[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

EP1654466B1 - Fluidkühlvorrichtung - Google Patents

Fluidkühlvorrichtung Download PDF

Info

Publication number
EP1654466B1
EP1654466B1 EP04717626A EP04717626A EP1654466B1 EP 1654466 B1 EP1654466 B1 EP 1654466B1 EP 04717626 A EP04717626 A EP 04717626A EP 04717626 A EP04717626 A EP 04717626A EP 1654466 B1 EP1654466 B1 EP 1654466B1
Authority
EP
European Patent Office
Prior art keywords
fluid
heat exchanger
storage tank
type
cooling device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04717626A
Other languages
English (en)
French (fr)
Other versions
EP1654466A2 (de
Inventor
Winfried Klein
Andreas Welsch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac System GmbH
Original Assignee
Hydac System GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac System GmbH filed Critical Hydac System GmbH
Publication of EP1654466A2 publication Critical patent/EP1654466A2/de
Application granted granted Critical
Publication of EP1654466B1 publication Critical patent/EP1654466B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B21/00Common features of fluid actuator systems; Fluid-pressure actuator systems or details thereof, not covered by any other group of this subclass
    • F15B21/04Special measures taken in connection with the properties of the fluid
    • F15B21/042Controlling the temperature of the fluid
    • F15B21/0423Cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B1/00Installations or systems with accumulators; Supply reservoir or sump assemblies
    • F15B1/26Supply reservoir or sump assemblies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2050/00Applications
    • F01P2050/02Marine engines
    • F01P2050/06Marine engines using liquid-to-liquid heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20507Type of prime mover
    • F15B2211/20515Electric motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F15FLUID-PRESSURE ACTUATORS; HYDRAULICS OR PNEUMATICS IN GENERAL
    • F15BSYSTEMS ACTING BY MEANS OF FLUIDS IN GENERAL; FLUID-PRESSURE ACTUATORS, e.g. SERVOMOTORS; DETAILS OF FLUID-PRESSURE SYSTEMS, NOT OTHERWISE PROVIDED FOR
    • F15B2211/00Circuits for servomotor systems
    • F15B2211/20Fluid pressure source, e.g. accumulator or variable axial piston pump
    • F15B2211/205Systems with pumps
    • F15B2211/20576Systems with pumps with multiple pumps

