeinspritzventil mit verbesserter dichtheit am dichtsitz eines druckausgeglichenen steuerventils
EP1991773A1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP1507972B1 (de) KRAFTSTOFFEINSPRITZVENTIL FüR BRENNKRAFTMASCHINEN
EP1431567A2 (de) Brennstoffeinspritzventil für Verbrennungskraftmaschinen
WO2003071122A1 (de) Brennstoffeinspritzventil für verbrennungskraftmaschinen
EP0976924B1 (de) Einspritzventil mit einem Servoventil
DE10058153A1 (de) Einspritzdüse mit separat steuerbaren Düsennadeln
EP1598551B1 (de) Kraftstoffeinspritzeinrichtung
DE10100390A1 (de) Einspritzventil
EP1853813A1 (de) Einspritzdüse
EP1719904A1 (de) Kraftstoffeinspritzdüse
WO2011042296A1 (de) Kraftstoffeinspritzventil und dessen herstellung
EP1952012B1 (de) Einspritzinjektor
WO2007107397A1 (de) Kraftstoffeinspritzventile für brennkraftmaschinen
EP2960487B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
WO2008125537A1 (de) Injektor
EP2726731B1 (de) Kraftstoffinjektor
WO2008049726A1 (de) Fluiddosiervorrichtung
EP2016276B1 (de) Kraftstoffinjektor mit optimiertem rücklauf
EP2084390A1 (de) Injektor mit axial-druckausgeglichenem steuerventil
EP2085604A1 (de) Injektor zum Einspritzen von Kraftstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060214

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAC Information related to communication of intention to grant a patent modified

Free format text: ORIGINAL CODE: EPIDOSCIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: PATENTANWAELTE SCHAAD, BALASS, MENZL & PARTNER AG

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004008540

Country of ref document: DE

Date of ref document: 20090108

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090308

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090226

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090427

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090827

BERE Be: lapsed

Owner name: GANSER-HYDROMAG AG

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090227

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090527

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081126

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB PATENT-, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KOTITSCHKE & HEURUNG PARTNERSCHAFT MBB, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KILIAN KILIAN & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KILIAN KILIAN & PARTNER, DE

Ref country code: DE

Ref legal event code: R082

Ref document number: 502004008540

Country of ref document: DE

Representative=s name: KILIAN KILIAN & PARTNER MBB PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R055

Ref document number: 502004008540

Country of ref document: DE

PLCP Request for limitation filed

Free format text: ORIGINAL CODE: EPIDOSNLIM1

PLCQ Request for limitation of patent found admissible

Free format text: ORIGINAL CODE: 0009231

LIM1 Request for limitation found admissible

Free format text: SEQUENCE NO: 1; FILED AFTER OPPOSITION PERIOD

Filing date: 20180719

Effective date: 20180719

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

PLCO Limitation procedure: reply received to communication from examining division + time limit

Free format text: ORIGINAL CODE: EPIDOSNLIR3

PLCR Communication despatched that request for limitation of patent was allowed

Free format text: ORIGINAL CODE: 0009245

REG Reference to a national code

Ref country code: DE

Ref legal event code: R056

Ref document number: 502004008540

Country of ref document: DE

PLCM Reason for rejection of request for limitation recorded

Free format text: ORIGINAL CODE: EPIDOSNRJL1

PLCL Despatch of rejection of request for limitation

Free format text: ORIGINAL CODE: EPIDOSNRJL2

REG Reference to a national code

Ref country code: DE

Ref legal event code: R451

Ref document number: 502004008540

Country of ref document: DE

PLCV Request for limitation of patent rejected

Free format text: ORIGINAL CODE: 0009240

RJL4 Request for limitation rejected because rall (request allowed) requirements not fulfilled

Free format text: SEQUENCE NO. 1; DECISION DESPATCHED ON 20191011

Effective date: 20191021

REG Reference to a national code

Ref country code: DE

Ref legal event code: R451

Ref document number: 502004008540

Country of ref document: DE

Effective date: 20191011

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20230719

Year of fee payment: 20

Ref country code: CH

Payment date: 20230802

Year of fee payment: 20

Ref country code: AT

Payment date: 20230720

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230719

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 502004008540

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20240729

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 415554

Country of ref document: AT

Kind code of ref document: T

Effective date: 20240730

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20240729