EP1537316B1 - Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung - Google Patents
Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung Download PDFInfo
- Publication number
- EP1537316B1 EP1537316B1 EP03757808A EP03757808A EP1537316B1 EP 1537316 B1 EP1537316 B1 EP 1537316B1 EP 03757808 A EP03757808 A EP 03757808A EP 03757808 A EP03757808 A EP 03757808A EP 1537316 B1 EP1537316 B1 EP 1537316B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- fuel
- combustion chamber
- pressure
- during
- injected
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/02—Circuit arrangements for generating control signals
- F02D41/04—Introducing corrections for particular operating conditions
- F02D41/06—Introducing corrections for particular operating conditions for engine starting or warming up
- F02D41/062—Introducing corrections for particular operating conditions for engine starting or warming up for starting
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3017—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used
- F02D41/3023—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode
- F02D41/3029—Controlling fuel injection according to or using specific or several modes of combustion characterised by the mode(s) being used a mode being the stratified charge spark-ignited mode further comprising a homogeneous charge spark-ignited mode
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/3011—Controlling fuel injection according to or using specific or several modes of combustion
- F02D41/3076—Controlling fuel injection according to or using specific or several modes of combustion with special conditions for selecting a mode of combustion, e.g. for starting, for diagnosing
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/3809—Common rail control systems
- F02D41/3818—Common rail control systems for petrol engines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D41/40—Controlling fuel injection of the high pressure type with means for controlling injection timing or duration
- F02D41/402—Multiple injections
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D41/00—Electrical control of supply of combustible mixture or its constituents
- F02D41/30—Controlling fuel injection
- F02D41/38—Controlling fuel injection of the high pressure type
- F02D2041/389—Controlling fuel injection of the high pressure type for injecting directly into the cylinder
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02D—CONTROLLING COMBUSTION ENGINES
- F02D2200/00—Input parameters for engine control
- F02D2200/02—Input parameters for engine control the parameters being related to the engine
- F02D2200/06—Fuel or fuel supply system parameters
- F02D2200/0602—Fuel pressure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/40—Engine management systems
Definitions
- the invention relates to a method for operating an internal combustion engine with direct fuel injection with the features of the preamble of claim 1.
- the publication WO 99/67526 discloses a method of operating a spark-ignited direct fuel injection internal combustion engine, wherein the pressure of the fuel injected into the combustion chamber is determined such that the fuel is injected during the intake phase of the internal combustion engine when the fuel pressure is less than a predetermined minimum pressure.
- a pressure sensor is provided with which the pressure of the fuel injected into the combustion chamber is measured before it enters the combustion chamber.
- the object of the invention is in contrast to design the injection process during the starting phase such that a Brennraumwandbeetzung with reduced fuel during the injection process and an ignitable mixture cloud in the combustion chamber of the internal combustion engine is formed in the vicinity of an ignition source.
- the method according to the invention is characterized in that the minimum fuel pressure and the number of cycles at the start of the internal combustion engine are selected as a function of a combustion chamber temperature, wherein the injection of the fuel into the combustion chamber preferably takes place in clocked mode during the starting operation.
- the minimum fuel pressure and the number of cycles at the start of the internal combustion engine are selected as a function of a combustion chamber temperature, wherein the injection of the fuel into the combustion chamber preferably takes place in clocked mode during the starting operation.
- the total amount of fuel is introduced into the combustion chamber in up to three subsets during startup, ie the total amount of fuel can be introduced into the combustion chamber in the form of one, two or three subsets.
- the timing of the injected fuel amount prevents combustion air from entering the fuel injector at a low pressure start due to the low fuel system pressure or in the fuel rail, for example, a common rail penetrates. Therefore, regardless of the injection strategy, the injection in the compression stroke takes place early enough so that the compression pressure does not exceed the fuel injection pressure.
- a homogeneous start, a mixed form of a homogeneous and layer start or a pure start of the shift can be achieved by the timing of the injected fuel quantity by a variation of the injection times.
- up to three partial quantities are injected before the ignition point in a low-pressure start, and up to two partial quantities before and one subset after the ignition point into the combustion chamber during a high-pressure start. Since the injection of the partial amounts, it can be one, two or three subsets completed at low pressure start before the ignition, high HC emissions are prevented and ensure reliable combustion of the total amount of fuel.
- the ignition timing during the starting operation of the internal combustion engine as a function of the combustion chamber temperature and a difference between an actual speed and an idle speed is controlled.
- the dependence of the ignition timing on the combustion chamber temperature ensures that an increase in the combustion chamber temperature is achieved in the first cycles.
- a further embodiment of the invention is switched during a high-pressure start when falling below a defined minimum fuel pressure in the injection device to the low pressure start.
- defined pressure conditions are created, which allow a controlled fuel metering. This ensures that there is no wetting of the wall due to late-injected fuel.
- the combustion chamber temperature is detected by means of a temperature measuring device on the combustion chamber or on the basis of a coolant temperature of the internal combustion engine.
- a temperature probe is mounted in the combustion chamber area on the cylinder head.
- a coolant temperature serves as a reference for determining the combustion chamber temperature, wherein the temperature of the intake air mass can be used in addition to or as an alternative to the coolant temperature as a further reference for determining the combustion chamber temperature.
- a low-pressure start takes place at a coolant temperature of less than -15 ° C or greater than 90 ° C, a low-pressure start, wherein at a constructed in the injector minimum fuel pressure of at least 10 bar and at a coolant temperature between -15 ° C and 90 ° C. a high pressure start takes place.
- a fuel pressure of at least 10 bar At a fuel pressure of at least 10 bar a good spray quality of the injected fuel is guaranteed and achieved an evaporation of the injected fuel, without causing a Wandstromrung.
- a low-pressure start is preferred at temperatures greater than 90 ° C, as can not be established by high temperatures in the combustion chamber often during a restart operation of the internal combustion engine due to the increasing gap in the fuel pump sufficient fuel pressure.
- the low pressure start takes place in a temperature range less than -30 ° C or greater than 110 ° C, and the high-pressure start between -30 ° C and 110 ° C instead.
- FIG. 1 shows a cylinder 2 of a direct-injection internal combustion engine 1, in which a longitudinally movably arranged piston 3 with a cylinder head 2 closing the cylinder 2, a combustion chamber 4 is limited.