Definitions

  • the invention relates to a fluid cooling device as a structural unit according to the feature configuration of the preamble of claim 1.
  • a fluid cooling device is known as a structural unit with a drive motor that drives a fan and a fluid pump that takes fluid (hydraulic medium) from an oil reservoir and delivers it to a hydraulic working circuit that heats the fluid and leads to a heat exchanger from which the fluid is cooled returns to the oil reservoir.
  • the oil tank is trough-shaped, which includes at least the motor and the fluid pump partially with its raised tub edges in the manner of a half-shell. Accordingly, with the known solution given a relatively bulky oil tank, which is still compact and compact part of the fluid cooling device and starting from the released from the tub edges space is also ensured for assembly and maintenance purposes good accessibility of the motor and Fluidpumpenbautechnik.
  • the mass components of the cooling device are evenly distributed, so that a safe state is achieved in operation even with appropriate proper movements and vibrations.
  • a control system and method for controlling the rotational speed of a plurality of fans for cooling a plurality of fluids in a work machine is disclosed in U.S. Patent No. 5,376,854 DE 100 62 534 A1 wherein the speed of each fan is controlled according to the individual heat dissipation requirements of the particular heat transfer cores powered by that particular fan, the present control system having a plurality of sensors positioned to sense the temperature of each of the plurality of fluids wherein each sensor is operable to output a signal indicative of the temperature of that particular fluid and an electronic controller coupled to the plurality of sensors for receiving signals therefrom which receive the temperature of each of the plurality of fluids.
  • the electronic control module may determine a corresponding temperature error for each of these fluids, and based on these temperature error signals and based on some logic programmed into the electronic control module, the controller outputs a signal to each of the plurality of fans to individually control its speed, each output signal indicating a desired fan speed for that particular fan.
  • a fluid cooling device comprising a plurality of individual components, which are spatially separated from each other on a working machine, with a drive motor which drives a fan and a fluid pump, which promotes a first type of fluid in a fluid working circuit and leads to a heat exchanger, from the tempered the fluid returns to the fluid-working circuit, wherein by means of a second fluid pump, a second type of fluid from a storage tank and removable in a second fluid working group can be conveyed from the leader via the first and the second heat exchanger the second type Fluid returns to the storage tank, wherein the first heat exchanger allows an exchange of heat between the two types of fluid, wherein the second heat exchanger is a finned cooler, the cooling air from the driven fan receives for cooling the second type of fluid, and the types of Fluid consisting of a hydraulic medium and the first type of fluid is a hydraulic oil.
  • the fluid cooling device according to the US document can be further improved such that different temperature control tasks for separate fluid working circuits can be achieved with only one fluid cooling device.
  • the known solution via the first heat exchanger to carry out a heat exchange between the two types of fluid, which on the one hand to a more homogeneous heat state for the leads both fluid media and on the other hand can also offer the advantage of warming when starting the machine relatively cold operating fluid of a circle on the then possibly warmer fluid medium of the other circle, so as to prevent power losses.
  • the known solution requires a plurality of spaced-apart individual components, which impairs the reliability and operational accuracy.
  • the known solution as far as a homogenization of the temperature behavior in the two fluid circuits, still leaves something to be desired.
  • the known technical solution is limited to the application in work machines.
  • the invention has the object to further improve the known solutions while maintaining their advantages to the effect that the reliability and operational accuracy in the solution of several Temperierauf synthetic is improved and that further applications for this pertinent fluid cooling devices are opened.
  • This object is achieved by a fluid cooling device having the features of claim 1 in its entirety.
  • the fluid cooling device is particularly suitable for cooling electric drives, such as Linear motors, as exemplified used in machining centers and machine tools, where the cooling of the electrical components takes place by means of the water-glycol mixture. Furthermore, it can be used for other linear motors, motor spindles, servomotors and similar electrical equipment.
  • the cooling medium in the form of the water-glycol mixture as a second type of fluid is passed on to the plate heat exchanger of the fluid cooling device and cools there countercurrently hydraulic medium of the hydraulic fluid working circuit, to which also the machining center or the machine tool is connected with its drivable components ,
  • the water-glycol mixture before it returns to the storage tank of the fluid cooling device, cooled by a second heat exchanger in the form of a finned cooler.
  • the hydraulic working fluid is usually cold and can then be warmed up via the higher heated water-glycol medium.
  • the ratio of the temperatures between electrical components and the hydraulic oil of the hydraulic circuit can be optimized in this way, which also contributes significantly to improving the machine accuracy with.
  • the single figure in a rear view shows the fluid cooling device as a structural unit in its installed position.
  • the fluid cooling device shown in the figure as a whole has an electric drive motor 10 which drives a fan wheel 12 with individual fan blades. Furthermore, the drive motor 10 drives a fluid pump 14.
  • the fan 12 is received in a fan housing 16, which is preferably constructed of sheet metal parts. For safety, the fan 12 is covered with a protective grid 18 in the rear area.
  • a heat exchanger 22 is arranged in the form of a plate heat exchanger.
  • the fan wheel housing 16 is covered by a second heat exchanger 24 in the manner of a lamella cooler, which extends over the entire free opening cross section of the fan wheel opening 26.
  • the impeller 12 is designed in the manner of an axial suction fan, which, viewed in the direction of the figure, draws air from the right to the left through the fins of the second heat exchanger 24 and brings it to the rear in the rearward region in the direction of the drive motor 10.
  • the Lüfterradgepuruse 16 is designed in the manner of a hollow box and is in a vertical arrangement on a storage tank 30, which forms an enlarged tank chamber volume in the vertical direction in the vertical direction to increase its fluid volume in the rear area.
  • a submersible pump 32 Adjacent to the first drive motor 10, a submersible pump 32 is placed in the rear region of the storage tank 30 on this, wherein pump parts for a fluid removal from the storage tank 30 protrude into this (not shown). Accordingly, the drive motor 34 of the submersible pump 32 is shown in the figure visible.
  • the submersible pump 32 has a pump opening 36 for the removal of fluid from the storage tank 30.
  • the pertinent pump opening 36 supplies a fluid working circuit, not shown, which preferably serves for cooling an electric linear drive of a machining center or a machine tool.
  • a water-glycol mixture (second type of fluid) is used as the fluid, and after passing through the electrical load to cool it, the water-glycol mixture is introduced into the plate heat exchanger 22 via the submersible pump 32, via a corresponding one , Not shown, piping, which opens into the lower junction 38 of the plate heat exchanger 22. From there, the second type of fluid (water-glycol mixture) flows through the plate heat exchanger 22 and leaves it via the lower discharge port 40th
  • the pertinent discharge port 40 is in turn connected by means of a cross tube 42 fluidly connected to the second heat exchanger 24 and heated in the plate heat exchanger 22 water-glycol mixture is in operation of the fan 12 by means of cooling air in the second heat exchanger 24 in Cooled the shape of the finned cooler by the water-glycol mixture to the second heat exchanger 24 passes through. After passing through this cooling step, the water-glycol mixture passes through the connecting pipe 44 back into the storage tank 30, which so far establishes the connection between the top of the storage tank 30 and the top of the second heat exchanger 24 fluid-conducting. After returning to the storage tank 30, the pertinent water-glycol mixture is cooled for a new circulation process by means of the submersible pump 32 available.
  • the already mentioned fluid pump 14 serves to convey a first type of fluid in the form of a hydraulic medium, such as hydraulic oil.
  • a hydraulic medium such as hydraulic oil.
  • the storage tank is for the hydraulic oil outside of the fluid cooling device shown in the figure, so that from there, the fluid pump 14 sucks the hydraulic oil via its suction port 46 and passes on to their pumping line 48.
  • the fluid-carrying pumping line 48 in this respect is in turn connected to the plate heat exchanger 22 above the discharge connection 40 via an inlet opening 50.
  • the hydraulic oil passes into the plate heat exchanger 22 via the inlet opening 50 and flows through it in countercurrent to the water-glycol mixture coming from left to right.
  • the thus cooled or tempered hydraulic oil passes through the outlet 52, which is located above the lower junction 38, back into the hydraulic working circuit, not shown, to which the hydraulic unit and the hydraulic tank of the entire system are connected.
  • the fluid cooling device With the fluid cooling device according to the invention, it is thus possible to cool heated hydraulic oil of a system via the plate heat exchanger 22, wherein the pertinent cooling or temperature control in countercurrent via the water-glycol mixture stored in the storage tank 30 promoted by the submersible pump 32 for one circulation becomes.
  • the heated in the plate heat exchanger 22 water-glycol mixture is then cooled via the finned cooler 24 in the further circulation.
  • the hydraulic oil at the beginning of the operation of the hydraulic system cold, there is the possibility to heat the cold hydraulic oil on the possibly warmer water-glycol mixture and thus facilitate the start of operation.
  • the fluid cooling device shown can also be provided for other applications in which tempering tasks are incurred for different fluid circuits. Furthermore, there is the possibility of introducing or mounting separable tank chambers into the storage tank 30, so that a fluid supply of further fluid media via the storage tank of the fluid cooling device can take place as a structural unit. It is also possible, in addition to the fluid pump shown 14 and the submersible pump 32 to install additional pumps together with other heat exchangers 22,24 (not shown), in order to control such more than two fluid media in terms of temperature.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Mechanical Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Supply Devices, Intensifiers, Converters, And Telemotors (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
  • Arrangement Or Mounting Of Propulsion Units For Vehicles (AREA)

