[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

JP2003211283A - Lead-free solder material - Google Patents

Lead-free solder material

Info

Publication number
JP2003211283A
JP2003211283A JP2002012446A JP2002012446A JP2003211283A JP 2003211283 A JP2003211283 A JP 2003211283A JP 2002012446 A JP2002012446 A JP 2002012446A JP 2002012446 A JP2002012446 A JP 2002012446A JP 2003211283 A JP2003211283 A JP 2003211283A
Authority
JP
Japan
Prior art keywords
alloy
phase
lead
composition
eutectic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002012446A
Other languages
Japanese (ja)
Inventor
Toshio Narita
敏夫 成田
Junichi Tanaka
順一 田中
Daiki Kobayashi
大樹 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Corp filed Critical Japan Science and Technology Corp
Priority to JP2002012446A priority Critical patent/JP2003211283A/en
Priority to TW92101105A priority patent/TW200302147A/en
Priority to PCT/JP2003/000470 priority patent/WO2003061897A1/en
Publication of JP2003211283A publication Critical patent/JP2003211283A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/262Sn as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/26Selection of soldering or welding materials proper with the principal constituent melting at less than 400 degrees C
    • B23K35/264Bi as the principal constituent

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Electric Connection Of Electric Components To Printed Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an Sn-Ag binary lead-free solder alloy material which is made finer in the solidified structure not depending upon a cooling rate during packaging and is reduced in the consumption of Ag by subjecting a rough and large primary crystal β-Sn phase to grain refining. <P>SOLUTION: Al is added to the Sn-Ag binary alloy to induce crystal formation in a manner of multiple acts by solidification accompanied by heteronucleation, by which the grain refining of the material structure is performed. As the more specific composition, 0.1 to 5 wt.% Al is incorporated into the alloy consisting of 1 to 5 wt.% Ag and the balance Sn. Further, 40 to 60 wt.% Bi or 40 to 50 wt.% In is incorporated in addition to the above composition into the alloy. The above composition is otherwise formed of 0.1 to 3 wt.% Cu and further, 0.5 to 5 wt.% one or 2 kinds or more of the elements selected from In, Bi, Ni, Au, Sb, Zn, Mg, La, and Ce are incorporated into the alloy. In the structure of Figure (a), the primary crystal β-Sn phase is made finer in the grains and the gaps thereof are packed with fine eutectic structures but in a comparison example not containing Al of (b) and (c), the rough and large primary crystal β-Sn phase occupies much thereof. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明が属する技術分野】エレクトロニクス産業におけ
る電気・電子部品の回路接続や金属部材の接合に用いる
軟ろう材、いわゆるはんだ材料であって、特に鉛を排し
たいわゆる鉛フリーはんだ材料に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a so-called solder material, which is a soft brazing material used for circuit connection of electric / electronic parts and joining of metal members in the electronics industry, and more particularly to a so-called lead-free solder material from which lead is eliminated.

【0002】[0002]

【従来の技術】はんだ材料は、エレクトロニクス産業に
おける電子部品の接続・固定などの実装を始めとし、電
気的接続、機械的固着手段として広く用いられている
が、従来からはんだとして用いられているSn−Pb系
合金は、その含有する鉛のため作業環境はもとより、使
用済みの製品の廃棄・回収に際して毒性が問題とされ、
近年、これらの環境に対する負荷を低減或いは解消する
ため、これらの代替材料として鉛を含まない、いわゆる
鉛フリーはんだ材料の開発が進められている。これらの
はんだ材料は、エレクトロニクス実装時にその対象とす
る電子部品やレジスト材などへ熱損傷を生じない、或い
は樹脂類を含有する基板などの歪を生じないことなどが
要求され、このためSn−Pb系はんだと同様に低融点
であること、接続・固定部位の強度、信頼性などが求め
られる。特に、最近のエレクトロニクス実装では、部品
などの微細化、高密度表面実装化の進展に伴い、これら
の要請は一層厳しいものとなっている。このため、新た
な鉛フリーはんだ材料では、これらの条件に適合する融
点降下と結晶組織微細化を狙って、Snを主成分とし、
Ag及びさらに他の成分元素を加えた共晶合金系の組成
が選択される。これらのはんだ材料として、Sn−Ag
共晶及び更にこれらにCu、Bi、Inを個別に或いは
組み合わせて添加して、融点を降下させ、機械的特性な
どを向上したものが日米欧各国で報告されている。(特
開200-94181号公報、特開平7-51883号公
報など参照。)
2. Description of the Related Art A solder material has been widely used as a means for electrical connection and mechanical fixing, such as mounting and connecting electronic parts in the electronics industry. -Pb-based alloys contain lead, which poses a toxicity problem not only in the working environment but also in the disposal and recovery of used products.
In recent years, in order to reduce or eliminate the load on the environment, development of so-called lead-free solder material containing no lead as an alternative material for these materials has been under way. These solder materials are required not to cause heat damage to the electronic components, resist materials, etc. targeted for the electronic mounting, or to prevent distortion of a substrate containing resins, etc., and therefore Sn-Pb. Similar to solders, it must have a low melting point and the strength and reliability of the connecting / fixing parts. Particularly, in recent electronic packaging, these requirements have become more severe with the progress of miniaturization of parts and the like and high density surface mounting. Therefore, in the new lead-free solder material, Sn is the main component with the aim of lowering the melting point and refining the crystal structure that meet these conditions,
The composition of the eutectic alloy system containing Ag and other constituent elements is selected. As these solder materials, Sn-Ag
It has been reported in Japan, the United States and Europe that the eutectic and further Cu, Bi and In are added individually or in combination to lower the melting point and improve the mechanical properties. (See JP-A-200-94181 and JP-A-7-51883.)