- a fuel injector 5 is arranged, in which fuel is injected into the combustion chamber 4 in the form of a fuel cone 9 through a nozzle opening 6.
- An unillustrated control device determines in the internal combustion engine 1 during a starting phase by a determined fuel pressure in an injection device, not shown, whether a high-pressure start or a low-pressure start is initiated at the start of the internal combustion engine 1.
- the fuel jet 9 is introduced into the combustion chamber with an opening angle ⁇ , which is preferably in a range between 70 ° and 110 °.
- opening angle ⁇ which is preferably in a range between 70 ° and 110 °.
- combustion air is supplied to the combustion chamber 4 through an inlet channel 8, the piston 3 moving in a downward movement to a bottom dead center UT.
- the piston 3 moves in an upward movement from bottom dead center UT to an upper ignition dead center ZOT.
- the formed fuel / air mixture is ignited by means of the spark plug 11, the piston 3 expands in a downward movement to a bottom dead center UT.
- a final stroke of the piston 3 moves in an upward movement to a top dead center TDC and pushes the exhaust gases from the combustion chamber 4 from.
- cooling water temperature is determined by means of a control device, not shown, whether a high-pressure or a low-pressure start during the starting phase of the internal combustion engine is performed.
- a high pressure start is initiated when a minimum fuel pressure is present in a fuel rail, not shown, which is formed for example as a fuel common rail.
- the minimum fuel pressure is determined as a function of the determined cooling water temperature. This is preferably at least 10 bar. With such a fuel pressure, it is ensured that a good atomization quality is achieved.
- the minimum fuel pressure must in turn be established after a defined number of combustion cycles. According to the present embodiment, a cycle is understood as a process from the first to the fourth clock according to the above-described four-clock sequence. Preferably, the minimum fuel pressure should be built up after about four seconds.
- the number of combustion cycles is determined as a function of the cooling water temperature.
- the amount of fuel is introduced in up to three subsets in the combustion chamber before the ignition ZZP.
- the distribution of the fuel amount allows a better distribution of the injected fuel in the combustion chamber 4 and relieves the fuel system.
- the first subset E1 ND is introduced into the combustion chamber 4 during the intake phase.
- the second subset E2 ND takes place in a region between an end part of the suction phase and an initial part of the compression phase.
- the third subset E3 ND then takes place shortly before the ignition time ZZP, so that an ignitable mixture cloud is present in the region of the spark plug 11.
- injection times shown are shown schematically; they are freely selectable, being varied depending on an actual speed, and / or a cooling water temperature.
- the end of the fuel injections E1 ND , E2 ND and E3 ND is determined by three maps.
- the maps are each spanned by the cooling water temperature and the number of cycles.
- the fuel injection is designed such that overlaps of fuel injections are prevented. Therefore, it is conceivable to set the end of the third injection E3 ND and the two previous injections E1 ND and E2 ND via delay times or differential angles.
- the injection duration of the last injection E3 ND is limited due to the low fuel pressure to prevent the entry of fuel and air into the injector. It is ensured by means of a pressure compensation that at any time the correct injection time is set.
- a pressure regulator is preferably kept open in the injection device in order to achieve defined pressure conditions in the fuel distributor line of the injection device.
- injection times of the three subsets are shown only as an example, wherein the injection times are arbitrary, and can be varied depending on the fuel pressure in the injector.
- a low-pressure start takes place at a coolant temperature of less than -15 ° C or greater than 90 ° C.
- the injection timing is defined above the end of injection. In this way, a direct relationship to the ignition is established, thus achieving a simple control of the fuel injection.
- the fuel is injected in up to three subsets E1 HD , E2 HD and E3 HD .
- the first subset E1 HD is injected during the aspiration phase.
- the division of the fuel mass is determined using maps stored in the control unit, in which above the cooling water temperature, an actual speed and an idle speed, the end of the first injection E1 HD is set independently of the ignition ZZP.
- the second fuel injection E2 HD is performed during the compression phase such that the distance between the end of the second fuel injection E2 HD and the ignition timing ZZP is set depending on the cooling water temperature, the actual speed and the idling speed.
- the third fuel injection E3 HD takes place shortly after the ignition timing ZZP, wherein the third fuel injection E3 HD via a delay time between the second and third fuel injection E3 HD is set such that it takes part in the combustion. It is conceivable that at high pressure start only a single fuel injection is made, which takes place advantageously in a range of 40 ° CA to 160 ° CA before ZOT.
- a combined combustion chamber charge of homogeneous and stratified charge is achieved at high pressure start.
- the first partial fuel quantity represents the homogeneous portion, the second and the third the stratified portion.
- fuel wall deposits are minimized and reliable ignition of the fuel cloud formed is achieved.
- it is ensured by means of a pressure compensation in the fuel injection device that the correct injection time is selected at any time during the starting phase.
- the operating behavior of the internal combustion engine 1 is improved, wherein in particular the emission formation is minimized by the unburned fuel components due to a low wall temperature.
- the ignition timing ZZP is controlled by the control unit in both the low and high pressure start depending on the cooling water temperature and the engine speed.
- the ignition ZZP is stored in a map in which the ignition ZZP is plotted against the cooling water temperature, the difference between the actual speed and the idle speed.
- the ignition times applied in the control unit are stored in separate maps for the low-pressure and high-pressure start.
- the inventive method for use in direct-injection internal combustion engines with spark ignition in which a beam-guided combustion process is present.
- outwardly opening injection nozzles are used, in which the fuel is injected as a hollow cone in the combustion chamber.
- the fuel is introduced as a hollow fuel cone at an angle ⁇ between 70 ° and 100 ° in the combustion chamber, so that the hollow fuel cone meets during a fuel injection in the compression stroke to combustion air compressed in the combustion chamber.
- a toroidal vortex is thereby formed in the outer region or at the edge of the injected fuel hollow cone, which in the region of the electrodes Spark plug an ignitable fuel / air mixture is provided.
- the arrangement of the spark plug is such that the electrodes of the spark plug 11 protrude into the edge vortex obtained without being significantly wetted during the fuel injection, ie with a slight or slight wetting of the electrodes of the spark plug should until the ignition of the largest share of Fuel vaporized at the electrodes again.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Electrical Control Of Ignition Timing (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Description
- Die Erfindung betrifft ein Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung mit den Merkmalen des Oberbegriffs des Anspruchs 1.