Description

  • Die Erfindung betrifft eine Fluidkühlvorrichtung als Baueinheit gemäß der Merkmalsausgestaltung des Oberbegriffes des Patentanspruches 1.
  • Durch die EP 0 968 371 B1 ist eine Fluidkühlvorrichtung als Baueinheit mit einem Antriebsmotor bekannt, der ein Lüfterrad sowie eine Fluidpumpe antreibt, die Fluid (Hydraulikmedium) aus einem Ölbehälter nimmt und in einen hydraulischen Arbeitskreis fördert, der das Fluid erwärmt, sowie zu einem Wärmetauscher führt, aus dem das Fluid gekühlt in den Ölbehälter zurückkehrt. Bei der bekannten Lösung ist der Ölbehälter wannenförmig ausgebildet, der mit seinen hochgezogenen Wannenrändern in der Art einer Halbschale zumindest den Motor und die Fluidpumpe teilweise umfaßt. Demgemäß ist mit der bekannten Lösung ein relativ großvolumig aufbauender Ölbehälter gegeben, der dennoch platzsparend in Kompaktbauweise Bestandteil der Fluidkühlvorrichtung ist und ausgehend von dem von den Wannenrändern freigelassenen Bauraum ist darüber hinaus zu Montage- und Wartungszwecken eine gute Zugänglichkeit der Motor- und Fluidpumpenbaueinheit gewährleistet. Neben einem kompakten Aufbau für die Fluidkühlvorrichtung wird darüber hinaus erreicht, dass die Massekomponenten der Kühlvorrichtung gleichmäßig verteilt sind, so dass im Betrieb auch bei entsprechenden Eigenbewegungen und Vibrationen ein sicherer Stand erreicht ist.
  • Ein Steuersystem und ein Verfahren zur Steuerung der Drehzahl einer Vielzahl von Ventilatoren zur Kühlung einer Vielzahl von Strömungsmitteln in einer Arbeitsmaschine ist in der DE 100 62 534 A1 offenbart, wobei die Drehzahl von jedem Ventilator gemäß der einzelnen Wärmeableitungsanforderungen der speziellen Wärmeübertragungskerne gesteuert wird, die von diesem speziellen Ventilator versorgt werden, wobei das vorliegende Steuersystem eine Vielzahl von Sensoren aufweist, die positioniert sind, um die Temperatur von jeden der Vielzahl von Strömungsmitteln abzufühlen, wobei jeder Sensor betreibbar ist, um ein Signal auszugeben, das die Temperatur dieses speziellen Strömungsmittels anzeigt, und eine elektronische Steuervorrichtung, die mit der Vielzahl von Sensoren gekoppelt ist, um Signale davon aufzunehmen, die die Temperatur von jedem der Vielzahl von Strömungsmittel aufnehmen. Basierend auf diesen Temperatursignalen kann bei der bekannten Vorrichtung das elektronische Steuermodul einen entsprechenden Temperaturfehler für jedes dieser Strömungsmittel bestimmen, und basierend auf diesen Temperaturfehlersignalen und basierend auf einer gewissen in das elektronische Steuermodul einprogrammierten Logik, gibt die Steuervorrichtung ein Signal an jeden der Vielzahl von Ventilatoren aus, um individuell ihre Drehzahl zu steuern, wobei jedes Ausgangssignal eine erwünschte Ventilatordrehzahl für diesen speziellen Ventilator anzeigt.
  • Mit den vorstehend bekannten Lösungen läßt sich jedoch immer nur eine Kühlaufgabe realisieren, d.h. erwärmtes Fluid einer ersten Art, beispielsweise in Form von Hydraulikmedium, effizient abkühlen. Für andere Kühl- und Temperieraufgaben, beispielsweise ein Fluid eines zweiten hydraulischen Arbeitskreises (Getriebeöl) abzukühlen, sind die bekannten Vorrichtungen erneut vorzusehen, so dass man demzufolge für jeden hydraulischen Kreislauf und jede Kühlaufgabenstellung eine eigenständige Kühlvorrichtung benötigt mit Antriebsmotor, Pumpe und Kühler.
  • Durch die US-B1-6 354 089 ist eine Fluidkühlvorrichtung bekannt, bestehend aus mehreren Einzelkomponenten, die voneinander räumlich separiert an einer Arbeitsmaschine angeordnet sind, mit einem Antriebsmotor, der ein Lüfterrad sowie eine Fluidpumpe antreibt, die eine erste Art an Fluid in einen Fluid-Arbeitskreis fördert sowie zu einem Wärmetauscher führt, aus dem das Fluid temperiert in den Fluid-Arbeitskreis zurückkehrt, wobei mittels einer zweiten Fluidpumpe eine zweite Art an Fluid aus einem Vorratstank entnehmbar und in einen zweiten Fluid-Arbeitskreis förderbar ist, von dem über den ersten und den zweiten Wärmetauscher führend die zweite Art an Fluid in den Vorratstank zurückkehrt, wobei der erste Wärmetauscher einen Austausch von Wärme zwischen den beiden Arten an Fluid ermöglicht, wobei der zweite Wärmetauscher ein Lamellenkühler ist, der Kühlluft von dem antreibbaren Lüfterrad erhält zur Kühlung der zweiten Art an Fluid, und wobei die Arten an Fluid aus einem Hydraulikmedium bestehen und die erste Art an Fluid ein Hydrauliköl ist.
  • Demgemäß läßt sich in Fortbildung der eingangs erwähnten bekannten Lösungen die Fluidkühlvorrichtung nach dem US-Dokument dahingehend weiter verbessern, dass mit nur einer Fluidkühlvorrichtung verschiedene Temperieraufgaben für getrennte Fluid-Arbeitskreisläufe gelöst werden können. So ist es bei der bekannten Lösung über den ersten Wärmetauscher möglich, einen Wärmeaustausch zwischen den beiden Arten an Fluid vorzunehmen, was zum einen zu einem homogeneren Wärmezustand für die beiden Fluidmedien führt und zum anderen auch den Vorteil bieten kann, beim Anfahren der Arbeitsmaschine relativ kaltes Betriebsfluid des einen Kreises über das dann gegebenenfalls wärmere Fluidmedium des anderen Kreises zu erwärmen, um so Leistungsverlusten vorzubeugen. Jedoch benötigt die bekannte Lösung eine Vielzahl von einander beabstandeten Einzelkomponenten, was die Funktionssicherheit und die Betriebsgenauigkeit beeinträchtigt. Insoweit läßt die bekannte Lösung, was eine Homogenisierung des Temperaturverhaltens in den beiden Fluidkreisen anbelangt, noch Wünsche offen. Auch ist die bekannte technische Lösung auf die Anwendung bei Arbeitsmaschinen eingeschränkt.