【0003】しかし、これらのSn系はんだ合金は、一
般に電子部品の実装におけるはんだ付けに適用すると、
共晶組成であるにもかかわらず、実際に形成された金属
組織は微細な共晶組織となり難く、通常粗大な初晶β―
Sn相が発達してこれと共晶相との2相混合組織とな
り、材料強度などの機械的特性の低下を来たすことが問
題となっている。また、このような状況下で、有力な代
替はんだ材料として実用化が進められているSn-3.
0Ag-0.5Cu合金などにおいても、高価なAgの含
有量が多く、原価コストが著しく高くなることが避けら
れないため、含有Ag量の低減が望まれているが、これ
らの組成を変えて当初の共晶組成を外れると、意図した
微細な共晶組織が得られず、所期の機械的特性が得られ
ない。
However, when these Sn-based solder alloys are generally applied to soldering in mounting electronic parts,
Despite the eutectic composition, the actually formed metallographic structure is unlikely to be a fine eutectic structure and is usually coarse primary β-
There is a problem that the Sn phase develops to form a two-phase mixed structure of the Sn phase and the eutectic phase, resulting in deterioration of mechanical properties such as material strength. In addition, under such circumstances, Sn-3.
Even in 0Ag-0.5Cu alloy and the like, it is unavoidable that the content of expensive Ag is large and the cost cost becomes significantly high. Therefore, it is desired to reduce the content of Ag. If the initial eutectic composition is deviated, the intended fine eutectic structure cannot be obtained, and desired mechanical properties cannot be obtained.

【0004】そしてこのような事情から、これらのはん
だ合金材料を電子部品の実装に適用するに際しては、フ
ロー法、リフロー法いずれにおいても搭載した電子部品
や基板も含めて加熱され、その後冷却若しくは放冷され
る過程ではんだ材料の溶解・凝固が進行するが、この冷
却速度は実装部品や工程によって著しく異なり、このた
め、実装条件下の冷却速度ではいずれも目論見とおりの
共晶組織が得られず、得られた金属組織は必ずしも均質
一様な組織とならないため、品質も安定しない。
Under these circumstances, when applying these solder alloy materials to the mounting of electronic parts, both the flow method and the reflow method are heated including the mounted electronic parts and substrate, and then cooled or released. Although the melting and solidification of the solder material progresses during the cooling process, this cooling rate varies significantly depending on the mounting components and process, and therefore the eutectic structure as intended cannot be obtained at any cooling rate under the mounting conditions. The quality of the obtained metal structure is not stable because it does not always have a uniform structure.

【0005】[0005]

【発明が解決しようとする課題】Sn系鉛フリーはんだ
材料において、材料組織の微細化とそれによる機械的特
性の向上、特に、実装条件下などの冷却速度に影響され
ない、微細材料組織の形成と機械的特性の向上を図ると
共に、Ag含有量を低減した亜共晶組成を含む広い成分
組成範囲における、機械的特性を維持・向上する。
In the Sn-based lead-free solder material, the fineness of the material structure and the improvement of the mechanical properties due to it, in particular, the formation of the fine material structure which is not affected by the cooling rate under the mounting conditions and the like. The mechanical properties are improved, and the mechanical properties are maintained / improved in a wide range of component compositions including a hypoeutectic composition with a reduced Ag content.

【0006】[0006]

【課題を解決するための手段】本発明は、Sn−Ag二
元系合金において、Alを添加し、異質核生成を伴う凝
固によって、材料組織を微細化した鉛フリーはんだ材料
であり、さらに上記Agを1wt%〜5wt%、同じくC
u:0.1〜3wt%、残部Snとした合金に、Al:0.1〜
5wt%含有せしめてなる鉛フリーはんだ合金材料であ
る。また、上記組成に加え、Bi:40〜60wt%又は
In:40〜50wt%を含有せしめ、或いは、さらに上
記組成において、Cu:0.1〜3wt%とし、さらにI
n,Bi,Ni,Au,Sb,Zn,Mg,La,Ce
から選択した元素のいずれか1乃至2以上を0.1〜5wt
% 含有せしめてなる鉛フリーはんだ材料である。
The present invention is a lead-free solder material in which a Sn—Ag binary alloy is added with Al and the material structure is refined by solidification accompanied by heterogeneous nucleation. 1 wt% to 5 wt% Ag, also C
u: 0.1 to 3 wt%, with the balance being Sn, Al: 0.1 to
This is a lead-free solder alloy material containing 5 wt%. In addition to the above composition, Bi: 40 to 60 wt% or In: 40 to 50 wt% is added, or in the above composition, Cu: 0.1 to 3 wt%, and I:
n, Bi, Ni, Au, Sb, Zn, Mg, La, Ce
0.1 to 5 wt% of any one or more of the elements selected from
% This is a lead-free solder material that contains all the elements.