- Während einer Startphase einer fremdgezündeten Fremdkraftmaschine mit Kraftstoffdirekteinspritzung werden insbesondere bei einem Kaltstart große Mengen an unverbrannten Kraftstoffanteilen produziert, da die Brennraumtemperatur der Brennkraftmaschine während einer Kaltstartphase niedrig ist. Daher kann eine ausreichende Verdampfung des eingespritzten Kraftstoffes nicht stattfinden. Aufgrund der niedrigen Zylinderwandtemperatur lagern sich einige Kraftstoffanteile an der Zylinderwand der Brennkraftmaschine an und nehmen an der Verbrennung nicht teil.
- Aus der Patentschrift
US 54 82 017 ist ein Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine mit Kraftstoffdirekteinspritzung bekannt, bei dem während einer Startphase beim ersten Verbrennungszyklus eine Kraftstoffmenge eingespritzt wird, welche größer als die benötigte Kraftstoffmenge ist, um die an der Zylinderwand angelagerten Kraftstoffanteile auszugleichen. Dadurch wird eine zuverlässige Zündung des gebildeten Kraftstoffluftgemisches erzielt. Bei den darauf folgenden Verbrennungszyklen wird ein mageres Kraftstoff/Luft-Gemisch im Brennraum gebildet, welches früher gezündet wird, um die Brennraumtemperatur bzw. die Zylinderwandtemperatur zu erhöhen. Um eine nachgeschaltete Abgasbehandlungseinrichtung zu erwärmen, wird dann bei den darauf folgenden Verbrennungszyklen eine Teilung der Kraftstoffmenge in einer frühen und einer späten Einspritzung und eine spätere Zündung des gebildeten Kraftstoff/Luft-Gemischs vorgenommen. - Die Offenlegungsschrift
WO 99/67526 - Aus der Patentschrift
DE 198 232 80 C1 ist ein Verfahren zum Betrieb einer direkteinspritzenden Brennkraftmaschine während der Startphase bekannt, bei dem in Abhängigkeit von einer Kühlmitteltemperatur zwischen einem Niederdruckstart mit einem homogenen Gemisch und einem Hochdruckstart mit einem geschichteten Gemisch umgeschaltet wird. Dabei wird ein Hochdruckstart der Brennkraftmaschine eingeleitet, wenn der Druck in einem Kraftstoffdruckspeicher einen vorgegebenen Schwellenwert überschritten hat. Dabei ist der Schwellenwert in Abhängigkeit einer Kühlmitteltemperatur in einem Kennfeld der Steuerungseinrichtung abgelegt. - Mit den oben beschriebenen Verfahren wird beim Startbetrieb einer fremdgezündeten Brennkraftmaschine mit Kraftstoffdirekteinspritzung keine optimale Verbrennung erzielt, da ein Betriebsverhalten der Brennkraftmaschine während der Startphase ohne Zündaussetzer nicht gewährleistet werden kann.
- Aufgabe der Erfindung ist es demgegenüber, den Einspritzvorgang während der Startphase derart zu gestalten, dass eine Brennraumwandbenetzung mit Kraftstoff während des Einspritzvorganges verringert und eine zündfähige Gemischwolke im Brennraum der Brennkraftmaschine in der Nähe einer Zündquelle gebildet wird.
- Diese Aufgabe wird erfindungsgemäß durch ein Verfahren mit den Merkmalen des Anspruchs 1 gelöst.
- Das erfindungsgemäße Verfahren zeichnet sich dadurch aus, dass der Kraftstoffmindestdruck und die Zyklenanzahl beim Start der Brennkraftmaschine in Abhängigkeit von einer Brennraumtemperatur gewählt werden, wobei während des Startbetriebs die Einspritzung des Kraftstoffs in den Brennraum vorzugsweise getaktet stattfindet. Durch die Taktung der eingespritzten Kraftstoffmenge während eines Zyklus wird eine Brennraumwandbenetzung mit dem eingespritzten Kraftstoff minimiert, wodurch die Emissionen insbesondere die unverbrannten Kraftstoffanteile während der Startphase verringert werden. Da ein Hochdruckstart erst dann eingeleitet wird, wenn genügend Kraftstoffdruck vorhanden ist, wird eine verbesserte Zerstäubung des eingespritzten Kraftstoffs gewährleistet. Weiterhin wird ein Druckabfall in der Einspritzvorrichtung während des Hochdruckstarts durch die Taktung der eingespritzten Kraftstoffmenge aufgrund des hohen Kraftstoffmengenbedarfs beim Start der Brennkraftmaschine verhindert.
- In einer Ausgestaltung des erfindungsgemäßen Verfahrens wird während des Startbetriebs die Kraftstoffgesamtmenge in bis zu drei Teilmengen in den Brennraum eingebracht, d.h. die Kraftstoffgesamtmenge kann wahlweise in Form von einer, zwei oder drei Teilmengen in den Brennraum eingebracht werden. Durch die Taktung der eingespritzten Kraftstoffmenge wird verhindert, dass bei einem Niederdruckstart aufgrund des niedrigen Kraftstoffsystemdrucks Verbrennungsluft in den Kraftstoffinjektor beziehungsweise in die Kraftstoffverteilerleitung, beispielsweise eine Common-Rail, eindringt. Daher findet unabhängig von der Einspritzstrategie die Einspritzung im Kompressionshub früh genug statt, so dass der Kompressionsdruck den Kraftstoffeinspritzdruck nicht übersteigt. Beim Hochdruckstart kann durch die Taktung der eingespritzten Kraftstoffmenge durch eine Variation der Einspritzzeitpunkte ein Homogen-Start, eine Mischform aus einem Homogen- und Schichtstart oder ein reiner Schichtstart erzielt werden.
- Gemäß einer weiteren Ausgestaltung der Erfindung werden bei einem Niederdruckstart bis zu drei Teilmengen vor dem Zündzeitpunkt, und bei einem Hochdruckstart bis zu zwei Teilmengen vor und eine Teilmenge nach dem Zündzeitpunkt in den Brennraum eingespritzt. Da beim Niederdruckstart die Einspritzung der Teilmengen, es können eine, zwei oder drei Teilmengen sein, vor dem Zündzeitpunkt abgeschlossen ist, werden hohe HC-Emissionen verhindert und eine zuverlässige Verbrennung der gesamten Kraftstoffmenge sichergestellt.