  • Ausgehend von diesem Stand der Technik stellt sich die Erfindung die Aufgabe, die bekannten Lösungen unter Beibehalten ihrer Vorteile dahingehend weiter zu verbessern, dass die Funktionssicherheit und die Betriebsgenauigkeit bei der Lösung von mehreren Temperieraufgaben verbessert ist und dass weitere Einsatzmöglichkeiten für dahingehende Fluidkühlvorrichtungen eröffnet sind. Eine dahingehende Aufgabe löst eine Fluidkühlvorrichtung mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit.
  • Dadurch, dass gemäß dem kennzeichnenden Teil der erste Wärmetauscher ein Plattenwärmetauscher ist, dass die zweite Art an Fluid eine Wasser-Glycol-Mischung ist, dass der Vorratstank insoweit integraler Bestandteil der Vorrichtung ist, als ein Lüfterradgehäuse des Lamellenkühlers senkrecht auf dem Vorratstank steht, dass die zweite Fluidpumpe in der Art einer Tauchpumpe ausgebildet ist, die mit ihrem elektrischen Antriebsmotor auf dem Vorratstank aufgesetzt ist, und dass die Antriebsachsen der beiden Fluidpumpen innerhalb der Vorrichtung senkrecht zueinander verlaufen, eignet sich die erfindungsgemäße Fluidkühlvorrichtung besonders für das Abkühlen von elektrischen Antrieben, wie Linearmotoren, wie sie beispielhaft bei Bearbeitungszentren und Werkzeugmaschinen eingesetzt werden, wo mittels der Wasser-Glycol-Mischung die Kühlung der elektrischen Komponenten erfolgt. Ferner läßt sie sich für sonstige Linearmotoren, Motorspindeln, Servomotoren und vergleichbare elektrische Einrichtungen einsetzen.
  • Das Kühlmedium in Form der Wasser-Glycol-Mischung als zweiter Art an Fluid wird an den Plattenwärmetauscher der Fluidkühlvorrichtung weitergegeben und kühlt dort im Gegenstrom Hydraulikmedium des hydraulischen Fluid-Arbeitskreises ab, an den gleichfalls das Bearbeitungszentrum bzw. die Werkzeugmaschine mit ihren antreibbaren Komponenten angeschlossen ist. Durch die dadurch bedingte Erwärmung wird die Wasser-Glycol-Mischung, bevor sie in den Vorratstank der Fluidkühlvorrichtung zurückgelangt, über einen zweiten Wärmetauscher in Form eines Lamellenkühlers abgekühlt. Beim Anfahren, also bei der Inbetriebnahme des hydraulischen Arbeitskreises mit angeschlossenem Bearbeitungszentrum oder Werkzeugmaschine ist das hydraulische Arbeitsmedium in der Regel kalt und kann dann über das höher erwärmte Wasser-Glycol-Medium aufgewärmt werden. Dergestalt ist mit der erfindungsgemäßen Fluidkühlvorrichtung ein funktionssicherer und genauer Betriebsstart erreicht. Weiterhin läßt sich dergestalt das Verhältnis der Temperaturen zwischen elektrischen Komponenten und dem Hydrauliköl des Hydraulikkreises optimieren, was gleichfalls deutlich zur Verbesserung der Maschinengenauigkeit mit beiträgt.
  • Weitere vorteilhafte Ausführungsformen sind Gegenstand der sonstigen Unteransprüche.
  • Im folgenden wird die erfindungsgemäße Fluidkühlvorrichtung in prinzipeller und nicht maßstäblicher Darstellung eines Ausführungsbeispiels nach der Zeichnung näher erläutert.
  • Dabei zeigt die einzige Figur in rückwärtiger Ansicht die Fluidkühlvorrichtung als Baueinheit in ihrer Einbaulage.
  • Die in der Figur als Ganzes gezeigte Fluidkühlvorrichtung weist einen elektrischen Antriebsmotor 10 auf, der ein Lüfterrad 12 mit einzelnen Lüfterflügeln antreibt. Ferner treibt der Antriebsmotor 10 eine Fluidpumpe 14 an. Das Lüfterrad 12 ist in einem Lüfterradgehäuse 16 aufgenommen, das vorzugsweise aus Blechteilen aufgebaut ist. Zur Sicherheit ist im rückwärtigen Bereich das Lüfterrad 12 mit einem Schutzgitter 18 abgedeckt. Über die Öffnung des Lüfterradgehäuses 16 erstreckt sich im hinteren Bereich ein mit Durchbrechungen versehenes Flanschteil 20, an dem die Einheit von Antriebsmotor 10, Lüfterrad 12 und Fluidpumpe 14 gelagert ist. Oberhalb des Lüfterradgehäuses 16 ist ein Wärmetauscher 22 angeordnet in Form eines Plattenwärmetauschers. Des weiteren ist nach vorne hin das Lüfterradgehäuse 16 von einem zweiten Wärmetauscher 24 in der Art eines Lamellenkühlers abgedeckt, der sich über den gesamten freien Öffnungsquerschnitt der Lüfterradöffnung 26 erstreckt. Das Lüfterrad 12 ist in der Art eines axialen Sauglüfters konzipiert, das in Blickrichtung auf die Figur gesehen von rechts nach links Luft durch die Lamellen des zweiten Wärmetauschers 24 zieht und nach hinten in den rückwärtigen Bereich in Richtung des Antriebsmotors 10 bringt.