【0007】本発明の合金組成は、粗大な初晶β―Sn
相が晶出する範囲にあるが、Alが少量添加されている
ことにより、冷却速度に影響されず、はんだ実装条件下
の冷却速度において金属組織の微細化を達成できる。そ
の機構について、本発明者らは、これらのSn系はんだ
合金が共晶組織であるにもかかわらず、実装条件下では
材料組織の微細化がなされず、粗大な初晶β―Sn相が
晶出する原因について検討し、これらの合金は平衡条件
下での凝固過程と異なり、ある冷却速度を与えると共晶
組成が高Ag側にシフトして実際の凝固組織は共晶組成
とはならないことに着目した。その組織は、初晶β-S
n相とβ-Sn相及びAg3Sn金属間化合物の共晶が晶
出し、初晶で晶出するβ-Sn相は、共晶相に比較して
柔らかく、粒径も大きいために材料強度の低下を来たし
ていた。従って、初晶で晶出するβ-Sn相を微細化し
て均一な組織が得られると材料強度も向上するが、従来
のSn−Ag系合金では共晶の組成領域をコントロール
して組織として全面共晶相とすることは困難であること
から、本発明者らは、溶湯中に異質核を形成し、凝固過
程で同時多発的に結晶を晶出させることを着想した。
The alloy composition of the present invention has a coarse primary crystal β-Sn.
Although the phase is in the range where it crystallizes, a small amount of Al is added, so that the cooling rate is not affected and the refinement of the metal structure can be achieved at the cooling rate under the solder mounting condition. Regarding the mechanism, the inventors of the present invention did not refine the material structure under the mounting conditions even though these Sn-based solder alloys had a eutectic structure, and formed a coarse primary crystal β-Sn phase. The cause of this is examined, and unlike the solidification process under equilibrium conditions, when given a certain cooling rate, the eutectic composition shifts to the high Ag side and the actual solidification structure does not become the eutectic composition. I focused on. Its structure is primary β-S
The eutectic of the n-phase, β-Sn phase and Ag 3 Sn intermetallic compound crystallizes out, and the β-Sn phase that crystallizes in the primary crystal is softer than the eutectic phase and has a large grain size, so the material strength is high. Was coming of decline. Therefore, if the β-Sn phase that crystallizes in the primary crystal is refined and a uniform structure is obtained, the material strength is also improved, but in the conventional Sn-Ag based alloy, the composition region of the eutectic is controlled to form the entire structure. Since it is difficult to form a eutectic phase, the present inventors have conceived that heterogeneous nuclei are formed in the molten metal and crystals are crystallized simultaneously in the solidification process.

【0008】すなわち、Sn−Ag合金溶湯に大気中で
Alを添加すると一部がAl23に変化するが、Al2
3は一般に強力な異質核として機能することが知られ
ていることから、Sn系合金において異質核として機能
するかを考察した。その根拠として、SnとAl23
晶面での不整合度をみると、その不整合性は大きく、S
nに対してAl23が強力な異質核として機能すること
が期待される。実際に、Sn-Ag合金にAlを添加し
て溶湯から凝固させると、Sn-Ag二元系合金で得ら
れた冷却曲線では大きな過冷却を伴って均質核生成する
ために冷却曲線に潜熱現象(による段差)が現れるのに
対し、Sn-Ag合金にAlを添加した試料では、過冷
却が抑制され、初晶の晶出変態点も現われなかった。こ
のことから、Alが異質核として機能し、同時多発的に
核生成が行われたことが解った。
Namely, a part the addition of Al in air to Sn-Ag alloy melt is changed to Al 2 O 3, Al 2
Since O 3 is generally known to function as a strong heterogeneous nucleus, it was considered whether it functions as a heterogeneous nucleus in a Sn-based alloy. As a basis for this, when looking at the degree of mismatch between the Sn and Al 2 O 3 crystal planes, the mismatch is large, and
It is expected that Al 2 O 3 will function as a strong foreign nucleus for n. In fact, when Al is added to the Sn-Ag alloy and solidified from the molten metal, the cooling curve obtained for the Sn-Ag binary alloy shows a latent heat phenomenon in the cooling curve because homogeneous nucleation occurs with large supercooling. However, in the sample in which Al was added to the Sn—Ag alloy, supercooling was suppressed and the crystallization transformation point of the primary crystal did not appear. From this, it was found that Al functions as a heterogeneous nucleus and nucleation is performed simultaneously.

【0009】Sn-Ag合金は、このように凝固時に異
質核が存在しないことから大きな過冷却を伴うことが特
徴であるが、このため実際のはんだ付け操業において
は、はんだが凝固する冷却速度がそれぞれの条件下であ
るとき、平衡状態図に示される組成から高合金側にシフ
トし、共晶組成であっても亜共晶組織を示して、粒径の
大きい初晶β-Sn相と微細な共晶との混在組織となる
のである。本発明においてはSn-Ag二元系合金にA
lを添加することで、溶融中にAlが一部酸素と結合し
てAl23となり、このAl23が異質核として機能す
ることで、凝固時において同時多発的に結晶を晶出さ
せ、組織を微細化するのであって、このため、これらの
Sn-Ag二元系合金の過共晶から亜共晶までの広い組
成範囲にわたって、初晶として晶出するβ-Sn相を微
細化し、材料強度などの機械的特性を向上させることが
できる。このことは、同時にこれらのSn系共晶合金に
おいて、冷却速度に依存することなく材料組織の微細化
が達成できること及び合金組成においてもAgの過共晶
組成から亜共晶組成までの広い組成範囲にわたって、結
晶組織を微細に制御できることを意味する。従って、本
発明において、実装条件下における広い冷却速度条件に
おいて材料組織を微細化することができ、また、その機
械的特性を低下させることなくAg含有量を低減するこ
とができることとなる。
The Sn-Ag alloy is characterized by a large amount of supercooling due to the absence of heterogeneous nuclei during solidification as described above. Therefore, in the actual soldering operation, the cooling rate at which the solder solidifies is Under each condition, the composition shown in the equilibrium diagram shifts to the high alloy side, and even if it is a eutectic composition, it shows a hypoeutectic structure, and the primary grain β-Sn phase with a large grain size and fine grains It has a mixed structure with various eutectic crystals. In the present invention, the Sn-Ag binary alloy is A
The addition of 1 part of Al combines with oxygen during melting to form Al 2 O 3 , and this Al 2 O 3 functions as a heterogeneous nucleus to simultaneously crystallize crystals during solidification. Therefore, the structure is made finer. Therefore, the β-Sn phase crystallized as a primary crystal is finely divided over a wide composition range from hypereutectic to hypoeutectic of these Sn-Ag binary alloys. And mechanical properties such as material strength can be improved. This means that at the same time, in these Sn-based eutectic alloys, the refinement of the material structure can be achieved without depending on the cooling rate, and the alloy composition has a wide composition range from Ag hypereutectic composition to hypoeutectic composition. It means that the crystal structure can be finely controlled. Therefore, in the present invention, the material structure can be refined under a wide cooling rate condition under the mounting condition, and the Ag content can be reduced without lowering the mechanical characteristics.

