EP1647352B1 - Solder material - Google Patents
Solder material Download PDFInfo
- Publication number
- EP1647352B1 EP1647352B1 EP20050022322 EP05022322A EP1647352B1 EP 1647352 B1 EP1647352 B1 EP 1647352B1 EP 20050022322 EP20050022322 EP 20050022322 EP 05022322 A EP05022322 A EP 05022322A EP 1647352 B1 EP1647352 B1 EP 1647352B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- weight
- soldering material
- cobalt
- solder
- material according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000679 solder Inorganic materials 0.000 title claims description 95
- 239000000463 material Substances 0.000 title claims description 53
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 75
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 65
- 229910045601 alloy Inorganic materials 0.000 claims description 46
- 239000000956 alloy Substances 0.000 claims description 46
- 238000005476 soldering Methods 0.000 claims description 41
- 239000010949 copper Substances 0.000 claims description 36
- 229910052751 metal Inorganic materials 0.000 claims description 31
- 239000002184 metal Substances 0.000 claims description 31
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 29
- 229910052759 nickel Inorganic materials 0.000 claims description 28
- 229910052742 iron Inorganic materials 0.000 claims description 26
- 229910017052 cobalt Inorganic materials 0.000 claims description 24
- 239000010941 cobalt Substances 0.000 claims description 24
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 21
- 229910052802 copper Inorganic materials 0.000 claims description 21
- 239000000758 substrate Substances 0.000 claims description 20
- 150000002739 metals Chemical class 0.000 claims description 17
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 16
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims description 16
- 238000005275 alloying Methods 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 12
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 9
- 229910052684 Cerium Inorganic materials 0.000 claims description 6
- ZMIGMASIKSOYAM-UHFFFAOYSA-N cerium Chemical compound [Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce][Ce] ZMIGMASIKSOYAM-UHFFFAOYSA-N 0.000 claims description 6
- 229910052709 silver Inorganic materials 0.000 claims description 6
- 239000004332 silver Substances 0.000 claims description 6
- 229910052779 Neodymium Inorganic materials 0.000 claims description 5
- 229910052746 lanthanum Inorganic materials 0.000 claims description 5
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 claims description 5
- QEFYFXOXNSNQGX-UHFFFAOYSA-N neodymium atom Chemical compound [Nd] QEFYFXOXNSNQGX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052763 palladium Inorganic materials 0.000 claims description 5
- 229910052697 platinum Inorganic materials 0.000 claims description 5
- 238000004090 dissolution Methods 0.000 claims description 4
- 229910001128 Sn alloy Inorganic materials 0.000 claims description 2
- 239000007788 liquid Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 239000007787 solid Substances 0.000 claims description 2
- 238000011109 contamination Methods 0.000 claims 3
- 150000001875 compounds Chemical class 0.000 claims 2
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 2
- -1 whereby Substances 0.000 claims 1
- PQIJHIWFHSVPMH-UHFFFAOYSA-N [Cu].[Ag].[Sn] Chemical compound [Cu].[Ag].[Sn] PQIJHIWFHSVPMH-UHFFFAOYSA-N 0.000 description 6
- 229910000969 tin-silver-copper Inorganic materials 0.000 description 6
- 229910001316 Ag alloy Inorganic materials 0.000 description 5
- 229910001122 Mischmetal Inorganic materials 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 238000007792 addition Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910000881 Cu alloy Inorganic materials 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- QCEUXSAXTBNJGO-UHFFFAOYSA-N [Ag].[Sn] Chemical compound [Ag].[Sn] QCEUXSAXTBNJGO-UHFFFAOYSA-N 0.000 description 3
- 238000002679 ablation Methods 0.000 description 3
- 229910052787 antimony Inorganic materials 0.000 description 3
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 3
- 230000004907 flux Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229910000570 Cupronickel Inorganic materials 0.000 description 2
- 229910000640 Fe alloy Inorganic materials 0.000 description 2
- 229910000990 Ni alloy Inorganic materials 0.000 description 2
- 229910006414 SnNi Inorganic materials 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 229910000765 intermetallic Inorganic materials 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- LQBJWKCYZGMFEV-UHFFFAOYSA-N lead tin Chemical compound [Sn].[Pb] LQBJWKCYZGMFEV-UHFFFAOYSA-N 0.000 description 2
- 238000001465 metallisation Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052761 rare earth metal Inorganic materials 0.000 description 2
- 150000002910 rare earth metals Chemical class 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910008433 SnCU Inorganic materials 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- XUFUDVIAKKOUOK-UHFFFAOYSA-N [Cu].[Sb].[Ag].[Sn] Chemical compound [Cu].[Sb].[Ag].[Sn] XUFUDVIAKKOUOK-UHFFFAOYSA-N 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000004870 electrical engineering Methods 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 229910000597 tin-copper alloy Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/22—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
- B23K35/24—Selection of soldering or welding materials proper
- B23K35/26—Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
- B23K35/262—Sn as the principal constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C13/00—Alloys based on tin
Definitions
- the invention relates to a solder material based on tin or tin alloys for producing a solder joint between two parts of substrate metals made of iron, nickel, copper, silver or their alloys.
- solder solders When using lead-free solders, however, the effect of Ableg Schlos is much greater than lead-based solders. This depends on the one hand with the higher process temperatures, but also with increased process times necessary to achieve equally good wetting results of the lead-free solder on the substrate metals. Furthermore, the high tin content lead-free solder is far more aggressive than the known lead-containing solder. For example, pure tin, copper dissolves at the same temperatures about four times as fast as conventional tin-lead. Such high dissolution speeds mean that machine parts or materials with solder joints using such a soft solder are much more likely to be damaged or even lose their function. Typically, solder solders are used to braze and coat metallic parts of copper and copper alloys, nickel and nickel alloys, iron and iron alloys, and silver alloys.
- solder joints In electronics soldered switching assemblies are exposed to temperature changes in the switching operations. For this, the solder joints must have sufficient thermal fatigue strength. If this is not the case, coarsening of the microstructure of the soldering material at the soldering point occurs and possibly cracking which releases the electrical contact at the soldering point. The coarser and more ductile the solder material is, the sooner the circuit will fail.