  • Bei geeigneter Anpassung ist es aber auch möglich, die dahingehende Luftströmung umzukehren und die Fluidkühlvorrichtung als axialen Drucklüfter zu konzipieren. Um die Lamellen des Lamellenkühlers (zweiter Wärmetauscher) 24 von Verschmutzungen freizuhalten, ist dieser an seiner freien Stirnseite von einem plattenförmigen Luftfilter 28 überdeckt. Das Lüfterradgehäuse 16 ist in der Art eines Hohlkastens konzipiert und steht in senkrechter Anordnung auf einem Vorratstank 30, der zur Vergrößerung seines Fluidvolumens im rückwärtigen Bereich in vertikaler Richtung ein vergrößertes Tankkammervolumen ausbildet. Benachbart zu dem ersten Antriebsmotor 10 ist im hinteren Bereich des Vorratstanks 30 auf diesem eine Tauchpumpe 32 aufgesetzt, wobei Pumpenteile für eine Fluidentnahme aus dem Vorratstank 30 in diesen hineinragen (nicht dargestellt). Demgemäß ist in der Figur sichtbar der Antriebsmotor 34 der Tauchpumpe 32 dargestellt. Die dahingehende Tauchpumpe 32 weist eine Pumpöffnung 36 für die Entnahme von Fluid aus dem Vorratstank 30 auf.
  • Die dahingehende Pumpöffnung 36 versorgt einen nicht näher dargestellten Fluid-Arbeitskreis, der vorzugsweise zur Kühlung eines elektrischen Linearantriebes eines Bearbeitungszentrums oder einer Werkzeugmaschine dient. Als Fluid kommt dabei insbesondere eine Wasser-Glycol-Mischung (zweite Art an Fluid) zum Einsatz und nach Durchlaufen des elektrischen Verbrauchers zu seiner Kühlung wird über die Tauchpumpe 32 die Wasser-Glycol-Mischung in den Plattenwärmetauscher 22 eingebracht, und zwar über eine entsprechende, nicht näher dargestellte Verrohrung, die in die untere Anschlußstelle 38 des Plattenwärmetauschers 22 mündet. Von dort aus durchströmt die zweite Art an Fluid (Wasser-Glycol-Mischung) den Plattenwärmetauscher 22 und verläßt diesen über den unteren Abgabeanschluß 40.
  • Der dahingehende Abgabeanschluß 40 ist wiederum mittels eines Querrohres 42 fluidführend mit dem zweiten Wärmetauscher 24 verbunden und die im Plattenwärmetauscher 22 erwärmte Wasser-Glycol-Mischung wird bei Betrieb des Lüfterrades 12 mittels Kühlluft im zweiten Wärmetauscher 24 in Form des Lamellenkühlers gekühlt, indem die Wasser-Glycol-Mischung dahingehend den zweiten Wärmetauscher 24 durchläuft. Nach Durchlaufen dieses Kühlschrittes gelangt die Wasser-Glycol-Mischung über das Anschlußrohr 44 zurück in den Vorratstank 30, das insoweit die Verbindung zwischen Oberseite des Vorratstanks 30 und Oberseite des zweiten Wärmetauschers 24 fluidführend herstellt. Nach Rückgabe in den Vorratstank 30 steht die dahingehende Wasser-Glycol-Mischung gekühlt für einen neuen Umlaufvorgang mittels der Tauchpumpe 32 zur Verfügung.
  • Die bereits erwähnte Fluidpumpe 14 dient der Förderung einer ersten Art an Fluid in Form eines hydraulischen Mediums, wie Hydrauliköl. Mit dem dahingehenden Hydrauliköl lassen sich hydraulische Aggregate eines Bearbeitungszentrums oder einer Werkzeugmaschine sinnfällig ansteuern und betreiben. Der Vorratstank befindet sich für das Hydrauliköl dabei außerhalb der in der Figur gezeigten Fluidkühlvorrichtung, so dass von dort aus die Fluidpumpe 14 über ihre Ansaugöffnung 46 das Hydrauliköl ansaugt und an ihre Pumpleitung 48 weitergibt. Die dahingehend fluidführende Pumpleitung 48 ist wiederum oberhalb des Abgabeanschlusses 40 über eine Eingangsöffnung 50 an den Plattenwärmetauscher 22 angeschlossen. Über die dahingehende Eingangsöffnung 50 gelangt das Hydrauliköl in den Plattenwärmetauscher 22 und durchströmt diesen im Gegenstrom zu der Wasser-Glycol-Mischung von links nach rechts kommend. Anschließend gelangt das derart gekühlte oder temperierte Hydrauliköl über den Auslaß 52, der oberhalb der unteren Anschlußstelle 38 angeordnet ist, zurück in den nicht näher dargestellten hydraulischen Arbeitskreis, an den das hydraulische Aggregat sowie der Hydrauliktank der Gesamtanlage angeschlossen sind.
  • Mit der erfindungsgemäßen Fluidkühlvorrichtung ist es also möglich, erwärmtes Hydrauliköl einer Anlage über den Plattenwärmetauscher 22 zu kühlen, wobei die dahingehende Kühlung oder Temperierung im Gegenstrom über die Wasser-Glycol-Mischung erfolgt, die im Vorratstank 30 bevorratet von der Tauchpumpe 32 für einen Umlauf gefördert wird. Die im Plattenwärmetauscher 22 erwärmte Wasser-Glycol-Mischung wird dann über den Lamellenkühler 24 im weiteren Umlauf gekühlt. Ist das Hydrauliköl zum Beginn des Betriebes der hydraulischen Anlage kalt, besteht dergestalt die Möglichkeit, das kalte Hydrauliköl über die gegebenenfalls wärmere Wasser-Glycol-Mischung anzuwärmen und dergestalt den Betriebsbeginn zu erleichtern. Des weiteren kommt es im Hinblick auf die Schnittstelle in Form des ersten Wärmetauschers 22 zu einer Homogenisierung des Temperaturverhaltens in den beiden Kreisen, was sich wiederum auf die Bearbeitungsgenauigkeit für die gesamte Anlage auswirkt.
  • Die gezeigte Fluidkühlvorrichtung kann auch für andere Anwendungen vorgesehen sein, bei denen Temperieraufgaben für verschiedene Fluidkreise anfallen. Ferner besteht die Möglichkeit, in den Vorratstank 30 separierbareTankkammern ein- oder anzubringen, so dass eine Fluidbevorratung weiterer Fluidmedien über den Vorratstank der Fluidkühlvorrichtung als Baueinheit erfolgen kann. Auch besteht die Möglichkeit, neben der gezeigten Fluidpumpe 14 und der Tauchpumpe 32 weitere Pumpen anzubringen nebst weiteren Wärmetauschern 22,24 (nicht dargestellt), um dergestalt mehr als zwei Fluidmedien temperaturmäßig anzusteuern.