- In einer weiteren Ausgestaltung der Erfindung wird der Zündzeitpunkt während des Startbetriebs der Brennkraftmaschine in Abhängigkeit von der Brennraumtemperatur und einer Differenz zwischen einer Ist-Drehzahl und einer Leerlauf-Drehzahl geregelt. Durch die Abhängigkeit des Zündzeitpunkts von der Brennraumtemperatur wird sichergestellt, dass eine Erhöhung der Brennraumtemperatur in den ersten Zyklen erzielt wird.
- Gemäß einer weiteren Ausgestaltung der Erfindung wird während eines Hochdruckstarts bei Unterschreitung eines definierten Kraftstoffmindestdrucks in der Einspritzvorrichtung auf den Niederdruckstart umgeschaltet. Hierdurch werden definierte Druckverhältnisse geschaffen, die eine kontrollierte Kraftstoffzumessung ermöglichen. Dadurch wird sichergestellt, dass keine Wandbenetzung durch den spät eingespritzten Kraftstoff stattfindet.
- In einer weiteren Ausgestaltung der Erfindung wird die Brennraumtemperatur mittels einer Temperaturmesseinrichtung am Brennraum oder anhand einer Kühlmitteltemperatur der Brennkraftmaschine erfaßt. Vorzugsweise wird eine Temperatursonde im Brennraumbereich am Zylinderkopf angebracht. Alternativ dient eine Kühlmitteltemperatur als eine Bezugsgröße für die Ermittlung der Brennraumtemperatur, wobei die Temperatur der angesaugten Luftmasse zusätzlich oder alternativ zur Kühlmitteltemperatur als eine weitere Bezugsgröße für die Ermittlung der Brennraumtemperatur verwendet werden kann.
- Gemäß einer weiteren Ausgestaltung der Erfindung erfolgt bei einer Kühlmitteltemperatur kleiner als -15°C oder größer als 90°C ein Niederdruckstart, wobei bei einem in der Einspritzvorrichtung aufgebauten Kraftstoffmindestdruck von mindestes 10 bar und bei einer Kühlmitteltemperatur zwischen -15°C und 90°C ein Hochdruckstart stattfindet. Bei einem Kraftstoffdruck von mindestens 10 bar wird eine gute Sprayqualität des eingespritzten Kraftstoffes gewährleistet und eine Verdampfung des eingespritzten Kraftstoffs erzielt, ohne daß es zu einer Wandanlagerung kommt. Dabei wird ein Niederdruckstart wird bei Temperaturen größer als 90°C bevorzugt, da durch hohe Temperaturen im Brennraum oftmals während eines Wiederstartbetriebs der Brennkraftmaschine aufgrund der zunehmenden Spaltmasse in der Kraftstoffpumpe kein ausreichender Kraftstoffdruck aufgebaut werden kann. Vorzugsweise findet der Niederdruckstart in einem Temperaturbereich kleiner als -30°C oder größer als 110°C, und der Hochdruckstart zwischen -30°C und 110°C statt.
- Weitere Merkmale und Merkmalskombinationen ergeben sich aus der Beschreibung. Konkrete Ausführungsbeispiele der Erfindung sind in den Zeichnungen vereinfacht dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
- Fig. 1
- einen Zylinderquerschnitt einer direkt einspritzenden Brennkraftmaschine mit Fremdzündung,
- Fig. 2
- ein schematisches Diagramm des Einspritzverlaufs der Brennkraftmaschine gemäß
Fig.1 während eines Niederdruckstarts aufgetragen über dem Kurbelwinkel, und - Fig. 3
- ein schematisches Diagramm des Einspritzverlaufs der Brennkraftmaschine gemäß
Fig.1 während eines Hochdruckstarts aufgetragen über dem Kurbelwinkel. -
Figur 1 zeigt einen Zylinder 2 einer direkt einspritzenden Brennkraftmaschine 1, in dem ein längs beweglich angeordneter Kolben 3 mit einem dem Zylinder 2 verschließenden Zylinderkopf 7 einen Brennraum 4 begrenzt. Im Zylinderkopf 7 ist ein Kraftstoffinjektor 5 angeordnet, bei dem durch eine Düsenöffnung 6 Kraftstoff in den Brennraum 4 in Form eines Kraftstoffkegels 9 eingespritzt wird. Eine nicht dargestellte Steuereinrichtung bestimmt bei der Brennkraftmaschine 1 während einer Startphase durch einen ermittelten Kraftstoffdruck in einer nicht dargestellten Einspritzvorrichtung, ob beim Start der Brennkraftmaschine 1 ein Hochdruckstart oder ein Niederdruckstart eingeleitet wird. Bei der Freigabe der Düsenöffnung 6 wird der Kraftstoff in einem Kegelstrahl 9 in den Brennraum 4 derart eingespritzt, daß die im Zylinderkopf 7 angeordnete Zündkerze 11 im wesentlichen nicht benetzt wird. Dabei wird der Kraftstoffstrahl 9 in den Brennraum mit einem Öffnungswinkel α eingebracht, der vorzugsweise in einem Bereich zwischen 70° und 110° liegt. Die inFigur 1 dargestellte Brennkraftmaschine 1 arbeitet nach dem Viertaktprinzip, wobei sich das erfindungsgemäße Verfahren ebenfalls für fremdgezündete Zweitaktbrennkraftmaschinen mit Direkteinspritzung eignet. - Im ersten Takt eines Arbeitspiels nach dem Viertakt-Prinzip arbeitender Brennkraftmaschine aus
Fig. 1 wird dem Brennraum 4 durch einen Einlaßkanal 8 Verbrennungsluft zugeführt, wobei der Kolben 3 sich in einer Abwärtsbewegung bis zu einem unteren Totpunkt UT bewegt. In einem weiteren Kompressionstakt bewegt sich der Kolben 3 in einer Aufwärtsbewegung vom unteren Totpunkt UT bis zu einem oberen Zündtotpunkt ZOT. Im Bereich des oberen Zündtotpunkts ZOT wird mittels der Zündkerze 11 das gebildete Kraftstoff/Luft-Gemisch gezündet, wobei der Kolben 3 in einer Abwärtsbewegung bis zu einem unteren Totpunkt UT expandiert. In einem letzten Takt fährt der Kolben 3 in einem Aufwärtsbewegung bis zu einem oberen Totpunkt OT und schiebt die Abgase aus dem Brennraum 4 aus. - Abhängig von einer in einem Kühlwasserkanal 12 gemessene Kühlwassertemperatur wird mittels einer nicht dargestellten Steuereinrichtung festgelegt, ob eine Hochdruck- oder ein Niederdruckstart während der Startphase der Brennkraftmaschine durchgeführt wird. Ein Hochdruckstart wird dann eingeleitet, wenn ein Kraftstoffmindestdruck in einer nicht dargestellten Kraftstoffverteilerleitung vorliegt, die beispielsweise als Kraftstoff-Common-Rail ausgebildet ist. Der Kraftstoffmindestdruck wird in Abhängigkeit von der ermittelten Kühlwassertemperatur festgelegt. Dieser beträgt vorzugsweise mindestens 10 bar. Bei einem solchen Kraftstoffdruck ist sichergestellt, dass eine gute Zerstäubungsqualität erzielt wird. Der Kraftstoffmindestdruck muss wiederum nach einer definierten Anzahl von Verbrennungszyklen aufgebaut sein. Gemäß dem vorliegenden Ausführungsbeispiel wird ein Zyklus als ein Vorgang vom ersten bis zum vierten Takt gemäß der oben dargestellten Viertaktfolge verstanden. Vorzugsweise soll der Kraftstoffmindestdruck nach ungefähr vier Sekunden aufgebaut sein. Dabei wird die Anzahl der Verbrennungszyklen in Anhängigkeit von der Kühlwassertemperatur festgelegt.