- the object of the invention is therefore to provide an improved solder material for the joining technique in electronics, which leads to a lower Ableg fürsrate in the application. This object is achieved with a solder material having the features of claim 1.
- the alloying of alloying metals from the group of rare earths results in grain refinement of the soft solder.
- This grain refinement becomes visible in the uniform appearance of the metallic surface of the coating and the surfaces of the solder joints.
- recrystallization processes or material coarsening are delayed by thermal influence in the solder joint.
- This advantageously allows the use of the solder material according to the invention as a microdosed solder for soft soldering tasks in electronics, electrical engineering and precision engineering and this under, compared to the prior art, same and even more favorable conditions.
- the addition of rare earth is carried out via a so-called mischmetal.
- mischmetal This is understood to mean an alloy containing cerium, lanthanum and neodymium as main constituents and about 3% by weight of iron.
- a commercial mixed metal contains, in addition to the 3% by weight of iron, 45% by weight of cerium, 45% by weight of lanthanum and 5% by weight of neodymium. The rest are unavoidable impurities.
- This mischmetal is added in proportions by weight of 0.001 to 0.05% by weight, preferably together with 0.001 to 0.1% by weight of cobalt, of one of the abovementioned base alloys.
- the alloy Sn Cu3 Ce 0.01 Co 0.1 Ni 0.1 has proven to be well suited for high temperature applications.
- soldering agents additionally contain 0.001 to 0.01% by weight of phosphorus, which serves as a deoxidizer.
- solder materials according to the invention can be present in the form of bars, rods or powder in order to produce, for example, a solder bath.
- the solder materials can also be used to produce solid or flux-filled wires.
- these solder materials can be produced in the form of a film or as a molded part.
- An application of the solder material according to the invention as solder paste is also possible.
- solder joints for parts of substrate metals such as iron, nickel, copper or their alloys and silver alloys can be prepared in which the metallic surfaces of the substrate metals are coated with the solder material.
- Such metallic surfaces may be surfaces of printed circuit boards, metallic pads on electrical, electronic or mechanically functional components as well as other contact surfaces.
- solder joints can be made if the pieces of substrate metal are wires, strands, eyelets, or lugs.
- the preparation of the solder material can be done in various ways, namely from the pure metals or with the aid of master alloys.
- the master alloys are poured for further use in triangular bars or flat bars. These triangular or flat bars are suitable shapes to make accurate dosages for the target alloys.
- the production of 1000 kg of a SnCu soldering material is subsequently produced: First, the base alloy of 899.13 kg tin and 6.50 kg copper is prepared as usual. Then be 28.13 kg Sn 99.2 Ni 0.8 alloy 56.25 kg Sn 99.2 Co 0.8 alloy and 10.00 kg Sn 99.7 Ce 0.3 alloy added, melted and tempered to 500 °. After a half-hour rest, the mixture is stirred and the melt is cooled to 430 °. After removing the resulting ash, the sample is taken for analysis and pouring into 1kg bars.
- Lead-free solder alloys have higher rates of depletion than leaded solders due to their high tin content and higher working temperatures during soldering.
- the alloying is especially important when soldering thin layers in electronics.
- the most commonly used material for printed conductors on printed circuit boards is copper.
- the decalcifying of the copper means a change in the solder joint caused by the reaction between tin and copper.
- the substrates to be soldered and soldering tools that come into contact with the hot solder, attacked by the tin-containing alloys. The consequences are pitting and ultimately the destruction of the equipment.
- Table 1 shows deposition rates of known solders (Nos. 1 to 6) and solders according to the invention (Nos. 7 to 12), wherein in each case one solder of the same base alloy was used for comparison for a solder according to the invention.
- the Ableg istsrate of copper is about half as large in the solders used according to the invention, as in the comparable known solders. Therefore, it is possible to solder even with lead-free alloys thin layers or thin cables.
- Nickel deposition could not be determined using the same method since the rates of alloying were below 10 ⁇ m / hour.
- solder materials of the invention show drastically reduced Ablegleitersraten compared to known lead-free solders, so that dissolve metallization on components and circuit boards not so fast and the life of the soldering is extended.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Description
Die Erfindung betrifft ein Lotmaterial auf der Basis von Zinn oder Zinnlegierungen zum Herstellen einer Lötverbindung zwischen zwei Teilen aus Substratmetallen aus Eisen, Nickel, Kupfer, Silber oder deren Legierungen.The invention relates to a solder material based on tin or tin alloys for producing a solder joint between two parts of substrate metals made of iron, nickel, copper, silver or their alloys.