【0010】[0010]

【発明の実施の形態】以下本発明の態様を具体的に説明
する。本発明においては、Snを基本組成として、Ag
含有量を1.0wt%から5wt%、Al含有量を0.1wt
%から5wt%、の範囲とすることで達成される。ここ
で、請求項2において、 (1)Ag含有量を0.1wt%から5wt%とした根拠、
最低含有量の0.1wt%は、はんだ材料の強度を保つ最
低の条件であり、また、最高含有量の5wt%は、実装な
どにおいて冷却速度が加速された場合の亜共晶組成から
共晶組成に変態する範囲の境界組成である。 (2)Cu含有量について 最低含有量の0.1wt%は、Cuの添加能力、即ち濡れ
性の改善や材料強度を保つ最低の条件であり、最高含有
量の3wt%は材料強度を保ち、なお溶融温度の急激な上
昇が抑えられる限界領域である。 (3)Al含有量について、最低含有量の0.1wt%
は、大気中でAlがAl23に変化し、異質核として機
能する最低の条件であり、最高含有量の5wt%は異質核
として余剰に生ずるAl23が材料の濡れ性を損なわな
い限界領域である。さらに、請求項3において、Bi及
びInの含有量を限定した根拠について、 (4)Bi含有量について 最低含有量の40wt%は、共晶が43wt%から初晶が晶
出し、材料強度を低下させることから実用上定まる限界
濃度であり、60wt%は、融点の急激な上昇を抑制する
限界点である。 (5)In含有量について 最低含有量の40wt%は、相構造が変化する最低の条件
であり、50wt%は融点の上昇を抑制する最低の限界組
成である。 (6)その他の合金元素について 更に、請求項4の各添加元素については、融点低下の効
果と濡れ性を改善するという役目がある。In、Bi、
Sb、Znは融点を低下させる元素で、0.1wt%以下
では効果が発揮できず、また、5wt%以上ではそれ以下
の濃度より顕著な効果が期待できない。また、5wt%以
上の添加では濡れ性が劣る。Ni、Cu、Auは、実装
時の電子部品基板材料として使用されている関係から実
装時に溶湯に混入されたりする。これらの元素の効果
は、濡れ性を改善することである。従って、最低含有量
の0.1wt%はその効果が発揮できる最低の条件であ
り、5wt%は効果が継続する限界濃度である。5wt%以
上の添加では逆に濡れ性を損なうことと材料強度の低下
を招く。Mg、La、Ceは、材料組織の粒界間隙部を
強化し、材料強度を高める元素として添加する。従って
最低濃度の0.1wt%はその効果が発揮できる最低の含
有量で、5wt%は効果が発揮できる限界濃度である。こ
れ以上の添加では、逆に金属間化合物が粗大化し。材料
強度の低下を招く。
BEST MODE FOR CARRYING OUT THE INVENTION Aspects of the present invention will be specifically described below. In the present invention, as a basic composition of Sn, Ag
Content from 1.0wt% to 5wt%, Al content 0.1wt%
% To 5 wt%, which is achieved. Here, in claim 2, (1) the basis for setting the Ag content from 0.1 wt% to 5 wt%,
The minimum content of 0.1 wt% is the minimum condition for maintaining the strength of the solder material, and the maximum content of 5 wt% is eutectic from the hypoeutectic composition when the cooling rate is accelerated during mounting. It is the boundary composition within the range of transformation into composition. (2) Cu content The minimum content of 0.1 wt% is the minimum condition for maintaining Cu addition ability, that is, improvement of wettability and material strength, and the maximum content of 3 wt% maintains material strength, Note that this is a limit region in which a rapid increase in melting temperature can be suppressed. (3) Regarding the Al content, 0.1 wt% of the minimum content
Is the minimum condition that Al changes into Al 2 O 3 in the atmosphere and functions as a heterogeneous nucleus, and the maximum content of 5 wt% is excessive Al 2 O 3 generated as a heterogeneous nucleus, which impairs the wettability of the material. There is no marginal area. Further, the reason for limiting the contents of Bi and In in claim 3 is as follows: (4) Regarding the minimum Bi content of 40 wt%, the primary crystal is crystallized from 43 wt% of the eutectic to lower the material strength. Therefore, it is a practically determined limit concentration, and 60 wt% is a limit point for suppressing a sharp rise in melting point. (5) Regarding the In content The minimum content of 40 wt% is the minimum condition for changing the phase structure, and 50 wt% is the minimum limit composition for suppressing the rise of the melting point. (6) Other alloying elements Furthermore, the additive elements of claim 4 have the role of lowering the melting point and improving the wettability. In, Bi,
Sb and Zn are elements that lower the melting point, and if the concentration is 0.1 wt% or less, the effect cannot be exhibited, and if the concentration is 5 wt% or more, a remarkable effect cannot be expected with a concentration lower than that. In addition, if added in an amount of 5 wt% or more, the wettability is poor. Ni, Cu, and Au are mixed in the molten metal during mounting because they are used as electronic component substrate materials during mounting. The effect of these elements is to improve wettability. Therefore, the minimum content of 0.1 wt% is the minimum condition under which the effect can be exhibited, and 5 wt% is the limit concentration at which the effect continues. On the other hand, addition of 5 wt% or more adversely affects the wettability and lowers the material strength. Mg, La, and Ce are added as elements that strengthen the grain boundary gap portion of the material structure and enhance the material strength. Therefore, the minimum concentration of 0.1 wt% is the minimum content at which the effect can be exhibited, and 5 wt% is the limit concentration at which the effect can be exhibited. On the contrary, with the addition of more than this, the intermetallic compound becomes coarser. This leads to a decrease in material strength.