- Erreicht der Kraftstoffdruck nach einer definierten Anzahl von Zyklen nicht den Kraftstoffmindestdruck, so wird ein Niederdruckstart eingeleitet. Gemäß
Figur 2 wird die Kraftstoffmenge in bis zu drei Teilmengen in den Brennraum vor dem Zündzeitpunkt ZZP eingebracht. Die Aufteilung der Kraftstoffmenge ermöglicht eine bessere Verteilung des eingespritzten Kraftstoffs im Brennraum 4 und entlastet das Kraftstoffsystem. Die erste Teilmenge E1ND wird während der Ansaugphase in den Brennraum 4 eingebracht. Die zweite Teilmenge E2ND erfolgt in einem Bereich zwischen einem Endteil der Ansaugphase und einem Anfangsteil der Kompressionsphase. Die dritte Teilmenge E3ND erfolgt dann kurz vor dem Zündzeitpunkt ZZP, so dass im Bereich der Zündkerze 11 eine zündfähige Gemischwolke vorliegt. Die inFig. 2 gezeigten Einspritzzeitpunkte sind schematisch dargestellt; sie sind frei wählbar, wobei sie in Abhängigkeit von einer Ist-Drehzahl, und/oder einer Kühlwassertemperatur variiert werden. - Das Ende der Kraftstoffeinspritzungen E1ND, E2ND und E3ND wird über drei Kennfelder festgelegt. Die Kennfelder sind jeweils über die Kühlwassertemperatur und die Zyklenanzahl aufgespannt. Dabei wird die Kraftstoffeinspritzung derart gestaltet, dass Überschneidungen von Kraftstoffeinspritzungen verhindert werden. Daher ist es denkbar, das Ende der dritten Einspritzung E3ND und die zwei vorangegangenen Einspritzungen E1ND und E2ND über Verzugszeiten oder Differenzwinkel festzulegen. Während des Niederdruckstarts wird aufgrund des niedrigen Kraftstoffdrucks die Einspritzdauer der letzten Einspritzung E3ND begrenzt, um den Eintritt von Kraftstoff und Luft in den Injektor zu verhindern. Dabei wird mittels einer Druckkompensation sichergestellt, dass zu jeder Zeit die richtige Einspritzzeit eingestellt wird. Beim Niederdruckstart wird vorzugsweise ein Druckregler in der Einspritzvorrichtung offen gehalten, um definierte Druckverhältnisse in der Kraftstoffverteilerleitung der Einspritzvorrichtung zu erzielen. Die in
Figur 2 dargestellten Einspritzzeiten der drei Teilmengen sind nur als Beispiel dargestellt, wobei die Einspritzzeiten frei wählbar sind, und in Abhängigkeit vom Kraftstoffdruck in der Einspritzvorrichtung variiert werden. Grundsätzlich findet bei einer Kühlmitteltemperatur kleiner als -15° C oder größer als 90° C ein Niederdruckstart statt. - Ist der Kraftstoffmindestdruck nach der definierten Anzahl von Zyklen erreicht, so wird ein Hochdruckstart eingeleitet.
- Bei einem eingeleiteten Hochdruckstart wird das Einspritztiming über dem Einspritzende definiert. Auf diese Weise wird ein direkter Bezug zur Zündung hergestellt und somit eine einfache Regelung der Kraftstoffeinspritzung erzielt. Gemäß
Figur 3 erfolgt beim Hochdruckstart die Einspritzung des Kraftstoffes in bis zu drei Teilmengen E1HD, E2HD und E3HD. Die erste Teilmenge E1HD wird während der Ansaugphase eingespritzt. Die Aufteilung der Kraftstoffmasse wird anhand in der Steuereinheit abgelegten Kennfeldern festgelegt, in denen über der Kühlwassertemperatur, einer Ist-Drehzahl und einer Leerlaufdrehzahl das Ende der ersten Einspritzung E1HD unabhängig vom Zündzeitpunkt ZZP festgelegt wird. Die zweite Kraftstoffeinspritzung E2HD erfolgt während der Kompressionsphase derart, dass der Abstand zwischen dem Ende der zweiten Kraftstoffeinspritzung E2HD und dem Zündzeitpunkt ZZP in Abhängigkeit von der Kühlwassertemperatur, der Ist-Drehzahl und der Leerlaufdrehzahl festgelegt wird. Die dritte Kraftstoffeinspritzung E3HD erfolgt kurz nach dem Zündzeitpunkt ZZP, wobei die dritte Kraftstoffeinspritzung E3HD über eine Verzögerungszeit zwischen der zweiten und der dritten Kraftstoffeinspritzung E3HD derart festgelegt wird, dass sie an der Verbrennung teilnimmt. Es ist denkbar, dass beim Hochdruckstart nur eine einzige Kraftstoffeinspritzung vorgenommen wird, die Vorteilhafterweise dann in einem Bereich von 40°KW bis 160°KW vor ZOT stattfindet. - Dementsprechend wird beim Hochdruckstart eine kombinierte Brennraumladung aus Homogen- und Schichtladung erzielt. Die erste Kraftstoffteilmenge stellt den homogenen Anteil, die zweite und die dritte den geschichteten Anteil dar. Dadurch werden Kraftstoffwandanlagerungen minimiert und eine sichere Zündung der gebildeten Kraftstoffwolke erzielt. Vorzugsweise wird mittels einer Druckkompensation in der Kraftstoffeinspritzvorrichtung sichergestellt, daß zu jeder Zeit während der Startphase die richtige Einspritzzeit gewählt wird.