Bekannte Legierungen zum Weichlöten werden in der DIN EN 29453 sowie in der EN 61190-1-3 beschrieben. Diese Weichlotlegierungen besitzen einen Schmelzpunkt, der in der Regel weit unterhalb der zu lötenden metallischen Teile liegt. Beim Weichlöten kommt es durch den Kontakt des schmelzflüssigen Lotes mit dem Substratmetall zu einer Legierungsbildung sowie zur Bildung intermetallischer Phasen, wobei Diffusionsvorgänge eine wesentliche Rolle spielen. Die Legierungsbildung aus Lot und Substratmetall führt zu dem sogenannten Ablegieren des Substratmetalls an der Lotstelle. Insbesondere bei dünnen Substratmetallschichten führt dies zu unerwünschten Veränderungen und Einbußen der Funktionalität dieser Schichten bzw. auch der Lötverbindung. Vorbekannte, bleihaltige Weichlote erzielen zwar gute Lotverbindungen bei geringen Ablegierungsraten, aufgrund der Toxizität von Blei werden diese Weichlote jedoch mehr und mehr durch bleifreie Weichlote ersetzt. Bei der Verwendung von bleifreien Loten ist der Effekt des Ablegierens jedoch wesentlich größer als bei bleihaltigen Loten. Dies hängt einerseits mit den höheren Prozesstemperaturen, aber auch mit verlängerten Prozesszeiten zusammen, die notwendig sind, um gleich gute Benetzungsergebnisse des bleifreien Weichlotes auf den Substratmetallen zu erzielen. Des Weiteren ist das hochzinnhaltige bleifreie Weichlot weit aggressiver als die bekannten bleihaltigen Lote. So löst z.B. reines Zinn, Kupfer bei gleichen Temperaturen etwa viermal so schnell auf, wie übliches Zinn-Bleilot. Solch hohe Auflösungsgeschwindigkeiten bedingen, dass Maschinenteile oder Materialien mit Lötverbindungen unter Verwendung eines solches Weichlotes wesentlich eher geschädigt werden oder gar ihre Funktion einbüßen. Üblicherweise werden Zinn-Weichlote zum Verlöten und Beschichten metallischer Teile aus Kupfer und Kupferlegierungen, Nickel und Nickellegierungen, Eisen und Eisenlegierungen sowie Silberlegierungen verwendet.Known alloys for soft soldering are described in DIN EN 29453 and in EN 61190-1-3. These soft solder alloys have a melting point which is usually far below the metallic parts to be soldered. In soft soldering, the contact of the molten solder with the substrate metal causes alloying and the formation of intermetallic phases, with diffusion processes playing an essential role. The alloy formation of solder and substrate metal leads to the so-called Ablegieren the substrate metal at the Lotstelle. Especially with thin substrate metal layers, this leads to undesirable changes and losses in the functionality of these layers or of the solder joint. Although previously known lead-containing soft solders achieve good solder joints at low rates of ablation, due to the toxicity of lead these soft solders are increasingly being replaced by lead-free soft solders. When using lead-free solders, however, the effect of Ablegierens is much greater than lead-based solders. This depends on the one hand with the higher process temperatures, but also with increased process times necessary to achieve equally good wetting results of the lead-free solder on the substrate metals. Furthermore, the high tin content lead-free solder is far more aggressive than the known lead-containing solder. For example, pure tin, copper dissolves at the same temperatures about four times as fast as conventional tin-lead. Such high dissolution speeds mean that machine parts or materials with solder joints using such a soft solder are much more likely to be damaged or even lose their function. Typically, solder solders are used to braze and coat metallic parts of copper and copper alloys, nickel and nickel alloys, iron and iron alloys, and silver alloys.
In der Vergangenheit wurden daher viele Versuche unternommen, bleifreie Lote durch Erhöhung der Konzentration an solchen Legierungselementen im Weichlot zu verbessern, wie sie im Substratmetall vorhanden sind, beispielsweise Kupfer. Aus der Installationstechnik ist die Anwendung eines Weichlotes aus einer Sn97Cu3-Legierung für Kupferrohre bekannt. Diese übereutektische Legierung enthält demzufolge Kupfer in einer erhöhten Konzentration im Zinn-Weichlot, wodurch ein Herabsetzen der Geschwindigkeit des Ablegierens des Kupfers aus dem Kupferrohr erzielt wird. Dies funktioniert jedoch nur bei entsprechend hohen Löttemperaturen. Solche Bedingungen sind für andere Fügeprozesse, wie z.B. in der Elektronik, nicht anwendbar.In the past, therefore, many attempts have been made to improve lead-free solders by increasing the concentration of such alloying elements in soft solder as are present in the substrate metal, such as copper. From the installation technique, the use of a soft solder from a Sn97Cu3 alloy for copper pipes is known. This hypereutectic alloy accordingly contains copper in an increased concentration in the tin solder, thereby achieving a reduction in the rate of copper alloying out of the copper tube. However, this only works with correspondingly high soldering temperatures. Such conditions are for other joining processes, e.g. in electronics, not applicable.
Aus dem Patent
Aus dem Patent
Des Weiteren wird in der amerikanischen Patentanmeldung
In der Elektronik sind gelötete Schaltanordnungen Temperaturveränderungen bei den Schaltvorgängen ausgesetzt. Dazu müssen die Lötverbindungen eine ausreichende thermische Ermüdungsfestigkeit besitzen. Ist diese nicht gegeben, kommt es zu einer Vergröberung der Mikrostruktur des Lotmaterials an der Lötstelle und möglicherweise zu Rissbildungen, die den elektrischen Kontakt an der Lötstelle aufheben. Je gröber und duktiler das Lotmaterial ist, umso eher kommt es zu einem Ausfall der Schaltung.In electronics soldered switching assemblies are exposed to temperature changes in the switching operations. For this, the solder joints must have sufficient thermal fatigue strength. If this is not the case, coarsening of the microstructure of the soldering material at the soldering point occurs and possibly cracking which releases the electrical contact at the soldering point. The coarser and more ductile the solder material is, the sooner the circuit will fail.
Aus dem Dokument
Aufgabe der Erfindung ist es daher, ein verbessertes Lotmaterial für die Fügetechnik in der Elektronik bereitzustellen, welches im Anwendungsfall zu einer geringeren Ablegierungsrate führt. Diese Aufgabe wird mit einem Lotmaterial mit den Merkmalen des Anspruches 1 gelöst.The object of the invention is therefore to provide an improved solder material for the joining technique in electronics, which leads to a lower Ablegierungsrate in the application. This object is achieved with a solder material having the features of claim 1.