Claims (3)

  1. Fluidkühlvorrichtung als Baueinheit mit einem Antriebsmotor (10), der ein Lüfterrad (12) sowie eine Fluidpumpe (14) antreibt, die eine erste Art an Fluid in einen Fluid-Arbeitskreis fördert sowie zu einem Wärmetauscher (22) führt, aus dem das Fluid temperiert in den Fluid-Arbeitskreis zurückkehrt, wobei mittels einer zweiten Fluidpumpe (32) eine zweite Art an Fluid aus einem Vorratstank (30) entnehmbar und in einen zweiten Fluid-Arbeitskreis förderbar ist, von dem über den ersten (22) und einen zweiten Wärmetauscher (24) führend die zweite Art an Fluid in den Vorratstank (30) zurückkehrt, wobei der erste Wärmetauscher (22) einen Austausch von Wärme zwischen den beiden Arten an Fluid ermöglicht, wobei der zweite Wärmetauscher (24) ein Lamellenkühler ist, der Kühlluft von dem antreibbaren Lüfterrad (12) erhält zur Kühlung der zweiten Art an Fluid, und wobei die Arten an Fluid aus einem Hydraulikmedium bestehen und die erste Art an Fluid ein Hydrauliköl ist, dadurch gekennzeichnet, dass der erste Wärmetauscher (22) ein Plattenwärmetauscher ist, dass die zweite Art an Fluid eine Wasser-Glycol-Mischung ist, dass der Vorratstank (30) insoweit integraler Bestandteil der Vorrichtung ist, als ein Lüfterradgehäuse (16) des Lamellenkühlers senkrecht auf dem Vorratstank (30) steht, dass die zweite Fluidpumpe (32) in der Art einer Tauchpumpe ausgebildet ist, die mit ihrem elektrischen Antriebsmotor (34) auf dem Vorratstank (30) aufgesetzt ist, und dass die Antriebsachsen der beiden Fluidpumpen (14,32) innerhalb der Vorrichtung senkrecht zueinander verlaufen.
  2. Fluidkühlvorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass neben dem ersten Vorratstank (30) für die Wasser-Glycol-Mischung ein zweiter Vorratstank vorhanden ist zur Bevorratung von Hydrauliköl.
  3. Vorrichtung mit einer Fluidkühlvorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der anschließbare erste Fluid-Arbeitskreis ein Hydraulikaggregat und der anschließbare zweite Fluid-Arbeitskreis mindestens einen elektrischen Antrieb, wie einen Linearmotor od. dgl., aufweist.
EP04717626A 2003-07-10 2004-03-05 Fluidkühlvorrichtung Expired - Lifetime EP1654466B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10331216A DE10331216B3 (de) 2003-07-10 2003-07-10 Fluidkühlvorrichtung
PCT/EP2004/002237 WO2005005843A1 (de) 2003-07-10 2004-03-05 Fluidkühlvorrichtung