- Mit der beschriebenen Mehrfacheinspritzung während der Startphase wird das Betriebsverhalten der Brennkraftmaschine 1 verbessert, wobei insbesondere die Emissionsbildung durch die unverbrannten Kraftstoffanteile aufgrund einer niedrigen Wandtemperatur minimiert wird. Diese Vorteile ergeben sich vorzugsweise beim Einsatz eines Piezo-Injektors, bei dem kurze Einspritzzeiten, beispielsweise weniger als 0,25 msec erzielt werden können. Dadurch wird die Einspritzung von sehr kleinen Kraftstoffteilmengen in den Brennraum 4 ermöglicht, und für den Startbetrieb der Brennkraftmaschine 1 die benötigte Kraftstoffmenge stark reduziert.
- Während der Startphase wird der Zündzeitpunkt ZZP sowohl beim Nieder- als auch beim Hochdruckstart in Abhängigkeit von der Kühlwassertemperatur und der Motordrehzahl mittels der Steuereinheit geregelt. Dabei wird der Zündzeitpunkt ZZP in einem Kennfeld abgelegt, in dem der Zündzeitpunkt ZZP über der Kühlwassertemperatur, der Differenz zwischen der Ist-Drehzahl und der Leerlauf-Drehzahl aufgetragen ist. Nach Verlassen der Startphase wird der Zündzeitpunkt ZZP dem normalen Betriebszustand angeglichen. Die in der Steuereinheit applizierten Zündzeitpunkte werden für den Niederdruck- und Hochdruckstart in getrennten Kennfeldern abgelegt.
- Insbesondere eignet sind das erfindungsgemäße Verfahren für den Einsatz bei direkteinspritzenden Brennkraftmaschinen mit Fremdzündung, bei denen ein strahlgeführtes Brennverfahren vorliegt. Bei solchen Brennkraftmaschinen werden nach außen öffnende Einspritzdüsen verwendet, bei denen der Kraftstoff als Hohlkegel in den Brennraum eingespritzt wird. Vorzugsweise wird der Kraftstoff als ein Kraftstoffhohlkegel mit einem Winkel α zwischen 70° und 100° in den Brennraum eingebracht, so dass der Kraftstoffhohlkegel bei einer Kraftstoffeinspritzung im Kompressionstakt auf im Brennraum komprimierte Verbrennungsluft trifft. Ein torusförmiger Wirbel wird dadurch im Außenbereich bzw. am Rand des eingespritzten Kraftstoffhohlkegels gebildet, womit im Bereich der Elektroden der Zündkerze ein zündfähiges Kraftstoff/Luft-Gemisch bereitgestellt wird. Dabei erfolgt die Anordnung der Zündkerze derart, dass die Elektroden der Zündkerze 11 in den erzielten Randwirbel hineinragen, ohne dass sie während der Kraftstoffeinspritzung wesentlich benetzt werden, d.h. bei einer leichten bzw. geringfügigen Benetzung der Elektroden der Zündkerze sollte bis zum Zündzeitpunkt der größte Anteil des Kraftstoffes an den Elektroden wieder verdampft sein.
Claims (7)
- Verfahren zum Betrieb einer Brennkraftmaschine mit einer Einspritzvorrichtung, bei dem- über einen Einlasskanal einem Brennraum Verbrennungsluft zugeführt wird,- mittels einer im Brennraum angeordneten Kraftstoffdüse Kraftstoff in den Brennraum eingespritzt wird,- mittels einer im Brennraum angeordneten Zündkerze ein gebildetes Kraftstoff/Luft-Gemisch bei einem bestimmten Zündzeitpunkt gezündet wird, und- beim Start der Brennkraftmaschine ein Hoch- oder ein Niederdruckstart in Abhängigkeit von einem in der Einspritzvorrichtung innerhalb einer definierten Zyklenanzahl aufgebauten Kraftstoffdrucks im Vergleich zu einem Kraftstoffmindestdruck gewählt wird,dadurch gekennzeichnet, dass- der Kraftstoffmindestdruck und die Zyklenanzahl in Abhängigkeit von einer Brennraumtemperatur gewählt werden, wobei- während des Startbetriebs die Einspritzung des Kraftstoffs in den Brennraum getaktet stattfindet, wobei ein Hochdruckstart erst dann eingeleitet wird, wenn genügend Kraftstoffdruck vorhanden ist.
- Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass
während des Startbetriebs die eingespritzte Kraftstoffgesamtmenge in bis zu drei Teilmengen in den Brennraum eingebracht wird. - Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass
bei einem Niederdruckstart die bis zu drei Teilmengen vor dem Zündzeitpunkt, und bei einem Hochdruckstart die bis zu zwei Teilmengen vor und eine Teilmenge nach dem Zündzeitpunkt in den Brennraum eingespritzt werden. - Verfahren nach einem der vorgehenden Ansprüche,
dadurch gekennzeichnet, dass
der Zündzeitpunkt während des Startbetriebs in Abhängigkeit von der Brennraumraumtemperatur und einer Differenz zwischen einer Ist-Drehzahl und einer Leerlaufdrehzahl bestimmt wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
während eines Hochdruckstarts bei Unterschreitung eines definierten Kraftstoffmindestdrucks in der Einspritzvorrichtung auf den Niederdruckstart umgeschaltet wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Brennraumtemperatur mittels einer Temperaturmesseinrichtung am Brennraum oder anhand einer Kühlmitteltemperatur der Brennkraftmaschine erfasst wird. - Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
ein Niederdruckstart bei einer Kühlmitteltemperatur kleiner als -15°C oder größer als 90°C erfolgt, wobei bei einem in der Einspritzvorrichtung aufgebauten Kraftstoffmindestdruck von mindestens 10 bar und bei einer Kühlmitteltemperatur zwischen -15°C und 90°C ein Hochdruckstart erfolgt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10242227 | 2002-09-12 | ||
DE10242227A DE10242227A1 (de) | 2002-09-12 | 2002-09-12 | Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung |
PCT/EP2003/009988 WO2004027239A1 (de) | 2002-09-12 | 2003-09-09 | Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1537316A1 EP1537316A1 (de) | 2005-06-08 |
EP1537316B1 true EP1537316B1 (de) | 2008-04-30 |
Family
ID=31895847
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP03757808A Expired - Lifetime EP1537316B1 (de) | 2002-09-12 | 2003-09-09 | Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung |
Country Status (5)
Country | Link |
---|---|
US (1) | US7171953B2 (de) |
EP (1) | EP1537316B1 (de) |
JP (1) | JP4134038B2 (de) |
DE (2) | DE10242227A1 (de) |
WO (1) | WO2004027239A1 (de) |
Families Citing this family (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10304449B4 (de) * | 2003-02-04 | 2007-10-25 | Siemens Ag | Verfahren zur Steuerung einer direkten Einspitzung einer Brennkraftmaschine |
DE10322014A1 (de) * | 2003-05-16 | 2004-12-02 | Robert Bosch Gmbh | Verfahren zum Starten einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs |
DE10341789B4 (de) * | 2003-09-10 | 2008-02-14 | Siemens Ag | Verfahren und Vorrichtung zum Starten einer Brennkraftmaschine mit direkter Einspritzung des Kraftstoffs in den Brennraum |
DE102004017990B4 (de) * | 2004-04-14 | 2015-10-01 | Daimler Ag | Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung |
DE602004004764T2 (de) | 2004-06-04 | 2007-10-25 | Ford Global Technologies, LLC, Dearborn | Verfahren und Vorrichtung zur Reduzierung von Abgasemissionen während Kaltstartbedingungen |
DE102004046628B4 (de) * | 2004-09-25 | 2010-05-12 | Robert Bosch Gmbh | Verfahren zum Starten einer Brennkraftmaschine |
JP2006336509A (ja) * | 2005-05-31 | 2006-12-14 | Hitachi Ltd | 燃料噴射式内燃機関の制御装置 |
AT502972B1 (de) * | 2006-12-07 | 2008-06-15 | Avl List Gmbh | Verfahren zum betreiben einer brennkraftmaschine |
US7684925B2 (en) * | 2006-12-07 | 2010-03-23 | Gm Global Technology Operations, Inc. | Engine warm-up of a homogeneous charge compression ignition engine |
DE102007048930A1 (de) * | 2007-10-12 | 2009-04-16 | Daimler Ag | Verfahren zum Betrieb einer fremdgezündeten, direkteinspritzenden 4-Takt-Brennkraftmaschine |
US8408176B2 (en) * | 2009-01-09 | 2013-04-02 | Ford Global Technologies, Llc | System and method for reducing hydrocarbon emissions in a gasoline direct injection engine |
US8312710B2 (en) * | 2009-01-09 | 2012-11-20 | Ford Global Technologies, Llc | Cold-start reliability and reducing hydrocarbon emissions in a gasoline direct injection engine |
US8165788B2 (en) | 2009-05-22 | 2012-04-24 | Ford Global Technlogies, Llc | Fuel-based injection control |
US8447496B2 (en) * | 2010-09-17 | 2013-05-21 | Ford Global Technologies, Llc | Fuel-based injection control |
US20130199501A1 (en) * | 2010-10-11 | 2013-08-08 | A Fuel Injector With A Variable Orifice | Fuel injector with a variable orifice |
KR20120061640A (ko) * | 2010-12-03 | 2012-06-13 | 현대자동차주식회사 | 노킹 방지 장치 및 이를 제어하는 방법 |
DE102013214261B4 (de) | 2013-07-22 | 2024-06-06 | Bayerische Motoren Werke Aktiengesellschaft | Verfahren zur Steuerung einer Kraftstoff-Direkteinspritzung |
FR3014494B1 (fr) * | 2013-12-05 | 2016-09-16 | Continental Automotive France | Procede de demarrage d’un moteur a combustion interne a allumage commande, alimente en carburant par injection directe |
JP6229598B2 (ja) | 2014-06-11 | 2017-11-15 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6269410B2 (ja) | 2014-09-18 | 2018-01-31 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6323683B2 (ja) | 2015-06-03 | 2018-05-16 | マツダ株式会社 | エンジンの制御装置 |
JP6323684B2 (ja) * | 2015-06-03 | 2018-05-16 | マツダ株式会社 | エンジンの制御装置 |
JP6432788B2 (ja) | 2015-07-29 | 2018-12-05 | マツダ株式会社 | エンジンの燃焼室構造 |
JP6339554B2 (ja) * | 2015-12-25 | 2018-06-06 | 本田技研工業株式会社 | 直噴式内燃機関 |
JP6397437B2 (ja) | 2016-02-24 | 2018-09-26 | 本田技研工業株式会社 | 直噴式内燃機関 |
JP6332320B2 (ja) * | 2016-04-11 | 2018-05-30 | トヨタ自動車株式会社 | 内燃機関の制御装置 |
JP6943281B2 (ja) * | 2017-06-15 | 2021-09-29 | 日産自動車株式会社 | 直噴火花点火エンジンの制御装置および制御方法 |
DE102019008846A1 (de) * | 2019-12-19 | 2021-06-24 | Daimler Ag | Verfahren zum Betrieb eines Verbrennungsmotors |
CN115728067B (zh) * | 2022-11-05 | 2024-07-09 | 哈尔滨工程大学 | 一种可视化高压燃烧室试验装置 |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5482017A (en) * | 1995-02-03 | 1996-01-09 | Ford Motor Company | Reduction of cold-start emissions and catalyst warm-up time with direct fuel injection |
DE19823280C1 (de) * | 1998-05-25 | 1999-11-11 | Siemens Ag | Verfahren zum Betreiben einer direkteinspritzenden Brennkraftmaschine während des Starts |