【0011】[0011]

【実施例】以下、具体的データによって説明する。試料
重量が合計200gになるように(a)Sn−2.0wt
%Ag亜共晶合金を調製し、573Kで1.8ks保持
後、溶湯中にAlを含有量0.1wt%となるよう添加撹
拌しながら0.9ks保持し、冷却速度10K/sから
130K/sを与えて凝固させた。比較資料として、同じ
く合計200gとなるように、(b)Sn-2.0wt%
Ag及び(c)Sn−3.5wt%Ag共晶合金を調製し
て上記と同様の条件で凝固させた。
[Examples] Specific data will be described below. (A) Sn-2.0wt so that the total sample weight is 200g
% Ag hypoeutectic alloy was prepared and held at 573 K for 1.8 ks, then 0.9 ks was added while stirring while adding and stirring Al so that the content of Al in the molten metal was 0.1 wt%, and the cooling rate was from 10 K / s to 130 K / s. s was given to solidify. As a comparison material, (b) Sn-2.0 wt% so that the total amount is 200 g.
Ag and (c) Sn-3.5 wt% Ag eutectic alloys were prepared and solidified under the same conditions as above.

【0012】図1(a)、(b)、(c)は、上記の冷
却速度10K/sで凝固させた実施例(a)及び比較例
(b)、(c)の組織写真である。図中表記の都合上各
含有元素の組成がmass% で表記されているが、実質上
wt%と変わりはない。(a)のAlを0.1mass%添加
して作成した本発明Sn−2.0mass%Ag亜共晶合金
においては、初晶β―Sn相が一律的に微細に形成され
ていることが解る。これに対して(b)及び(c)の比
較例においては、Sn−2.0mass%Ag、及びSn−
3.5mass%Ag共晶合金の組織は、初晶β―Sn相が粗
大化して形成され、その間に共晶組織が微細に晶出して
いる。これらの組織における初晶β―Sn相の粒径はその
図中に挿入した10μm及び50μmのスケールから明
らかなように、本発明の初晶β―Sn相に比較して10
倍以上に及び、顕著な相違が見られる。このように、初
晶β-Sn相間の間隙部にはβ-Sn相とAg3Sn相の
共晶組織が密に形成していた。この結果より、初晶β−
Sn相と共晶相がお互いに一定のエリアを持つ組織形態
ではなく、初晶β−Sn相粒径が微細化したことによっ
て、共晶相が粒界分布を補強した組織形成となっている
ことが明らかとなった。このことは、材料強度の向上に
とって大きな意味を有する。
FIGS. 1 (a), (b) and (c) are micrographs of Example (a) and Comparative Examples (b) and (c) solidified at the cooling rate of 10 K / s. The composition of each contained element is shown in mass% for convenience of notation in the figure, but in reality
It is no different from wt%. It is understood that in the Sn-2.0 mass% Ag hypoeutectic alloy of the present invention prepared by adding 0.1 mass% of Al of (a), the primary crystal β-Sn phase is uniformly finely formed. . On the other hand, in the comparative examples of (b) and (c), Sn-2.0 mass% Ag and Sn-
The structure of the 3.5 mass% Ag eutectic alloy is formed by coarsening of the primary crystal β-Sn phase, during which the eutectic structure is finely crystallized. As can be seen from the scales of 10 μm and 50 μm inserted in the figure, the grain size of the primary β-Sn phase in these structures is 10 compared with the primary β-Sn phase of the present invention.
It is more than doubled and noticeable differences are seen. Thus, the eutectic structure of the β-Sn phase and the Ag 3 Sn phase was densely formed in the gap between the primary crystal β-Sn phases. From this result, the primary crystal β-
The Sn-phase and eutectic phase do not have a structure morphology having a certain area, but the grain size of the primary crystal β-Sn phase is refined, so that the eutectic phase forms a structure in which the grain boundary distribution is reinforced. It became clear. This has great significance for improving the material strength.

【0013】図2に上記の本発明及び比較例の合金の初
晶β―Sn相の粒径と冷却速度の関係を示す。比較例の
(b)Sn−2.0mass%Ag亜共晶合金、及び(c)のSn-3.
5mass%Ag共晶合金では、いずれも冷却速度が10K/s
から130K/sへと大きくなるにつれて40μmから
20μm程度へと粒径が微細化する傾向が表れている
が、本発明の合金においては冷却速度が10K/s から
130K/sの範囲でも6〜7μm程度の極めて微細な粒
径を維持し、殆ど冷却速度に依存しないことが解る。こ
の図において、実装条件下で見られる冷却速度(2k/
sから10K/s)においては、本発明の合金の粒径は
比較例合金のものの1/7であり、著しく微細化され
た。
FIG. 2 shows the relationship between the grain size of the primary β-Sn phase and the cooling rate in the alloys of the present invention and comparative examples. Comparative example
(b) Sn-2.0 mass% Ag hypoeutectic alloy, and (c) Sn-3.
With 5 mass% Ag eutectic alloy, the cooling rate was 10 K / s in all cases.
There is a tendency for the grain size to become finer from 40 μm to about 20 μm as it increases from 10 K / s to 130 K / s. In the alloy of the present invention, the cooling rate is 6 to 7 μm even in the range of 10 K / s to 130 K / s. It can be seen that the particle size remains extremely fine and the cooling rate is almost independent. In this figure, the cooling rate (2k /
s to 10 K / s), the grain size of the alloy of the present invention was 1/7 of that of the comparative alloy, and it was remarkably refined.