Die zu beschichtenden und verlötenden Teile sind üblicherweise aus den folgenden Substratmetallen: Kupfer und Kupferlegierung, Nickel und Nickellegierung, Eisen und Eisenlegierung sowie Silberlegierungen. Voraussetzung für die Verlötbarkeit dieser Substratmetalle ist eine gute Benetzbarkeit der metallischen Oberflächen der Teile mit dem schmelzflüssigen Weichlotmaterial. Für das erfindungsgemäße Lotmaterial wird als Basis Zinn, eine Zinn-Silber-Legierung, eine Zinn-Kupfer-Legierung, eine Zinn-Silber-Kupfer-Legierung oder einer der vorgenannten Basiswerkstoffe mit Gewichtsanteilen an Antimon eingesetzt. Einem solchen Weichlotvormaterial, das nachfolgend als Basislegierung bezeichnet wird, werden Legierungskomponenten, die mit dem Substratmetall intermetallische Verbindungen eingehen und noch nicht in der Basislegierung vorhanden sind, zugesetzt. Dies führt bei Anwendung des entstehenden Weichlotmaterials dazu, dass Ablegierungsreaktionen zurückgedrängt werden. Darüber hinaus wurde festgestellt, dass aufgrund der unbegrenzten Mischbarkeit der Elemente, Eisen, Kobalt und Nickel untereinander, diese Metalle auch gemeinsam im Lot eingesetzt werden können, wo sich die Wirkung der einzelnen Elemente addiert. Andererseits ist es auch möglich, nur eins dieser Elemente mit entsprechend größerem Gewichtsanteil in der Weichlotlegierung vorzusehen. Bei den früher eingesetzten Zinn-Blei-Weichloten wurden die Anteile an diesen Elementen, Eisen, Nickel, Kobalt, immer möglichst niedrig gehalten. Diese Elemente wurden als unerwünschte Verunreinigung angesehen, die den Lotprozess stören. Bei Zugabe dieser Elemente zu den vorgenannten Basislegierungen ist ein Gesamtgewichtsanteil bis 1 Gew% jedoch unkritisch. Bevorzugt werden jedoch Zugaben bis insgesamt 0,25 Gew%. Besonders bevorzugt sind Weichlotlegierungen mit:
- 0,001 bis 0,05 Gew% Eisen und 0,001 bis 0,15 Gew% Nickel oder
- 0,001 bis 0,05 Gew% Eisen und 0,001 bis 0,15 Gew% Kobalt oder
- 0,001 bis 0,2 Gew% Kobalt und 0,001 bis 0,05 Gew% Nickel.
- 0.001 to 0.05% by weight of iron and 0.001 to 0.15% by weight of nickel or
- 0.001 to 0.05% by weight of iron and 0.001 to 0.15% by weight of cobalt or
- 0.001 to 0.2% by weight of cobalt and 0.001 to 0.05% by weight of nickel.
Dieser dosierte Zusatz an Eisen, Kobalt und/oder Nickel bringt den Effekt hervor, dass sich die Ablegierungsraten reduzieren. Diese Dosierungen haben jedoch keinen Einfluss auf die physikalischen Eigenschaften des Weichlots, d.h. die Dichte, der Schmelzpunkt und die Kristallstruktur bleiben unverändert. Ebenso wird die Benetzungsfähigkeit des Weichlotes nicht beeinträchtigt. Es ergibt sich beim Beschichten der zu verlötenden Teile eine gleichmäßige Oberfläche auf den Substratmetallen.This metered addition of iron, cobalt and / or nickel has the effect of reducing the rates of depletion. However, these dosages have no effect on the physical properties of the solder, i. the density, the melting point and the crystal structure remain unchanged. Likewise, the wettability of the soft solder is not affected. It results in the coating of the parts to be soldered, a uniform surface on the substrate metals.
Darüber hinaus wird durch die Zulegierung von Legierungsmetallen aus der Gruppe der Seltenen Erden, wie beispielsweise Cer, Lanthan oder Neodym, eine Kornfeinerung des Weichlotes erzielt. Diese Kornfeinerung wird in dem gleichmäßigen Aussehen der metallischen Oberfläche der Beschichtung und der Oberflächen der Lötstellen sichtbar. Diese feinere Mikrostruktur führt dazu, dass in der Lotverbindung Rekristallisationsvorgänge bzw. Materialvergröberungen durch thermische Beeinflussung verzögert werden. Dies ermöglicht in vorteilhafter Weise den Einsatz des erfindungsgemäßen Lotmaterials als mikrodosiertes Lot für Weichlötaufgaben in der Elektronik, der Elektrotechnik und Feinwerktechnik und dies unter, im Vergleich zum Stand der Technik, gleichen und sogar günstigeren Bedingungen.In addition, the alloying of alloying metals from the group of rare earths, such as, for example, cerium, lanthanum or neodymium, results in grain refinement of the soft solder. This grain refinement becomes visible in the uniform appearance of the metallic surface of the coating and the surfaces of the solder joints. As a result of this finer microstructure, recrystallization processes or material coarsening are delayed by thermal influence in the solder joint. This advantageously allows the use of the solder material according to the invention as a microdosed solder for soft soldering tasks in electronics, electrical engineering and precision engineering and this under, compared to the prior art, same and even more favorable conditions.
Bei einer bevorzugten Ausführungsvariante erfolgt die Zugabe an Seltenen Erden über ein sogenanntes Mischmetall. Darunter wird eine Legierung verstanden, die als Hauptbestandteile Cer, Lanthan und Neodym enthält und etwa 3 Gew% Eisen. Ein handelsübliches Mischmetall enthält neben den 3 Gew% Eisen, 45 Gew% Cer, 45 Gew% Lanthan und 5 Gew% Neodym. Den Rest bilden unvermeidbare Verunreinigungen. Dieses Mischmetall wird in Gewichtsanteilen von 0,001 bis 0,05 Gew%, vorzugsweise zusammen mit 0,001 bis 0,1 Gew.% Kobalt einer der vorgenannten Basislegierungen zugesetzt.In a preferred embodiment, the addition of rare earth is carried out via a so-called mischmetal. This is understood to mean an alloy containing cerium, lanthanum and neodymium as main constituents and about 3% by weight of iron. A commercial mixed metal contains, in addition to the 3% by weight of iron, 45% by weight of cerium, 45% by weight of lanthanum and 5% by weight of neodymium. The rest are unavoidable impurities. This mischmetal is added in proportions by weight of 0.001 to 0.05% by weight, preferably together with 0.001 to 0.1% by weight of cobalt, of one of the abovementioned base alloys.