Publications (2)

Publication Number Publication Date
EP1654466A2 EP1654466A2 (de) 2006-05-10
EP1654466B1 true EP1654466B1 (de) 2008-04-02

Family

ID=32842333

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04717626A Expired - Lifetime EP1654466B1 (de) 2003-07-10 2004-03-05 Fluidkühlvorrichtung

Country Status (7)

Country Link
US (1) US7793707B2 (de)
EP (1) EP1654466B1 (de)
JP (1) JP4523591B2 (de)
CN (1) CN100494699C (de)
AT (1) ATE391241T1 (de)
DE (2) DE10331216B3 (de)
WO (1) WO2005005843A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137130A1 (fr) 2022-06-23 2023-12-29 Psa Automobiles Sa DISPOSITIF DE REFROIDISSEMENT DU MOTEUR DES vÉhicules automobiles
DE102022131113A1 (de) 2022-11-24 2024-05-29 Ammann Schweiz Ag Kühler-Tank-Kombination

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE202005018999U1 (de) * 2005-12-05 2007-04-12 Liebherr Hydraulikbagger Hydraulikzylinder mit Endlagendämpfung
US7467657B2 (en) * 2006-06-07 2008-12-23 Delphi Technologies, Inc. Compact modular CPU cooling unit
WO2011038765A2 (en) * 2009-10-01 2011-04-07 Abb Ab A cooling system for an electrical machine
DE102010053923A1 (de) * 2010-12-09 2012-06-14 Hydac Ag Fluidkühlvorrichtung
DE102010056567A1 (de) * 2010-12-30 2012-07-05 Hydac Cooling Gmbh Flüssigkeits-Luft-Kühlsystem
CN102401583B (zh) * 2011-11-16 2013-03-20 无锡马山永红换热器有限公司 带风扇的油冷器
US20140290923A1 (en) * 2013-04-01 2014-10-02 Caterpillar Inc. Cooling system
CN103470577B (zh) * 2013-10-10 2016-01-06 益和电气集团股份有限公司 一种液压油冷却器
CN103944316B (zh) * 2014-04-28 2016-08-24 上海精卫电子有限公司 一种大功率充油水下电机的散热系统
KR200480314Y1 (ko) 2015-03-12 2016-05-18 조청희 열매체를 이용한 순환식 전기 열풍기
CN106050817B (zh) * 2016-07-18 2019-05-24 天津优瑞纳斯液压机械有限公司 一种自动控温的双散热系统
JP6451706B2 (ja) * 2016-08-05 2019-01-16 ダイキン工業株式会社 油圧ユニット
CN207499962U (zh) * 2017-09-29 2018-06-15 苏州驿力机车科技股份有限公司 冷却组件和车辆智能冷却系统
CN108952919B (zh) * 2018-07-31 2020-11-10 义乌国信土地规划咨询有限公司 一种冷却液多通路流动的汽车引擎散热装置
DE102019000283A1 (de) * 2019-01-16 2020-07-16 Hydac Cooling Gmbh Kühlvorrichtung
FR3096524B1 (fr) * 2019-05-20 2023-05-19 Valeo Embrayages Module de propulsion d’un véhicule électrique ou hybride
CN114014225B (zh) * 2021-10-19 2023-06-16 青岛索尔汽车有限公司 一种高空作业车的液压系统
CN117307565B (zh) * 2023-09-27 2024-04-09 临沂临工重托机械有限公司 一种挖掘装载机液压系统的双冷却装置
CN118361981A (zh) * 2024-05-17 2024-07-19 佛山市南海耀丰泰电子金属制品有限公司 一种多功能环保型节能散热器