【0014】図3に、Sn‐2.0wt%Agの亜共晶合
金にAl0.1wt%添加した本発明合金の組織内の濃
度分布を測定した結果を示す。この図の主眼は、濃度分
布を測定することによって初晶β-Sn相の粒径や粒界
間隙部に存在する金属間化合物の粒径や相構造を把握で
きる。Sn相の濃度組成を見ると濃度が急激に低下して
いる場所が粒界間隙部に対応し、濃度が高い部分が初晶
β-Sn相である。Ag及びAlの濃度分布からSn濃
度が変化した場所でAgおよびAlの濃度が上昇してい
る。また、Ag及びAlの濃度変化は同じ推移を示して
いる。従って、粒界間隙部に存在する相は、初晶β-S
n相とは違った金属間化合物であることが解る。なぜな
ら、初晶β-Sn相中にはAg及びAlは溶解していな
いので、このことからも上記のことが解る。以上のこと
から、Sn−Ag合金にAlを添加するとAlはSn中
に溶解度がなく、Agと結合して粒界間隙部に金属間化
合物を形成するか、大気中の空気と接してAl23に変
化することが推察できる。
FIG. 3 shows the results of measuring the concentration distribution in the structure of the alloy of the present invention in which 0.1 wt% of Al was added to the hypoeutectic alloy of Sn-2.0 wt% Ag. The main point of this figure is to grasp the grain size of the primary crystal β-Sn phase and the grain size and phase structure of the intermetallic compound existing in the intergranular gap by measuring the concentration distribution. Looking at the concentration composition of the Sn phase, the place where the concentration sharply decreases corresponds to the grain boundary gap portion, and the high concentration portion is the primary β-Sn phase. From the Ag and Al concentration distributions, the Ag and Al concentrations are increased where the Sn concentration changes. Further, the changes in the concentrations of Ag and Al show the same transition. Therefore, the phase existing in the intergranular space is the primary crystal β-S.
It is understood that it is an intermetallic compound different from the n phase. Because Ag and Al are not dissolved in the primary crystal β-Sn phase, the above fact can be understood from this fact as well. From the above, when Al is added to the Sn-Ag alloy, Al has no solubility in Sn and forms an intermetallic compound in the intergranular intergranular part by combining with Ag, or by contacting with air in the atmosphere to form Al 2 It can be inferred that it changes to O 3 .

【0015】本発明の合金は、Sn系はんだ合金におい
て、Al添加によって形成されたAl23により溶湯中
に異質核を形成して凝固過程で同時多発的に結晶を晶出
させることによって組織を微細化するものであるから、
Snに対するAg含有量が亜共晶組成から過共晶組成ま
での広い範囲においてその効果を発揮できる。また、そ
の他の含有成分についても、従来からSn系はんだ合金
に対して融点降下やはんだ材料としての濡れ性の向上や
材料強度を保つために添加されたCu、Bi、In、或
いは、Ni、Au、Sb、Zn、Mg、La、Ceなど
の元素を含むはんだ合金に対しても同じメカニズムによ
って初晶β―Sn相の粗大化を抑制して、組織の微細化
を達成できるのであって、上記の成分範囲であればこれ
らの元素を1又は2以上を含有するはんだ合金におい
て、これらの含有成分による特性向上と併せて本発明の
作用効果を発揮することができる。
The alloy of the present invention has a structure in which Sn-based solder alloy has a structure in which heterogeneous nuclei are formed in a molten metal by Al 2 O 3 formed by addition of Al, and crystals are simultaneously crystallized during solidification process. Is to be miniaturized,
The effect can be exhibited in a wide range of Ag content with respect to Sn, from a hypoeutectic composition to a hypereutectic composition. In addition, as for other components, Cu, Bi, In, Ni, Au, etc., which have been conventionally added to the Sn-based solder alloy in order to lower the melting point, improve the wettability as a solder material, and maintain the material strength. It is possible to suppress the coarsening of the primary crystal β-Sn phase and achieve the refinement of the structure by the same mechanism for solder alloys containing elements such as Al, Sb, Zn, Mg, La, and Ce. Within the range of the above component, in the solder alloy containing one or more of these elements, it is possible to exert the action and effect of the present invention together with the characteristic improvement due to these contained components.

【0016】[0016]

【発明の効果】以上のとおり、本発明の鉛フリーはんだ
合金材料は、従来のSn−Ag二元系鉛フリーはんだ材
料における機械的特性を向上すると共に、はんだ冷却速
度の変化に対して影響されずに材料組織の微細化・機械
的特性の向上を発揮することができるため、高密度化、
部品の微細化の著しいエレクトロニクスはんだ実装に寄
与するものであり、また、高価なAg含有量を低減でき
るためコスト低減などを通して、その普及を図り、これ
らの産業の発展に寄与するものである。
As described above, the lead-free solder alloy material of the present invention improves the mechanical properties of the conventional Sn-Ag binary lead-free solder material and is affected by changes in the solder cooling rate. Since the material structure can be made finer and the mechanical properties can be improved without increasing the density,
The present invention contributes to electronic solder mounting, in which the miniaturization of components is remarkable, and also contributes to the development of these industries by promoting the spread of the components by reducing the cost because the expensive Ag content can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明はんだ合金(a)と比較例合金(b),(c)の顕
微鏡写真に基づく組織拡大図。
FIG. 1 is an enlarged view of microstructures of a solder alloy of the present invention (a) and comparative alloys (b) and (c) based on micrographs.

【図2】本発明はんだ合金と比較例合金における冷却速
度と結晶粒径との関係図。
FIG. 2 is a graph showing the relationship between the cooling rate and the crystal grain size of the solder alloy of the present invention and the alloy of Comparative Example.