Verschiedene Untersuchungen haben ergeben, dass folgende Gewichtsverhältnisse in dem Lotmaterial von Vorteil sind, nämlich:
- Eisen zu Nickel 1:1 1 bis 1:3
- Eisen zu Kobalt 1:1 bis 1:4
- Kobalt zu Nickel 1:1 bis 5:1
- Mischmetall zu Kobalt 1:1 bis 1:4.
- Iron to nickel 1: 1 1 to 1: 3
- Iron to cobalt 1: 1 to 1: 4
- Cobalt to nickel 1: 1 to 5: 1
- Mixture to cobalt 1: 1 to 1: 4.
Für Lotaufgaben in der Elektronik, wo sich auf den Bauteiloberflächen Silbermetallisierungen u.a. mit Platin und/ oder Palladium-Anteilen befinden, hat sich eine zusätzliche Zulegierung von Palladium und/ oder Platin in Gewichtsanteilen von 0,001 bis 0,1 Gew% zu einem der vorgenannten Weichlotlegierungen als günstig herausgestellt.For soldering tasks in the electronics industry, where silver metallizations and similar can be found on the component surfaces. with platinum and / or palladium shares, an additional alloying of palladium and / or platinum in proportions by weight of 0.001 to 0.1% by weight to one of the aforementioned soft solder alloys has proven to be favorable.
Nachfolgend werden erprobte Ausführungsvarianten von Lotmitteln aufgeführt, die zu dauerhaft zuverlässigen Lötstellen geführt haben. Diese Lotbäder oder Lotpasten enthalten erfindungsgemäße Lotmaterialien der Zusammensetzung:
- Sn Cu 0,7 Ce 0,03 Co 0,08 Ni 0,02 Pd 0,004 (Lotbad)
- Sn Ag 3,7 Cu 0,6 La 0,04 Fe 0,02 Ni 0,04 Pt 0,005 (Lotpaste)
- Sn Ag 3,6 Cu 0,6 La 0,04 Fe 0,01 Co 0,04 Pd 0,01 (Lotpaste)
- Sn Ag 3,5 MM* 0,05 Co 0,08 Pd 0,005 (Lotpaste)
*) Mischmetall.
- Sn Cu 0.7 Ce 0.03 Co 0.08 Ni 0.02 Pd 0.004 (solder bath)
- Sn Ag 3.7 Cu 0.6 La 0.04 Fe 0.02 Ni 0.04 Pt 0.005 (solder paste)
- Sn Ag 3.6 Cu 0.6 La 0.04 Fe 0.01 Co 0.04 Pd 0.01 (solder paste)
- Sn Ag 3.5 MM * 0.05 Co 0.08 Pd 0.005 (solder paste)
*) Mischmetal.
Darüber hinaus hat sich die Legierung Sn Cu3 Ce 0,01 Co 0,1 Ni 0,1 für Hochtemperaturanwendungen als gut tauglich erwiesen.In addition, the alloy Sn Cu3 Ce 0.01 Co 0.1 Ni 0.1 has proven to be well suited for high temperature applications.
Weitere Ausführungsvarianten von Lotmitteln enthalten zusätzlich 0,001 bis 0,01 Gew% Phosphor, welches als Desoxidationsmittel dient.Further variants of soldering agents additionally contain 0.001 to 0.01% by weight of phosphorus, which serves as a deoxidizer.
Die erfindungsgemäßen Lotmaterialien können in Form von Barren, Stangen oder Pulver vorliegen, um daraus beispielsweise ein Lötbad herzustellen. Aus den Lotmaterialien können auch massive oder flussmittelgefüllte Drähte hergestellt werden. Für besondere Anwendungen sind diese Lotmaterialien in Form einer Folie oder als Formteil herstellbar. Eine Applikation des erfindungsgemäßen Lotmaterials als Lotpaste ist ebenfalls möglich. Unter diesen Voraussetzungen lassen sich Lötverbindungen für Teile aus Substratmetallen, wie beispielsweise Eisen, Nickel, Kupfer oder deren Legierungen sowie Silberlegierungen herstellen, in dem die metallischen Flächen der Substratmetalle mit dem Lotmaterial beschichtet werden. Solche metallischen Flächen können Oberflächen von Leiterplatten, metallische Anschlussflächen an elektrischen, elektronischen oder mechanisch funktionellen Bauteilen sowie anderweitige Kontaktflächen sein. Auch lassen sich Lötverbindungen herstellen, wenn die Teile aus Substratmetall Drähte, Litzen, Ösen oder Kabelschuhe sind.The solder materials according to the invention can be present in the form of bars, rods or powder in order to produce, for example, a solder bath. The solder materials can also be used to produce solid or flux-filled wires. For special applications, these solder materials can be produced in the form of a film or as a molded part. An application of the solder material according to the invention as solder paste is also possible. Under these conditions, solder joints for parts of substrate metals, such as iron, nickel, copper or their alloys and silver alloys can be prepared in which the metallic surfaces of the substrate metals are coated with the solder material. Such metallic surfaces may be surfaces of printed circuit boards, metallic pads on electrical, electronic or mechanically functional components as well as other contact surfaces. Also, solder joints can be made if the pieces of substrate metal are wires, strands, eyelets, or lugs.
Die Herstellung des Lotmaterials kann auf verschiedene Weise erfolgen, nämlich aus den Reinmetallen oder unter Zuhilfenahme von Vorlegierungen.The preparation of the solder material can be done in various ways, namely from the pure metals or with the aid of master alloys.