DE19827609A1 (de) * | 1998-06-20 | 1999-12-23 | Bosch Gmbh Robert | Verfahren zum Betreiben einer Brennkraftmaschine insbesondere eines Kraftfahrzeugs |
FR2800801B1 (fr) * | 1999-11-10 | 2002-03-01 | Siemens Automotive Sa | Procede de commande du demarrage d'un moteur a combustion interne et a injection directe |
DE10205494A1 (de) * | 2002-02-09 | 2003-08-28 | Bosch Gmbh Robert | Verfahren, Computerprogramm, Steuer- und/oder Regelgerät zum Betreiben einer Brennkraftmaschine, sowie Brennkraftmaschine |
US6848414B2 (en) * | 2002-08-08 | 2005-02-01 | Detroit Diesel Corporation | Injection control for a common rail fuel system |
DE10242226A1 (de) * | 2002-09-12 | 2004-03-25 | Daimlerchrysler Ag | Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine |
-
2002
- 2002-09-12 DE DE10242227A patent/DE10242227A1/de not_active Withdrawn
-
2003
- 2003-09-09 EP EP03757808A patent/EP1537316B1/de not_active Expired - Lifetime
- 2003-09-09 JP JP2004537025A patent/JP4134038B2/ja not_active Expired - Lifetime
- 2003-09-09 US US10/527,458 patent/US7171953B2/en not_active Expired - Lifetime
- 2003-09-09 DE DE50309743T patent/DE50309743D1/de not_active Expired - Lifetime
- 2003-09-09 WO PCT/EP2003/009988 patent/WO2004027239A1/de active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
EP1537316A1 (de) | 2005-06-08 |
US7171953B2 (en) | 2007-02-06 |
DE50309743D1 (de) | 2008-06-12 |
JP2005538308A (ja) | 2005-12-15 |
DE10242227A1 (de) | 2004-03-25 |
US20060137647A1 (en) | 2006-06-29 |
JP4134038B2 (ja) | 2008-08-13 |
WO2004027239A1 (de) | 2004-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1537316B1 (de) | Verfahren zum betrieb einer brennkraftmaschine mit kraftstoffdirekteinspritzung | |
EP1537320B1 (de) | Verfahren zum betrieb einer fremdgezündeten brennkraftmaschine | |
DE10147529B4 (de) | Verfahren zum Betreiben einer mit selbstzündbarem Kraftstoff betriebenen Brennkraftmaschine | |
DE19642653C1 (de) | Verfahren zur Bildung eines zündfähigen Kraftstoff/Luft-Gemisches | |
DE102004017990B4 (de) | Verfahren zum Betrieb einer Brennkraftmaschine mit Kraftstoffdirekteinspritzung | |
DE60117143T2 (de) | Verfahren und vorrichtung zur erzeugung von kraftstoffmehrfacheinspritzungen in den zylindern einer brennkraftmaschine | |
DE112006002990T5 (de) | Verfahren und Vorrichtung zum Betreiben einer funkengezündeten Brennkraftmaschine mit Direkteinspritzung | |
EP1608856A1 (de) | Brennkraftmaschine mit selbstz ndung | |
DE102016008911A1 (de) | Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis | |
EP2004975B1 (de) | Verfahren zum betreiben einer brennkraftmaschine | |
DE10329524A1 (de) | Selbstzündende Brennkraftmaschine | |
DE102016008916B4 (de) | Mit Vormischungsbeschickung und Kompressionszündung arbeitender Motor, Steuer- bzw. Regeleinrichtung hierfür, Verfahren zum Steuern bzw. Regeln eines Motors und Computerprogrammerzeugnis | |
DE112006002869T5 (de) | Verfahren und Vorrichtung zum Steuern von Verbrennung in einer strahlgeführten fremdgezündeten Brennkraftmaschine mit Direkteinspritzung | |
DE102012107714A1 (de) | Steuersystem für ein Verbrennungssystem | |
DE102009017743A1 (de) | Steuerung für einen Dieselmotor nach dem Start | |
DE10014553A1 (de) | Verfahren zum Betrieb einer direkteinspritzenden Otto-Brennkraftmaschine | |
DE102020000353B4 (de) | Verfahren zum Betreiben einer Verbrennungskraftmaschine eines Kraftfahrzeugs, insbesondere eines Kraftwagens | |
DE10320848B4 (de) | Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine | |
EP1491740B1 (de) | Verfahren zum Betrieb eines Dieselmotors | |
EP1386075B1 (de) | Verfahren zum betreiben einer direkteinspritzenden benzin-brennkraftmaschine | |
DE102017201805A1 (de) | Verfahren zum Einspritzen eines Zusatzmediums in den Zylinder einer fremdgezündeten Brennkraftmaschine und Brennkraftmaschine zur Durchführung eines derartigen Verfahrens | |
EP1639255B1 (de) | Verfahren zum betrieb eines direkteinspritzenden verbrennungsmotors sowie direkteinspritzender verbrennungsmotor | |
DE10329280B4 (de) | Verfahren zum Betrieb einer fremdgezündeten Brennkraftmaschine | |
DE10322014A1 (de) | Verfahren zum Starten einer Brennkraftmaschine, insbesondere eines Kraftfahrzeugs | |
DE102019215852B4 (de) | Zündvorrichtung für einen Verbrennungsmotor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20050311 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
17Q | First examination report despatched |
Effective date: 20061116 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLERCHRYSLER AG |
|
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: DAIMLER AG |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REF | Corresponds to: |
Ref document number: 50309743 Country of ref document: DE Date of ref document: 20080612 Kind code of ref document: P |
|
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed |
Effective date: 20090202 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20130923 Year of fee payment: 11 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140909 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 13 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 14 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 15 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50309743 Country of ref document: DE Owner name: MERCEDES-BENZ GROUP AG, DE Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE Ref country code: DE Ref legal event code: R081 Ref document number: 50309743 Country of ref document: DE Owner name: DAIMLER AG, DE Free format text: FORMER OWNER: DAIMLER AG, 70327 STUTTGART, DE |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20220920 Year of fee payment: 20 Ref country code: DE Payment date: 20220628 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20220926 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 50309743 Country of ref document: DE Owner name: MERCEDES-BENZ GROUP AG, DE Free format text: FORMER OWNER: DAIMLER AG, STUTTGART, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 50309743 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20230908 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20230908 |