【図3】本発明はんだ合金における各含有元素の濃度分
布図。
FIG. 3 is a concentration distribution diagram of each contained element in the solder alloy of the present invention.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 大樹 北海道札幌市北区北13条西8丁目 北海道 大学大学院工学研究科 Fターム(参考) 5E319 BB08 GG11    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Taiki Kobayashi             Hokkaido, Sapporo, Kita-ku, Kita 13-jo Nishi 8-chome, Hokkaido             University Graduate School of Engineering F-term (reference) 5E319 BB08 GG11

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 Sn−Ag二元系合金において、Alを
添加し、異質核生成を伴う凝固によって、材料組織を微
細化した鉛フリーはんだ材料。
1. A lead-free solder material in which a material structure is refined by solidification with heterogeneous nucleation in an Sn-Ag binary alloy.
【請求項2】 上記Ag:1wt%〜5wt%、同じくC
u:0.1〜3wt%、残部Snからなる合金に、Al:0.1
〜5wt%含有せしめてなる請求項1記載の鉛フリーはん
だ合金。
2. The above Ag: 1 wt% to 5 wt%, also C
u: 0.1 to 3 wt%, Al: 0.1 to the alloy consisting of the balance Sn
The lead-free solder alloy according to claim 1, wherein the lead-free solder alloy contains 5 to 5 wt%.
【請求項3】 上記組成に加え、Bi:40〜60wt%
又はIn:40〜50wt%を含有せしめてなる、請求項
1乃至2記載の鉛フリーはんだ材料。
3. In addition to the above composition, Bi: 40-60 wt%
Alternatively, the lead-free solder material according to claim 1 or 2, wherein In: 40 to 50 wt% is contained.
【請求項4】 上記組成において、Cu:0.1〜5wt%
とし、さらにIn,Bi,Ni,Au,Sb,Zn,M
g,La,Ceから選択した元素のいずれか1乃至2以
上を0.1〜5wt%含有せしめてなる請求項1乃至2記載
の鉛フリーはんだ材料。
4. In the above composition, Cu: 0.1-5 wt%
And In, Bi, Ni, Au, Sb, Zn, M
3. The lead-free solder material according to claim 1, which contains 0.1 to 5 wt% of one or more elements selected from g, La, and Ce.
JP2002012446A 2002-01-22 2002-01-22 Lead-free solder material Pending JP2003211283A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002012446A JP2003211283A (en) 2002-01-22 2002-01-22 Lead-free solder material
TW92101105A TW200302147A (en) 2002-01-22 2003-01-20 Lead-free solder alloy
PCT/JP2003/000470 WO2003061897A1 (en) 2002-01-22 2003-01-21 Lead-free solder material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002012446A JP2003211283A (en) 2002-01-22 2002-01-22 Lead-free solder material

Publications (1)

Publication Number Publication Date
JP2003211283A true JP2003211283A (en) 2003-07-29

Family

ID=27606048

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002012446A Pending JP2003211283A (en) 2002-01-22 2002-01-22 Lead-free solder material

Country Status (3)

Country Link
JP (1) JP2003211283A (en)
TW (1) TW200302147A (en)
WO (1) WO2003061897A1 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100351035C (en) * 2005-10-28 2007-11-28 亚通电子有限公司 Lead free solder
CN100364713C (en) * 2005-12-12 2008-01-30 黄德欢 Ag-Al-Cu-Ni-Sn series lead-free soldering tin
CN100366376C (en) * 2005-12-23 2008-02-06 南京航空航天大学 Leadless brazing filler metal containing cerium
JP2008031550A (en) * 2006-06-26 2008-02-14 Hitachi Cable Ltd Pb-FREE Sn-BASED MATERIAL, AND CONDUCTOR FOR ELECTRIC WIRING, TERMINAL-CONNECTING SECTION AND Pb-FREE SOLDER ALLOY
JP2008137018A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE HAVING EXCELLENT VOID GENERATION RESISTANCE
JP2008142729A (en) * 2006-12-07 2008-06-26 Hitachi Metals Ltd Solder for directly connecting aluminum member
JP2008161913A (en) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp Sn-Au ALLOY SOLDER PASTE HAVING REDUCED PRODUCTION OF VOID
JP2009119528A (en) * 2007-03-29 2009-06-04 Hitachi Metals Ltd Solder alloy and glass bonded body using the same
US20100147926A1 (en) * 2005-07-14 2010-06-17 Sophia Product Co. Method for oxide bonding using solder alloy
US7749340B2 (en) * 2005-10-24 2010-07-06 Indium Corporation Of America Technique for increasing the compliance of lead-free solders containing silver
CN102059469A (en) * 2010-11-29 2011-05-18 力创(台山)电子科技有限公司 Manufacture method of environment-friendly soldering ring for copper aluminum composite pipe
JP2012500493A (en) * 2008-08-21 2012-01-05 アギア システムズ インコーポレーテッド Reduction of whiskers in Sn film
WO2012137901A1 (en) * 2011-04-08 2012-10-11 株式会社日本スペリア社 Solder alloy
JP2013022619A (en) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd NON-LEADED In-BASED SOLDER ALLOY FOR SERVER CPU AND METHOD OF MANUFACTURING THE SAME
CN103381526A (en) * 2013-06-22 2013-11-06 宁波市鄞州品达电器焊料有限公司 Novel solder
JPWO2014181883A1 (en) * 2013-05-10 2017-02-23 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005090622A1 (en) * 2004-03-24 2005-09-29 Agency For Science, Technology And Research Lead free solder alloy
DE102004050441A1 (en) * 2004-10-16 2006-04-20 Stannol Gmbh solder
CN101549441B (en) * 2008-04-01 2011-06-29 东莞市中实焊锡有限公司 Lead-free solder
CN103056543B (en) * 2013-01-18 2015-03-25 江苏师范大学 Lead-free nanometer solder containing Yb, A1 and B
CN114850725B (en) * 2022-05-24 2024-04-26 雅拓莱焊接科技(惠州)有限公司 Ultrathin tin-bismuth system preformed welding ring and preparation process thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11129091A (en) * 1997-10-28 1999-05-18 Ngk Spark Plug Co Ltd Solder alloy
JP2000141078A (en) * 1998-09-08 2000-05-23 Nippon Sheet Glass Co Ltd Leadless solder
JP2001058287A (en) * 1999-06-11 2001-03-06 Nippon Sheet Glass Co Ltd Non-lead solder
JP4462721B2 (en) * 2000-06-07 2010-05-12 清仁 石田 Solder alloys and solder balls