Es gibt wenig Probleme Zinn-Silber-, Zinn-Kupfer- oder Zinn-Silber-Kupfer-Legierungen aus Reinmetallen im Produktionsmaßstab herzustellen, weil die Löslichkeit geringer Mengen an Silber und/oder Kupfer in reinem Zinn bei Temperaturen bis 400° schon relativ hoch ist. Anders ist dies jedoch, wenn man Eisen, Cobalt, Nickel oder Elemente der seltenen Erden zulegieren will, deren Lösungsgeschwindigkeit in einer Zinnschmelze relativ gering ist. Für akzeptable Lösungsgeschwindigkeiten benötigt man erheblich höhere Temperaturen. Daher werden bei der Herstellung der erfindungsgemäßen Lötlegierungen günstiger Weise Vorlegierungen verwendet.There are few problems to produce tin-silver, tin-copper or tin-silver-copper alloys from pure metals on a production scale, because the solubility of small amounts of silver and / or copper in pure tin at temperatures up to 400 ° is already relatively high , However, this is different if one wants to add iron, cobalt, nickel or elements of the rare earth whose dissolution rate in a tin melt is relatively low. For acceptable dissolution rates, significantly higher temperatures are needed. Therefore, master alloys are favorably used in the production of the solder alloys according to the invention.
Aus den reinen Metallen (99,9 Gew%) Eisen, Cobalt, Nickel und Cer wurden jeweils separat mit Reinzinn bei ca. 800° folgende Vorlegierungen hergestellt:
- Sn 99,8 Fe 0,2
- Sn 99,2 Co 0,8
- Sn 99,2 Ni 0,8
- Sn 99,7 Ce 0,3.
- Sn 99.8 Fe 0.2
- Sn 99.2 Co 0.8
- Sn 99.2 Ni 0.8
- Sn 99.7 Ce 0.3.
Als ungünstig haben sich höhere Gehalte der Legierungskomponenten erwiesen, denn es besteht die Gefahr, dass die sich bildenden intermetallischen Phasen beim Abkühlen und Erstarren zu sehr separieren. Diese sogenannten. Seigerungen führen dann zu Inhomogenitäten in der Vorlegierung. Die Vorlegierungen werden zur weiteren Verwendung in Dreikantstangen oder Flachstangen abgegossen. Diese Dreikant- oder Flachstangen sind geeignete Formen, um genaue Dosierungen für die Ziellegierungen vorzunehmen.Higher contents of the alloy components have proved unfavorable, because there is a risk that the forming intermetallic phases separate too much during cooling and solidification. These so-called. Seigerungen then lead to inhomogeneities in the master alloy. The master alloys are poured for further use in triangular bars or flat bars. These triangular or flat bars are suitable shapes to make accurate dosages for the target alloys.
Beispielhaft wird nachfolgend die Herstellung von 1000 kg eines SnCu-Lotmaterials hergestellt:
Zunächst wird die Basislegierung aus 899,13 kg Zinn und 6,50 kg Kupfer wie üblich hergestellt. Anschließend werden
First, the base alloy of 899.13 kg tin and 6.50 kg copper is prepared as usual. Then be
Die Analyse des obigen Ansatzes mittels eines Funkenspektrometers ergab folgende Zusammensetzung in Gew%:
Die Herstellung anderer erfindungsgemäßer Legierungen kann auf analoge Weise vorgenommen werden.The preparation of other alloys according to the invention can be carried out in an analogous manner.
Bleifreie Lotlegierungen haben aufgrund des hohen Zinngehaltes und der höheren Arbeitstemperaturen beim Löten höhere Ablegierungsraten als bleihaltige Lote. Das Ablegieren ist insbesondere beim Weichlöten dünner Schichten in der Elektronik zu beachten. Das meistbenutzte Material für Leiterbahnen auf Leiterplatten ist Kupfer. Das Ablegieren des Kupfers bedeutet eine Veränderung der Lötstelle, die durch Reaktion zwischen Zinn und Kupfer verursacht ist. Neben den zu lötenden Substraten werden auch Lötwerkzeuge, die mit dem heißen Lot in Kontakt kommen, von den zinnhaltigen Legierungen angegriffen. Die Folgen sind Lochfraß und letztendlich die Zerstörung der Geräte.Lead-free solder alloys have higher rates of depletion than leaded solders due to their high tin content and higher working temperatures during soldering. The alloying is especially important when soldering thin layers in electronics. The most commonly used material for printed conductors on printed circuit boards is copper. The decalcifying of the copper means a change in the solder joint caused by the reaction between tin and copper. In addition to the substrates to be soldered and soldering tools that come into contact with the hot solder, attacked by the tin-containing alloys. The consequences are pitting and ultimately the destruction of the equipment.
Ablegierungsversuche mit erfindungsgemäßen Lotmaterial wurden an Kupfer- und Nickelsubstratmetallen vorgenommen. Dazu wurde der Kupfer- bzw. Nickelwerkstoff bei hoher Temperatur in das flüssige Lot getaucht. Damit das Lot den Werkstoff gut benetzt, wurde ein Flussmittel eingesetzt.Ablegierungsversuche with solder material according to the invention were made on copper and nickel substrate metals. For this purpose, the copper or nickel material was immersed in the liquid solder at high temperature. So that the solder wets the material well, a flux was used.
Die Tabelle 1 zeigt Ablegierungsraten von bekannten Loten (Nr. 1 bis 6) und erfindungsgemäßen Loten (Nr. 7 bis 12), wobei jeweils für ein erfindungsgemäßes Lot ein Lot der gleichen Basislegierung zum Vergleich herangezogen wurde.Table 1 shows deposition rates of known solders (Nos. 1 to 6) and solders according to the invention (Nos. 7 to 12), wherein in each case one solder of the same base alloy was used for comparison for a solder according to the invention.
Deutlich sind die wesentlich geringeren Ablegierungsraten für Nr. 7 bis 12 im Vergleich zu Nr. 1 bis 6.The considerably lower rates of ablation for Nos. 7 to 12 are clear in comparison to Nos. 1 to 6.
Den größten Unterschied findet man bei den Zinn-Silber-Kupfer-Legierungen (Nr. 8, 9 bzw. Nr. 2, 3). Die Ablegierung bei höheren Temperaturen (400° C) ist wesentlich höher, aber auch hier zeigt sich die vorteilhafte Reduzierung der Ablegierung bei Nr. 12 im Vergleich zu Nr. 6.