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6114648Y2 (de) * 1980-08-06 1986-05-08
JPS62195434U (de) * 1986-05-30 1987-12-12
JPS63140811A (ja) 1986-12-01 1988-06-13 Mazda Motor Corp エンジンの冷却装置
SE467471B (sv) * 1987-02-16 1992-07-20 Stenhex Ab Anordning foer filtrering och vaermevaexling
DE19711591A1 (de) * 1997-03-20 1998-09-24 Fluidtech Gmbh Fluidkühlvorrichtung
JP3344288B2 (ja) * 1997-07-01 2002-11-11 トヨタ自動車株式会社 内燃機関の冷却水循環構造
DE19744599A1 (de) * 1997-10-09 1999-04-15 Volkswagen Ag Hydraulikkreislauf
JP2001016827A (ja) * 1999-06-30 2001-01-19 Kobelco Contstruction Machinery Ltd 建設機械
US6463891B2 (en) * 1999-12-17 2002-10-15 Caterpillar Inc. Twin fan control system and method
US6354089B1 (en) * 2000-03-08 2002-03-12 Case Corporation Apparatus and method for cooling multiple fluids on a work vehicle
JP2002227645A (ja) * 2001-02-01 2002-08-14 Komatsu Ltd 液圧回路を有するエンジン
US20070163758A1 (en) * 2003-06-17 2007-07-19 Andreas Welsch Fluid cooling device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3137130A1 (fr) 2022-06-23 2023-12-29 Psa Automobiles Sa DISPOSITIF DE REFROIDISSEMENT DU MOTEUR DES vÉhicules automobiles
DE102022131113A1 (de) 2022-11-24 2024-05-29 Ammann Schweiz Ag Kühler-Tank-Kombination
EP4375515A1 (de) 2022-11-24 2024-05-29 Ammann Schweiz AG Kühler-tank-kombination
DE102022131113B4 (de) 2022-11-24 2024-07-18 Ammann Schweiz Ag Kühler-Tank-Kombination

Also Published As

Publication number Publication date
JP2007524044A (ja) 2007-08-23
DE502004006730D1 (de) 2008-05-15
US7793707B2 (en) 2010-09-14
CN100494699C (zh) 2009-06-03
US20070163759A1 (en) 2007-07-19
DE10331216B3 (de) 2004-09-09
CN1820149A (zh) 2006-08-16
JP4523591B2 (ja) 2010-08-11
WO2005005843A8 (de) 2005-08-11
ATE391241T1 (de) 2008-04-15
WO2005005843A1 (de) 2005-01-20
EP1654466A2 (de) 2006-05-10

Similar Documents

Publication Publication Date Title
EP1654466B1 (de) Fluidkühlvorrichtung
EP1993893B1 (de) Kompressoranordnung
DE69905184T2 (de) Verbesserung in oder an pumpenvorrichtung für brennkraftmaschine
EP0707140B1 (de) Antriebseinheit mit einem Motor und einem Retarder
DE102010056567A1 (de) Flüssigkeits-Luft-Kühlsystem
EP3504433B2 (de) Motor-pumpenvorrichtung
EP0177025A2 (de) Kühlsystem
DE102014002410A1 (de) Kompaktaggregat
DE102020109071A1 (de) Integrationsbauteil, Temperiersystem sowie Kraftfahrzeug
DE69823015T2 (de) Totaler Kühlungszusammenbau für Kraftfahrzeuge, die mit Brennkraftmaschinen angetrieben werden
EP1574714B1 (de) Pumpenaggregat
DE102019220259A1 (de) Drehwärmetauscher und dazugehöriges system
EP0711692B1 (de) Antriebseinheit mit einer Brennkraftmaschine und einem hydrodynamischen Retarder
DE112015002176B4 (de) Kühlvorrichtung eines Hybridfahrzeugs
WO2004113698A1 (de) Fluidkühlvorrichtung
DE3931699C2 (de)
DE19831483A1 (de) Spritzgießmaschine zur Verarbeitung von Kunststoffen und anderen plastifizierbaren Massen
DE102005043802B4 (de) Vorrichtung zur Einstellung der Temperatur von Lenkungsöl in einem Kraftfahrzeug
WO2015036106A1 (de) Temperiervorrichtung
DE19714669C2 (de) Verwendung eines Arbeitsfluids zur Kühlung einer Spindeleinheit, Spindeleinheit zur Aufnahme von Bearbeitungswerkzeugen oder Bearbeitungsaggregaten und Bearbeitungszentrum
EP0691234B2 (de) Verfahren und Einrichtung zur Kühlung mindestens einer Fahrpumpe und mindestens eines Fahrmotors eines hydrostatischen Fahrantriebes
EP2022990A1 (de) Werkzeugmaschine und Versorgungsaggregat
DE19616426C1 (de) Antriebseinheit mit einem Motor und einem Retarder
DE102019112500B4 (de) Kühlmitteldruckregelsystem
EP0047336A1 (de) Hydraulikeinheit zum Betreiben von einer oder mehreren Arbeits- und Bearbeitungsmaschinen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051206

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20061121

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080404

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

Ref country code: CH

Ref legal event code: EP

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004006730

Country of ref document: DE

Date of ref document: 20080515

Kind code of ref document: P

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080903

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080713

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080702

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

26N No opposition filed

Effective date: 20090106

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

BERE Be: lapsed

Owner name: HYDAC SYSTEM G.M.B.H.

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081003

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20140310

Year of fee payment: 11

Ref country code: DE

Payment date: 20140326

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140122

Year of fee payment: 11

Ref country code: IT

Payment date: 20140311

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140117

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004006730

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150305

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151001

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150305

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150331