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11285569B2 (en) 2003-04-25 2022-03-29 Henkel Ag & Co. Kgaa Soldering material based on Sn Ag and Cu
US20100147926A1 (en) * 2005-07-14 2010-06-17 Sophia Product Co. Method for oxide bonding using solder alloy
US7749340B2 (en) * 2005-10-24 2010-07-06 Indium Corporation Of America Technique for increasing the compliance of lead-free solders containing silver
CN100351035C (en) * 2005-10-28 2007-11-28 亚通电子有限公司 Lead free solder
CN100364713C (en) * 2005-12-12 2008-01-30 黄德欢 Ag-Al-Cu-Ni-Sn series lead-free soldering tin
CN100366376C (en) * 2005-12-23 2008-02-06 南京航空航天大学 Leadless brazing filler metal containing cerium
JP2008031550A (en) * 2006-06-26 2008-02-14 Hitachi Cable Ltd Pb-FREE Sn-BASED MATERIAL, AND CONDUCTOR FOR ELECTRIC WIRING, TERMINAL-CONNECTING SECTION AND Pb-FREE SOLDER ALLOY
JP2008137018A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Au-Sn ALLOY SOLDER PASTE HAVING EXCELLENT VOID GENERATION RESISTANCE
JP2008142729A (en) * 2006-12-07 2008-06-26 Hitachi Metals Ltd Solder for directly connecting aluminum member
JP2008161913A (en) * 2006-12-28 2008-07-17 Mitsubishi Materials Corp Sn-Au ALLOY SOLDER PASTE HAVING REDUCED PRODUCTION OF VOID
US7901782B2 (en) 2007-03-29 2011-03-08 Hitachi Metals, Ltd. Solder alloy and glass bonded body using the same
JP2009119528A (en) * 2007-03-29 2009-06-04 Hitachi Metals Ltd Solder alloy and glass bonded body using the same
JP2012500493A (en) * 2008-08-21 2012-01-05 アギア システムズ インコーポレーテッド Reduction of whiskers in Sn film
CN102059469A (en) * 2010-11-29 2011-05-18 力创(台山)电子科技有限公司 Manufacture method of environment-friendly soldering ring for copper aluminum composite pipe
WO2012137901A1 (en) * 2011-04-08 2012-10-11 株式会社日本スペリア社 Solder alloy
JP5973992B2 (en) * 2011-04-08 2016-08-23 株式会社日本スペリア社 Solder alloy
US9999945B2 (en) 2011-04-08 2018-06-19 Nihon Superior Co., Ltd. Solder alloy
JP2013022619A (en) * 2011-07-21 2013-02-04 Sumitomo Metal Mining Co Ltd NON-LEADED In-BASED SOLDER ALLOY FOR SERVER CPU AND METHOD OF MANUFACTURING THE SAME
JPWO2014181883A1 (en) * 2013-05-10 2017-02-23 富士電機株式会社 Semiconductor device and manufacturing method of semiconductor device
CN103381526A (en) * 2013-06-22 2013-11-06 宁波市鄞州品达电器焊料有限公司 Novel solder
CN103381526B (en) * 2013-06-22 2016-02-03 宁波市鄞州品达电器焊料有限公司 A kind of new solder

Also Published As

Publication number Publication date
TW200302147A (en) 2003-08-01
WO2003061897A1 (en) 2003-07-31

Similar Documents

Publication Publication Date Title
JP2003211283A (en) Lead-free solder material
JP5320556B2 (en) Solder substance consisting of Sn, Ag and Cu
JP3296289B2 (en) Solder alloy
US5569433A (en) Lead-free low melting solder with improved mechanical properties
JP3761678B2 (en) Tin-containing lead-free solder alloy, cream solder thereof, and manufacturing method thereof
JPH09216089A (en) Solder alloy, cream solder, and soldering method
JP2008521619A (en) Solder alloy
JPH04305395A (en) Dispersed reinforced lead-tin alloy wax and brazing method
JP3874031B2 (en) Lead-free solder alloy
EP1880032A2 (en) Tin alloy solder compositions
JP3673021B2 (en) Lead-free solder for electronic component mounting
JP3262113B2 (en) Solder alloy
JP5973992B2 (en) Solder alloy
JP2000349433A (en) Soldering method
WO2024177065A1 (en) Solder alloy, solder ball, solder paste, and soldered joint
CA2540486A1 (en) Pb-free solder alloy compositions comprising essentially tin (sn), silver (ag), copper (cu), nickel (ni), phosphorus (p) and/or rare earth: cerium (ce) or lanthanum (la)
WO2007014530A1 (en) Lead-free sn-ag-cu-ni-al system solder alloy
JPH10230384A (en) Solder material
JP4425738B2 (en) Lead-free solder alloy, lead-free solder alloy manufacturing method, mounting structure, mounting method, lead-free fuse alloy, lead-free fuse alloy manufacturing method, plate-shaped fuse, lead-free alloy and lead-free alloy manufacturing method
US20060013722A1 (en) Lead-free solder pastes with increased reliability
CA2502747A1 (en) Pb-free solder alloy compositions comprising essentially tin, silver, copper and phosphorus
WO2020262040A1 (en) Solder alloy, cast article, formed article, and solder joint
JP2011041970A (en) Lead-free solder joining material
JP2008093701A (en) Solder alloy
WO2024034689A1 (en) Solder alloy, solder paste, and solder joint

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20031031

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040109

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040227

RD03 Notification of appointment of power of attorney

Effective date: 20040210

Free format text: JAPANESE INTERMEDIATE CODE: A7423

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20040227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070130

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070605