Die Ablegierungsrate von Kupfer ist in den verwendeten erfindungsgemäßen Loten etwa halb so groß, wie bei den vergleichbaren bekannten Loten. Daher ist es möglich auch mit bleifreien Legierungen dünne Schichten oder dünne Kabel zu löten.The Ablegierungsrate of copper is about half as large in the solders used according to the invention, as in the comparable known solders. Therefore, it is possible to solder even with lead-free alloys thin layers or thin cables.
Die Ablegierung von Nickel war mit gleicher Methode nicht zu ermitteln, da die Ablegierungsraten unter 10 µm/Stunde lagen.Nickel deposition could not be determined using the same method since the rates of alloying were below 10 μm / hour.
Die erfindungsgemäßen Lotmaterialien zeigen drastisch reduzierte Ablegierungsraten gegenüber bekannten bleifreien Loten, so dass sich Metallisierungen auf Bauteilen und Leiterplatten nicht so schnell auflösen und die Lebensdauer der Lötgeräte verlängert wird.The solder materials of the invention show drastically reduced Ablegierungsraten compared to known lead-free solders, so that dissolve metallization on components and circuit boards not so fast and the life of the soldering is extended.
Claims (17)
- Soldering material with low rates of dissolution to establish a solder connection for electrical and/or electronic components, whereby, the soldering material features a compound of
0.2 to 5% weight silver and/or copper, 0.001 to 0.25% weight cobalt or a minimum of two elements selected from the group iron, cobalt, nickel, 0.001 to 0.5% weight of a component selected from the group of the seldom earths 0.001 to 0.1 % weight palladium or platinum, 0.001 to 0.01% weight phosphorous, rest tin and usual contamination - Soldering material according to claim 1, characterized in that the soldering material contains 0.001 to 0.05% weight of iron and 0.001 to 0.15% weight of nickel.
- Soldering material according to claim 2, characterized in that the soldering material contains iron and nickel in a ratio of 1:1 to 1:3.
- Soldering material according to claim 1, characterized in that the soldering material contains 0.001 to 0.05% weight of iron and 0.001 to 0.15% weight of cobalt.
- Soldering material according to claim 4, characterized in that the soldering material contains iron and cobalt in a ratio of 1:1 to 1:4.
- Soldering material according to claim 1, characterized in that the soldering material contains 0.001 to 0.2% weight of cobalt and 0.001 to 0.05% weight of nickel.
- Soldering material according to claim 6, characterized in that the soldering material contains cobalt and nickel in a ratio of 1:1 to 5:1.
- Soldering material according to claim 1, characterized in that the soldering material contains 0.001 to 0.2% weight of cobalt.
- Soldering material according to claims 1 to 8, characterized in that the soldering material contains 0.001 to 0.05% weight of a minimum of one alloying components selected from the group of seldom earths preferably cerium and/or lanthanum and/or neodymium.
- Soldering material according to claims 1 to 9, characterized in that it is present in the form of ingots or rods or a powder or as solid wire or as wire filled with liquid or as film or as a formed part or as soldering paste.
- Using the soldering material according to one of the claims 1 to 10 for solder connection between two parts of the same or different substrate metals, contained as the main components iron or nickel or copper.
- Using the soldering material according to claim 1 with palladium or platinum as a solder connection two parts made from substrate metals containing silver.
- Using the soldering material according to one of the claims 1 to 10 for solder connections characterized in that the parts made from substrate metal are metallic surfaces on printed circuit boards or metallic connection surfaces on electrical, electronic and mechanical functional components or other contact surfaces.
- Using the soldering material according to one of the claims 1 to 10 for solder connections characterized in that the parts made from substrate metal are wires, strands, terminal lugs or cable shoes.
- Procedure to establish a solder connection according to claim 1, characterized in that the basis for the soldering material is inserted in tin or tin alloy and alloying components are added in the form of metals or composition metals, up to a compound of:
0.2 to 5% weight silver and/or copper, 0.001 to 0.25% weight cobalt or a minimum of two elements selected from the group iron, cobalt, nickel, 0.001 to 0.5% weight of a component selected from the group of the seldom earths 0.001 to 0.1 % weight palladium or platinum, 0.001 to 0.01% weight phosphorous, rest tin and usual contamination. - Procedure according to claim 15, characterized in that the seldom earths are added in the form of composition metal, preferably 0.001 to 0.05% weight of composition metal, whereby, composition metal is an alloy of 3% weight iron and 45% weight cerium and 45% weight lanthanum and 5% weight neodymium and the rest other seldom earths and unavoidable contamination.
- Procedure according to claim 16, characterized in that 0.001 to 0.1 % weight cobalt is added and a ratio of composition metal to cobalt is set at from 1:1 to 1:4.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE200410050441 DE102004050441A1 (en) | 2004-10-16 | 2004-10-16 | solder |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1647352A1 EP1647352A1 (en) | 2006-04-19 |
EP1647352B1 true EP1647352B1 (en) | 2014-08-20 |
Family
ID=35636947
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP20050022322 Active EP1647352B1 (en) | 2004-10-16 | 2005-10-13 | Solder material |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP1647352B1 (en) |
DE (1) | DE102004050441A1 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102006047764A1 (en) * | 2006-10-06 | 2008-04-10 | W.C. Heraeus Gmbh | Lead-free soft solder with improved properties at temperatures> 150 ° C |
CN100439027C (en) * | 2007-01-18 | 2008-12-03 | 广州有色金属研究院 | Lead-free solder alloys for copper-aluminum dissimilar metal soldering |
CN105220012A (en) * | 2015-10-29 | 2016-01-06 | 无锡桥阳机械制造有限公司 | A kind of preparation of nano porous metal material |
CN106001981A (en) * | 2016-06-23 | 2016-10-12 | 南昌大学 | Lead-free solder added with rare earth carbonate and preparation method |
CN109158794B (en) * | 2018-10-12 | 2021-04-30 | 苏州优诺电子材料科技有限公司 | Bismuth-containing alloy solder paste composition |
CN115365699B (en) * | 2022-09-19 | 2024-08-23 | 云南锡业新材料有限公司 | Solder joint microcrack-free Sn-Ag-Cu lead-free solder alloy and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB671079A (en) * | 1949-11-16 | 1952-04-30 | Richard Chadwick | Improvements in or relating to solders |
US3949118A (en) * | 1972-07-21 | 1976-04-06 | Asahi Glass Company, Ltd. | Process for soldering difficultly solderable material having oxide surface and a solder alloy therefor |
JPS57160594A (en) * | 1981-03-30 | 1982-10-02 | Nippon Genma:Kk | Soldering alloy for preventing silver-disolving |
JPH0327441A (en) * | 1989-06-23 | 1991-02-05 | Nippon Telegr & Teleph Corp <Ntt> | System for utilizing data base in knowledge information processing system |
JP2807008B2 (en) * | 1989-12-29 | 1998-09-30 | 田中電子工業株式会社 | Pb alloy solder with excellent thermal fatigue properties |
JP3027441B2 (en) | 1991-07-08 | 2000-04-04 | 千住金属工業株式会社 | High temperature solder |
US5527628A (en) * | 1993-07-20 | 1996-06-18 | Iowa State University Research Foudation, Inc. | Pb-free Sn-Ag-Cu ternary eutectic solder |
US5837191A (en) | 1996-10-22 | 1998-11-17 | Johnson Manufacturing Company | Lead-free solder |
US5863493A (en) | 1996-12-16 | 1999-01-26 | Ford Motor Company | Lead-free solder compositions |
US6231691B1 (en) * | 1997-02-10 | 2001-05-15 | Iowa State University Research Foundation, Inc. | Lead-free solder |
DE19953670A1 (en) * | 1999-11-08 | 2001-05-23 | Euromat Gmbh | Solder alloy |
JP2003211283A (en) * | 2002-01-22 | 2003-07-29 | Japan Science & Technology Corp | Lead-free solder material |
US20040141873A1 (en) * | 2003-01-22 | 2004-07-22 | Tadashi Takemoto | Solder composition substantially free of lead |
-
2004
- 2004-10-16 DE DE200410050441 patent/DE102004050441A1/en not_active Withdrawn
-
2005
- 2005-10-13 EP EP20050022322 patent/EP1647352B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
EP1647352A1 (en) | 2006-04-19 |
DE102004050441A1 (en) | 2006-04-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE102013014528B4 (en) | Cadmium and phosphorus-free solder alloy, a layer solder, a soldered article, a combination of a solder alloy and a method for joining metal parts | |
DE112014000475B4 (en) | solder alloys | |
DE112006002497B4 (en) | Process for producing a solder preform | |
DE69524912T2 (en) | Lead-free alloys for soft soldering | |
DE60217199T2 (en) | Lead-free soft solder and soft solder connection | |
DE69423255T2 (en) | Lead-free soft solder with improved mechanical properties. | |
EP1617968B1 (en) | Soldering material based on sn ag and cu | |
DE102012104948B4 (en) | solder alloys and arrangements | |
DE69521762T2 (en) | Lead-free, low-melting solder with improved mechanical properties and objects associated with this solder | |
US20070178007A1 (en) | Lead-free solder, solder joint product and electronic component | |
DE112011104328B4 (en) | Pb-free solder alloy containing predominantly Zn | |
WO2008043482A1 (en) | Lead-free soft solder having improved properties at elevated temperatures | |
DE19816671A1 (en) | Lead-free tin-antimony-silver solder alloy | |
DE112011102163B4 (en) | Pb-free solder alloy | |
EP1651786B1 (en) | Brazing solder alloy based on copper and method for brazing | |
DE112011102028B4 (en) | Bi-Al-Zn-based Pb-free solder alloy | |
DE202009019184U1 (en) | solder alloy | |
EP1647352B1 (en) | Solder material | |
DE112011105017B4 (en) | Pb-free solder paste | |
DE69408689T2 (en) | DIFFUSION CONNECTING MATERIALS WITH SILVER-GERMANIUM ALLOYS AND SILVER-GERMANIUM ALLOY FOR USE IN THIS METHOD | |
AT393697B (en) | IMPROVED COPPER-BASED METAL ALLOY, IN PARTICULAR FOR THE CONSTRUCTION OF ELECTRONIC COMPONENTS | |
DE3720594C2 (en) | ||
DE202013009641U1 (en) | alloys | |
WO2023052256A1 (en) | Non-eutectic sn-bi-in solder alloys | |
DE69523175T2 (en) | SUBSTRATE COATED WITH A SINGLE SOLDER ALLOY |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
AX | Request for extension of the european patent |
Extension state: AL BA HR MK YU |
|
17P | Request for examination filed |
Effective date: 20060413 |
|
AKX | Designation fees paid |
Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
17Q | First examination report despatched |
Effective date: 20100413 |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
INTG | Intention to grant announced |
Effective date: 20140319 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: REF Ref document number: 683171 Country of ref document: AT Kind code of ref document: T Effective date: 20140915 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502005014486 Country of ref document: DE Effective date: 20141002 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: VDEP Effective date: 20140820 |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG4D |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141120 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141222 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141121 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141220 Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005014486 Country of ref document: DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: LU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20141013 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
26N | No opposition filed |
Effective date: 20150521 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20141120 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20150630 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141120 Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20141013 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20140820 Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20051013 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20161026 Year of fee payment: 12 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 683171 Country of ref document: AT Kind code of ref document: T Effective date: 20171013 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502005014486 Country of ref document: DE Representative=s name: BUSE MENTZEL LUDEWIG PATENTANWALTSKANZLEI, DE Ref country code: DE Ref legal event code: R081 Ref document number: 502005014486 Country of ref document: DE Owner name: STANNOL GMBH & CO. KG, DE Free format text: FORMER OWNER: STANNOL GMBH, 42283 WUPPERTAL, DE |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20171013 |
|
P01 | Opt-out of the competence of the unified patent court (upc) registered |
Effective date: 20230530 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20240918 Year of fee payment: 20 |